
A preliminary version of this paper appears in the proceedings of TCC 2017. This is the full version.

On the One-Per-Message Unforgeability
of (EC)DSA and its Variants

Manuel Fersch1, Eike Kiltz1, and Bertram Poettering1,2

1 Horst Görtz Institute for IT Security, Ruhr University Bochum, Germany
{manuel.fersch,eike.kiltz}@rub.de

2 Information Security Group, Royal Holloway, University of London, United Kingdom
{bertram.poettering}@rhul.ac.uk

Abstract. The American signature standards DSA and ECDSA, as well as their Russian and
Chinese counterparts GOST 34.10 and SM2, are of utmost importance in the current security
landscape. The mentioned schemes are all rooted in the Elgamal signature scheme (1984) and use a
hash function and a cyclic group as building blocks. Unfortunately, authoritative security guarantees
for the schemes are still due: All existing positive results on their security use aggressive idealization
approaches, like the generic group model, leading to debatable overall results.
In this work we conduct security analyses for a set of classic signature schemes, including the

ones mentioned above, providing positive results in the following sense: If the hash function (which
is instantiated with SHA1 or SHA2 in a typical DSA/ECDSA setup) is modeled as a random oracle,
and the signer issues at most one signature per message, then the schemes are unforgeable if and
only if they are key-only unforgeable, where the latter security notion captures that the adversary
has access to the verification key but not to sample signatures. Put differently, for the named
signature schemes, in the one-signature-per-message setting the signature oracle is redundant.

Keywords: Elgamal signatures · DSA · ECDSA · GOST · SM2 · Provable security

1 Introduction

Digital signatures. Digital signature schemes are a ubiquitous cryptographic primitive. They are
extensively used for message and entity authentication and find widespread application in real-world
protocols. The signature schemes most often used in practice are likely the RSA-based PKCS#1v1.5,
and the DLP-based DSA and ECDSA [19]. For instance, current versions of TLS exclusively employ
signatures of these types to authenticate servers. Standardized schemes that share a great similarity with
(EC)DSA are the Russian GOST 34.10 [9] and the Chinese SM2 [18]. In the following we describe those
schemes in more detail.
DSA and ECDSA. The signature schemes DSA and ECDSA build on ideas of Elgamal [10] and are
defined over a cyclic group G = 〈g〉 of prime order q. They utilize two independent hash functions,
H and f , that map messages and group elements, respectively, into the exponent space Zq. Function f is
called the conversion function. While for DSA the group G is a prime-order subgroup of the multiplicative
group of some prime field GF(p) with the canonical representation of group elements as integers in
{1, . . . , p − 1}, and f is defined as A 7→ (A mod p) mod q, for ECDSA the group is a subgroup of an
elliptic curve over some field GF(pn), and f is defined as A 7→ A.x mod q where A.x is an encoding of
the x-coordinate of elliptic curve point A as an integer.

The signature schemes GOST and SM2 use similar settings. After having fixed the cyclic group G,
the hash function H, and the conversion function f , if x is a signing key and X = gx the corresponding
verification key, an (EC)DSA signature on a message m is a pair (s, t) such that s = (H(m) + xt)/r and
t = f(gr), where r is freshly picked in each signing operation. In GOST and SM2, different equations
that values s, t, r, x have to fulfill are used. (For details see Fig. 2.)
Prior analyses of Elgamal-type signature schemes. The first positive results on (unmodified)
ECDSA are due to Brown. In [6,5,4] he proves security of ECDSA in the generic group model [26].
Unfortunately, some crucial formal aspects of his idealization remain unclear, for instance that his
modeling approach for the group implicitly also idealizes the conversion function f . This has unexpected
impact: he de facto proves that ECDSA signatures are strongly unforgeable, while in practice this is

https://www.iacr.org/workshops/tcc2017/

obviously not the case. See the discussions in [27,11] for more details. Further, as Brown reports, his
arguments are applicable to ECDSA only, but not to the (closely-related) DSA.

Independently of the findings discussed above, in [7,4,6] Brown identifies both sufficient and necessary
conditions on H, f for the security of ECDSA. However, the sufficient ones are significantly stronger than
the discrete logarithm problem.

In an informal discussion, in [6, II.4.4], Brown mentions that for ECDSA, in the random oracle model,
unforgeability against adversaries that have access to the verification key but not to a signing oracle
implies unforgeability against adversaries that can request signatures, but at most one per message. No
formal argument is given for this claim. We work out the details in the current article. As our treatment
shows, a formal proof requires careful consideration and additional techniques.

In [11] the current authors propose GenDSA, a signature framework that subsumes both DSA and
ECDSA in unmodified form, and prove the unforgeability of corresponding signatures using a novel
approach of idealization: They decompose the conversion function into three independent functions, where
the outer two mimic algebraic properties of the conversion function’s domain and range, and the inner
function is modeled as a bijective random oracle.1 In the full version they extend their results to also
cover GOST and SM2. To the best of our knowledge, this is the only existing security proof for GOST
signatures. For SM2, the only other security evaluation is in the generic group model [30].

In comparison to [5,11] the current work takes a conservative approach: We idealize neither the group
nor the conversion function but rather model a hash function as a random oracle. As this hash function
is typically instantiated with a dedicated construction like SHA1 or SHA2, we believe our assumptions
are weaker and thus preferable to those used in [5,11,30]. We caution, however, that also our results are
weaker for not giving a reduction to the DLP, but to a different (non-interactive) assumption.
Further related work. The works discussed next do not establish security results for standardized
schemes like DSA/GOST/SM2: Some works instead target modified versions of these schemes, others
give implementation advice.

Brickell et al. [3] define a framework for signature schemes called Trusted El Gamal Type Signature
Scheme and prove its unforgeability in the random oracle model. Among the instantiations of their
framework are the schemes DSA-I (reportedly due to Brickell, 1996) in which the conversion function f
is replaced by a random oracle, and DSA-II (due to [25]) that deviates from DSA for applying the
hash function H to both the message and the ephemeral value f(gr). The framework of [3] cannot be
instantiated such that unmodified (EC)DSA, GOST, or SM2 is covered.

Similarly, Malone–Lee and Smart [21] propose the variants ECDSA-II and ECDSA-III of ECDSA.
In order to make certain attacks impossible (like duplicate signatures [27] where one signature is valid
for two messages), and for obtaining tighter security reductions, the authors diverge from the original
ECDSA scheme.

Other work on the security of DSA and ECDSA, identifying necessary conditions for the security
of the schemes or analyzing their robustness against flaws in implementations and parameter selection,
was conducted by Vaudenay [28,29], Howgrave–Graham and Smart [17], Nguyen and Shparlinski [23],
Leadbitter et al. [20], García et al. [12], and Genkin et al. [13].

Our Contribution

Our contribution is threefold. First, we describe the abstract signature scheme GenElgamal that, among
others, subsumes DSA, ECDSA, and GOST in unmodified, and SM2 in an equivalent form. Second, we
show that in the random oracle model (for H), forging signatures in the presence of a signing oracle
that can be queried at most once on each message (one-per-message unforgeability, uf-cma1) is as hard,
but with a non-tight security reduction, as without such an oracle (key-only unforgeability, uf-koa).
This means for the named schemes that the (restricted) signing oracle is actually redundant. Third,
we generalize the notion of intractable semi-logarithm from [6] and show that it is equivalent, for some
schemes, to key-only unforgeability. In the following we describe these three parts in more detail.
Generic Elgamal Signatures. The GenElgamal signature scheme is defined in the DLP setting
relative to a hash function H, a conversion function f , a so-called defining equation E, and a set D that
1 A bijective random oracle is an idealized public bijection that is accessible, in both directions, via oracles;
cryptographic constructions that build on such objects include the Even–Mansour blockcipher and the SHA3
hash function.

2

enforces some restrictions on the signature values. See Section 3 for the details. Different choices of these
parameters lead to different signature schemes, including DSA, ECDSA, GOST, and SM2.
Proving the security of GenElgamal. Consider GenElgamal and assume H is a random oracle. In
Section 4 we prove that, in this setting, key-only unforgeability implies one-per-message unforgeability.
(The latter notion is not only of theoretical interest; as we elaborate in Section 2 it is sufficient in many
practical scenarios.) This observation can be traced back to Brown [6, II.4.4] for the case of ECDSA,
but previously it has not been proved formally. Surprisingly, our security reduction requires a Coron-like
partitioning argument [8]. We note that our reduction is not tight but loses a factor of about Qs (the
number of queries to the signing oracle).
Intractable Semi-Logarithm. The notion of intractable semi-logarithm was introduced by Brown [6,
II.2.2] to analyze the security of ECDSA. The idea is effectively to remove hash function H from the
assumption that ECDSA is unforgeable. In brief, a semi-logarithm challenge consists of computing, given
g and X = gx, a pair (s, t) such that t = f((gXt)1/s). We formalize and generalize the semi-logarithm
assumption in Section 5 and show that, in the random oracle model, its hardness is equivalent to the
key-only unforgeability of the signature schemes considered in this article (except for SM2).

2 Preliminaries

Notation. For a set A we write An for the n-fold Cartesian product. We denote random sampling from
a finite set A according to the uniform distribution with a $← A. We use symbol $← also for assignments
from randomized algorithms, while we denote assignments from deterministic algorithms and calculations
with ←. All algorithms are randomized unless explicitly noted. When using symbols like ⊥ we mean
special symbols that do not appear as elements of sets (e.g., key spaces). Any computation involving ⊥
results in ⊥, in particular for every function f we have f(⊥) = ⊥.

If q is a prime number, we write Zq for the field Z/qZ and assume the canonic representation of its
elements as a natural number in the interval [0, q − 1]. That is, an element a ∈ Zq is invertible iff a 6= 0.
We denote prime-order groups with (G, g, q) where G is (the description of) a cyclic group, its order
q = |G| is a prime number, and g is a generator such that G = 〈g〉. We write 1 for the neutral element of
G and G∗ = G \ {1} for the set of its generators.

Our security definitions are game based and expressed via program code. As data structures, besides
sets our code may use associative arrays (look-up tables). We use notation A[·]← ∅ to initialize all cells
of an array A to empty. A game G consists of an Init procedure, one or more procedures to respond
to adversary oracle queries, and a Fin procedure. G is executed with an adversary A as follows: Init
is always run first and its outputs are the inputs to A. Next, the oracle queries of A are answered by
the corresponding procedures of G. Finally, A calls Fin and terminates. Whenever the Stop command
is invoked in a game, the execution of game and adversary is halted and the command’s argument is
considered the output of the game. We write ‘Abort’ as a shortcut for ‘Stop with 0’. By GA ⇒ out we
denote the event that game G executed with A invokes the Stop command with argument out.
Signature Schemes. A signature scheme consists of algorithms KGen,Sign,Verify such that: algorithm
KGen generates a signing key sk and a verification key pk; on input a signing key sk and a message m
algorithm Sign generates a signature σ or the failure indicator ⊥; on input a verification key pk, a
message m, and a candidate signature σ, deterministic algorithm Verify outputs 0 or 1 to indicate rejection
and acceptance, respectively. A signature scheme is correct if for all key pairs (sk, pk) created by KGen
and all messages m, an invocation of Sign(sk,m) results in a signature with overwhelming probability,
and if it does so then Verify accepts it.

We specify three security notions for signature schemes: uf-cma, uf-cma1, and uf-koa. The standard
goal is unforgeability under chosen-message attack (uf-cma), meaning that no adversary can produce
a valid signature on a fresh message, even if it sees signatures on messages of its choosing. A slightly
weaker notion is one-per-message unforgeability (uf-cma1) [24,2,14] that adds the restriction that the
adversary can see at most one signature per message. The weakest notion considered in this paper is
key-only unforgeability (uf-koa) where the adversary sees no sample signature but only the verification
key. The corresponding security games are in Fig. 1. Note that the uf-cma1 game aborts if the adversary
queries the signing oracle a second time on any message, and that in the uf-koa game there is no signing
oracle.

3

Definition 1 (Unforgeability). For a signature scheme, a forger F is said to (τ,Qs, ε)-break uf-cma
(uf-cma1, uf-koa) security if it runs in at most time τ , poses at most Qs queries to the Sign oracle, and
achieves a forging advantage of ε = Pr[GF ⇒ 1], where G is the corresponding game in Fig. 1. (In the
uf-koa case we require Qs = 0.)

If the signature scheme is specified in relation to some idealized primitive that is accessed via oracles,
we also annotate the maximum number of corresponding queries; for instance, in the random oracle model
for a hash function H we use the expression (τ,Qs, QH , ε). We always assume that forgers that output a
forgery attempt (m∗, σ∗) pose a priori all (public) queries that the verification in Fin will require.

Procedure Init
00 L ← ∅
01 (sk, pk) $← KGen
02 Return pk

Procedure Sign(m) (uf-cma,uf-cma1)
03 If m ∈ L: Abort (uf-cma1)
04 σ $← Sign(sk,m)
05 If σ = ⊥: Return ⊥
06 L ← L ∪ {m}
07 Return σ

Procedure Fin(m∗, σ∗)
08 If m∗ ∈ L: Abort
09 If Verify(pk,m∗, σ∗) = 0:
10 Abort
11 Stop with 1

Fig. 1. Games for modeling the unforgeability of signatures. Variant uf-cma includes all lines of code except
Line 03, variant uf-cma1 adds Line 03, and in variant uf-koa the Sign oracle does not exist.

Note that, while the uf-cma1 notion is technically weaker than uf-cma security, for many practical
applications the former is natural and sufficient. For instance, in Signed-Diffie-Hellman key agreement
users exchange messages of the form gx ‖ Sign(sk, gx), where exponent x is fresh for each execution and
thus no value gx is ever signed twice. For cases where uf-cma security is not sufficient, [2] propose efficient
generic transformations that turn uf-cma1 secure signature schemes into ones secure in the uf-cma sense.
Concretely, one possibility is to derandomize the signing algorithm by obtaining the randomness from a
secretly keyed function applied to the message.

3 The Generic Elgamal Framework

We recall the abstract signature framework GenElgamal from [22, Sec. 11] that is defined relative to a
group G, a hash function H, a conversion function f , and an equation E(s, h, t, r, x) called the defining
equation of GenElgamal. To the latter is also associated a set D. In GenElgamal, the hash function H is
used to hash messages to elements of field Zq, and the conversion function f is used to transform group
elements to elements of Zq. Intuitively, a signature consists of a solution s of E for values h = H(m),
t = f(gr) where r is the signing randomness, and signing key x. As we will see, to ensure functionality
and security, certain such solutions need to be excluded. This is implemented by filtering them out by
requiring containedness of corresponding triples (s, h, t) in set D. As it turns out, some standards are
overly restrictive on the set of possible signatures (i.e., set D is specified smaller than it could be; an
example is SGenSM2 where s = 0 is not allowed). Nevertheless, in this document we stick to the sets
specified by the standard documents unless further noted.

Different choices of the defining equation E (and set D) lead to different signature schemes. See Fig. 2
for an overview of classic ones. All these schemes are rooted in the Elgamal signature scheme [10].

Definition 2 (Defining Equation). Let D ⊆ Z3
q be a set. An equation

E = E(s, h, t, r, x) over D× (Z∗q)2

is said to be defining (a signature scheme) if E has the form

E(s, h, t, r, x) = C0(s, h, t) + r Cr(s, h, t) + xCx(s, h, t) ,

where C0, Cx are functions D→ Zq, and Cr is a function D→ Z∗q . With other words, E is defining if it
is affine linear in x and r, and E can always be solved for r.

4

Figure 2 lists possible defining equations together with common names for the corresponding signature
schemes. Concretely, we consider all variants of Elgamal signatures mentioned in the Handbook of Applied
Cryptography [22], and in addition SM2.2 Of course there are also other possible choices for E; for
example, [16] lists a total of 18 configurations.

Scheme E D
GenDSA (V1) [19] h+ tx = rs Z∗q × Zq × Z∗q
GenGOST (V3) [9] hr + tx = s Z∗q × Z∗q × Z∗q
SGenSM2 [18] h+ r + t = sx DSM(t)
GenAMV (V2) [1] h = rt+ sx Zq × Zq × Z∗q
GenHarn (V6) [15] hsx+ r = st Z∗q × Zq × Z∗q
no name (V4) [22] hx+ rt = s Zq × Zq × Z∗q
no name (V5) [22] hr + t = sx Zq × Z∗q × Z∗q

Fig. 2. Defining equations of a selection of established signature schemes. The variant number (Vi) refers to [22,
Table 11.5]. DSM(t) is defined as {(s, h, t) ∈ Z∗q × Z2

q : t+ h 6= 0, s− t− h 6= 0}.

Definition 3 (Signing and Verification Function). Let E be a defining equation. Then we define
the signing function SE(h, t, r, x) = SEx (h, t, r) as follows: if there exists a unique s such that E(s, h, t, r, x)
is satisfied, SE returns s; otherwise, the function returns ⊥.

Further, we define the verification function VE(g, s, h, t, x) = VEg,x(s, h, t) with respect to a prime-order
group (G, g, q) as follows: if r is the (unique) solution of E(s, h, t, r, x) then VE returns gr. Note that
the affine linear form of E makes it possible to efficiently evaluate VE given just s, h, t, gx, i.e., without
knowing x explicitly.

Definition 4 (GenElgamal framework). Let (G, g, q) be a prime-order group, D ⊆ Z3
q a set, and

H : {0, 1}∗ → Zq a hash function. Let further f : G∗ → Zq be a function and E a defining equation as in
Definition 2. Then GenElgamal (relative to E,G, H, f,D) is defined by the algorithms of Fig. 3.

Proc KGen
00 x $← Z∗q ; X ← gx

01 sk := x; pk := X
02 Return (sk, pk)

Proc Sign(sk,m)
03 r $← Zq; R← gr

04 If R = 1: Return ⊥
05 t← f(R)
06 h← H(m)
07 s← SE

x (h, t, r)
08 If (s, h, t) /∈ D:
09 Return ⊥
10 Return (s, t)

Proc Verify(pk,m, (s, t))
11 h← H(m)
12 If (s, h, t) /∈ D:
13 Return 0
14 R̂← VE

g,x(s, h, t)
15 If R̂ = 1: Return 0
16 t̂← f(R̂)
17 If t 6= t̂: Return 0
18 Return 1

Fig. 3. The GenElgamal signature scheme with defining equation E. Functions SE and VE are as in Definition 3.
If SE returns ⊥ in Line 07 then Sign returns ⊥ in Line 09.

We define a notion of simulatability that will be used in the GenElgamal security proof (in Section 4). It
captures the fact that, in the random oracle model, it is possible to simulate (almost) correctly distributed
GenElgamal signatures without knowledge of the signing key.

Definition 5 (δ-Simulatability). Let (E,G, H, f,D) be an instantiation of GenElgamal as in Defi-
nition 4. We say the scheme is δ-simulatable if there exists a function SimE : Z3

q → Z2
q ∪· {⊥} that is

2 More precisely, we consider SGenSM2 which is an equivalent variant of SM2. Concretely, (ŝ, t̂) is a valid SM2
signature on a message m for the verification key X̂ if and only if (s, t) = (ŝ+ t̂, t̂−H(m)) is a valid SGenSM2
signature on m for the verification key X = gX̂. As all these transformations are public and reversible, the
functionality and security of SM2 and SGenSM2 are the same.

5

computable in about the same time as SE such that for all x ∈ Z∗q the statistical distance between the
outputs of the two protocols depicted in Fig. 4 is at most δ.

Protocol Preal(x)
00 r $← Zq

01 R← gr

02 If R = 1: Return ⊥
03 t← f(R)
04 h $← Zq

05 s← SE
x (h, t, r)

06 If (s, h, t) /∈ D: Return ⊥
07 Return (s, h, t)

Protocol Psim(gx)
08 a, b $← Zq

09 R← Xagb

10 If R = 1: Return ⊥
11 t← f(R)
12 (s, h)← SimE(a, b, t)

13 If (s, h, t) /∈ D: Return ⊥
14 Return (s, h, t)

Fig. 4. Simulatability of an instantiation of GenElgamal. If SimE outputs ⊥ in Line 12 then Psim outputs ⊥ in
Line 13. The vertical space between Lines 12 and 13 is exclusively for aligning the two protocols.

Lemma 1. All of the instantiations of GenElgamal described in Fig. 2 are δ-simulatable with δ ≤ 2/q.

Proof. Consider any of the instantiations. Let x ∈ Z∗q be arbitrary. In Psim the random value r is implicitly
computed in the exponent as ax+ b and by choice of a and b uniformly distributed on Zq, so the t-values
in both protocols are distributed identically.

Next, we want to show that for fixed r, t, x the value a is almost always a function in h and vice versa.
To this end we show that for each instantiation there exist sets A,H ⊆ Zq (depending on r, t = f(gr), x)
with |H| ≥ q − 2 and a bijection πx,r : H→ A. The bijection and its inverse function can be computed
directly from the respective defining equation, see Fig. 5. Note that π−1

x,r actually is a function of a, b, t,
but for fixed x, r the value of b is uniquely determined by the choice of a as b = r−ax and the value of t is
uniquely determined as t = f(gr). Now when sampling a $← Zq and computing h as π−1

x,r(a, r − ax, f(gr))
in Psim(x) (setting π−1

x,r(a, r − ax, f(gr)) = ⊥ for a /∈ A, which happens with probability at most 2/q since
|Zq \A| ≤ 2) instead of directly sampling h uniformly random from Zq in Preal(x), the statistical distance
between the h-values is at most 2/q.

Scheme H A πx,r π−1
x,r ξx,r δ

GenDSA Zq \ {−xt} Z∗q rt/(h+ xt) bt/a t/a 1/q
GenGOST Z∗q Z∗q −1/h −1/a −b/a 1/q
SGenSM2 Zq \ {−t− r} Z∗q (h+ r + t)/x −(b+ t) a 1/q
GenAMV Zq \ {rt} Z∗q (h− rt)/tx bt −at 1/q
GenHarn Z∗q \ {t/x} Z∗q \ {r/x} hr/(hx− t) −at/b b/t 2/q
(V4) Z∗q Z∗q −h/t −at bt 1/q
(V5) Z∗q \ {−t/r} Z∗q \ {r/x} (hr + t)/hx −t/b −at/b 2/q

Fig. 5. Sets H and A and functions πx,r(h), π−1
x,r(a, b, t), and ξx,r(a, b, t) for the schemes from Fig. 2. We write

t = f(gr). The last column shows the δ-values for the simulatability of the instantiation (see Definition 5).

Now once x, a, b, t, h are fixed, since the defining equation has to hold, s can be computed determinis-
tically by a function ξx,r, also displayed in Fig. 5. Note that both π−1

x,r and ξx,r can be computed without
explicit knowledge of x, r for all of the instantiations. So if we set

SimE(a, b, t) = (ξx,r(a, b, t), π−1
x,r(a, b, t)) ,

the statistical distance between the outputs of the two protocols from Fig. 4 is at most 2/q. ut

6

4 Security of GenElgamal in the ROM

We examine the security of GenElgamal, showing that if the hash function H is modeled as a random
oracle, key-only unforgeability implies one-per-message unforgeability. This was already suggested in [6,
II.4.4] for the case of GenDSA, but no formal treatment was given. We here provide a formal statement
and a proof for the general case. Interestingly, our argument involves Coron-type partitioning [8].

Theorem 1. Let E,G, H, f,D be a δ-simulatable instantiation of GenElgamal. Then if H is modeled
as a random oracle, for every forger F that (τ,Qs, QH , ε)-breaks the one-per-message unforgeability of
this instantiation there also exists a forger F ′ that (τ ′, 0, QH , ε′)-breaks the key-only unforgeability of this
instantiation, where

ε′ ≥ ε/(e2(Qs + 1))−Qsδ and τ ′ = τ +O(QH) .

Proof. Let F be a forger that (τ,Qs, QH , ε)-breaks the one-per-message unforgeability of the scheme
under consideration. Let Game G0 be the standard uf-cma1 game with the algorithms of Fig. 3 plugged
in and an additional random oracle RO for H that is implemented by lazy sampling (see Fig. 6). We
assume without loss of generality that F queries RO on m before calling Sign or Fin involving the same
message. We have

Pr[GF0 ⇒ 1] = ε .

The idea of the reduction is that we respond to each hash query RO(m) by selecting the hash value
in a specific though uniform way (such that we can simulate signatures on m), except for the value of m∗,
which we want to forward to the random oracle RO∗ of the uf-koa security game in a reduction later. But
m∗ is not yet known at the time of simulating the hash queries, so in Game G1 (see Fig. 6) we apply
the partitioning technique from [8] and toss a biased coin that takes value 0 with probability Qs/(Qs + 1)
and value 1 with probability γ = 1/(Qs + 1) for every queried message, and we hope that it takes the
value 0 for all messages used in signature queries and the value 1 for m∗.

Procedure Init
00 L ← ∅
01 H[·]← ∅; c[·]← ∅
02 x $← Z∗q ; X ← gx

03 Return X

Procedure Sign(m)
04 If m ∈ L: Abort
05 If c[m] 6= 0: Abort (G1)
06 r $← Zq; R← gr

07 If R = 1: Return ⊥
08 t← f(R)
09 h← H[m]
10 s← SE

x (h, t, r)
11 If (s, h, t) /∈ D: Return ⊥
12 L ← L ∪ {m}
13 Return (s, t)

Procedure RO(m)
14 If H[m] 6= ∅:
15 Return H[m]
16 c[m] $← Ber(γ) (G1)
17 h $← Zq

18 H[m]← h
19 Return h

Procedure Fin(m∗, (s∗, t∗))
20 If m∗ ∈ L: Abort
21 If c[m∗] 6= 1: Abort (G1)
22 h∗ ← H[m∗]
23 If (s∗, h∗, t∗) /∈ D: Abort
24 R∗ ← VE

g,x(s∗, h∗, t∗)
25 If R∗ = 1: Abort
26 If f(R∗) 6= t∗: Abort
27 Stop with 1

Fig. 6. Games G0 and G1. Ber is the Bernoulli distribution with bias γ = 1/(Qs + 1), i.e., in Line 16 c[m] takes
the value 1 with probability 1/(Qs + 1). Note that Line 20 is redundant in G1.

We now analyze the probability that one of the coins takes an unwanted value, i.e, the probability
of an abort in Lines 05 and 21. To do this, we consider the complementary probability. Since for all
messages m, c[m] is distributed according to the Bernoulli distribution Ber(γ) with γ = 1/(Qs + 1) and
independently of all other coins, the probability that no abort happens in these lines is

(1− γ)Qsγ ≥ (1− 1/Qs)Qs(1/(Qs + 1)) ≥ 1/e2(Qs + 1) ,

7

where the last inequality is a standard result in calculus and holds for Qs ≥ 2. The case Qs = 1 is trivial.
It follows that

Pr[GF0 ⇒ 1] ≤ e2(Qs + 1) Pr[GF1 ⇒ 1] .
In Game G2 (see Fig. 7) we introduce two changes: (a) when processing a random oracle query on a

message m, a signature for m is precomputed and stored, and (b) the way of signing messages is changed
so that signatures are generated without knowing the signing key. Note that change (a) is possible only
because the Sign oracle may be queried on each message at most once. Change (b) exploits the assumed
simulatability (see Definition 5) of GenElgamal.

Procedure Init
00 L ← ∅
01 H[·]← ∅; c[·]← ∅
02 σ[·]← ∅
03 x $← Z∗q ; X ← gx

04 Return X

Procedure Sign(m)
05 If m ∈ L: Abort
06 If c[m] 6= 0: Abort
07 L ← L ∪ {m}
08 Return σ[m]

Procedure Fin(m∗, (s∗, t∗))
as in G1 (Fig. 6)

Procedure RO(m)
09 If H[m] 6= ∅: Return H[m]
10 c[m] $← Ber(γ)
11 h $← Zq

12 If c[m] = 0:
13 a, b $← Zq

14 R← Xagb

15 If R = 1:
16 σ[m]← ⊥; Goto Line 22
17 t← f(R)
18 (s, h)← SimE(a, b, t)
19 If (s, h, t) /∈ D:
20 σ[m]← ⊥; Goto Line 22
21 σ[m]← (s, t)
22 H[m]← h
23 Return h

Fig. 7. Game G2

We argue that the adversary can distinguish G1 and G2 with probability at most Qsδ. To see this,
note that change (a) is a pure rewriting step and does not influence the output of the game. Concerning
change (b), consider first the case that the adversary queries Sign or RO on a message m with c[m] = 1.
For the random oracle, the response h is picked uniformly at random in Line 11, and the signing oracle
aborts, so the distribution is exactly as in G1.

Consider next the case that the adversary queries one of the oracles on a message m with c[m] = 0.
Observe then that Lines 06 to 11 in G1 correspond exactly to the protocol Preal from Fig. 4, and Lines 13
to 20 in G2 correspond exactly to the protocol Psim. Thus, switching the way of computing signatures
introduces, for each call to the signing oracle, a statistical distance between the two games that is bounded
by δ. We obtain ∣∣Pr[GF1 ⇒ 1]− Pr[GF2 ⇒ 1]

∣∣ ≤ Qsδ .

Now construct a uf-koa forger F ′ against GenElgamal in the random oracle model as in Fig. 8.

Procedure Init
replace Line 03 with
03 X $← Init∗

Procedure RO(m)
replace Line 11 with
11 h← RO∗(m)

Procedure Sign(m)
as in G2 (Fig. 7)

Procedure Fin(m∗, (s∗, t∗))
replace Lines 22–27 in Fig. 6 with
22 Invoke Fin∗(m∗, (s∗, t∗))

Fig. 8. Construction of uf-koa forger F ′ from F by changing Game G2 as specified. Init∗, RO∗, and Fin∗ are
the procedures from the uf-koa security game run by F ′. Procedure Sign is as in Game G2.

The coin tosses in Line 10 of Fig. 7 ensure that F ′ only has to provide signatures on messages for
which it programmed the random oracle itself; it thus simulates the signing procedure of G2 perfectly.

8

Further, the coin tosses guarantee that the forgery is consistent with RO∗, so F ′ wins its game exactly if
F produces a valid forgery. This means that

Pr[GF2 ⇒ 1] = ε′ ,

and the statement follows. ut

5 The Semi-Logarithm Problem

We formalize and generalize the notion of intractable semi-logarithm problem (SLP), a notion introduced
by Brown for the analysis of signature schemes.

His motivation for studying the SLP is “to isolate the role of the hash function and the group in
analyzing the security of ECDSA” [6, p. 25]. Effectively, the SLP is a number-theoretic hardness assumption
related to the search problem of finding a valid GenElgamal signature for a (unknown) message m with
hash value H(m) = 1.

As we show, the key-only unforgeability of an instantiation of GenElgamal is characterized by the
intractability of the corresponding variant of the semi-logarithm problem (in the random oracle model),
potentially establishing a simplified target for cryptanalysis. Note that a suitable SLP variant does not
exist for all GenElgamal instantiations: for SM2 there is apparently no corresponding SLP definition.

Definition 6. Let (G, g, q) be a prime-order group and let f : G∗ → Zq and ρ0, ρ1 : Z2
q → Zq be functions.

We say that an algorithm I (τ, ε)-breaks the semi-logarithm problem (SLP) in G with respect to f, ρ0, ρ1
if it runs in time at most τ and achieves probability

ε = Pr[X $← G; (u, v) $← I(g,X) : v = f(gρ0(u,v)Xρ1(u,v))] .

Definition 7. Let E = E(s, h, t, r, x) be a defining equation with corresponding set D (see Definition 2).
We say that E is h-decomposable (with respect to D) if there exist functions

η0, η1 : Zq → Zq and ρ0, ρ1 : Z2
q → Zq

such that η0(h), η1(h) 6= 0 if h 6= 0 and

r = η0(h)ρ0(s, t) + x η1(h)ρ1(s, t)

for all (s, h, t) ∈ D and r, x ∈ Z∗q satisfying E(s, h, t, r, x).

All defining equations from Fig. 2, except for SGenSM2, are h-decomposable. The corresponding
components η0, ρ0, η1, ρ1 are listed in Fig. 9.

Scheme η0(h) ρ0(s, t) η1(h) ρ1(s, t)
GenDSA (V1) h 1/s 1 t/s
GenGOST (V3) 1/h s −1/h t
GenAMV (V2) h 1/t −1 s/t
GenHarn (V6) 1 st −h s
no name (V4) 1 s/t −h 1/t
no name (V5) −1/h t 1/h s

Fig. 9. Components η0, ρ0, η1, ρ1 of the h-decomposable defining equations from Fig. 2.

Theorem 2. Let (G, g, q) be a prime-order group, let E be a defining equation with corresponding set D,
and let f : G∗ → Zq and H : {0, 1}∗ → Zq be functions. If E is h-decomposable with functions ρ0, ρ1,
and H is modeled as a random oracle, then the semi-logarithm problem in G with respect to f, ρ0, ρ1 is
non-tightly equivalent to the key-only unforgeability of GenElgamal when instantiated with E,G, H, f,D.

More precisely, for any adversary I that (τ, ε)-breaks SLP, there exists a forger F that (τ ′, ε)-breaks
the key-only unforgeability of GenElgamal, where τ ≈ τ ′.

Conversely, for any forger F that (τ,QH , ε)-breaks the key-only unforgeability of GenElgamal, there
exists an adversary I that (τ ′, ε/QH − 1/q)-breaks SLP, where τ ′ ≈ τ and QH is the number of random
oracle queries posed by F .

9

Proof. Given an adversary I that (τ, ε)-breaks SLP, we construct a forger F that (τ ′, ε)-breaks key-only
unforgeability of GenElgamal, for any hash function H. (For the particular case of ECDSA, this result is
due to Brown [6].) On input, F obtains g,X (from pk). It picks any message m (independently of X) such
that H(m) 6= 0, computes h← H(m), g′ ← gη0(h), and X ′ ← Xη1(h), and lets I compute a semi-logarithm
as per (u, v) $← I(g′, X ′). Then (u, v) is a valid signature on m (with respect to g,X). Indeed, since E is
h-decomposable, by definition of VEg,x (see Definition 3) it holds that in Verify (see Line 14 in Fig. 3) we
have

R̂ = VEg,x(u, h, v) = gη0(h)ρ0(u,v)Xη1(h)ρ1(u,v) = (g′)ρ0(u,v)(X ′)ρ1(u,v) ,

and thus f(R̂) = v.
Let now F be a forger that (τ,QH , ε)-breaks the key-only unforgeability of GenElgamal. We construct

an adversary I against SLP from it. On input of (g,X), it draws a $← Zq, aborts if a = 0, sets g′ ← g1/η0(a)

and X ′ ← X1/η1(a), and starts F on input pk = (g′, X ′). If m∗ denotes the message on which F forges a
signature, we assume w.l.o.g. that F queries H(m∗) before outputting the latter. I initially guesses the
index j ∈ {1, . . . , QH} of the corresponding query to H. It then responds to the jth random oracle query
by programming it via H(mj)← a, and answers all other queries with uniform values. Once F outputs
its forgery (m∗, (s, t)), adversary I forwards (s, t) to its own challenger. Since E is h-decomposable and
g = (g′)η0(H(m∗)) and X = (X ′)η1(H(m∗)), it holds that

gρ0(s,t)Xρ1(s,t) = ((g′)η0(H(m∗)))ρ0(s,t)((X ′)η1(H(m∗)))ρ1(s,t)

= VEg′,x′(s,H(m∗), t) ,

where x′ = logg′ X ′. That is, I wins in the SLP game if it didn’t abort when sampling a, its guess for
index j was correct, and F forges successfully. ut

Acknowledgments. The first author was supported by DFG SPP 1736 Big Data. The second author
was supported in part by ERC Project ERCC (FP7/615074) and by DFG SPP 1736 Big Data. The third
author was supported in part by ERC Project ERCC (FP7/615074).

References

1. Agnew, G., Mullin, R., Vanstone, S.: Improved digital signature scheme based on discrete exponentiation.
Electronics Letters 26(14), 1024–1025 (1990)

2. Bellare, M., Poettering, B., Stebila, D.: From identification to signatures, tightly: A framework and generic
transforms. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016, Part II. LNCS, vol. 10032, pp. 435–464.
Springer, Heidelberg, Germany, Hanoi, Vietnam (Dec 4–8, 2016)

3. Brickell, E.F., Pointcheval, D., Vaudenay, S., Yung, M.: Design validations for discrete logarithm based
signature schemes. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 276–292. Springer,
Heidelberg, Germany, Melbourne, Victoria, Australia (Jan 18–20, 2000)

4. Brown, D.R.L.: Generic groups, collision resistance, and ECDSA. Cryptology ePrint Archive, Report 2002/026
(2002), http://eprint.iacr.org/2002/026

5. Brown, D.R.L.: Generic groups, collision resistance, and ECDSA. Des. Codes Cryptography 35(1), 119–152
(2005)

6. Brown, D.R.L.: On the provable security of ECDSA. In: Blake, I.F., Seroussi, G., Smart, N.P. (eds.) Advances
in Elliptic Curve Cryptography, pp. 21–40. Cambridge University Press (2005), http://dx.doi.org/10.1017/
CBO9780511546570.004

7. Brown, D.R.L.: One-up problem for (EC)DSA. Cryptology ePrint Archive, Report 2008/286 (2008), http:
//eprint.iacr.org/2008/286

8. Coron, J.S.: On the exact security of full domain hash. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880,
pp. 229–235. Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 20–24, 2000)

9. Dolmatov, V., Degtyarev, A.: GOST R 34.10-2012: Digital Signature Algorithm. RFC 7091 (Informational)
(Dec 2013), http://www.ietf.org/rfc/rfc7091.txt

10. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. In: Blakley,
G.R., Chaum, D. (eds.) CRYPTO’84. LNCS, vol. 196, pp. 10–18. Springer, Heidelberg, Germany, Santa
Barbara, CA, USA (Aug 19–23, 1984)

11. Fersch, M., Kiltz, E., Poettering, B.: On the provable security of (EC)DSA signatures. In: Weippl, E.R.,
Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16. pp. 1651–1662. ACM Press,
Vienna, Austria (Oct 24–28, 2016)

10

http://eprint.iacr.org/2002/026
http://dx.doi.org/10.1017/CBO9780511546570.004
http://dx.doi.org/10.1017/CBO9780511546570.004
http://eprint.iacr.org/2008/286
http://eprint.iacr.org/2008/286
http://www.ietf.org/rfc/rfc7091.txt

12. García, C.P., Brumley, B.B., Yarom, Y.: “Make sure DSA signing exponentiations really are constant-time”.
In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 16. pp. 1639–1650.
ACM Press, Vienna, Austria (Oct 24–28, 2016)

13. Genkin, D., Pachmanov, L., Pipman, I., Tromer, E., Yarom, Y.: ECDSA key extraction from mobile devices
via nonintrusive physical side channels. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,
S. (eds.) ACM CCS 16. pp. 1626–1638. ACM Press, Vienna, Austria (Oct 24–28, 2016)

14. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions.
In: Ladner, R.E., Dwork, C. (eds.) 40th ACM STOC. pp. 197–206. ACM Press, Victoria, British Columbia,
Canada (May 17–20, 2008)

15. Harn, L.: New digital signature scheme based on discrete logarithm. Electronics Letters 30(5), 396–398 (1994)
16. Harn, L., Xu, Y.: Design of generalised ElGamal type digital signature schemes based on discrete logarithm.

Electronics Letters 30(24), 2025–2026 (1994)
17. Howgrave-Graham, N., Smart, N.P.: Lattice attacks on digital signature schemes. Des. Codes Cryptography

23(3), 283–290 (2001)
18. ISO/IEC 11889:2015: Information technology — Trusted Platform Module library (2013), https://www.iso.

org/
19. Kerry, C.F., Gallagher, P.D.: FIPS PUB 186-4 Federal Information Processing Standards publication: Digital

Signature Standard (DSS) (2013), http://dx.doi.org/10.6028/NIST.FIPS.186-4
20. Leadbitter, P.J., Page, D., Smart, N.P.: Attacking DSA under a repeated bits assumption. In: Joye, M.,

Quisquater, J.J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 428–440. Springer, Heidelberg, Germany, Cambridge,
Massachusetts, USA (Aug 11–13, 2004)

21. Malone-Lee, J., Smart, N.P.: Modifications of ECDSA. In: Nyberg, K., Heys, H.M. (eds.) SAC 2002. LNCS,
vol. 2595, pp. 1–12. Springer, Heidelberg, Germany, St. John’s, Newfoundland, Canada (Aug 15–16, 2003)

22. Menezes, A.J., van Oorschot, P.C., Vanstone, S.A.: Handbook of Applied Cryptography. The CRC Press
series on discrete mathematics and its applications, CRC Press, 2000 N.W. Corporate Blvd., Boca Raton, FL
33431-9868, USA (1997)

23. Nguyen, P.Q., Shparlinski, I.: The insecurity of the Elliptic Curve Digital Signature Algorithm with partially
known nonces. Des. Codes Cryptography 30(2), 201–217 (2003)

24. Poettering, B., Stebila, D.: Double-authentication-preventing signatures. In: Kutylowski, M., Vaidya, J. (eds.)
ESORICS 2014, Part I. LNCS, vol. 8712, pp. 436–453. Springer, Heidelberg, Germany, Wroclaw, Poland
(Sep 7–11, 2014)

25. Pointcheval, D., Vaudenay, S.: On provable security for digital signature algorithms. Technical Report
LIENS-96-17, LIENS (1996)

26. Shoup, V.: Lower bounds for discrete logarithms and related problems. In: Fumy, W. (ed.) EUROCRYPT’97.
LNCS, vol. 1233, pp. 256–266. Springer, Heidelberg, Germany, Konstanz, Germany (May 11–15, 1997)

27. Stern, J., Pointcheval, D., Malone-Lee, J., Smart, N.P.: Flaws in applying proof methodologies to signature
schemes. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 93–110. Springer, Heidelberg, Germany,
Santa Barbara, CA, USA (Aug 18–22, 2002)

28. Vaudenay, S.: Hidden collisions on DSS. In: Koblitz, N. (ed.) CRYPTO’96. LNCS, vol. 1109, pp. 83–88.
Springer, Heidelberg, Germany, Santa Barbara, CA, USA (Aug 18–22, 1996)

29. Vaudenay, S.: The security of DSA and ECDSA. In: Desmedt, Y. (ed.) PKC 2003. LNCS, vol. 2567, pp.
309–323. Springer, Heidelberg, Germany, Miami, FL, USA (Jan 6–8, 2003)

30. Zhang, Z., Yang, K., Zhang, J., Chen, C.: Security of the SM2 signature scheme against generalized key
substitution attacks. In: Security Standardisation Research - Second International Conference, SSR 2015,
Tokyo, Japan, December 15-16, 2015, Proceedings. pp. 140–153 (2015)

11

https://www.iso.org/
https://www.iso.org/
http://dx.doi.org/10.6028/NIST.FIPS.186-4

	On the One-Per-Message Unforgeability of (EC)DSA and its Variants

