
An extended abstract of this paper has been published in the proceedings
of the Cryptographers’ Track RSA Conference - CT-RSA 2018[4]. This is the full version.

Asynchronous provably-secure hidden services

Philippe Camacho and Fernando Krell
{philippe.camacho,fernando.krell}@dreamlab.net

June 12, 2018

Abstract

The client-server model is one of the most widely used architectures in the Internet due
to its simplicity and flexibility. In practice the server is assigned a public address so that its
services can be consumed. This makes the server vulnerable to a number of attacks such as
Distributed Denial of Service (DDoS), censorship from authoritarian governments or exploita-
tion of software vulnerabilities.

In this work we propose asynchronous protocols for allowing a client to issue requests to a
server without revealing any information about the location of the server. Our solution reveals
limited information about the network topology, leaking only the distance from the client to
the corrupted participants.

We also provide a simulation-based security definition capturing the requirement described
above. Our initial protocol is secure in the semi-honest model against any number of colluding
participants, and has linear communication complexity.

We extend our solution to handle active adversaries, showing that malicious participants
can only trigger a premature termination of this new protocol, in which case they are identified.
For this solution the communication complexity becomes quadratic.

To the best of our knowledge this is the first study of asynchronous protocols that provide
strong security guarantees for the hidden server problem.

1 Introduction

1.1 Motivation

The client-server architecture is one of the most widely used in the Internet for its simplicity and
flexibility. In practice the server is assigned a domain name and one or more IP addresses so
that its services can be consumed. This makes the server vulnerable to a number of attacks such
as DDoS, censorship from authoritarian governments or exploitation of software vulnerabilities.
Thus, it would be desirable to hide the location of the server in the network. By doing so, an
attacker will not be able to attack directly the host containing the server’s code nor interrupt the
execution of its services by non-technical means. While the literature is abundant on the topic of
anonymous channels [7, 6, 25, 26], the problem of hiding the location of a server remains of great
interest. Tor hidden services [8] is without a doubt the most popular alternative for this purpose.
Unfortunately, the security provided by Tor is not guaranteed; in fact, several practical attacks
have been discovered [21, 18, 29, 35].

We observe that simple solutions for the problem described above do not work. Standard
end-to-end encryption is vulnerable to tracing the ciphertext across the network, and hence, an
adversary that is powerful enough to corrupt several nodes is very likely to detect the origin or
destination of the message. Other approaches like using multicast are not enough either since
clients that are close to the server will notice that the response comes back within short time. The
main challenge is to prevent nodes to distinguish whether the server is close or far away.

1

In this work we focus on solving the following problem. A client wishes to establish a com-
munication with a server, yet we want to hide the location of this server in the network. We also
expect the client’s queries and server’s responses to remain private.

At a high level our protocol implements two phases: (1) a client issues a request to the server,
and then (2) the server returns a response. The first phase of the protocol is straightforward to
implement: the client encrypts the request using the public key of the server and then multicasts
the message across the network. Note that the server must still forward the request as if it were any
other node, otherwise its neighbors may infer its location. The second phase is much more complex
because as mentioned above the client or other nodes could detect the presence of the server by
a simple timing attack. To circumvent this difficulty we rely on the following idea: we force all
the nodes to behave as the server. We achieve this by using a secret sharing scheme where every
participant holds a share of the response. To perform this split-and-reconstruct phase, every node
(including the server) generates a random share, and then all these are propagated to the server.
At this stage the server replaces its share by a value that enables to reconstruct the response.
Finally all the participants send their shares to the client.

In order to improve performance, we use an arbitrary spanning tree1 over the network graph.
This allows us to optimize multicast invocations and shares aggregation. We emphasize that our
protocol is asynchronous, which means that participants do not rely a on shared clock to run the
protocol, but rather act upon the reception of neighbors messages. Unfortunately, asynchronism
comes at price: Since nodes do not know when a participant initiates a request, it is impossible
to hide the requesters activity. Hence our protocol leaks proximity information of the requester to
other nodes.

1.2 Contributions

Our contributions are the following:

• To the best of our knowledge we provide the first simulation-based security definition cap-
turing the requirement of hiding a server in a network. This definition considers the full
interaction (request and response) between the client and the server.

• We provide a protocol (and implementation alternatives) for the hidden server problem in
the semi-honest adversarial mode.

• Our protocol is secure against any number of corrupted participants. In particular, if the
adversary controls all nodes but two (one of them being the server), then it will not be able
to guess the right location with probability better than 1

2 .

• Our solution has linear communication complexity. Although, this is may not be practical
in large environments, it is asymptotically optimal : a sublinear protocol would leak the fact
that silent nodes cannot be the server.

• Finally, we extend our solution to handle active adversaries. We show that malicious par-
ticipants can only trigger a premature termination of the protocol, in which case they are
identified. For this solution the communication complexity becomes quadratic in the number
of participants.

• To the best of our knowledge the proposed protocols are the first to provide strong security
guarantees in an asynchronous setting (see Figure 1).

1which we borrow from Dolev and Ostrovsky [9].

2

1.3 Related Work

While the problem of hiding the physical location of a server in a network is not exactly an
anonymity problem (we do not want to hide the fact that a specific client connects to the server)
the techniques and concepts we use are borrowed from the area of anonymity. Since Chaum’s
two seminal papers on mixes [7, 6], a large body of work has been written in order to enable
communications that do not reveal the identity of participants. An alternative to mixers for
achieving anonymity has been introduced by Reiter et al. with a protocol named Crowds[27] and
consists of using random paths among a set of “dummy” nodes a.k.a. jondo before reaching a
specific destination (the server). In this protocol – contrary to our setting – the location of the
server is public and the goal is to hide the clients. This solution is simple, efficient and provide
some level of anonymity for the client. Beyond the protocol itself, the authors highlight some
fundamental problems that arise with these types of constructions where traffic is routed through
possible corrupted nodes: In particular, preserving the initiator’s anonymity turns out to be more
complex than expected [34, 30]. Indeed in our case, we have to solve a similar problem where
we must hide the location of the server during the phase of responding a request. Hordes [19] is
an improvement to Crowds where the reply from the server is done using multicast. This change
makes passive attacks consisting in tracing back messages harder while adding only a reasonable
operational cost. While Crowds and Hordes do not aim to hide the server like we do, these
protocols highlight the difficulty of hiding nodes in a network where the adversary controls a subset
of the participants and can leverage traffic analysis. Another approach to establish anonymous
channels between client and servers is onion routing [11]. An onion is obtained by encrypting
the message in a layered fashion using the public keys of the nodes on a path from sender to
receiver. By doing so, a node on the circuit will not be able to identify the original source, the final
destination, nor the message itself. The most popular onion routing protocol is without a doubt
Tor [8]. Tor not only enables to preserve the anonymity of clients but also provides a mechanism
to hide the location of the server through a rendez-vous node where both client and server meet.
Unfortunately, as in Crowds and Hordes, a number of practical attacks based on traffic analysis
are possible [18, 29, 35, 23]: In particular if a node manages to be the first relay between the
server and the rendez-vous node, it will likely detect the server presence [23]. In case managing
a Public-Key Infrastructure is too complex, one can use Katti et al.’s protocol [17] that relies on
the idea of splitting the routing information in such a way that only the right nodes on the circuit
are able to reconstruct it correctly. In our protocol we also leverage secret-sharing techniques, but
for splitting and reconstructing the message only. Also our solution does not require a sender to
control different nodes as in the onion slicing approach.

Early attempts to counter traffic analysis attacks were not practical as they assumed the exis-
tence of some broadcast channel or ad-hoc topology and required a synchronous execution [6, 26,
32]. The more general problem of hiding the topology of a network has been solved recently in
the secure multi-party computation setting [1, 20, 15]. However, these solutions involve a lot of
communication and computational overhead. One of the most promising attempts for hiding the
location of a server was due to Dolev and Ostrovsky [9]: Indeed our solution borrows some of the
techniques of their work, in particular we also use spanning-trees to make the multicast communi-
cations more efficient. Nonetheless our solution has two major advantages: it is asynchronous and
it is secure against any number of corrupted nodes.

In Figure 1 we compare our work with other proposals that allow arbitrary topologies.

1.4 Organization of the paper

This paper is organized as follows. Section 2 introduces definitions and notations. The abstract
functionality capturing the secure interaction between client and server is introduced in Section
3. We describe a protocol secure against semi-honest adversaries in Section 4 formally proving

3

Protocol Asynchronous Collusion-resistant Communication complexity
Tor [8] YES NO O(D · |M |)

Dolev and Ostrovsky [9] NO Up to b(N − 1)/2c O(N · |M |)
MPC-Hiding topology [1] NO YES O(κ(κ+ logN) ·N5 · |M |)

Our work YES YES O(N · |M |)

Figure 1: Comparison of protocols for hiding a node location. In this table N is the number
of participants, D is the diameter of the graph representing the network, |M | is the number of bits
of the message and κ is the security parameter. Tor is not collusion-resistant because some attacks
can succeed with only two corrupted nodes [23]. Regarding communication complexity, we do not
take into account the setup phase occurring in Dolev and Ostrovsky’s construction and ours.

its security. Then, in Section 5 we present a protocol secure against malicious players in which
deviation of the protocol is either harmless or identifiable. Finally, we conclude in Section 6.

2 Preliminaries

2.1 Definitions and notations

Let n ∈ N be an integer, we denote by [n] the set {1, 2, 3, · · · , n}. Let B be a set, we write b ∈R B
to denote a value b chosen uniformly at random from B.

For a graph G = 〈V,E〉 the distance d(u, v) between two vertices u and v is the length of the
shortest path between u and v. Let (M, ◦) be an abelian group and κ ∈ N the security param-
eter. A (single-operation) homomorphic encryption scheme over message space M is a tuple of
algorithms HEnc = 〈Gen,Enc,Dec,Add〉 in which 〈Gen,Enc,Dec〉 is a public-key encryption scheme
and algorithm Add satisfy the following property: For every key-pair (pk, sk) ← Gen(1κ), and for
every pair of messages m1,m2 ∈ M:

Decsk(Addpk(Encpk(m1),Encpk(m2))) = m1◦m2

For some arbitrary ciphertext set C = {ci = Encpk(mi)}i∈I , we abuse notation by using
∑
i∈I ci

or Encpk(
∑
i∈I mi) to denote the result of a sequential computation of Addpk over C. We denote

by ΠSign = 〈SGen,SSign,SVerify〉 a standard signature scheme [13].

2.2 Modeling networks

We can think of a regular communication network as a graph G, composed by a set of nodes V
and a set of edges E between them. Participants (nodes) vi and vj cannot communicate directly
unless there is an edge (vi, vj) in E. To allow communication between distant participants, nodes
can forward incoming messages to neighbor nodes following some protocol.

We use the approach of [15] in which the participants in the real protocol are restricted to
use a network functionality to communicate. The network functionality is specified in Figure 2,
and allows any participant to send messages to a neighbor at an arbitrary time2. It provides two
services, Setup and Comm. On the setup phase, the communication graph is specified. This can
be done by an off-line operator, or by the participant itself describing their neighbors (or their
pseudonyms as inputs). The Comm service allows for neighbor participant to exchange messages.
We require that Setup is called before any Comm service can be processed.

2The network functionality of [15] is rather different in the sense that all participants call it at same time, and
all have messages to all its neighbors.

4

Fnetwork

Participants: On-line participants P = {P1, P2, . . . , PN}, and off-line operator Op

Setup. Operator Op inputs an undirected graph G = 〈V,E〉 and a mapping M : P ↔ V . Each participant
Pi gets v = M(Pi), and set of neighbors {u : (v, u) ∈ E}.

Comm. On input (msg, vj) from participant Pi, Pj outputs (msg, u) (where u is M(Pi)) if (M(Pi), vj) ∈ E.
Otherwise, Pi outputs error symbol ⊥.

Figure 2: Physical Network Functionality

Protocol Π
Fnetwork
MCast

Participants. On-line participants P = {P1, P2, . . . , PN}, and an off-line trusted party T .

Requirement. Off-line trusted party T has initialized Fnetwork functionality for P on a graph G = 〈V,E〉.

Setup. On input a graph G′ = 〈V,E′ ⊆ E〉, T specifies to each participant the label of its neighbors in
G′. Each participant initiates an empty set L.

MCast. Any participant P : On input a message m, invoke Fnetwork.Comm(〈mcast,m〉, u) for each
neighbor u in G′.

Upon receiving Fnetwork.Comm’s output 〈mcast,m〉 from neighbor v, check if m 6∈ L. If so, add
m to set L, invoke Fnetwork.Comm(〈mcast,m〉, u) for each neighbor u 6= v in G′, and output m.
Otherwise, do nothing.

Figure 3: ΠFnetwork

MCast

We will use this functionality as the basic mechanism to send message throughout the network.
Protocols in this model will be called Fnetwork-restricted, meaning that the only way participants
can communicate is via Fnetwork.

2.3 Multicast protocol

In this section we describe a simple multicast protocol (see Figure 3) that uses functionality Fnetwork

as its basic communication mechanism. We assume that a trusted party has already instantiated
the network functionality, and hence each participant knows the vertex label associated with its
neighbors for functionality Fnetwork. When a participant issues a multicast, it sends the message to
its neighbors using functionality Fnetwork. Each participant, upon reception of a multicast message,
first checks if the message has not been seen before. In this case, it forwards the message to its
neighbors and outputs the message. Jumping ahead, our main protocol will use this functionality
on a subgraph of the network graph to efficiently broadcast the client’s encrypted requests.

3 Request Response Functionality FReqResp

In this section we formally describe a request-response functionality FReqResp.
The functionality is executed between a set of participant P = {P1, P2, P3, . . . , PN}. A server

node, which we denote as Pj∗ = S, provides an arbitrary polynomial-time request-response service

5

FL(·)ReqResp

Participants. On-line participants P = {P1, P2, . . . , PN}, and an off-line operator Op that instantiates
the parameters on a setup phase.

Parameters. A graph G = 〈V,E〉.

Setup. On input j∗ ∈ [|V |], a mapping M : P ↔ V , and a polynomial-time computable function
ProcessReq from operator Op, store ProcessReq and j∗.
Output vj to participant Pj for every j 6= j∗, and, 〈vj∗ , ProcessReq〉 to participant Pj∗ .

Req. On input req from participant Pi do:

• res← ProcessReq(req).

• Output res to Pi and req to Pj∗ .

• Leak L(Req, |req|, |res|, G,M,Pi) to the adversary.

Figure 4: Hidden-Server Request-Response functionality FReqResp over an incomplete network with
leakage profile L(·).

for all participants. A protocol realizing this functionality needs to hide which of the participant
is the server node. A secondary goal is to hide the requests and the responses.

In Figure 4, the functionality is parametrized by a public graph G. During a setup phase, the
operator participant Op specifies the server node, its service Turing machine ProcessReq, and a
mapping M between graph nodes and participants. As a result of this setup phase, every node
gets its graph label, and the server node gets the Turing machine ProcessReq.

4 A semi-honest protocol for FReqResp

4.1 Overview

For a set of participants P = {P1, P2, . . . , PN} communicating over an arbitrary network graph
G, the goal of our protocol is to hide the location of a server S = Pj∗ in G while enabling other
participants to consume its services. The main difficulty is to make it impossible for an adversary
to leverage timing information to obtain (or estimate) the distance between S and some other
corrupted nodes in G.
The protocol proceeds in two high level steps. The first step corresponds to enabling a client Pi to
send a request req to the server S. This step can be easily implemented using a multicast protocol
(see Section 2.3): The client encrypts req using S’s public key and multicasts the ciphertext
c = EncpkS (req). Indeed, S’s location is not leaked3.
The second step consists of letting the server S to send the response res back to Pi. This turns out
to be more challenging. Indeed, proceeding as in the first step is not secure since nodes that are
close to S would detect S’s activity and be able to deduce its location or some information about
it (as for example the subnet that contains S). In order to circumvent this difficulty we introduce
the following high level idea: each node Pj sends a random share sj to the server S (including the
S itself). The server will obtain all the shares {sharej}j 6=i and recompute its share sharej∗ so that
combination of all shares reconstruct to res. Then, all the participants send their shares to the
requester Pi, and finally, Pi reconstructs and outputs the response.

3Note that messages needs to be forwarded once – and only once– to neighbors, even when the message has
arrived to its destination.

6

Protocol Π
Fnetwork
ESR

Participants. On-line participants P = {P1, P2, . . . , PN}, and an off-line trusted party T .

Parameters. An homomorphic encryption scheme H = 〈Gen, Enc,Dec,Add〉.
Requirement. Off-line trusted party T has initialized Fnetwork functionality for P on a graph G = 〈V,E〉.

Setup. On input a spanning tree ST = 〈root ∈ V,EST ⊂ E〉 over G, T specifies to every participant its parent p and
children set children on ST.

SendUp. Any participant P ∈ P: On input a message m, public key pk, and session id sid, compute c = Encpk(m) and
store 〈sid, c〉.
If Pi has no children jump to ?.

Upon receiving Fnetwork.Comm’s output 〈sid, up, c′〉 from children u, use sid to get c and update it to Addpk(c, c
′). If

all children have submitted their up message, then jump to ?.

?: If P is the root of the tree, output (c, sid). Otherwise, invoke Fnetwork.Comm(〈sid, up, c〉, p).

SendDown. Participant P ∈ P (root of the tree): On input a message c and session id sid, invoke

Π
Fnetwork
MCast .MCast(〈sid, down, c〉), and output (c, sid).

(Any participant). Upon receiving Π
Fnetwork
MCast .MCast′s output 〈sid, down, c〉, output (c, sid)

Figure 5: ΠFnetwork

ESR

Since shares on the last step reconstruct the response, it is clear that they need to be encrypted
under Pi’s public-key. As the initial shares sent to the server reconstruct to a random value, it is
tempting to send these in plaintext. However, an adversary that controls the requester can see the
shares both times, and therefore notice when a share was updated, inferring information on S’s
location.
We take the approach of [9] and restrict the communication to an (arbitrary) spanning-tree on
the network graph. This allows us to efficiently communicate the messages on all phases. In
particular, we use the following mechanism to send the shares to S and Pi: First, the shares are
sent up to the root node of the spanning tree, and then the root node multicasts the shares down
the tree. By using n-out-of-n information-theoretic secret sharing, we note that nor the server or
the requester need to know every individual share. In fact, they only need to learn the final secret.
Our idea, hence, is to use homomorphic encryption on the shares, and have each internal node to
“add-up” its share to the shares computed by its children, and then send a single result up the
tree (rather than the individual shares of every node in its subtree). The root node then obtains
an encrypted secret, which is sent down the tree to reach the server or the requester. This efficient
procedure allows our protocol to have linear communication complexity, and is formally described
in Section 4.2.
Our full protocol implementing functionality FReqResp is specified in Section 4.3.

4.2 Encrypted Share Reconstruction Protocol

In this section we describe an important sub-protocol of our solution. This protocol, denoted ΠESR,
allows to efficiently and privately reconstruct a secret out of each participant share. In a nutshell,
each party encrypts its share under the public-key of the recipient, and sends the ciphertext
up into a spanning tree of the network graph. The participant at the root node of this tree can
homomorphically compute the encrypted secret, and then send the result down the tree to reach the
recipient. We do this efficiently in the following way: Each internal node privately reconstructs part
of the secret by homomorphically combining its encrypted share with the ciphertext obtained from
its children. Hence, each internal node needs to send a single ciphertext up the tree. Furthermore,
we use n-out-of-n information-theoretic secret sharing so that we only need a single homomorphic
operation for the encryption scheme. Protocol ΠESR is specified in Figure 5.

7

4.3 Request-Response Server Protocol

In this section we introduce an Fnetwork-hybrid protocol achieving functionality FReqResp. Our
protocol is divided in an off-line setup phase and three on-line phases. In the setup phase, a
trusted party T chooses a server participant S and generates for it a key-pair (pkS , skS). T also
chooses an arbitrary rooted spanning-tree in order to instantiate the protocol ΠESR. On the first on-
line phase, the requester Pi encrypts its query req under the server’s public key, and uses protocol
ΠMCast to propagate the ciphertext across the network. Then, on the second on-line phase every
participant (including the server) generates a random string of length outlen (used as a share for
the response) and sends it to the server using protocol ΠESR. Upon receiving the combined shares
cs =

∑
j 6=i sharej , S recomputes its share sharej∗ as res− (cs− sharej∗) so that the reconstruction

procedure outputs the response res. On the third on-line phase, every participant Pj use ΠESR to
send its sharej (encrypted under Pi’s public key), so that the response can be homomorphically
reconstructed and sent to Pi. Pi decrypts and output the response.

Notice that these three phases can be executed in a pipeline. In fact, each encrypted share
sent on the second on-line phase can be sent as soon as the participant sees the request multicast
message issued by Pi on the first phase. Similarly, each participant can send its share in the third
phase as soon as the participant sees the multicast-down message issued by the root node in the
second phase. Therefore, our protocol is asynchronous.
We also note that the initial multicast of the encrypted request leaks the direction towards the
requester node to each participant. Therefore, the encrypted response on the third phase, can be
sent efficiently from the root to the requester. In fact, when a participant receives the request
message from neighbor u, this is saved so that at the final phase, each participant knows where to
send the encrypted response.
Since all participants act according to the same communication pattern, and all messages are
encrypted, our protocol does not reveal the location of the server, nor the request or response.
We can observe that every participant send a constant number of messages during the execution
of the protocol and thus the communication complexity is equal to O(N ·max(|req|, |res|)). Our
protocol is formally described in Figure 6.

4.4 Proof of Security

In this Section we prove the security of the protocol against semi-honest adversaries. That is, we
present a polynomial-time algorithm Sim that can simulate the view of corrupted participants
knowing only some limited leakage that does not contain the location of the server. We refer the
reader to Appendix B.1 for a formal definition of security in the semi-honest model.

We begin by defining the leakage of our protocol.

Leakage 1. L(G, ST,M, Pi, C) On input a graph G = 〈V,E〉, a spanning tree ST = 〈root ∈ V, T ⊂
E〉 over G, a mapping M := P ↔ V , a requester participant Pi ∈ P, and a set of corrupted
participants C ⊂ P, output, for each P in C, the distance and direction (edge to children or parent)
from M(P) to M(Pi) in ST, its depth (distance to ST’s root node), and the height of each of its
children nodes (distance to further leaf on subtree).

Theorem 1. Let HEnc = 〈Gen,Enc,Dec,Add〉 be a semantically secure homomorphic public-key
encryption scheme. Then, protocol ΠReqResp privately realizes functionality FReqResp in the Fnetwork-
restricted model under Leakage 1.

In the following proof we analyze the case in which the server is not corrupted and there is at
least one other honest node (otherwise, the location of the server node is known anyway).

Proof. Let C be the set of corrupted participants, and HEnc be the public key encryption scheme
as in protocol ΠReqResp. We next specify the behavior of the ideal adversary (simulator) on each of

8

Protocol Π
Fnetwork
ReqResp

Participants. On-line P = {P1, P2, . . . , PN}, and an off-line trusted party T .

Parameters. A security parameter κ and an homomorphic encryption scheme HEnc = 〈Gen, Enc,Dec,Add〉.
Requirement. Off-line trusted party T has initialized Fnetwork functionality for P on a graph G.

Setup. a) T chooses a server participant S ∈ P and an arbitrary spanning tree ST on graph G. b) T instantiate protocols

Π
Fnetwork
MCast and Π

Fnetwork
ESR on input ST, c) T generates server’s key pair (pkS , skS) ← Gen(1κ) and securely distributes

S’s public key pkS to every participant. d) Finally, T securely sends (skS , pkS) and a Turing Machine ProcessReq
to S.

(In what follows, let j∗ denote the index of S in P.)

Req. On input req ∈ {0, 1}inlen, participant Pi chooses a session key-pair (pksid, sksid) and a fresh session id sid, and invokes

multicast protocol Π
Fnetwork
MCast .MCast(〈request to server, sid, EncpkS (req), pksid〉) over the spanning tree.

Response phase. Every participant Pj (including S):

1. Upon receiving Π
Fnetwork
MCast .MCast’s output 〈request to server, sid, C, pksid〉 from neighbor u, pick a random

share sharej ∈ {0, 1}outlen and invoke ΠESR.SendUp(sharej , pkS , sid), and store 〈sid, pksid, sharej , u〉. In addition,
if Pj is S, compute req = DecskS (C) and res← ProcessReq(req), and store 〈sid, req, res〉.

2. (Root node) Upon receiving ΠESR.SendUp’s output (C = EncpkS (
∑
j 6=i sharej), sid), invoke

ΠESR.SendDown(C, sid).

3. Upon receiving ΠESR.SendDown’s output (C, sid), use sid to get pksid and sharej from local storage, and:

• If Pj is S = Pj∗ , decrypt C to get sharesum =
∑
j 6=i sharej , and update sharej∗ to res−(sharesum− sharej∗).

• Invoke ΠESR.SendUp(sharej∗ , pksid, sid)

4. (Root node) Upon receiving ΠESR.SendUp’s output (C = Encpksid (
∑
j 6=i sharej), sid), use sid to get neighbor

label u, and invoke Fnetwork.Comm(〈C, sid〉, u).

5. Upon receiving Fnetwork.Comm’s output (C, sid) do:

• If Pj is Pi, use sid to get sksid from local storage, and output res← Decsksid (C).

• Otherwise, use sid to get u, and invoke Fnetwork.Comm(C, u).

Figure 6: ΠFnetwork

ReqResp

the protocol phases (see Figure 7).
Simulating Setup. In the setup phase, the corrupted participants only receive their key-pairs,
the server’s public key pkS .

1. Instantiate network functionality Fnetwork using graph G for the participant set.

2. Generate server public key pkS .

3. For each corrupted party, assign its spanning tree edges (to children and parent) and pkS .

Simulating Req. Let Pj∗ = S 6∈ C be the server participant. The simulation proceeds as follows:

1. Sample session id sid, key-pair (sksid, pksid).

2. If Pi ∈ C, then upon receiving input req from Pi, run real adversary on input req, Pi to
obtain possibly updated request req′. Send req′ to Pi as its input and get its output res.
Otherwise set req′ and res to arbitrary value.

3. Using distance and direction from corrupted participants to Pi (obtained from leakage pro-
file), simulate a Pi started multicast protocol on spanning tree with message
〈request to server, sid,EncpkS (req′), pksid〉 where sid and pksid are fresh values. (That is,
the corrupted participants get
〈request to server, sid,EncpkS (req′), pksid〉 at the “right moment” and through the ex-
pected graph edge.)

9

Figure 7: Real v/s Ideal world: on the left-hand picture the real-world protocol is executed
and the adversary controls a subset of the nodes (in red) that in this example include the client
C. The goal of the simulator (right-hand picture) is to reproduce the real-world communication
patterns of the real-adversary without knowing the location of the server S.

4. Simulate the to server UP messages by assigning a random share sharej to each corrupted
participant, and assigning an arbitrary share to the honest children of each corrupted partici-
pant. Then, the simulation is done by adding the incoming message 〈ci, sid, to server UP, Sci〉
in the transcript at the right place, meaning children ci sent his share Sci = EncpkS (shareci).

5. Use corrupted participant depth to simulate the to server DOWN message by adding the
message 〈sid, to server DOWN, S〉 to each corrupted participant simulated transcript at the
right moment, like in the previous step. If the root of the tree is corrupted, then S must
match the homomorphic computed value of the sum of the nodes shares. Otherwise, S can
encrypt an arbitrary value.

6. Simulate each participant sending the to requester UP message where shares are identical
as in step 4, except the honest participants, whose share are updated so that reconstruction
yields res.

7. Simulate to requester DOWN by adding 〈sid, to requester DOWN, C〉 to the simulated tran-
script of each corrupted participants in the path root-to-requester, where C = Encpksid(res).

The simulation above is perfect in terms of communication patterns (timing, length and type
of messages). This is because the leakage profile contains all the information to “deliver” the
messages to the corrupted participants at the right time and through the correct graph edges.
Hence, the security of the protocol relies on the ability to simulate the content of the messages
seen by the corrupted nodes. We next analyze the content by message type:

• Request multicast. If the request is known to the simulator, it can produce a ciphertext
identically distributed to the real message. Otherwise, the simulator produces the encryption
of 0inlen (computationally indistinguishable to the real message by the semantic security of
the encryption scheme).

• to server UP and to server DOWN messages. There is no secret information to simulate.
Hence, the simulator produces ciphertexts identically distributed to the real protocol mes-
sages.

10

• to requester UP and to requester DOWN messages. Here, the shares corresponding to hon-
est participant are updated so that the reconstruction produces res. In the worst case that
the adversary controls Pi, then it can decrypt these shares. However, these cannot be corre-
lated with the ones sent to the server in the to server UP/to server DOWN messages, since
these were encrypted under the server’s public key (which is assumed not to be corrupted).
In addition, shares are uniformly distributed, (n − 1)-wise independent, and they recon-
struct to the same valid output res. Therefore, the simulated shares in plaintext cannot be
distinguished from the ones used in the real execution.

A simple hybrid-argument4 over the security of the encryption scheme proves that the real and
simulated views are computationally indistinguishable.

4.5 Variants of the protocol

Avoiding an off-line trusted party. Protocol 6 relies on a trusted party to set up the initial
parameters of each participant. By using state-of-the-art topology-hiding secure computation
protocols [20, 15, 2, 1] we can achieve a secure distributed setup without any trusted party.
Precomputing shares using PRG. It is possible to simplify the protocol described in Figure 6
by having the server computing the other participant shares locally. In practice, all the participants
would receive a secret seed Rj to generate its seed, and the server receives the secret seeds of every
participant. This means that the second on-line phase of the protocol can be removed, and hence
save 2N in communication complexity and N homomorphic operations. The other steps remain
unchanged.
Response recipient. Our protocol can be modified so that the recipient of the response can be
any arbitrary participant (or set of participants). This is achieved as follows: (a) the client chooses
the public key of another participant as the session public key, and (b) because the location of the
recipient is not necessarily known, the root node multicasts the encrypted response down the tree
instead of sending it directly to the originator of the request.
Avoiding the use of the spanning tree. In a practical environment, the spanning tree could
affect the resilience of the protocol and can be hard to maintain or configure. In such a scenario,
the steps (SendUp,SendDown) can be replaced by multicast operations of the shares for each
participant.

5 An id-abort protocol for FReqResp

5.1 Overview

In this section we overview the changes needed for our protocol in order to cope with active
adversaries. Our goal is twofold: first, we want to ensure that a malicious adversary is not able to
gain any useful information about the location of the server. And second, we enable the detection
and identification of malicious players that abort or send malformed messages. We refer the reader
to Appendix B.2 for a formal security definition of this adversarial model.

Our new protocol has to account for the following malicious behaviors:

• Full or partial aborts (e.g. following a multicast protocol through a subset of its edges).

4Changing at each hybrid step the honest participant updated shares in the to requester UP messages from
the ideal distribution to the corresponding ciphertext on the real distribution. Note that the fact we are in the
multi-user setting (a message is encrypted under two different public keys) can be reduced to the single-user setting
(standard IND-CPA security definition)[3].

11

• Malformed or inconsistent messages.

We will assume that honest parties form a connected subgraph of the entire network graph G5.
That is, the adversary is not able to cut off honest nodes from their well-behaving peers. Under
this assumption, we can make sure that full aborts are detectable and partial ones are harmless:
we replace the “up-and-down” messages on the spanning-tree with multicast invocations on the
entire graph. The recipient now receives all encrypted shares and combine them in plaintext (we
do not rely on homomorphic encryption in this protocol). In order to keep hiding the location
of the server, each participant needs to send its share for the client after it has seen all of the
encrypted shares for the server in the previous phase. Consequently, the communication pattern
of honest nodes (which includes the server) are identical.

A harder task is to detect malformed or inconsistent messages. These can have the following
forms:

1. Client issues different requests through its edges.

2. Participants actively create new requests.

3. Corrupted nodes change the multicast message they receive before forwarding.

4. Participants send unexpected messages.

5. Participants send different or malformed shares during phase 2 (shares to the server) and
phase 3 (shares to the client), causing error on the reconstruction procedure.

On case 1 above, the client is corrupted. If the she issues requests with different session
identifiers (sid’s), then this behavior is seen by other participant as different protocol instances,
in which on each of these the client is partially aborting. Hence, this is not considered a security
breach. On the other hand, a corrupted client can use same sid for different requests. In order to
handle this, the participants will use the complete request message as the session id.

In case 2, we consider the behavior in which corrupted participants can also create new request
at any point during the execution of other instances. This is problematic since a corrupted set
of participants can try to learn the response the client would have gotten by just changing the
session public key. Although honest participants will see two different requests, they cannot detect
which one is valid. We solve this by forcing the client to sign its request. In addition, we make the
participants in the multicast protocol account for the messages they issue by signing them as well.
This way, the honest nodes have the ability to detect, identify, and prove the malicious activity of
corrupted nodes. Note that these verifications solve case 3 too.

For case 4 above, we require that each message contains the session identifier of the protocol
instance and the description of the executing phase (Request, to server, or to client). Unex-
pected messages can be discarded and treated as a simple harmless abort (as discussed above).

For case 5 we append a zero-knowledge proof in the to client message proving that the
ciphertext in phases 2 and 3 encrypt the same message under different, but known, public keys.
Unfortunately, this is not sufficient since the server has to change its share on phase 3. Hence, this
zero-knowledge proof needs to convince that either the ciphertexts encrypt the same message, OR
the sender is the server. Participants that see these messages can verify the proofs and continue
the propagation as evidence of the malicious behavior of the message’s issuer. Note that in our
protocol several zero-knowledge proofs are executed concurrently and thus we need to rely on a
Universal Composable (UC) functionality [5] for proving the consistency of shares (see Section 5.2).
Indeed security of zero-knowledge proofs is not necessarily preserved with sequential composition,
even relying on the random oracle methodology[33].

5Otherwise the adversary would be able to perform eclipse attacks [31] on some subset(s) of honest nodes which
would yield honest nodes to be tagged as malicious.

12

FtZK

Parameters: Relation R ⊂ {0, 1}∗×{0, 1}∗ where (x,w) ∈ R can be checked in polynomial-time regarding
|w| ≤ p(|x|). FtZK involves a prover P , and verifier V and an adversary Sim.

Prove: On input (prove, sid, x, w) from party P ignore if (x,w) /∈ R Send (prove, x) to Sim and wait for
answer (proof, π). Upon receiving the answer store (x, π) and send (proof, sid, π) to P .

Verification: On input (verify, sid, x, π) from V check whether (x, π) is stored. If not send (verify, x, π) to
Sim and wait for an answer (witness, w). Upon receiving the answer, check whether (x,w) ∈ R and in that
case, store (x, π). If (x, π) has been stored return (verification, sid, 1) to V , else return (verification, sid, 0).

Figure 8: NIZK argument functionality FtZK [14].

Note that due to our use of digital signatures, our new protocol reveals the identity of the
client and the distance of each honest node to each corrupted node. Also, given that we replaced
spanning-tree up-and-down messages with multicast invocations, the communication complexity
increases by a O(N) factor.

5.2 Zero-Knowledge Proof of Knowledge Functionality

We use here the functionality FtZK (see Figure 8) introduced by Groth et al.[14] in order to cope
with the fact that non-interactive zero-knowledge proofs are inherently non-deniable[24]. Note
that in our case transferability is not a limitation but on the contrary a useful feature as it allows
honest participants to verify all the proofs emitted by the other players. Pass [24] showed how
to transform Σ-protocols in order to obtain UC secure ZKPoK with non-programmable random
oracle. This transformation involve increasing the size of the proof by a factor L so that soundness
holds with probability 1

2L
.

The Σ-protocol to prove the consistency of the encrypted shares corresponds to the relation
Rg,δ := {(A,B; r) : A = (δ)r ∧ B = gr} ∪ {(D; s) : D = gs} = R0 ∪ R1 where δ = pkC · pk

−1
S and

D = gs is some public key such that the corresponding private key s is only known by the server S.
Indeed if the two ciphertexts C1, C2 encrypt the same message m then C1

C2
will be the encryption

of 0 for some public key δ = pkC · pk
−1
S . In case the participant is the server, then the proof will

involve the knowledge of s. The full description of the Σ-protocol can be found in appendix A.

5.3 Protocol Specification

Time-out. We add to the above protocol a reasonable timeout in order to catch malicious players
that simply abort.
Phase 1: Request. The protocol starts when a participant Pi inputs a request. Pi starts a
multicast protocol invocation with an encrypted request to the server. In order to avoid dishonest
participants to change this message, the request is signed by the requester. As an adversary
can replace the signature (and hence trying to use the server’s response to learn the request), Pi
appends the signature and its identifier to the request before encrypting it. Moreover, we use a
CCA6 scheme in order to make this ciphertext non-malleable. A participant that sees this message
continues with the multicast execution if it hasn’t been seen before.
Phase 2: Share-to-Server. After seeing a new valid request message on Phase 1, a participant
Pj prepares a to server message as follows: sample a uniformly random value from the secret
sharing scheme domain. This share is then encrypted under the server’s public key and the resulting

6Such as defined in [22].

13

Πid-abort
ReqResp Setup

Cryptographic schemes: Let ΠE = 〈Gen,Enc,Dec〉 and ΠE = 〈Gen,Enc,Dec〉 be public-key encryption
schemes, and 〈SGen,SSign, SVerify〉 a signature scheme. Let κ denote the security parameter of the protocol.

Participants: P = {P1, P2, . . . , PN}, where the server S is Pj∗ for some index j∗ ∈ [N].

Trusted Setup (PKI): Every party Pj ∈ P generates signature scheme key-pair (vkj , skj)← SGen(1κ).
The server, in addition, generates encryption schemes keys (ekS , dkS) ← Gen(1κ), (ekS , dkS) ← Gen(1κ).
Everybody privately gets the server’s encryption keys (ekS , ekS) and the verification keys of the rest of the
participants.

Figure 9: Setup for protocol Πid-abort
ReqResp realizing functionality [FReqResp]id−abort.

Πid-abort
ReqResp Phase 1

Phase 1: Request. On input req, Pi starts the protocol by sampling a random identifier rid, generating
an encryption key pair (ekrid, dkrid) ← Gen(1κ) and computing σ ← Signski

(rid||Pi||req||ekrid), as well as

sereq ← EncekS (rid||Pi||req||σ). Then, it sets sid = 〈sereq, rid, Pi, ekrid〉, computes signature σsid ←
Signvki

(sid), and starts the multicast protocol on message 〈sid, σsid〉.

Figure 10: Phase 1 of protocol Πid-abort
ReqResp .

ciphertext is signed under Pj signing key. The encrypted share and signature are propagated via
a multicast protocol execution, and the share saved for Phase 3. Participants that sees to server

messages issued by others continue the multicast protocol on these only if they contain a valid
signature. In addition, the ciphertext and the identity of the issuer are saved for Phase 3.
Phase 3: Share-to-Client. Upon seeing all participant’s to server messages, non-server players
encrypt their shares under the client’s public key, and compute a proof that this ciphertext and
the one propagated in Phase 2 encrypt the same message. The ciphertext and proof pair is signed
and sent to the client via an additional multicast invocation. On the other hand the server masks
the response using all shares received in Phase 2, encrypts the resulting share under the client’s
public key, and creates a fake proof that the ciphertext encrypts the same value as the fake share
sent in Phase 2. Participants that see others’ to client message as part of multicast protocol
invocation, continue the propagation only if the signature is valid, and also check the proof against
phase 2 and 3 ciphertexts. If the proof is invalid, the participant saves issuer’s identity in set
DetectedCorruptedj before continuing with the multicast invocation.
Phase 4: Output. Participants waits until seeing all other participants to client messages
or until a time-out expires. If DetectedCorruptedi = ∅, then the requester Pi uses the to client

shares to compute and output the response res . Otherwise output 〈abort,DetectedCorruptedi〉.
Other participants output their set of caught malicious players, DetectedCorruptedj .

5.4 Security proof

Theorem 2. Let ΠE = 〈Gen,Enc,Dec〉 be a semantically secure public-key encryption scheme,
ΠE = 〈Gen,Enc,Dec〉 be a CCA public-key encryption scheme and ΠSign = 〈SGen,SSign,SVerify〉 an
unforgeable signature scheme. Then, protocol Πid-abort

ReqResp securely realizes functionality FReqResp with
identifiable aborts in the Fnetwork-restricted/FZK-hybrid model under Leakage 1.

Proof. (Sketch)

14

Πid-abort
ReqResp Phase 2

Phase 2: To Server. Upon receiving message M = 〈sid, σsid〉 from neighbor Pj (as part of a multicast pro-
tocol execution), participant Pu discards the message if M has been seen before, or if SVerifyvkj

(sid, σsid) = 0

(where identity of issuer is taken from sid). Otherwise,

1. Sample uniformly random share shareu from the encryption scheme message space.

2. Compute ciphertext Su = EncekS (shareu, r), where r is the randomness used by Enc.

3. Store tuple 〈sid, Su, shareu, r〉.
4. Compute signature σu = Signsku

(M to server
u) where M to server

u = 〈sid, to server, Su, u〉.
5. Invoke multicast protocol on input 〈M to server

u , σu〉

The server computes 〈 ˜rid||̃i||req, σ〉 ← DecdkS (sereq), verifies σ on message (˜rid||̃i||req), and checks that ĩ

and ˜rid match sid.i and sid.rid respectively. If all verifications succeed, then save the request req, otherwise
save req = ⊥.

Upon seeing 〈M to server
v , σv〉 as part of a multicast execution, participant Pu discards the message if

SVerifyvkv
(M to server

v , σv) = 0. Otherwise, save tuple 〈Sv, v〉 and continue the multicast protocol for
〈M to server

v , σv〉.

Figure 11: Phase 2 of protocol Πid-abort
ReqResp .

We start by describing how an ideal adversary Sim can simulate the communication pattern
to corrupted players during each multicast invocation. In order to perfectly simulate a multicast
protocol invocation, Sim makes use of the underlying network functionality Fnetwork over the par-
ticipant network topology. Hence, the simulator does not need to take care of issues like network
latency, but only needs to run Fnetwork with inputs that are indistinguishable from the real world
execution.
Multicast simulation. When the simulator Sim is invoked by the functionality with input
the network topology, Sim simulates the setup for network functionality Fnetwork (That is, Sim
controls/simulates every participant). In order to simulate a multicast started from honest player
Pj , Sim invokes Fnetwork for each of Pi’s neighbors. When some simulated honest party P receives a
message (m,Pj) from Fnetwork, Sim checks that m has not been seen before. Otherwise, it continues
the multicast by calling Fnetwork on input m for each of P ′j neighbors expect Pj . On the other hand,
when corrupted party P receives a message (m,Pj) from Fnetwork, we execute adversary simulating
P receiving a message m from Pj . When adversary instructs to send message me, to neighbor
Pe, S executes Fnetwork on input (me, Pe) coming from simulated party P . Similarly, when the
adversary initiates a multicast execution indicating pairs {(me, Pe)} (each message me should be
delivered to neighbor Pe), S executes Fnetwork on input (me, Pe) coming from simulated party P ,
and proceeds analogously.
Protocol simulation. During the simulation, Sim stops any multicast simulation of a message
m, if m is directed to an honest party and it is not correctly signed.
Simulating Setup: Generate server’s encryption keys (ek, dk)← Gen(1κ), (ekS , dkS)← Gen(1κ)
and participants signature keys (vki, ski) ← SGen(1λ). Get set C of corrupted players from the
adversary and give 〈ek, ekS , {vki}i∈[N], {skk}{k:Pk∈C}〉 to the adversary. Also, give C to the func-
tionality7.
Simulating Phase 1: When protocol starts on requester Pi, simulate a requester generated
multicast for Phase 1 message: If the requester is honest, then simulate initial request message on

7For simplicity we model static corruption, but a complete proof would handle adaptive adversaries.

15

Πid-abort
ReqResp Phase 3

Phase 3: To Client.

After seeing all participants’ to-server messages on session ID sid:

• Each participant Pu 6= S does:

1. Load saved 〈shareu, Su, r〉 corresponding to sid.

2. Compute ciphertext C = Encsid.ekrid(shareu, r).

3. Sample new session id zksidu and invoke FtZK(Prove, zksidu, 〈Su, Cu, ekrid, ekS〉, 〈shareu, r〉) to
get proof π.

4. Compute signature σu for message M to client
u = 〈sid, to-client, Cu, zksidu, π, u〉.

5. Invoke multicast protocol on input 〈M to client
u , σu〉.

• For Pj∗ = S does:

1. Compute res = ProcessReq(req).

2. Compute sharev = DecskS (Sv) for all v 6= j∗.

3. Compute share sharerealj∗ = res−
∑N
v=1:v 6=j∗ sharev.

4. Create ciphertext Cj∗ = Encekrid(sharerealj∗).

5. Sample new session id zksidj∗ and invoke FtZK(Prove, zksidj∗ , 〈Sj∗ , Cj∗ , ekrid, ekS〉, 〈skS〉) to get
π.

6. Create signature σj∗ on message M to client
j∗ = 〈sid, to-client, Cj∗ , zksidj∗ , π, j

∗〉.
7. Invoke multicast protocol on input 〈M to client

j∗ , σj∗〉.

Figure 12: Phase 3 of protocol Πid-abort
ReqResp .

Πid-abort
ReqResp Phase 4

Phase 4: Output. As soon as the running party Pj has seen all participants’ to client messages on
session ID sid, check if all Phase 3 messages seen so far contain a valid proof by invoking the verification
service of functionality FtZK, on input (〈Su, Cu, ekS , skS〉, π) for each M to client

u received.

• All proofs are correct: If Pj = Pi, then it decrypts all shares using dkrid, computes and outputs the
response res =

∑N
u=1 shareu. Other participants output ⊥.

• There is an invalid proof: Output 〈abort,DetectedCorruptedj〉 where DetectedCorruptedj contains
the identities of participants that issued a to client message with an invalid proof.

If the time-out expires, then output 〈abort,DetectedCorruptedj〉 (where DetectedCorruptedj contain the
identities of participants for which the participant has not seen its to client message or for which an
invalid proof was detected).

Figure 13: Phase 4 of protocol Πid-abort
ReqResp .

input req = 0`, otherwise wait for adversary’s generated Phase 1 message(s)).
Simulating Phase 2: For each honest party Pj that sees a valid the request message during
this multicast simulation, generate also the “to-server” message using a uniformly random share
sharej . For each dishonest party, Pk wait for the adversary to produce “to-server” messages

16

〈to-server, Sk, σk〉 for each of Pk’s outgoing edges. If signature is not valid for a message directed
to an honest neighbor, then discard the message. Otherwise, continue multicast simulation.
Simulating Phase 3: The simulator, which has the simulated server’s decryption key and can
query the functionality to get the request’s response, decrypts all shares sent by the corrupted
nodes, and recompute the shares of the honest nodes so that reconstruction produce the correct
response (this is only when the requester is corrupted, otherwise they can use arbitrary shares).
In addition using the server’s secret key the simulator produces valid zero-knowledge proof for all
the honest players. When all simulated honest players have seen all others to-server messages
at least once, simulate this player starting the to-client using the share as described above.
Continue simulating phase 3 multicast invocation but checking the zero-knowledge proof of each
dishonest party generated message, saving the identity of the ones in which the proof failed (without
aborting).
Simulating Phase 4: As soon as a simulated honest participant has seen all to-client messages,
or a time-out has expired, inform the functionality that the output of this player is the set of
detected corrupted participants together with the identity of players that have not sent a to-client

message. If the requester is honest, and has seen correct to-client messages from all participants
during the simulation, then inform the functionality to give output to the requester. Otherwise,
inform the functionality that requester aborts with the set of detected corrupted participants.

As in the semi-honest case, the above simulation is perfect with the following three exceptions:

• The shares of the response corresponding to honest players are changed. However, as argued
in the semi-honest case proof, these are a) encrypted with a semantically secure encryption
scheme, and b) the shares are uniformly distributed, (n−1)-independent, and reconstruct to
the exact same value. Hence, even if even if the requester is corrupted and can decrypt them,
no algorithm can distinguish real-world protocol shares from ideal-world simulated shares,
with noticeable probability.

• Simulated honest players zero-knowledge proof input are build with the server’s secret key,
rather than the two ciphertext encrypting the same message. The simulation proceedd by
calling (a simulator for) the ideal functionality FtZK.

• If the requester is honest, then the encrypted request is simulated by the encryption of 0`

concatenated with a valid signature from the requester. Hence, the security of the protocol
relies on the secrecy of the request and the security of the signature scheme. These are
encrypted with a CCA-secure encryption scheme. Therefore, an adversary cannot use the
server as a decryption oracle and gain knowledge of the original request.

6 Conclusion

We have introduced a new protocol that enables to hide a server in a network in the semi-honest
model. This protocol has several advantages other previous proposals: it is efficient, asynchronous
and collusion-resistant. To the best of our knowledge this is the first solution with these charac-
teristics. In addition, we provided an extension of our protocol to cope with active adversaries. In
this setting, our solution allows honest participants to identify corrupted ones. In fact, dishonest
nodes can only force a premature termination of the protocol.

We believe that this work is an important step towards designing practical and provably secure
systems that enable to hide relevant meta-data (such as the identity or location of participants) in
a controllable way. Future work directions include reducing the communication complexity of the
extended protocol for active adversaries, improve the resilience of our solution against termination

17

attempts, and prove our results in stronger security models (such as the UC framework [5] with
adaptive corruption).

References

[1] Adi Akavia, Rio LaVigne, and Tal Moran. Topology-hiding computation on all graphs. Cryp-
tology ePrint Archive, Report 2017/296, 2017. http://eprint.iacr.org/2017/296.

[2] Adi Akavia and Tal Moran. Topology-hiding computation beyond logarithmic diameter. In
Advances in Cryptology - EUROCRYPT 2017 - 36th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, Paris, France, April 30 - May 4, 2017,
Proceedings, Part III, pages 609–637, 2017.

[3] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user
setting: Security proofs and improvements. In International Conference on the Theory and
Applications of Cryptographic Techniques, pages 259–274. Springer, 2000.

[4] Philippe Camacho and Fernando Krell. Asynchronous provably-secure hidden services. In
Topics in Cryptology - CT-RSA 2018 - The Cryptographers’ Track at the RSA Conference
2018, San Francisco, CA, USA, April 16-20, 2018, Proceedings, pages 179–197, 2018.

[5] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols.
In Foundations of Computer Science, 2001. Proceedings. 42nd IEEE Symposium on, pages
136–145. IEEE, 2001.

[6] David Chaum. The dining cryptographers problem: Unconditional sender and recipient un-
traceability. Journal of cryptology, 1(1):65–75, 1988.

[7] David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.
Communications of the ACM, 24(2):84–90, 1981.

[8] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. Technical report, Naval Research Lab Washington DC, 2004.

[9] Shlomi Dolev and Rafail Ostrovsky. Xor-trees for efficient anonymous multicast and reception.
ACM Trans. Inf. Syst. Secur., 3(2):63–84, 2000.

[10] Taher ElGamal. A public key cryptosystem and a signature scheme based on discrete loga-
rithms. IEEE transactions on information theory, 31(4):469–472, 1985.

[11] David Goldschlag, Michael Reed, and Paul Syverson. Onion routing. Communications of the
ACM, 42(2):39–41, 1999.

[12] Shafi Goldwasser and Yehuda Lindell. Secure multi-party computation without agreement. J.
Cryptology, 18(3):247–287, 2005.

[13] Shafi Goldwasser, Silvio Micali, and Ronald L Rivest. A digital signature scheme secure
against adaptive chosen-message attacks. SIAM Journal on Computing, 17(2):281–308, 1988.

[14] Jens Groth, Rafail Ostrovsky, and Amit Sahai. New techniques for noninteractive zero-
knowledge. Journal of the ACM (JACM), 59(3):11, 2012.

[15] Martin Hirt, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. Network-hiding communication
and applications to multi-party protocols. Cryptology ePrint Archive, Report 2016/556, 2016.
http://eprint.iacr.org/2016/556.

18

http://eprint.iacr.org/2017/296
http://eprint.iacr.org/2016/556

[16] Yuval Ishai, Rafail Ostrovsky, and Vassilis Zikas. Secure multi-party computation with identi-
fiable abort. In Advances in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2014, Proceedings, Part II, pages 369–386, 2014.

[17] Sachin Katti, Dina Katabi, and Katarzyna Puchala. Slicing the onion: Anonymous routing
without pki. 2005.

[18] Brian N Levine, Michael K Reiter, Chenxi Wang, and Matthew Wright. Timing attacks
in low-latency mix systems. In International Conference on Financial Cryptography, pages
251–265. Springer, 2004.

[19] Brian Neil Levine and Clay Shields. Hordes: a multicast based protocol for anonymity1.
Journal of Computer Security, 10(3):213–240, 2002.

[20] Tal Moran, Ilan Orlov, and Silas Richelson. Topology-Hiding Computation, pages 159–181.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2015.

[21] Steven J Murdoch and George Danezis. Low-cost traffic analysis of tor. In Security and
Privacy, 2005 IEEE Symposium on, pages 183–195. IEEE, 2005.

[22] Moni Naor and Moti Yung. Public-key cryptosystems provably secure against chosen ci-
phertext attacks. In Proceedings of the twenty-second annual ACM symposium on Theory of
computing, pages 427–437. ACM, 1990.

[23] Lasse Overlier and Paul Syverson. Locating hidden servers. In Security and Privacy, 2006
IEEE Symposium on, pages 15–pp. IEEE, 2006.

[24] Rafael Pass. On deniability in the common reference string and random oracle model. In
Annual International Cryptology Conference, pages 316–337. Springer, 2003.

[25] Andreas Pfitzmann, Birgit Pfitzmann, and Michael Waidner. Isdn-mixes: Untraceable com-
munication with very small bandwidth overhead. In Kommunikation in verteilten Systemen,
pages 451–463. Springer, 1991.

[26] Charles Rackoff and Daniel R Simon. Cryptographic defense against traffic analysis. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 672–
681. ACM, 1993.

[27] Michael K Reiter and Aviel D Rubin. Crowds: Anonymity for web transactions. ACM
transactions on information and system security (TISSEC), 1(1):66–92, 1998.

[28] Berry Schoenmakers. Cryptographic Protocols (2DMI00). 2017.

[29] Andrei Serjantov and Peter Sewell. Passive attack analysis for connection-based anonymity
systems. Lecture notes in computer science, 2808:116–131, 2003.

[30] Vitaly Shmatikov. Probabilistic analysis of anonymity. In Computer Security Foundations
Workshop, 2002. Proceedings. 15th IEEE, pages 119–128. IEEE, 2002.

[31] Atul Singh et al. Eclipse attacks on overlay networks: Threats and defenses. In In IEEE
INFOCOM. Citeseer, 2006.

[32] Michael Waidner. Unconditional sender and recipient untraceability in spite of active attacks.
In Workshop on the Theory and Application of of Cryptographic Techniques, pages 302–319.
Springer, 1989.

19

[33] Hoeteck Wee. Zero knowledge in the random oracle model, revisited. In International Confer-
ence on the Theory and Application of Cryptology and Information Security, pages 417–434.
Springer, 2009.

[34] Matthew K Wright, Micah Adler, Brian Neil Levine, and Clay Shields. An analysis of the
degradation of anonymous protocols. In NDSS, volume 2, pages 39–50, 2002.

[35] Ye Zhu, Xinwen Fu, Bryan Graham, Riccardo Bettati, and Wei Zhao. On flow correlation at-
tacks and countermeasures in mix networks. In International Workshop on Privacy Enhancing
Technologies, pages 207–225. Springer, 2004.

A Proving that two ciphertexts encrypt the same plaintext
or the participant is the server

In this section we describe the scheme that enables to check the consistency of the encrypted
shares. At a conceptual level we need to prevent a malicious participant from sending shares that
are not equal to the server and client. At the same time we need to deal with the restriction that
the server indeed uses different shares in the protocol. Obviously this fact cannot be revealed to
the other participants without leaking the server’s location8

In order to achieve these two apparently contradictory goals we use the following approach:
each participant will prove in zero-knowledge that (1) the encrypted shares correspond to the same
plaintext OR (2) the encrypted shares have been produced by the server.

We use the following algorithms: Prove(aux, C1, C2, pkC , pkS) takes as input some auxiliary
information aux, ciphertexts C1, C2 and public keys pkC , pkS of the client and server respectively.
The output is some proof π. Then, given two ciphertexts C1, C2, the public key of the client
pkC , the public key of the server pkS and the proof π computed earlier, it is possible to verify
the consistency of the ciphertexts by running Check(C1, C2, pkC , pkS , π) that will return ACCEPT

in case the verification is successful or ⊥ otherwise.
We instantiate our construction using the Elgamal [10] encryption scheme: Let G be a cyclic

group of prime order p and generator g ∈ G. Let sk ∈ Zp be a private key and pk := gsk be the
corresponding public key. We define the encryption of a plaintext m ∈ G using randomness r ∈ Zp
as Encpk(m) := (m · pkr, gr) = (C1, C2). To decrypt a ciphertext (C1, C2) using private key sk,
one needs to compute Decsk((C1, C2)) := C1 · C−sk2 = m · (gsk)r · (gr)−sk = m. Let A := gs be an
element of G for some s ∈ Zp. The discrete logarithm of A in base g is denoted Dlogg(A) := s. Let
R = {(v;w)} ⊆ V ×W be a NP-relation. We denote by PK{(w) : (v, w) ∈ R)} a protocol where a
prover is able to convince a verifier of the knowledge of some witness w that satisfies some relation
R, i.e (v, w) ∈ R for some public value v. For example PK{(s) : A = gs} denotes the proof of
knowledge of the discrete logarithm of A ∈ G in base g. A Σ−protocol is a three rounds interaction
between the prover and verifier that can be used to prove in zero-knowledge the knowledge of some
witness without revealing this witness.

The idea of our construction is as follows: given two Elgamal ciphertexts C1 = (C1
1 , C

1
2) =

(m1 ·pkrC , gr) and C2 = (C2
1 , C

2
2) = (m2 ·pkrS , gr) encrypted with the same randomness r, the prover

will either show that (1) m1 = m2 by proving the equality of discrete logarithm of C1
1 · (C2

1)−1 =
(pkC · pk

−1
S)r and gr in bases pkC · pk

−1
S and g respectively, OR (2) the knowledge of some secret s

known to the server (e.g. s such that D = gs, for some public D). Let δ = pkC · pk
−1
S .

Construction 1. [Proof of shares consistency]
Prove(aux, C1, C2, D, pkC , pkS):

8Detecting that a specific message comes from the server implies in practice that the server’s location will be
leaked at some point.

20

Prover Verifier

R0 = {(A,B; r) : A = δr ∧B = gr} R1 = {(D; s) : D = gs}
u0, r1, c1 ∈R Zp u1, r0, c0 ∈R Zp

a1 := δu0 a1 := δr0 ·A−c0
a2 := gu0 a2 := gr0 ·B−c0

a3 := gr1 ·D−c1 a3 := gu1

a1,a2,a3−−−−−→
c←−

c0 := c− c1 c1 := c− c0
r0 := u0 + c0r r1 := u1 + c1s

c0,c1,r0,r1−−−−−−−→
c0 + c1

?
= c

δr0
?
= a1 ·Ac0

gr0
?
= a2 ·Bc0

gr1
?
= a3 ·Dc1

Figure 14: Σ-protocol for relation Rg,δ = {(A,B; r) : A = δr ∧B = gr} ∪ {(D; s) : D = gs}.

• Let C1 = (C1
1 , Y) and C2 = (C2

1 , Y).

• Compute ∆ := C1
1 · (C2

1)−1 (= δr).

• If the prover is the server S then aux := s = Dlogg(D) otherwise aux := r = Dlogδ(∆) =
Dlogg(Y).

• Compute and return
π for PK{(r, s) : [∆ = δr ∧ Y = gr] ∨ [s : D = gs]}.

Check(C1, C2, pkC , pkS , π):

• Let C1 = (C1
1 , Y1) and C2 = (C2

1 , Y2).

• Check that Y1 = Y2. If not return ⊥.

• Compute ∆ := C1
1 · (C2

1)−1.

• Verify π using ∆, pkC , pkS . If the verification is successful return ACCEPT otherwise return
⊥.

The reader can verify that if, indeed, gDlogδ(∆) = gr, then DecskC ((C
1
1 , g

r)) = DecskS ((C2
1 , g

r)).
The Σ-protocol PK{(r, s) : [∆ = δr ∧ Y = gr] ∨ [s : D = gs]} that corresponds to the relation

Rg,δ := {(A,B; r) : A = (δ)r ∧ B = gr} ∪ {(D; s) : D = gs} = R0 ∪ R1 is described in Figure 14.
In this protocol, values A and B correspond to ∆ and gr respectively, and D to gs, where s is the
server’s secret.

The completeness of the protocol can be verified by inspection. Soundness can be shown as
follows9. Assume that we obtain two conversations
(a1, a2, a3; c; c0, c1, r0, r1) and (a1, a2, a3, c

′, c0
′, c1

′, r0
′, r1

′) such that c 6= c′. Given that c = c0 + c1
and c′ = c0

′ + c1
′ then either c0 6= c0

′ or c1 6= c1
′. Moreover we have that gr0 = a2B

c0 , gr1 =
a3D

c1 , δr0 = a1A
c0 , gr0

′
= a2B

c0
′
, gr1

′
= a3D

c1
′
, and δr0

′
= a1A

c0
′
. We can deduce that:

9See Berry Schoenmakers’ lectures notes[28] for a security definition of Σ-protocols.

21

• if c0 6= c0
′ then gr0−r0

′
= Bc0−c0

′
and δr0−r0

′
= Ac0−c0

′
which implies that r = r0−r0′

c0−c0′ .

• if c1 6= c1
′ then gr1−r1

′
= Dc1−c1′ which implies that s = r1−r1′

c1−c1′ .

To show that the protocol is zero-knowledge let us consider a challenge c. Let us assume
that the prover knows r. Then the honest-verifier distribution is {(a1, a2, a3, c; c0, c1, r0, r1) :
u0, r1, c1 ∈R Zp; a1 = δu0 ; a2 = gu0 ; c0 = c − c1; r0 = u0 + c0r}. The simulated distribution is
set as {(a1, a2, a3, c; c0, c1, r0, r1) : c0, r0, r1 ∈R Zp; c1 = c − c0, a1 = δr0A−c0 , a2 = gr0B−c0 , a3 =
gr1D−c1}. These distributions are identical. The case where the prover knows s is similar.

B Security definitions

B.1 Semi-honest adversaries

As standard in cryptographic protocols, we define security in terms of a real-versus-ideal world
procedures. That is, we first specify a desired functionality for our protocol. Then, we say that a
protocol computing the functionality is secure if its real-world execution realizes an ideal procedure.
In this ideal procedure, the participants get their outputs by sending their inputs to a trusted
party computing the functionality on behalf of them. More specifically, we say that our protocol
privately computes the functionality if whatever can be achieved by adversary interacting in the
real execution of the protocol, can also be obtained with only inputs and outputs of the corrupted
participants in an ideal execution.

In this section we provide a security definition for semi-honest static adversaries. In what fol-
lows we let algorithms Sim, Adv, and Z be stateful.

IdealFZ,Sim(κ): 1) Run Z(1κ) to produce participant inputs {inj}j∈[N] and adversary input inSim.
2) Run Sim(1κ, inSim) to get the index set of corrupted parties IC ⊆ [N]. 3) Run Sim({ink}k∈IC)
to obtain modified input {in′k}k∈IC for the corrupted parties. 4) Call functionality F on previous
inputs to obtain output {outj}j∈[N]. 5) Run Sim({outk}k∈IC) to get adversary’s output outSim. 6)
Run Z({outj}j∈[N]\IC , outSim) to obtain output bit b. 7) Return b as the output of the ideal-world
execution.

RealΠZ,Adv(κ): 1) Run Z(1κ) to produce participant inputs {inj}j∈[N] and adversary input inAdv.
2) Run Adv(1κ, inAdv) to get set of corrupted parties IC ⊆ [N]. 3) Run Adv({ink}k∈IC) to obtain
modified input {in′k}k∈IC for the corrupted parties. 4) Execute protocol Π with previously com-
puted inputs, saving the view of every corrupted participant, {viewk}k∈IC . When every participant
finishes the protocol execution, recollect output of every uncorrupted participants, {outj}j∈[N]\IC .
5) Run Adv({viewk}k∈IC) to get adversary’s output outAdv. 6) Run Z({outj}j∈[N]\IC , outAdv) to
obtain output bit b. 7) Return b as the output of the real-world execution.

Definition 1. A protocol Π privately computes functionality F if for every PPT algorithm Adv,
there exists a PPT algorithm Sim such that for every PPT algorithm Z the random variables
IdealFZ,Sim(1κ) and RealΠZ,Adv(1

κ) are computationally indistinguishable, for all sufficiently long κ.

In our work it is sufficient to show a PPT simulator Sim that can produce a view that is
computationally indistinguishable from the corrupted participants view. Then, the simulator can
run A to produce a simulated output to Z.

We slightly modify the ideal world to include a leakage function, L, whose output is leaked
to the simulator Sim. This leakage function models the fact the protocol may reveal some partial
private information to the adversary (for example, the length of the messages to encrypt). It also
allows for the specification of trade-offs between protocol features or efficiency and security. This
leakage information is added to the simulator’s input on step 3.

22

B.2 Active adversaries

In order to capture detectable and identifiable malicious activity we based our definition on [16]:
we modify an ideal functionality to allow the ideal world adversary to specify if the requester gets
a valid output or aborts indicating the identity of at least one corrupted participants. Similarly,
other honest participant may also identify malicious players; however we do not force agreement
on it. This definition is different from [16] since we do not require honest participants to agree
on the correct termination of the protocol nor identity of detected malicious participants [12].
Analogously to the semi-honest case described in section B.1, an external environment chooses the
client participant and its input.
Ideal-world with identifiable aborts. The environment chooses adversaries input inSim, client
participant Pi, and Pi’s input req. The adversary then informs the functionality FReqResp about
corrupted participant set C ⊂ P. The client Pi forwards its input req to the functionality. If
Pi ∈ C, then FReqResp request new input req to the adversary10. FReqResp then submits leakage
profile L(G, req, Pi) to adversary. When the adversary informs the output Kj of honest participant
Pj 6= Pi, the functionality set Kj as the output of Pj . When the adversary informs the output Ki

of Pi, then if Ki = ∅, functionality outputs response res and sends it to Pi, otherwise, it sends

Ki to Pi. Let ID− Ideal
FReqResp

Z,Sim (κ) be the random variable denoting the joint output of the honest
participants and the adversary Sim.
Real-World. As in the ideal world above, the environment chooses adversary’s input, the client
and its input. The adversary then chooses the corrupted participant set, and executes an arbitrary
(yet polynomially bounded strategy) on behalf of them. The honest participants follow the pre-
scribed protocol. Let RealΠZ,Adv(κ) be the random variable denoting the joint output of the honest
participants and the adversary Adv.

Definition 2. A protocol Π securely computes functionality FReqResp with identifiable aborts if for
every PPT algorithm Adv, there exists a PPT algorithm Sim such that for every PPT algorithm Z
the random variables ID− Ideal

FReqResp

Z,Sim (κ) and RealΠZ,Adv(κ) are computationally indistinguishable.

10We do not consider the trivial case in which the adversary abort before submitting its input.

23

	Introduction
	Motivation
	Contributions
	Related Work
	Organization of the paper

	Preliminaries
	Definitions and notations
	Modeling networks
	Multicast protocol

	Request Response Functionality FReqResp
	A semi-honest protocol for FReqResp
	Overview
	Encrypted Share Reconstruction Protocol
	Request-Response Server Protocol
	Proof of Security
	Variants of the protocol

	An id-abort protocol for FReqResp
	Overview
	Zero-Knowledge Proof of Knowledge Functionality
	Protocol Specification
	Security proof

	Conclusion
	Proving that two ciphertexts encrypt the same plaintext or the participant is the server
	Security definitions
	Semi-honest adversaries
	Active adversaries

