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Abstract

It is tempting to think that if we encrypt a sequence of messages {x;} using a semantically
secure encryption scheme, such that each z; is encrypted with its own independently generated
public key pk;, then even if the scheme is malleable (or homomorphic) then malleability is
limited to acting on each x; independently. However, it is known that this is not the case, and
in fact even non-local malleability might be possible. This phenomenon is known as spooky
interactions.

We formally define the notion of spooky free compilers that has been implicit in the delegation
of computation literature. A spooky free compiler allows to encode a sequence of queries to a
multi-prover interactive proof system (MIP) in a way that allows to apply the MIP prover
algorithm on the encoded values on one hand, and prevents spooky interactions on the other.
In our definition, the compiler is allowed to be tailored to a specific MIP.

We show that (under a plausible complexity assumption) spooky free compilers that are suf-
ficiently succinct to imply delegation schemes for NP with communication n® (for any constant
a < 1) cannot be proven secure via black-box reduction to a falsifiable assumption. On the
other hand, we show that it is possible to construct non-succinct spooky free fully homomorphic
encryption, the strongest conceivable flavor of spooky free compiler, in a straightforward way
from any fully homomorphic encryption scheme.

Our impossibility result relies on adapting the techniques of Gentry and Wichs (2011) which
rule out succinct adaptively sound delegation protocols. We note that spooky free compilers are
only known to imply non-adaptive delegation, so the aforementioned result cannot be applied
directly. Interestingly, we are still unable to show that spooky free compilers imply adaptive
delegation, nor can we apply our techniques directly to rule out arbitrary non-adaptive NP-
delegation.

1 Introduction

The PCP Theorem [AS98, ALM 98] is one of the most formidable achievements of computer science
in the last decades. Probabilistically Checkable Proofs (PCPs) and Multi-Prover Interactive Proofs
(MIPs) allow to reduce the communication complexity of verifying an NP statement to logarithmic
in the input length (and linear in the security parameter), in a single round of communication.
However, they require sending multiple queries to isolated non-colluding provers.! It is impossible
(under plausible complexity assumptions) to achieve the same communication complexity with a
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single computationally unbounded prover. However, if we only require computational soundness
this may be possible.

Indeed, it has been shown by Micali [Mic94] and Damgard et al. and Bitansky et al. [DFH12,
BCCT12,BCCT13,BCC*14] that in the random oracle model, or relying on knowledge assumptions,
it is indeed possible. However, in the standard model and under standard hardness assumptions
(in particular falsifiable [Nao03]), this is not known. Gentry and Wichs [GW11] showed that if
adaptive security is sought, i.e. if the adversary is allowed to choose the NP instance after seeing
the challenge message from the verifier, then soundness cannot be proved under any falsifiable
assumption, so long as the security reduction uses the adversary as a black-box, and relying on the
existence of sufficiently hard languages in NP. This still leaves open the possibility of non-adaptive
protocols which seems to be beyond the reach of the techniques of [GW11].2

A notable attempt to construct such a protocol was made by Biehl, Meyer and Wetzel [ BMW9S],
and by Aiello et al. [ABOR00]. They suggested to generate MIP queries and encode them using
independent instances of a private information retrieval (PIR) scheme. Intuitively, since each query
is encoded separately, it should be impossible to use the content of one encoding to effect another.
However, as Dwork et al. [DLNT01] showed, the provable guarantees of PIR (or semantically secure
encryption) are insufficient to imply the required soundness. They showed that semantic security
does not preclude non-local spooky interactions which cannot be simulated by independent provers.

Dodis et al. [DHRW16| recently showed that there exist explicit secure PIR schemes (under
widely believed cryptographic assumptions) that actually exhibit spooky interactions, and thus fail
the [BMWO98, ABORO00] approach. They complemented this negative result with a construction
of a spooky free fully homomorphic encryption (FHE) scheme, which is an FHE scheme with the
additional guarantee that if multiple inputs are encrypted using independently generated public
keys, then any operation on the collection of ciphertexts can be simulated by independent processes
applied to each encrypted message separately. In particular, a spooky free FHE has strong enough
security guarantees to allow proving the [BMW98, ABORO00] approach, since a single computation-
ally bounded prover “has no choice” but to behave like a collection of isolated provers as is required
for MIP soundness. However, the spooky free encryption scheme constructed by Dodis et al. re-
lies on knowledge assumptions, the same knowledge assumptions that imply short computationally
sound proofs (and in fact uses such proofs as building blocks).

Our Results. In this work, we notice that spooky free FHE is a flavor of a more general no-
tion that we call spooky free compiler. This notion has been implicit in previous works since
[BMWO98, ABORO00]. A spooky free compiler provides a way to encode and decode a set of queries
in such a way that any operation on an encoded set, followed by decoding, is equivalent to per-
forming an independent process on each of the queries separately. In addition, for functionality
purposes, it should be possible to apply the MIP prover algorithm on encoded queries. This notion
generalizes much of the research efforts in providing a proof for [BMW98, ABORO00]-style protocols.
In particular, spooky free FHE can be viewed as a universal spooky free compiler that is applicable
to all MIPs.

We show that spooky free compilers cannot have succinct encodings if they are proven based on a
falsifiable hardness assumption using a reduction that uses the adversary as black-box. Our negative
result holds for any compiler where the encoding is succinct enough to imply a delegation scheme

2Extending the black-box impossibility to non-adaptive delegation is a well motivated goal by itself and has
additional implications, e.g. for the study of program obfuscation.



with sub-linear communication complexity. We note that this does not follow from [GW11] since
spooky free compilers are only known to imply non-adaptive delegation protocols whereas [GW11]
only rules out adaptive protocols.

On the other hand, we show that if succinctness is not imposed, then it is straightforward
to achieve spooky free FHE based on the existence of any FHE scheme. Namely, spooky free
compilation in its strongest sense becomes trivial. Specifically, we present a scheme where the
encoding size corresponds to the size of the query space for the MIP, i.e. the length of the truth
table of the MIP provers.3

Other Related Works. Kalai, Raz and Rothblum [KRR13, KRR14] showed that the [BMW9S,
ABOROO] approach is in fact applicable and sound when using no signaling MIP. These are proof
systems that remain sound even when spooky interactions are allowed. However, such MIPs can
only be used to prove statements for P and not for all of NP unless NP=P.

1.1 Overview of Our Techniques

We provide an overview of our techniques. For this outline we only require an intuitive under-
standing of the notion of spooky free compiler as we tried to convey above. The formal definition
appears in Section 3.

Ruling Out Succinct Compilers. Our method for ruling out succinct compilers draws from
the [GW11] technique for showing the impossibility of reductions for adaptively secure delegation
schemes, i.e. ones where the instance x can be chosen after the encoded MIP queries are received.
At a high level, [GW11] produce an adversary that chooses instances z that are not in the NP
language in question, but are computationally indistinguishable from ones that are in the language.
This allows to simulate accepting short delegation responses for those x’s using a brute force
process, since the complexity of the exhaustive process is still insufficient to distinguish whether x
is in the language or not (this argument makes use of the dense model theorem [DP08, RTTVO08,
VZ13]). The crucial property that is required is that each x is only used once, since otherwise the
combined complexity of applying the brute force process many times will not allow us to rely on the
computational indistinguishability. The adaptive setting allows to choose a new z for each query,
and thus to apply this argument.

We notice that a spooky free compiler is similar to an adaptive delegation protocol, since it
does not preclude the adversary from using a fresh x for each set of queries. We will consider an
adversary that samples = not in the language similarly to [GW11], but instead of performing the
MIP evaluation on the encoded queries it uses the dense model theorem to produce an accepting
response.

We would like to then argue that this adversary breaks the spooky-freeness, since it cannot be
simulated by a sequence of local operations on the queries due to the unconditional soundness of
the MIP. However, we need to be rather careful here, since an attempt to simulate will only fail
w.r.t. a distinguisher who knows x (otherwise the soundness of the MIP is meaningless). It may
seem that this can be handled by giving x to the distinguisher together with the MIP answers, e.g.
by considering an additional “dummy MIP prover” that always returns x, so that x is now sent

3We note that we have neither positive nor negative results for compilers (or delegation protocols) with commu-
nication complexity (super-)linear in the instance size but sub-linear in the MIP truth table length.



together with the MIP answers. Alas, this approach seems to fail, since a simulator can simulate
the adversary by using x in the language, and answering the queries locally. The dense model
theorem implies that the two views are indistinguishable, which in turn implies that this adversary
does not break the spooky freeness.

We overcome this obstacle by confining the adversary to choose z from a small bank X of
randomly chosen x’s that are not in the language, and are a priori sampled and hardwired to the
adversary’s code. We consider a distinguisher that also has this bank X hardwired into its code,
and will output 1 if and only if the answers are accepting with respect to some = € X. This
requires a definition of spooky free compiler relative to auxiliary input (which intuitively specifies
the x € X that the adversary chose). We show that this auxiliary input notion is implied by spooky
free FHE, and that the required auxiliary input is very short (specifically independent of the length
of 2). We denote this adversary and distinguisher pair by (A, ¥), and use the soundness of the MIP
to argue that the distinguisher ¥ can distinguish between the adversary A and any local process,
which implies that (A, ¥) break the spooky freeness.

The fact that (A, ¥) break spooky freeness implies that the black-box reduction breaks the
assumption given oracle access to (A, ¥).* We reach a contradiction by showing efficient (prob-
abilistic polynomial time) algorithms (A, ¥) which are indistinguishable from (A, ¥) in the eyes
of the reduction, which implies that the underlying assumption is in fact solvable in probabilistic
polynomial time.

See Section 5 for the full details of this negative result.

Straightforward Non-Succinct Spooky Free FHE. We show that any FHE scheme with
message space Y, implies a spooky free FHE scheme with message space ¥ and ciphertext size
~ |X|. We explain the construction for ¥ = {0,1}, the extension to the general case is fairly
straightforward, and we refer the reader to Section 4 for the full details.

Our starting point is an FHE scheme with message space {0,1}. Our spooky free scheme is
essentially an equivocable variant of the FHE scheme, namely one where there is a special ciphertext
that can be explained as either an encryption of 0 or an encryption of 1 given an appropriate
secret key. Formally, the spooky free key generation generates two key sets for the FHE scheme:
(fhepkg, fhesko), (fhepk;, fhesk;), it also flips a coin b & {0,1}. Finally it outputs the spooky free
key pair: sfpk = (fhepk,fhepk;) and sfsk = (b,fhesk;). To encrypt, encrypt the same message
with both fhepk’s to obtain ¢ = (c¢g,c¢1). Homomorphic evaluation can be performed on ¢y, ¢1
independently, and since both components of the ciphertext will always encrypt the same value,
then decrypting with fhesk;, will be correct regardless of the value of b. Note that the size of the
ciphertext blew up by a factor of |¥| = 2.

To show that the scheme is spooky free, we notice that it is possible to generate an equivocable
ciphertext ¢* = (Encfhepk, (), ENCthepk, (B)), for a random f3 & {0,1}. Note that for b = & z, it
holds that sfsk, = (b, fhesk,) decrypts ¢* to the value z, and furthermore, the joint distribution
(sfpk, sfsk,, ¢*) is computationally indistinguishable from the case where b was chosen randomly
and ¢* was a proper encryption of x.

To see why this scheme is spooky free, we consider an adversary that receives a number of
ciphertexts under independently generated sfpk’s and attempts to perform some non-local spooky

4In fact, the situation is more delicate since (A, @Lis actually a distribution over adversaries and distinguishers,
where the distribution is over the choice of the bank X. We argue that almost all (A, W) break the spooky freeness,
and then prove that the average advantage is also non-negligible (see Lemma 2.6 in Section 2).



interaction. Namely, the adversary takes {sfpk;,c; = Encsspk, (2i)}i, performs some operation to
produce {¢;}; s.t. when decrypting y; = Decessk,(¢;), the entries y; should be distributed in a
way that cannot be simulated locally by operating on each z; independently. We will show that
this is impossible and in fact there is a local way to generate the y; values, up to computational
indistinguishability.

To this end, we first consider a setting where instead of ¢, we feed the adversary with the
equivocable ciphertext c;. Recall that the value x; that ¢ encrypts is determined by sfsk and not
by ¢* itself. Still, as we explained above, the distribution of (public key, secret key, ciphertext) is
indistinguishable from the previous one. Therefore, in this experiment the adversary should return
a computationally indistinguishable distribution over the y;’s as it did before. However, notice
that now the adversary’s operation does not depend on the x;’s at all. Namely, it is possible to
decide on the value of x; only at decryption time and not at encryption time, and it is possible
to do so for each i independently (by selecting an appropriate value for b in the i’th instantiation
of the scheme). It follows that the distribution of y; in this experiment, which is computationally
indistinguishable from the original one, is spooky free in the sense that it can be generated by
executing a local process on each x; to compute y;.”

2 Preliminaries

Definition 2.1. Two distributions X,Y are said to be (e(\), s(\))-indistinguishable if for every
distinguisher U of size poly(s(\)) it holds that

|Pr@(X)=1]—Pr[¥()=1]| <€) .

We say that the distributions X,Y are a-sub-exponentially indistinguishable if they are (277", 2"")-
indistinguishable.

Lemma 2.1 (Borel-Cantelli). For any sequence of events { Ex}aen, if the sum of the probabilities
of Ey is finite, i.e. Y,y Pr[E)\] < 0o, then the probability that infinitely many of them occur is 0.

Definition 2.2 (One-Round Multi-Prover Interactive Proofs (MIP)). Let R be an NP relation,
and let L be the induced language. A one-round p-prover interactive proof for L is a triplet of PPT
algorithms I1 = (G, (P1,...,Pp), V) as follows:

e Query Generation §«~G(1%) : Outputs a set of queries ¢ = (qi,...,qp) for the provers.

e Provers a;<P;(q;,z,w) : Given the query corresponding to the i ’th prover, outputs an answer
a; for x using the query q;, the instance r and its witness w.

o Verifierb « V(q,d,x) : Using the set of queries ¢ with matching answers @ and the instance
x outputs a bit b.

We require that there is a soundness parameter o > 0 such that o(k) < 1 — 1/poly(k), for which
the following two properties hold:

5 A meticulous reader may have noticed that it is required that for all 4 the local process uses the same sequence
of ¢;. Indeed the definition of spooky freeness allows the provers to pre-share a joint state.



e Completeness: For every (x,w) € R such that x € {0,1}=%",

PrV(¢,a,z)=1]=1,
where ¢<G(1%), d = (a1, ..., ap) and a;<P;(g;, x,w) for every i € [p].

e Soundness: For every x € {0,152\ L and for every (not necessarily efficient) cheating
provers Py, . .. ,77;, the following holds:

Pr\ V(g d,z)=1| <o(x),

where § < G(1%), d’ = (ah, ..., ay,) and a;<Pi(q;,z) for every i € [p].

Definition 2.3. An NP language L C {0,1}*, is said to have sub-exponentially hard subset-
membership problem (£, L,Sam) if the following holds:

o L={Ly}nen is a PPT distribution ensemble, each over L N{0,1}".
o L =1{Ly}nen is a PPT distribution ensemble, each over over L N {0,1}" = {0,1}"\L.

e Sam is a PPT algorithm, that on input 1" outputs a tuple (x,w) € Ry where x is distributed
as mn L,,.

o L, L are (e(n),s(n))-indistinguishable for e(n) = 1/2"", s(n) = 2"", where a > 0 1is some
constant referred to the hardness-parameter.

In such case we will say that (£, L,Sam) is a-sub-exponentially hard.

Theorem 2.2 (Dense Model Theorem [VZ13, Lemma 6.9]). There ezists a fized polynomial p
such that the following holds: Let X and ) be two (e(N), s(N))-indistinguishable distributions. Let
A be a distribution over {0,1} jointly distributed with X. Then there exists a (probabilistic)
function h : Y — {0,1}¢ such that (X,.A) and (¥, h(Y)) are (¢*(N\), s*(\))-indistinguishable, where
(N =2-€(\) and s*(\) = s(\) - p(e(N), 1/2N).

Corollary 2.3. Let (X, A) be a joint distribution s.t. A is supported over {0,1} for £ = O(n®),
and let Y be a distribution such that X and Y are a-sub-exponentially indistinguishable. Then there
exists a probabilistic function h s.t. (X, A) and (¥,h(Y)) are (2-27"",2"") indistinguishable.

Proof. Let e(n) = 27", s(n) = 2"" be such that X', ) are (¢(n), s(n))-indistinguishable. Then it fol-
lows from Definition 2.1 that they are also (e(n), s'(n))-indistinguishable for any s'(n) = poly(s(n)),
in particular let s'(n) = s(n)/p(e, 1/2¢) = 290"") = poly(s(n)) . Theorem 2.2 implies that there
exists a probabilistic function h s.t. (X,.A) and (Y, h())) are (2¢(n), s(n))-indistinguishable.

O

Definition 2.4 (fully-homomorphic encryption). A fully-homomorphic (public-key) encryption
scheme FHE = (FHE.Keygen, FHE.Enc, FHE.Dec, FHE.Eval) is a 4-tuple of PPT algorithms as fol-

lows (X is the security parameter):

e Key generation (pk,sk)<FHE.Keygen(1): Outputs a public encryption key pk and a secret
decryption key sk.



e Encryption c<—FHE.Enc(pk, p): Using the public key pk, encrypts a single bit message p €
{0,1} into a ciphertext c.

e Decryption pu«FHE.Dec(sk,c): Using the secret key sk, decrypts a ciphertezt ¢ to recover
the message pu € {0,1}.

e Homomorphic evaluation c<FHE.Eval(C, (c1,...,¢), pk): Using the public key pk, applies
a boolean circuit C : {0,1}¢ — {0,1} to c1,...,cq, and outputs a cipherteat C.

A homomorphic encryption scheme is said to be secure if it is semantically secure.
A scheme FHE is fully homomorphic, if for any circuit C and any set of inputs p1, ..., e, letting
(pk, sk)«FHE.Keygen(1*) and c¢;«<~FHE.Enc(pk, 1), it holds that

Pr [FHE.Dec(sk, FHE.Eval(C, (c1, . .., ce), pk)) # C(p1, - - -, pe)] = negl(A) ,

A fully homomorphic encryption scheme is compact if the output length of FHE.Eval is a fized
polynomial in X (and does not depend on the length of C).

2.1 Spooky-Free Encryption

The following is adopted and adapted from [DHRW16] (see discussion below). Let PKE = (PKE.KeyGen,
PKE.Enc, PKE.Dec) be a public-key encryption scheme. Let D be some distribution and let A and
S be some algorithms. Consider the following experiments:

REALp 4(1%) SIMp s(17)
1. Sample messages and auxiliary informa- 1. Sample messages and auxiliary informa-
tion (Tﬁ, a) = (mlv ceey M, O‘)<_D(1’i)' tion (’I’?L, a) = (mla cees Mp, O‘)<_’D(1H)'
2. Generate keys and encryptions for every 2. Sample random coins r for the simula-
i € [n]: set (pk;, ski) «— PKE.KeyGen(1") tor S, and evaluate for every i € [n]
and ¢; < PKE.Enc(pk;, m;). mi—S(1%, 17 i, my; r).

3. Evaluate ¢ «+ A(1%, pk, €). 3. Output (17, 77_1",04).

4. Decrypt each evaluated ciphertext
m,:=PKE.Dec(sk;, c}).

5. Output (T?L,Tﬁ’, Q).

Definition 2.5. Let PKE = (PKE.KeyGen, PKE.Enc, PKE.Enc) be a public-key encryption scheme.
We say that PKE is strongly spooky — free if there exists a PPT simulator S such that for every
PPT adversary A, distribution D and distinguisher W, the following holds:

—

‘Pr [\y(m, m',a) = 1| (m,m,a) « REALp 4(17)] -

Pr |U(m,m', o) =1 | (m,m',a) « SIMD,SA(lﬂ)] ‘ = negl(k)



We say that PKE s weakly spooky — free if the simulator can be chosen after the adversary,
the distribution and the distinguisher have been set. Similarly, we say that PKE is strongly spooky-
free without auxiliary information (weakly spooky-free without auzxiliary information), if it is strongly
spooky-free (weakly spooky-free), and the distribution D must output o = L.

For our negative result, we prove the impossibility with respect to the weak definition without
auxiliary information, thus strengthening the impossibility result. On the other hand, for the pos-
itive result we construct a strongly spooky-free (with auxiliary information) scheme. We note that
in the original definition in [DHRW16] the order of quantifiers was somewhere “in between” our
two definitions. They allowed the simulator to be chosen after seeing the adversary A, but before
seeing the distribution D and the distinguisher W.

2.2 Falsifiable Assumptions and Black-Box Reductions

In what follows, we recall the notion of falsifiable assumptions as defined by Naor [Nao03]. We
follow the formalization of Gentry and Wichs [GW11]. We also show here a variety of properties
that we use for our proof. We present a notion of equivalence between falsifiable assumptions and
prove that any falsifiable assumption is equivalent, under this notion, to one with a special form.
Finally we show a claim about the asymptotic behavior of the average advantage of a distribution
of successful adversaries against a falsifiable assumption.

Definition 2.6 (falsifiable assumption). A falsifiable assumption consists of a PPT interactive
challenger C(1?) and a constant n € [0,1). The challenger C interacts with a machine A and may
output a special symbol win. If this occurs, A is said to win C. For any adversary A, the advantage
of A over C is defined as:

AdVE (12) = Pr[A(1Y) wins C(1Y)] —n,

where the probability is taken over the random coins of A and C. The assumption associated with
the tuple (C,n) states that for every (non-uniform) adversary A1) running in polynomial time,

Adv(T (1%) = negl().
If the advantage of A is non-negligible in A then A is said to break the assumption.

Definition 2.7. A falsifiable assumption (C1,m1) is black-box stronger than a falsifiable assumption
(Co,1m2), denoted (C1,m1) > (Ca,m2) if there exists a reduction R such that for every adversary A
with non-negligible advantage against (Co,1m2), it holds that RA has non-negligible advantage against
(C1,m)-

We say that (C1,m) and (C2,m2) are black-box equivalent, denoted (C1,m1) = (C2,m2), if (C1,m1) >
(Ca,m2) and (C2,m2) > (C1,m)-

Definition 2.8. Let (C,n) be a falsifiable assumption, and define the challenger Cfﬁ that interacts
with an adversary A as follows. First A sends a polynomially bounded unary number 1t to the
challenger. Then the challenger executes the C game with A sequentially and independently t times.
Finally C;% declares that A won if and only if A won in at least [nt| + 1 of the games.

Lemma 2.4. For any falsifiable assumption (C,n) it holds that (C,n) = (C7,0).
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Proof. Let A be an adversary with non-negligible advantage ¢ in (C,n). Then RA(1%) is an ad-
versary against Cg@ as follows. It starts by sending 1! for t = [\/§] in the first message. Then
for every iteration it simply executes .A. By definition, the expected number of wins is at least
Int+ A > [nt] + 1+ A/2. By a Chernoff argument the probability to win against C%z’ is at least
1 — negl()).0

Now let A be an adversary with non-negligible advantage ¢ against (Cff, 0). Then R4(1*) is an
adversary against (C,7n) as follows. It simulates Cff) for A by first reading 1%, then sampling i* & [t],
simulating C in all iterations except ¢*, and in iteration ¢* forward messages back and forth to the
real challenger. By definition the advantage of R(1*) is at least 1/t which is noticeable. O

Definition 2.9 (black box reduction). We say that the security of a scheme I can be proven via
a black-box reduction to a falsifiable assumption, if there is an oracle-access machine R such that
for every (possibly inefficient) adversary A that breaks the security of I, the oracle machine RA
runs in time poly(\) and breaks the assumption.

Corollary 2.5. IfII can be proven via a black-box reduction to a falsifiable assumption (C,n) then
it can also be proven via a black-box reduction to a falsifiable assumption (C',0), and furthermore
if (C,m) is hard for all polynomial adversaries then so is (C',0).

Proof. Letting C' = Cff’, the corollary directly follows from Lemma 2.4 and Definition 2.9. O

Lemma 2.6. Let II be a scheme whose security can be proven via a black-box reduction R to a
falsifiable assumption (C,0) (note that n = 0). Let A be a distribution on adversaries such that

with probability 1, A & A breaks the security of I1. Then there exists a non-negligible § such that

A]%r’c[RA(l)‘) wins C(1M)] > 6(N) .

Namely, the expected advantage of R against (C,0) is non-negligible.

Proof. For every A denote:

oa(N) = &m«“(ﬂ) wins C(17)] .

By the correctness of the reduction R we are guaranteed that with probability 1 over A & .Z, it
holds that § 4 is a non-negligible function. Furthermore, notice that by definition

A%C[RA(F) wins C(1%)] = IE,[éA(/\)] :

and our goal therefore is to prove that E4[0.4(\)] is non-negligible.

Let us consider a random A* < A and define 6*(\) = d4+(\). We define a sequence of events
{E\}xen, where E) is the event that

Ii\r[gA*()\) < o4(N)] < 1/X2.

Trivially, Pr[E)] < 1/A%. Therefore, by the Borel-Cantelli Lemma, with probability 1 on the choice
of A* it holds that only finitely many of the events E) can occur.

SWe assumed that § is known to the reduction, which could be viewed as non-black-box access. However, note
that 6 can be estimated by running the oracle many times, simulating C.



Let us consider some value of A for which F) does not hold (as explained above, this includes
all but finitely many A values). That is, where

f;‘r[SA*()\) <dAN)] > 1/22.
By definition, for these values, we can apply the Markov inequality

E[EA(A)] 2 F}"[SA*(/\) < 0AN)] - - (N) > da-(N)/A%.

Since with probability 1 it holds that both & 4+(A) is noticeable and that only finitely many of
the E) can occur, then obviously there exists A* for which both hold, which implies that indeed
Prar.c[RA(1") wins C(1*)] is non-negligible. O

3 Spooky-Free Compiler

Definition 3.1 (Spooky-Free Compiler). Let I = (G, P,V) be a p-provers, one-round MIP with
soundness o for an NP language L with an induced relation R. A Spooky-Free Compiler for II is
a triplet of PPT algorithms SFC = (SFC.Enc, SFC.Dec, SFC.Eval) as follows:

e Encoding (e,dk) < SFC.Enc(1%,q) : Outputs an encoding of the queries, and a decoding-key.

e FEwvaluation ¢ < SFC.Eval(e,x,w) : FEwvaluates the MIP answers on the encoded queries,
instance x, and witness w.

e Decoding d + SFC.Dec(e’,dk) : Decodes the evaluated queries using the decoding-key.
We require the following properties:

e Completeness For every (z,w) € R such that x € {0,1}=2", the following holds: Sample
queries ¢ < G(1%) and encode (e,dk) <— SFC.Enc(q). FEwvaluate €' + SFC.Eval(e,z,w), and
decode @ + SFC.Dec(e’,dk). Then,

PrV(¢,a,z) =1]=1.

e Spooky-Freeness Define the following experiments:

REAL 4(1%) SIMs(1%)
1. Sample queries ¢ < G(17). 1. Sample queries ¢ < G(1%).
2. Encode (e,dk) « SFC.Enc(1*, ). 2. Sample random coins r, and using

these coins simulate the auxiliary in-

3. Evaluate (¢/,z) + A(1%,e), where z
v (¢, 2) ( ), W formation z+S(1%,17,0,0; 7).

is some auxiliary information that is

passed to the distinguisher. 3. Using the same coins, compute
4. Decode @ < SFC.Dec(e’, dk). a;¢—S(1%, 17,1, q;;7) for all i € [p].
5. Output (z,q, a@). 4. Output (z,q, a@).

"For notational convenience this is like applying S with ¢ = 0.
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We say that SFC is strongly spooky-free if there exists a PPT simulator S such that for ev-
ery PPT adversary A the experiments REALA(1%) and SIMga(1%) are computationally-
indistinguishable. Similarly, we say that SFC is weakly spooky-free if the simulator can be
chosen after the adversary and the distinguisher have been set.

Discussion. Note that our definition allows for additional “auxiliary information” z which can
be communicated between the prover and distinguisher. This is intuitively understandable since
we expect an SFC adversary to attempt to forge w.r.t some instance of the MIP language, but it
would have been even better to prove a negative result relative to a definition where such auxiliary
information is not allowed. However, we note that the type of auxiliary information used in our
negative result (Theorem 5.1) is very mild. Specifically, z is generated independently of e (i.e. in a
non-adaptive manner) and is just a random string (which can be made of length roughly |e|, but
for convenience of presentation we make it slightly longer). That is, in our separation first a string
z is chosen randomly, and the ¢’ is calculated based on the values e, 2. We further observe that,
depending on the MIP in question, it may be possible to embed z within ¢’ and remove it from
the definition altogether. This could occur in MIPs that have some slackness in the verification
procedure, e.g. if the MIP verifier ignores some of the bits of the answer a.

Finally, we stress that even given a spooky free compiler that allows z of arbitrary length and full
dependence on e, we are not aware of a construction of a consequent adaptively secure delegation
protocol. Furthermore, since we show that spooky free FHE, which is currently not known to imply
adaptively secure delegation, implies SFC according to our definition.

On Black-Box Reductions of Spooky Free Compilers. Let us explicitly instantiate the
definition of black box reductions (Definition 2.9 above) in the context of (weak) spooky free
compilers. This is the definition that will be used to prove our main technical result in Theorem 5.1.

Consider a candidate spooky free compiler as in Definition 3.1 above. Then a pair of (not
necessarily efficient) algorithms (A, ) breaks weak spooky freeness if for any simulator S (possibly
dependent on A, ¥) allowed to run in time poly(time(.A), time(¥)), it holds that ¥ can distinguish
between the distributions REAL 4 and SIMgs with non-negligible probability (we refer to this as
“breaking spooky freeness”).

A black-box reduction from a falsifiable assumption (C,7n) to a weakly spooky free compiler is
an oracle machine R that, given oracle access to a pair of machines (A, ¥) that break weak spooky
freeness as defined above, R(AY) has non-negligible advantage against (C,n). We note that we will
prove an even stronger result that places no computational restrictions at all on the running time

of S.

3.1 Spooky-Free FHE Implies Spooky Free Compiler

In the following lemma, we show that weakly and strongly spooky-free compiler are respectively
weaker notions than a weakly and strongly spooky-free FHE. In the light of the lemma, spooky-free
FHE can be seen as a “universal” SFC as it is not tied to a specific MIP.

Lemma 3.1. There exists an efficient transformation that takes as input a weakly (respectively
strongly) spooky-free FHE scheme FHE, and an MIP 11, and outputs a weakly (resp. strongly) spooky-
free compiler for I1. The transformation and the proof make black-box use in the homomorphic
encryption scheme.
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Proof. Let FHE = (FHE.Keygen, FHE.Enc, FHE.Dec, FHE.Eval) be a spooky-free FHE scheme, and
let IT = (G, P, V) be a p-prover MIP. Consider the following spooky free compiler SFC = (SFC.Enc,
SFC.Dec, SFC.Eval) for II:

e SFC.Enc(1%,q): Generates p pairs of keys (pk;, sk;)<—FHE.Keygen(1¥) for FHE for all i € [p],
and computes ¢;<—FHE.Enc(pk;, ¢;). Finally, it sets e = (pk d), dk = sk and outputs (e, dk).

e SFC.Eval(e,z,w): Parses e = ({pk;}i,{ci}i). Evaluates ¢ «FHE.Eval(P;(-,z,w),c;, pk;) for
every i € [p], and outputs €/ = .

e SFC.Dec(e’,dk): Parses ¢/ = &, dk = sk. Decrypts the evaluated FHE ciphertexts a; =
FHE.Dec(sk;, ¢}) for every i € [p], and outputs a.

Completeness follows from the correctness and full homomorphism of FHE. To prove that SFC is
spooky-free, we first consider a transformation that takes an adversary (A, ¥) against the spooky-
freeness of SFC (Definition 3.1) and produces an adversary (D', A’, ¥’) against the spooky-freeness
of FHE (Definition 2.5).

e Set the sampler D'(1%) to be the sampler that first generates a sequence of MIP queries
qd + G(17), and outputs the (p + 1)-tuple (0,q), i.e. adds a leading zero. For notational
convenience we denote the first coordinate by 0, so that g; is the i-th entry in the new tuple

as well.
e The algorithm A’, given the ciphertexts (co,...,c,) computes A(1%, (c1,...,¢cp)) to obtain
(2,(c},---,¢p)). Letting Const, be the constant functlon z, i.e. Const,(z ) = z for all z. Let

¢ = FHE.Eval(Const., o). Output & = (c}, .., ).

e The distinguisher W’ parses its input as ((0,q), (z,d)) and outputs ¥(z, ¢, ).

Since FHE is spooky-free, there exists a simulator &’ against (D', A’, ¥'). Furthermore, if FHE
is strongly spooky-free then S’ does not depend on A’, ¥’ and thus also not on A, ¥. We use &’
to define a simulator S for SFC against (A, ¥). The definition of S is almost verbatim identical
to S’, where we note that since we set the zeroth coordinate of D’ to always be zero, then the
syntax of §, S’ is identical up to rearrangement of the order of outputs. Namely, S" outputs ((0, ¢),
(z,d@)), and S outputs (z,q,@). The indistinguishability of REAL 4 ¢ and SIMgs follows directly
from that of REALpr 4 ¢ and SIMg/, since the distributions output in both cases are the same
up to reordering. Which completes the proof. O

4 Non-Succinct Spooky Freeness is Trivial

In this section, we construct a non-succinct spooky free FHE, where the length of each ciphertext
and the length of each public-key is exponential in the length of the messages. Specifically, we
show how to convert any FHE scheme into a spooky-free FHE scheme such that the length of each
ciphertext and each public key is 2% - poly()), where k is the length of the messages. Naturally this
is only applicable in settings where communication and computational complexity 2* - poly(\) is
considered efficient.

We note that a spooky-free FHE implies a spooky-free compiler as shown in Lemma 3.1.
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Theorem 4.1. There exists an efficient generic transformation from any fully-homomorphic en-
cryption scheme FHE = (FHE.Keygen, FHE.Enc, FHE.Dec, FHE.Eval) into a scheme FHE' = (FHE.Keygen’,
FHE.Enc’, FHE.Dec', FHE.Eval') that is fully-homomorphic and strongly spooky-free. The length of

each ciphertext generated by FHE.Enc' and the length of each public-key generated by FHE.Keygen’

is 2% - poly()\), where k is the length of each message.

Proof Overview. We transform the scheme to have equivocal properties. Specifically, the trans-
formed scheme’s ciphertexts can be replaced with ones that can be decrypted to any value using
different pre-computed secret-keys. The joint distribution of each secret-key and the special ci-
phertext are indistinguishable from a properly generated secret-key and ciphertext. This allows
us to define a simulator that precomputes those secret-keys and queries the adversary using an
equivocable ciphertext. Then, it decrypts with the secret-key corresponding to the given message
to extract the adversary’s answers. By indistinguishability, this is the same answer that would be
produced by querying the adversary, if it was queried with an encryption of that message.

We achieve this property by simply generating independently 2¢ public-keys, whereas the secret-
key corresponds only to one of the public-keys. Each ciphertext is 2* encryptions, under each
public-key. The equivocable ciphertext is produced by encrypting each of the 2F possible messages
under some public-key, in a randomly chosen order. Indistinguishability follows from the semantic-
security of the original scheme.

Remark 4.1. We assume, without the loss of generality, that the length of an encryption of k
bits is bounded by k - poly(\), since we can always encrypt bit-by-bit while preserving security and
homomorphism.

Proof. Let k = k()\) be an upper-bound on the length of the messages |m;| < k, where (my, ..., my, a) <
D. We define the scheme FHE' as follows:

o FHE.Keygen(1): Generate 2 pairs of keys (pk;,sk;) < FHE.Keygen(1}). Then, choose
uniformly at random an index j < [2¥], and output (pk, (skj, 7))

° FHE.Enc’(p_R,M): Encrypt the message under each public-key ¢; <— FHE.Enc(pk;, i), then
output €.

e FHE.Dec/((sk, ), é): Decrypt according to the indexed secret-key and output x/:=FHE.Dec(sk, ¢j).
e FHE.Eval'(pk,C): For every i € [2¥] compute & < FHE.Eval(pk;, ¢;,C) and output é.

Clearly FHE' is a fully-homomorphic encryption scheme. It is thus left to prove that it is strongly
spooky-free.

The simulator S4(1*,1",i,m;;r) First, the simulator uses its randomness 7 to sample n - 2¥
pairs of keys (pky ;,ske;) < FHE.Keygen(1*),¢ € [n],j € [2*]. Then, for every 2*-tuple pk, =
(Pkg1s-- -5 Pkpok), it chooses a permutation 7 : [2F] — [2¥], encrypts the message 7,7 (j) under
the public-key pk, ;, for every j € {0, 1}F

¢r,j = FHE.Enc(pk,j, 71 (5)) -
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Next, it sets ¢; = (cg,1,- - -, ¢y or) and queries the adversary to get

(@1, ) A((Pky, - - -, Pky), (E1y ey En)) -
Finally it outputs m;:=FHE.Dec(sk; x,(m,) c;m(mi)).
Claim 4.1.1. For every PPT adversary A and distribution D, the experiments REALp 4 and
SIMp sa are computationally indistinguishable.

Proof. We prove using a sequence of hybrids.
e Hy: This is simply the distribution REALp 4.

e Hi; (¢ € [n]): In these hybrids we modify the key generation step in REALp 4: Instead

of choosing j; & [2F] uniformly at random, we choose uniformly at random a permutation
7 [2F] — [2¥] and set j; = 7;(m;). These hybrids are identically distributed, since the m;’s
are random permutations, so each j; is distributed uniformly over [2¥].

e Hoij (i € [n],j € [2¥]): In these hybrids we modify the encryption step in REALp a:
Instead of letting ¢; j < FHE.Enc(pk; ;,m;), set ¢; r,(j) < FHE.Enc(pk; ;). j), where 7; is the
permutation from the previous hybrids. These hybrids are computationally indistinguishable
by the semantic security of FHE.

Finally, note that H, , o« is actually SIMp ga. This is since for every i € [n], the simulator
queries the adversary the same query every time, and that query is distributed as the one in H, ,, ok
Moreover, the adversary’s answer is decrypted in the same manner both in SIMp g4 and H, ,, ok

Thus REALp 4 ~ SIMp g4, as desired. ]

Which completes the proof. O

5 Succinct Spooky Freeness Cannot be Proven using a Black-Box
Reduction

We state and prove our main theorem.

Theorem 5.1. Let L be a language with a sub-exponentially hard subset-membership problem
(L, L,Sam) with hardness parameter . Let I = (g,73, V) be a succinct one-round MIP for L
with a spooky free compiler SFC, with |¢/| = poly(k) - ]a:|a/ for some o/ < «w. Then there is no black-
box reduction showing the weakly spooky-freeness of SFC based on a falsifiable assumption (C,n),
unless (C,m) is polynomially solvable.

Proof Overview. We start by defining an inefficient adversary (A, ¥) against SFC, or more
precisely a distribution over adversaries specified by a family of sets X. These sets contain, for
each value of the security parameter 1%, a large number of inputs from £ of length n = poly(k)
for a sufficiently large polynomial to make |¢/| bounded by n®. The adversary A picks a random x
from the respective set and generates a response €' as follows. As a thought experiment, if it was
the case that x € L, then SFC allows us to generate ¢’ that will be accepted by the MIP verifier,
by applying SFC.Eval using a witness w for . Therefore, the Dense Model Theorem states that
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it is possible to generate a computationally indistinguishable e’ also for = € £. The distinguisher
U takes (z,q, @) sets x to be the zth element in X and applies the MIP verifier. The soundness of
MIP guarantees that this distribution cannot be simulated by independent provers. Note that z is
essential in order for A and ¥ to agree on an input x € £. The use of a common X allows A and
U to share a set of inputs for which they know the simulator cannot work.

Since (A, V) is successful against SFC, it means that the reduction breaks the assumption
given oracle access to (A, ¥).8 Our goal now is to show an efficient procedure (A, ¥) which is
indistinguishable from (A, ¥) in the eyes of the reduction. More accurately, (A, ¥) can be a
stateful machine and not necessarily an oracle, what we need is that it creates an interface with
the reduction that is indistinguishable from the one it gets from interacting with (A, ¥). Once we
are able to do that, it will show that the underlying assumption is in fact polynomially solvable.

To do this, we notice that the reduction can only ever see polynomially many z’s, so there is no
need to sample a huge set X, and an appropriately defined polynomial subset would be sufficient.
Furthermore, instead of sampling from £, we can sample from £ together with a witness, and
compute €’ as a legitimate SFC.Eval response. The Dense Model Theorem ensures that this strategy
will be indistinguishable to the reduction, and therefore it should still be successful in breaking the
assumption. We have to be careful since the reduction might query its oracle on tiny security
parameter values for which n is not large enough to apply the Dense Model Theorem. For those
small values we create a hard-coded table of adversary responses (since these are tiny values, the
table is still not too large).

Finally, we see that our simulated adversary runs in polynomial time since it only needs to
sample from £, which is efficient using Sam, and use the witness to compute ¢’ via SFC.Eval. We
conclude that we have a polynomial time algorithm that succeeds in breaking the assumption, as
required in the theorem.

Proof. We proceed as in the sketch above. By the properties of SFC as stated in the theorem, there
exist constants 81, B2, B3 > 0 such that 8; = o — o, || < O(kP2 - [2]*71), |e| < KP3. We define

n(k) 2 rmax{282/61,83/a’} ,
and note that |e|, [¢/| = o(n®), when |z| = n(k). .

Proofs Can Be Spoofed. We start by showing how to inefficiently spoof SFC answers for non-
accepting inputs. Consider an encoded query e for SFC w.r.t. security parameter 17, and define the
distribution (£, ) as follows:

1. Sample (z,w) + Sam(1™%)),
2. Evaluate ¢’ < SFC.Eval(e, z,w).
3. Output (z,€).

The following claim shows that it is possible to sample from a distribution that is computation-
ally indistinguishable from (£, ), but where the first component comes from L.

8In fact, the situation is more delicate since as explained above (A, ¥) is a distribution over adversaries, and while
almost all adversaries in the support succeed against SFC, it still requires quite a bit of work to prove that the average
advantage is also non-negligible (see Lemma 2.6 in Section 2).
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Claim 5.1.1. For every e, there exists a randomized function h = he such that the distributions

(L£,&) and (L, h(L)) are (2-27"",2"") indistinguishable.

Proof. Follows from Corollary 2.3 since £,, and £, are a-sub-exponentially indistinguishable. W

Constructing a Spooky Adversary. We define an adversary A, along with a distinguisher ¥
for the spooky-free experiment in SFC. We note that both A4 and ¥ are inefficient algorithms, and
more precisely, they are distributions over algorithms.

s =QV(k)

For every value of k, define v(k) = 20-1n(K)® " Define a vector YH(R) — En(ﬁ) , i.e. a sequence

of independent samples from ZTL
The functionality of A and W is as follows:

o A(1% e): Samples z & [v(k)], sets T = X, 2] (ie. the 2’th element in the vector), and
outputs (he(T), z).

e U(1%, 2 q,d): Outputs 1 if and only if V(¢,d, X,,([2]) =1 .

The following claim asserts that the adversary A and the distinguisher ¥ win the spooky-freeness
game for the compiler SFC with probability 1 over the choice of the respective X = {X n(n)}n.

Claim 5.1.2. With probability 1 over the choice of X = {Yn(,{)},.i it holds that (A, W) has non-
negligible advantage in the spooky freeness game against SFC with any (possibly computationally
unbounded) simulator.

Proof. Let o denote the soundness of the underlying MIP system. According to the definition of
an MIP (see Definition 2.2), the soundness gap, ogap £ 1 — ¢, is non-negligible.

We start by showing that for all X, any value of x, and any (possibly unbounded) spooky-free
simulator S for the compiler SFC, it holds that

Pr[T(SIMs(1%)) = 1| X] < o(x).

This follows since by the definition of the simulator, each value of its random string r defines an
auxiliary z and induces a sequence of algorithms S where

(Silqr)s---,Splap) = g(@ .

Since Yn(,,;) [z] ¢ L, then by the soundness of II, the probability that the verifier V accepts answers
generated by S is at most o(k), and thus ¥ outputs 1 with probability at most o (k).

Next, we turn to show that Pr[U(REAL4(1%)) = 1| X] is bounded away from o(x) with probability
1 on X. To this end, we define a sequence of events { Ey }.en, where E,; is the event that

PrT(REALZ(1%) = 1| X] < 1 — 0gap(r)/2 ,

where the probability is over everything except the choice of X. We show that with probability 1
over the choice of X, only finitely many of the events E, occur.

To see this, fix queries ¢ < G(1%) and encoding (e,dk) < SFC.Enc(q) for the experiment
REAL~. Note that since the compiler’s decoding algorithm SFC.Dec can be described by a poly(x)

16



sized circuit, then we can describe the MIP’s verifier V as a poly(k) sized circuit that takes inputs
from (£, h(L)).

Recall that by Claim 5.1.1, the distributions (£, £) and (£, h(£)) are (2-27"", 2" )-indistinguishable.
Moreover, by the completeness of the MIP, V outputs 1 with probability 1 on inputs from (£, E).
We conclude that V accepts inputs from (£, h(£)) with overwhelming probability, and therefore ¥
also accepts with overwhelming probability inputs from REAL~. In other words, we have that
E [PT[E(REALI(F{)) =1 \YH >1—negl(k) .

X

By a Markov argument this implies that
Pr [Pr[U(REAL(1%)) = 1| X] < 1 — 0gap(k)/2] < negl(x) .
X

Finally, we apply the Borel-Cantelli Lemma to conclude that with probability 1 over the choice of
X, only finitely many of the events E, occur, as desired.

Thus, with probability 1 (over the choice of X), it holds that (A, ¥) has advantage at least
Ogap/2 in the spooky free game. This completes the proof of the claim. |

Fooling the Reduction. We now notice that by Corollary 2.5, it is sufficient to prove the
theorem for n = 0. Assume that there exists a black-box reduction R as in the theorem statement,
and we will prove that (C,0) is solvable in polynomial time. We notice that since (A, ¥) break
spooky freeness with probability 1, it follows from Lemma 2.6 that

5(A) = Pr[RAY) (1) wins C(1Y)]

is noticeable, where the probability is taken over the randomness of sampling (A, ¥), the randomness
of the reduction and the randomness of C.

We turn to define another adversary A and distinguisher ¥, by modifying A and ¥ in a sequence
of changes. Our goal is to finally design (A, ¥)(1) (possibly stateful) computable in poly()) time,
while ensuring that RY) still has advantage Q(6).

Throughout the proof, we let ¢ = ¢(\) be a fixed polynomial upper bound on the run time of
R. In particular this implies that R makes at most ¢ queries to its oracle. We define two values
Kmin, Kmax that will be instrumental for our proof. Intuitively, xKmax is the maximal value of x that
can be generated by R(1%), and ki is a value for which 2%)” becomes polynomial in A. Formally
we define as follows.

e We define Kpax = Kmax(A) = poly(A) to be a bound on the size of the security parameters
that the reduction R uses when interacting with its oracle. Note that kmax is bounded by
the runtime of the reduction, which in turn is bounded by some fixed polynomial (in \).

e We define kpin = £(A) to be the maximal x such that on(x)® < )¢ for a constant ¢ for which
AO1e > 920t2(\)/5()\) (note that since t is polynomial and 6 is noticeable, then such constant
indeed exists). This choice is in order to satisfy constraints that will be explained below. Note
that for all kK < Kpin it holds that v(k) = ]Yn(,{ﬂ = 20(n%) — poly()A) and for all kK > Kpip it
holds that v(x) = 2017 > \0-le,

The following claim asserts that the behavior of (Z, @) for all kK < Kmin can be computed in
(nonuniform) poly(\) time.
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Claim 5.1.3. Recall that (A, W) is a distribution over oracles. For every oracle in the support of this
distribution there exists a poly(\) = 20(n(kmin)®) size circuit Min that implements the functionality
of the respective (A, V) for all k < Kpin.

Proof. The collection of sets {X () }rx<rm, Only contains > <romin 20(n(")%) < poly(\) many in-
stances, each of at most poly(\) size. The circuit Min will contain a table of all of these instances.
This will already allow to implement ¥ which is polynomial time computable given the mapping
between z and z. As for A, we note that its input is of length at most |e| = o(n®) so one can write
the entire truth table using a poly(\) size circuit. [

The rest of the proof follows by a sequence of hybrids.

Hybrid Hy. In this hybrid we execute RAY) a5 defined.

5(A) = Erm@@(ﬁ) wins C(1%)] .

Hybrid #;. We remove all the sets relative to K > Kmax from the ensemble {Yn(,{)}. That is, now
{Yn(,{)} only contains finite (specifically poly(A)) many sets. Since by definition R cannot query
on such large values of k this step does not affect the advantage of R. We note that Kmax(A) < ()
(where ¢ is the running time of R as described above).

7131“[73(7"@(1)‘) wins C(1*)] — grm@@(ﬂ) wins C(1M)]| =0 .
1 0

From here on, we will focus on x € (Kmins Fmax), since in the other regimes we can indeed
execute A, U efficiently. We call this the relevant domain.

Hybrid Hs. We now change (A, V) and make them stateful. Specifically, instead of sampling X
ahead of time for k in the relevant domain, the values are sampled on the fly. The new (A, ¥)
maintains a list of tuples (z,z) as follows.

1. The list Yn(n) is initialized empty for all s in the relevant domain.
2. For any A(1%,e) query, sample a random 2 < [v(k)].

a) If there exists an entry (z,) in X,,(,) then computes ¢/ = h(z) and returns (¢, 2).
(%)

(b) Otherwise, generate (z,e’) from the distribution (£, he(L)), add (z,z) to X, and
return (¢, 2).

3. For any ¥(z,§,a@) query (corresponding to  that is implicit in the length of z):

(a) If there exists an entry (z,z) in X, (,) then run the MIP verifier on z.

(b) Otherwise, sample a new z < L, add (z,z) to X,,(,) and run the MIP verifier on .

This modification does not change the functionality of (A, ¥) and in particular

Erm(ﬁ)(ﬂ) wins C(1%)] — grm@@(m wins C(1M)]| =0 .
2 1
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Hybrid #3. This hybrid formalizes the claim that A is unlikely to sample values of z that are
already in the list. We change the behavior of the stateful (A, ¥) from the previous hybrid, so that
if step 2a is reached, the adversary responds with L.

Claim 5.1.4. Recall that ¢ is chosen so that in particular t(\)2/A\%1¢ < §/10. Then it holds that
Er[R(z’@(l)‘) wins C(1)] — Er[R(z’@(lA) wins C(1M)])| < 6/10 .
3 2

Proof. We bound the probability that step 2a is reached in the execution of R(A"I’)(l)‘). At any
point in time, each Yn(,,@) list contains at most ¢ entries (since each query of R introduces at most
one new element), so the probability of the new z hitting this subset is at most t/v(x) < t/A01¢
(recall that v(k) = 201" > \91¢) " Applying the union bound over at most ¢ queries, the claim
follows. u

Hybrid H4. We note that in the previous hybrid s, the only inefficient component of (A, ¥) are
steps 2b, 3b. We notice that in fact step 3b is just a simpler version of 2b, where e is not specified
(e.g. it can be the empty string) and the resulting ¢’ is not output. We can therefore treat both of
these in the same way and from this point and on we assume that sampling is always with respect
to some e value. We collectively refer to these steps as instance sampling steps. Our goal is to
replace this inefficient step with an efficient one using the Dense Model Theorem. We will do this
by a sequence of hybrids, but we need to make sure that when applying the theorem to a certain
value of n, the simulation of the hybrid can be done in complexity 2°("*) so that the conditions of
the theorem are met.

We consider the following (randomized) functions I', T, each takes as input 1%, e and output
x,€ as follows. The function T'(1%,¢e;p) (where p indicates the random tape) samples (x,w) +
Sam (1)), computes ¢/ = SFC.Eval(e, z,w) and outputs (z,¢’). The function T(1%,e; p) samples
x < L and computes €/ = he(x). We note that T is efficiently computable, whereas for any fixed
values of k, p it is possible to non-uniformly compute f(e) = T'(1%,¢; p) using a olel = 20(n) gize
circuit, by writing down the truth table. We denote this circuit by T ,.

We first consider a semantic change in the instance sampling steps. For every value of k in the
relevant domain, (A, ¥) will sample ¢ random tapes pr,i for i € [t] and in the ith execution of an
instance sampling step on value &, it will execute I'(1%, €; p,; ;). So far the behavior of (A, ¥) did
not change at all.

In this hybrid, we replace the calls to I’ with calls to I, i.e. in our new hybrid, the ith execution
of an instance sampling steps on value k, will execute I'(1%, e; py ;).

Claim 5.1.5. Recall that c is chosen so that in particular 2t(X\)?/\¢ < §/10. Then
grm@@(m wins C(1M)] — Erm@@(m wins C(1M)]] < 6/10 .
4 3

Proof. Consider an intermediate hybrid defined by a threshold security parameter A € (Kmin, Kmax)
and a value j € {0,...,t}. The intermediate hybrid ?/-Z,%J is defined as follows. For all K < &, the
instance sampling steps are performed using I'. For all x > &, the instance sampling steps are
performed using I'. For x = &, for the first j calls, T is used and beyond that I" is used. Note that

19



hybrid (k + 1,0) is identical to (&, t), so it is sufficient to show indistinguishability between hybrids
with the same value of &.

Consider adjacent hybrids (%,j — 1), (%,j). The difference between them is only in the jth
execution of an instance sampling step with £ = k. We denote n = n(%) and show that

Pr [RAY (1Y) wins C(1M)] — Pr [RAY(1Y) wins C(1M)]| < 227" < 2/x° . (1)
Ha,j Hz,j—1

Since the total number of hybrids is at most xkmax(A) - t(A), and recalling that Kpax(A) < t(A),
the claim will follow.

To show that Eq. (1) holds, it is sufficient to show that it holds even when fixing all of the
randomness of R,C, A, ¥, except for pr,j- Consider the following algorithm that simulates the

interaction of RAY) with C (11) as follows.

1. For k < Kmin, the simulation uses the poly(\) size circuit guaranteed by Claim 5.1.3 (note
that since we fixed all randomness except p; j, the functionality for such values of  is fixed).

2. For all queries except the jth query of kK = & do the following.

(a) If T is to be executed, then execute it as prescribed (in poly (k) < poly(\) = 20(**) size).

(b) If T is to be executed, use the 20(n%) gize circuit f,i7p,.i7i. Note that this is only required
for k < R, and thus each of the circuits 'y ,, ; is of size at most 20(2%) " There are at

most 2 = poly(\) = 29(*") such circuits, and thus their total size is still bounded by
20(2%),

3. For the jth query of k = &, generate a sample either from I'(1%, e; pi,;) or from T(1%,e; Pij)-
Note that since all other randomness is fixed, the value of the respective e is fixed as well.

4. The output of the simulation is whether R won the game C.

The probability that the above algorithm outputs 1 is equal to Prg [RAD) (1Y) wins C(17)]
KyJ

(conditioned on all the randomness values that we fixed) if we use ' in step 3, and is equal to

Prg | [RAD)(1*) wins C(1*)] (conditioned on all the randomness values that we fixed) if we use
R,j—

I in step 3. We thus get an algorithm computable by a circuit of size 20(*%) that can distinguish
(1%, e; pir,;) from T(1% ¢; pi,j) with advantage

Pr [RAY (1Y) wins C(1Y)] — Pr [RAY)(1Y) wins C(1Y)]| |

Hej Hij-1
where the probabilities are conditioned on all of the randomness that we fixed. We can now apply
Corollary 2.3 to conclude that this advantage is at most 2 - 27" and Eq. (1) follows. [

Finally, let us consider the adversary that we get in the final hybrid (A, ¥)y,. All operations
for kK > Kpin are performed in poly(A) time. However, for values k < Ky the running time might
still be super-polynomial. We will resolve this using Claim 5.1.3 again. Formally, we will show the
existence of (A, ¥) with advantage at least as high as (A, )y, as stated in the following claim.
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Claim 5.1.6. There exist (A, ¥) computable by poly(X) size circuit for which

Pr[RAY) (1Y) wins C(17)] > Erm(ﬂ)(ﬂ) wins C(11)] .
4
Proof. We start by noticing that there exists a fixing of the randomness of (A, W)y, for which the
advantage is at least as high as the expected value Pryy, [RMY) (1) wins C(17)].

For this fixed adversary, we apply Claim 5.1.3 to conclude that its behavior on x < Kpin can
be implemented by a poly()\) size circuit. Efficiency for k£ > Ky is preserved since the behavior
of (A, W)z, on each value of « is independent of its behavior on the other values of k. We define
(A, ) to be the resulting algorithm. [ ]
Conclusion. Combining the hybrids above, we get that R(AY)
advantage

is a poly(\)-time algorithm with

Advg’(’?ﬂm(ﬂ) >6—2-6/10=0Q(0) .

That is, RAY) is a polynomial time algorithm that breaks the assumption (C,0) as required. [
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