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Abstract—Differential privacy, and close other notions such
as dχ-privacy, is at the heart of the privacy framework when
considering the use of randomization to ensure data privacy. Such
a guarantee is always submitted to some trade-off between the
privacy level and the accuracy of the result. While a privacy
parameter of the differentially private algorithms leverages this
trade-off, it is often a hard task to choose a meaningful value
for this numerical parameter. Only a few works have tackled
this issue, and the present paper’s goal is to continue this
effort in two ways. First, we propose a generic framework to
decide whether a privacy parameter value is sufficient to prevent
from some pre-determined and well-understood risks for privacy.
Second, we instantiate our framework on mobility data from real-
life datasets, and show some insightful features necessary for
practical applications of randomized sanitization mechanisms. In
our framework, we model scenarii where an attacker’s goal is
to de-sanitize some data previously sanitized in the sense of dχ-
privacy, a privacy guarantee close to that of differential privacy.
To each attack is associated a meaningful risk of data disclosure,
and the level of success for the attack suggests a relevant value
for the corresponding privacy parameter.

I. INTRODUCTION

As big data processing is now a reality, more and more
statistical information is extracted from rich databases. This
straightforwardly paves the way to new valuable applications
for transport, health, research and business [1] [2], but it also
yields many severe privacy concerns. Indeed, many personal
(and sometimes private) information can be retrieved from
large datasets: some mobility patterns of an individual per-
mit to guess his home location, work location, to infer the
most (and the least) visited places during a trip... In such
situations, there is clearly a threat for the individual privacy.
Even worse, individual private information may be retrieved
from sanitized datasets, usually performing data correlation on
multiple datasets coming from multiple sources [3] [4] [5] [6].

Sanitization mechanisms aim at processing datasets in
order to release information with a certain privacy guarantee.
The latter is usually defined by some privacy definition, asso-
ciated with a privacy level depending on some parameter(s).
One well-known privacy guarantee is k-anonymity [7] and
asserts that the quasi-identifiers attributes of an individual are
indistinguishable from those of k−1 others individuals. For k-
anonymity, parameter k leverages the privacy level. Regarding
randomized sanitization mechanisms, differential privacy is by
far the most studied property [8]. The notion of ε-differential
privacy provides the guarantee that two neighbor datasets
(differing from only a single individual) are ε-close one from

each other in distribution. Parameter ε, a positive numerical
value, determines the level of privacy.

A privacy level parametrized by a single numerical value
seems attractive at a first glance, but it appears to be highly
non-trivial when deploying differentially private algorithms
in practice. For instance, a single privacy risk (e.g. re-
identification) can be observed in two different scenarii (differ-
ent datasets, different queries), while a common value ε for the
privacy parameter correspond to two distinct levels of privacy.
Even in the case of a single scenario, there is today no ad-hoc
protocol to choose the value ε. In particular, it is not clear how
to associate a comprehensive notion of risk (re-identification,
well-targeted statistics inference...) to this parameter value.

In this paper, we provide an end-to-end system to choose
meaningful (for privacy concerns) and useful (for statistical
utility) values for privacy parameters of a sanitized mechanism
(e.g. ε for differential privacy). We believe that a natural way to
choose privacy parameters in a secure manner is to understand
to which extent a chosen value prevents from well-known
privacy attacks on datasets (re-identification, inference...). Our
model aims at modelizing such attacks, and for doing so
involves different parties: users who publish their data in some
sanitized form, that we call sanitized profiles; data miners
who extract interesting statistical features from users sanitized
profiles; and an attacker whose goal is to perform privacy
attacks, using published sanitized profiles and possibly some
side information.

We instantiate our system on mobility data extracted from
Call Detail Records. Our user-level sanitization process is
designed to produce profiles satisfying dχ-privacy [9] [10],
a privacy guarantee based on randomized techniques and
designed to provide a certain level of obfuscation for each
user’s profile. The latter level depends on privacy parameters
used to define the dχ-privacy guarantee. Our system provides
insightful results regarding the use of dχ-privacy in practice,
and in particular the choice of relevant values for the associated
privacy parameters.

A. Our main contributions

Here is a list of the main contributions in the present work:

• We propose a model to choose privacy parameters for
practical use of sanitization mechanisms, and in partic-
ular those using randomization. The model confronts
sanitized profiles with both statistical constraints, and
well-known privacy attacks. Instantiating this system



on real datasets permits to understand more clearly
the choice of privacy parameters for randomized san-
itization techniques such as dχ-privacy, when applied
on some mobility data. To our knowledge, this is the
first time that the security related to parameters of dχ-
privacy is studied.

• We provide an instantiation of our system on mobility
data, extracted from Call Detail Records. We find
enlighting results regarding the admissible ranges of
privacy parameters.

• We design new mechanisms to achieve dχ-privacy in
the case where each profile is represented by a vector.
Although these mechanisms are highly inspired by
well-known techniques introduced in the context of
differential privacy, we provide a new parametriza-
tion adapted for dχ-privacy (see the choice of subset
χ ⊂ Rm in Section III). We show that this new privacy
parameter can provide interesting benefits for a dχ-
private mechanism, when it is well-chosen.

B. Organization of the paper

In Section II, we describe the overview of our system. We
discuss in more details randomized sanitization mechanisms in
Section III. The adversarial model is described in Section IV,
while some instantiations of attacks are provided in Section V.
In Section VI, we expose our experimental results and analyze
them. Sections VII and VIII are devoted to the related works
to ours and the conclusion.

II. OUR MODEL FOR ENHANCING THE APPLICATION OF
SANITIZED MECHANISMS

In this section, we explain the model of our system.
We have instantiated this framework for mobility features
extracted from real Call Detail Records. As easily seen from
the description below, our approach generalizes to many other
applications.

A. Users profiles

We will consider only some of the information related to
users data in Call Detail Records (CDRs). Each Call Detail
Record contains, among other attributes, the following tuple
(user id, POI id, time), where a Point Of Interest (POI)
corresponds to the location of an antenna, hence serving as an
approximation of user’s location. Such information extracted
from the CDRs of a user is further represented as a vector of
numerical values, that we call the user’s profile. Since there
are many possible representations for users profiles, we will
only focus on some natural profiles, defined in the examples
below.

The set of users will be indexed by [1, n] in a model
involving n users, and the user with index i will be referred
as ui. The set of POIs will be indexed by [1,m], m being the
total number of POIs in our datasets.

Example 1. (boolean profile)
An important family of profiles we will use is that of boolean
profiles. The latter encompass information described by means
of boolean predicates.

More formally, a boolean profile is a profile b = (bj)j
such that for all j, bj = 0 or bj = 1 depending on a boolean
condition.

In the sequel, we will use the following definition of
boolean profiles bi: bij = 1 if and only if user ui has visited
POI j during the observation period. Then vector bi = (bij)j
encodes the presence or not of user ui at some places.

Example 2. (count profile)
Count profiles (or also histograms in the literature) are more
precise than boolean profiles. They are obtained by extracting
frequency information as follows

ci = (cij)j

where cij is the number of times user ui has visited POI j
during the observation period.

If the context does not precise if boolean or count profiles
are at stake, we will use the notation ai = (aij)j for user ui’s
profile. The notation aTi = (aTij)j will be used if we want to
specify the observation period T during which the profile is
computed.

As will be proved in the paper, profiles may be highly
sensitive regarding users privacy. For instance, a boolean
profile bi may be used as a fingerprint to re-identify user
ui. In worst cases, not only they permit to re-identify the
corresponding user, but they also allow to infer private personal
information about a user.

B. Sanitization of users profiles

In the current paper, we assume that each user performs the
sanitization task locally (on his/her device), and then publishes
a sanitized version of his/her profile. The sanitized version of
user ui’s profile ai = (aij)j will be denoted by ãi = (ãij)j .
Sanitized profile ãi will be also called fake profile in the sequel.

Applications to sanitize data locally already exist (LocLok
[11], Location Guard [12], fake GPS locations applications...)
and their number will certainly grow in the coming years. The
main obvious reason for a user to apply them is to protect
his/her privacy. But such a guarantee has a cost, reflecting the
usual trade-off between data privacy and statistical utility: for
instance, completely fake locations (such as for the application
Fake GPS) make impossible the use of additional services
based on locations (LBS). A user may also share his/her
data for purposes related to health, research advances, while
protecting his/her privacy. In such a case also, some minimal
accuracy is required.

The situations described above require advanced sanitiza-
tion mechanisms, capable to propose a parametrizable trade-
off between the privacy level and the accuracy of the profile.
For that reason, we chose dχ-privacy as the targeted privacy
guarantee for our model (see Section III for details).

C. Extracting statistical features from profiles

The motivation for publishing (sanitized) users profiles is
to derive some interesting statistical features about users be-
haviours. In our model, this is the role of the statistician, whose
goal is to compute global statistics about the population. The
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statistician performs the computations on sanitized profiles,
and so the accuracy of the results will depend on the level of
privacy used in the sanitization phase (that is on the privacy
parameters values). We introduced the statistician in our model
in order to bound the range of privacy parameters values to
those that can provide potentially meaningful results for some
data-mining purposes.

Here we illustrate on two examples relevant statistical
objectives that can be computed from boolean and count
profiles from CDRs (see Examples 1 and 2).

Example 3. Let (bi)1≤i≤n be n boolean profiles on CDRs, as
described in Example 1. We define f1 : [1,m] → R such that
f1(j) is the number of visitors on POI j during the observation
period, that is

f1(j) =
∑

1≤i≤n

bij .

Since the previous quantity depends on the collection of profiles
(bi)i, we will write f1((bi)i, j) instead of f1(j) to clarify the
context if necessary.

Example 4. Let (ci)1≤i≤n be n count profiles on CDRs, as
described in Example 2. We define f2 : [1,m] → R such that
f2(j) is the average frequency of visits on POI j during the
observation period, that is

f2(j) =
1

n
×
∑

1≤i≤n

cij .

D. Attacks on profiles

The main motivation when designing our system was to
introduce the role of an attacker, referred as A in the sequel.
As said before, A is assumed to perform some well-understood
attacks on sanitized data, such as re-identification or inference
of the most visited POI, and then associate a level of risk
(re-identification rate, ...) to the sanitization process at stake.
As the quality of the sanitization mechanism depends on
the privacy parameters values, we directly relate a privacy
parameter value to a tractable level of risk.

In the attacks, we will provide to the attacker A an access
to published sanitized profiles (ãij)i∈I,j∈J (for some subsets
I ⊂ [1, n], J ⊂ [1,m]), together with some auxiliary infor-
mation. The auxiliary information is modelled as a collection
of global statistics on the population of users at stake (see
Section V for more details). Side information may be available
to some malicious eavesdropper in real-life situations: data
leakage, exposure of personal data in public places...

E. How the different roles are combined

Given some sanitized mechanism, the overall goal of our
system is the following: for each choice of privacy parameters,
and for each identified risk for privacy, associate a level of
success for the attack instantiating that risk.

In a first phase, sanitized profiles are obtained from users
profiles, using a pre-determined sanitization mechanism. As
shown in Figure 1, the sanitization mechanism is parameterized
by some privacy parameters. Note that while these profiles
are supposed to be published with the users contents, there

Fig. 1. To sanitize his/her profile, each user is asked to choose privacy
parameters values.

Fig. 2. Comparing the same statistics over non-sanitized profiles and over
sanitized profiles, a statistician decides the range of privacy parameters which
is reasonable for statistical purposes.

Fig. 3. Each attack is associated to some well-known risk (re-identification,
inference of important features). An attack succeeds with more or less success,
depending on the choice of privacy parameters.
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may be other auxiliary information available to a malicious de-
sanitizer, on which the user has less control: public exposure
(social networks, ...), data leakage from the true profiles.

A second phase confronts the sanitization mechanism to the
statistician. Outputs are validated against some utility metrics:
statistics over true profiles are compared to statistics over
sanitized profiles. Then sanitization mechanism is deployed
only for privacy parameters lying in some admissible range,
in which sanitized profiles provide reasonably useful statistics.
This phase is described in Figure 2.

During a third phase described in Figure 3, given sani-
tized profiles and side information as parameters, the system
provides a level of privacy risk related to some well-known
threat. Indeed, this phase simulates the attacker’s point of view:
having some purpose against users privacy, modelized by the
identified risk (e.g. re-identification), an attacker exploits both
side information and sanitized profiles in order to perform
privacy attacks. Such an attack will succeed with some rate
success, which finally will be used to estimate the level of
risk. An important point is that the nature of the attack, and
so the associated success rate, are tractable information which
can be handled by a standard management of privacy risks.

Our system combines the three previous steps together, and
provides a mapping of privacy parameters to the success rate
of a well-known attack on privacy. The rest of the paper is
devoted to the instantiation of this generic system:

• Phase 1 is performed on boolean and count profiles
described in Examples 1 and 2, with dχ-private sani-
tization mechanisms depending on privacy parameters
(χi, εi)i (see the next section for explanations);

• Phase 2 will be validated by means of statistics
introduced in Examples 3 and 4;

• Phase 3 will be instantiated on several identified risks
with a panel of attacks (e.g. re-identification, guess
of most visited place), providing numerical values of
attacks success rates.

III. SANITIZATION MECHANISMS

First, we introduce and discuss the privacy guarantee used
in the paper, that is dχ-privacy. Then we provide sanitization
mechanisms satisfying dχ-privacy for both boolean and count
profiles.

A. About dχ-privacy

In all this paper, data sanitization will be achieved by means
of randomized mechanisms. The main privacy guarantee at
stake, called dχ-privacy, is closely related to the well-known
notion of differential privacy. The concept of dχ-privacy was
first introduced as geo-indistinguishability in [10] to manage
location obfuscation for planar data points. We extend the
scope of these obfuscation techniques to the case of general
vectors (extension from R2 to Rm), with the objective to apply
these techniques to users profiles (see Section II). We will
denote by P (A) the probability that an event A occurs.

Definition 5. ([10]) Let χ be a subset of Rm, and let dχ be a
metric on χ. A randomized mechanism M : χ → Rm is said

to be dχ-private if for all a, a′ ∈ χ, and all z ∈ Rm, we have

P ( M(a) = z)

P ( M(a′) = z)
≤ edχ(a,a

′).

When this condition is satisfied, mechanism M is also
said to be geo-indistinguishable [9], abreviated as Geo − I
in the subsequent literature. The terminology dχ-privacy is
more adapted for our use than geo-indistinguishability, since
the latter refers explicitly to the initial use-case introduced in
[9], that is the obfuscation of spatial coordinates. In the current
paper, we will use dχ-privacy for our more general notion of
profiles, that can instantiate spatial coordinates, but not only,
as shown by Examples 1 and 2.

The idea of dχ-privacy is that a mechanism satisfying such
privacy guarantees should satisfy some continuity constraints:
two close (in the sense of metric dχ) profiles should im-
pose some closeness on the corresponding distributions after
applying the mechanism. This concept was introduced with
differential privacy, where the closeness was measured by
the differential between two datasets. Indeed, it has already
been noticed [13] that the choice dχ = ε × d is simply
a reformulation of ε-differential privacy, in the case where
d(a, a′) is the Hamming distance between two user profiles
a, a′. Recall that the Hamming distance is given by the `1-
norm when restricted to the space {0, 1}m.

In the current paper, we will consider another point of view
for privacy. We will apply Definition 5 to a single user profile,
in order to measure to what extent the user protects his/her
privacy by means of obfuscation techniques. For doing so, we
will use the following pseudo-metric on profiles in Rm.

Definition 6. (metric dχ,ε) Let ε > 0 and χ ⊂ Rm be privacy
parameters. For two profiles a, a′ ∈ Rm, metric dχ,ε is defined
by

dχ,ε(a, a
′) = ε× |a− a′|1,χ ,

where |.|1,χ is the `1-norm restricted to the coordinates in χ,
that is

|a|1,χ =
∑
j∈χ
|aj | for all a ∈ Rm.

Since we focus our study on the privacy parameters values,
we should use the terminology dχ,ε-privacy in place of dχ-
privacy in the current paper, and in particular for Definition
5. Note also that for simplicity in notations, we denote by
χ the subset of coordinates in [1,m], and the corresponding
coordinate subspace in Rm as well.

In Definition 5, the closeness in distributions depends
on the privacy level captured by the pseudo-metric dχ,ε. A
more tight pseudo-metric dχ,ε induces a stronger level of
privacy. With our choice of pseudo-metric, this tightness can
be leveraged in two ways: with the privacy parameter ε as for
differential privacy, but also with a relevant choice of subset
χ ⊂ Rm.

Indeed, restricting the privacy constraint to some subspace
χ ⊂ Rm has non-negligible effects on the privacy model,
as well as on the accuracy of the results. Typically in the
case of the current paper, subset χ will stand for either the
complete set of POIs, or some neighborhood of the subset of
POIs visited by the user. The privacy constraint holds only for
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coordinates appearing in subset χ, which will be distinct from
Rm when χ will be some neighborhood of the user’s POIs.
As a consequence of Definition 5, a randomized mechanism
may satisfy dχ-privacy only if coordinates in Rm\χ are
deterministic. Since only coordinates in χ may be obfuscated,
such a restricted distance yields a weaker notion of privacy:
even in the case where the user has not visited POIs in Rm\χ,
it leaks precisely the fact that they were not visited. More
generally, for χ1 ⊂ χ2 ⊂ Rm, dχ1

-privacy is weaker than
dχ2

, in the sense that the former leaks more information about
profiles than the latter. Another interesting remark is that a dχ1

-
private mechanism is also dχ2

-private, since the coordinates
in χ2\χ1 cannot be obfuscated. Thus the knowledge of the
minimal set χ for which a sanitization mechanism satisfies
dχ-privacy encodes some level of privacy guaranteed by the
latter mechanism.

Our sanitization mechanisms model the situation where the
user himself decides the level of privacy. We stress that such a
system would require to suggest some levels of privacy to the
user, but the important point for our work is to understand to
which extent a by-user privacy design is relevant for personal
data protection. A user may want to calibrate the privacy level,
a numerical value, in order to reach a certain privacy guarantee
on his/her personal information: create some uncertainty on the
shops he/she has visited, on the home/work place, randomize
the frequency of visits to some particular places... However, it
is a non-trivial task to associate a tractable meaning of privacy
to a numerical value of the privacy parameters, namely to the
values of ε and χ in our model. In the current approach, we
will propose a panel of attacks on sanitized results, in order
to fill the gap between the semantic meaning of privacy, and
numerical privacy parameters.

B. Sanitization of boolean profiles at the user scale

To achieve the dχ-privacy guarantee for boolean profiles,
we will use some well-known mechanism introduced in the
context of differential privacy. The mechanism first appeared
as the so-called randomized response mechanism [14], which
was brought into the field of differential privacy in [15], [16].
Given a collection of boolean profiles a = (aij)ij ∈ {0, 1}nm,
a private version M(a) = ã ∈ {0, 1}nm is obtained by adding
to each component aij a Bernoulli random variable whose
parameter depends on the privacy parameters.

Since in our model, the user applies his/her own sani-
tization mechanism, we adopt a slightly different point of
view. Given user ui’s privacy parameters εi, χi, we define the
following randomized mechanism Mi for user ui’s boolean
profile bi = (bij)j :

Mi(bi) = (bij + dij)ij

where (dij)ij are Bernoulli independent random variables with
parameter pi ∈ [0, 1], for j ∈ χi, and dij = 0 for j /∈ χi. The
following general result relates the Bernoulli parameter pi to
the privacy parameter εi.

Proposition 7. Let pi ∈ [0, 1], εi > 0. Assume that the
following inequalities hold:

1

1 + eεi
≤ pi ≤

eεi

1 + eεi
.

Then mechanism Mi defined above is dχi,εi -private.

A clever choice of the subset χi is crucial in order to
improve both accuracy and consistency of results. Indeed,
when χi = Rm, the previous mechanism perturbates any POI
with the same amount of noise (in average). But for natural
reasons (geographical proximity, transport design, ...), some
pairs of POIs are more likely to be crossed by a single user
than others. This fact is what we call POIs affinity in the sequel.
Compared to a technique that would perturbate only the closest
POIs (in terms of the affinity) from the user’s profile, the naive
uniform pertubation (with the same Bernoulli parameter for
all coordinates in the profile) is obviously a disaster regarding
the usefulness of the result. But less obvious is the fact that
uniform noise addition can also harm the privacy. Indeed, the
affinity between POIs is likely to be some public information in
many cases, and choosing randomly a fake POI among all the
available POIs may certainly result in inconsistencies in the
fake profile. Such inconsistencies are additional information
for an attacker: discarding inconsistent POIs in the fake profile
yields a higher probability to guess the POIs that are both in
the real and the fake profiles.

To produce more consistent results during the sanitization
phase, we propose a choice of subsets (χi)i with the general
idea to exploit POIs affinity, with the objective to avoid
inconsistent noise addition to the profiles. The notion of affinity
we consider in our experiments is based on the global number
of profiles shared by a pair of POIs. There are other ways
to describe the affinity between POIs: for instance, one could
consider the location affinity, where the affinity depends on
the geographical distance between two POIs. Indeed, a user is
more likely to jump from a POI to another when the two POIs
locations are close.

Definition 8. (Affinity between POIs) The affinity is a matrix
of non-negative numbers (Affj1j2)1≤j1,j2≤m.

Given the boolean profile pi of a user ui, the affinity
of POI j relative to profile bi is given by Aff(i, j) =∑
j1,bij1=1 Affj1j .

The affinity matrix (Affj1j2)1≤j1,j2≤m is interpreted as
follows: the larger the value Affj1j2 , the larger the probability
for a user visiting j1 to visit also j2. An attacker could
exploit the information contained in matrix Aff to detect
inconsistencies in noisy profiles, for instance a large number
of fake values i, j such that Affi,j is small. We will provide a
concrete instantiation of matrix (Affj1j2)1≤j1,j2≤m in Section
V.

Now we describe a more interesting choice of subset χi
than just χi = Rm. User ui decides a number ni of POIs to
add to his boolean profile pi. Let Aff1 ≥ Aff2 ≥ ... ≥ Affm
be the sorted list of affinities (Aff(i, j))1≤j≤m relative to the
profile bi. Then we set

χi = { j | bij = 1 }∪{ j | Aff(i, j) = Affk for some k ≤ ni }.

The subset χi above will be denoted χi = N(bi, ni) (for
neighborhood of bi up to ni values). Hence using the valuable
information contained in the affinity matrix, user ui may
apply mechanism Mi with a more interesting choice of χi,
obfuscating only POIs in a neighborood of the real POIs in
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the boolean profile. As will be shown in experiments, a correct
choice of subset ni and χi can provide an advantageous trade-
off between privacy and utility.

C. Sanitization of count profiles at the user scale

From CDRs, a much more precise user profile than boolean
profile can be obtained. Instead of only considering the infor-
mation that a POI was visited or not by some user, we can
count the number of visits for each POI, and derive interesting
frequency statistics. This information is encoded in the count
profiles, often called histograms in the literature.

The most natural approach to sanitize histograms in the
sense of differential privacy is to add random noise to each
count. For our mechanism, we chose to apply Laplacian
mechanism, post-processed by a rounding step (to have an
integer-valued output). Another way to reach the same goal is
to use the geometric mechanism, as in [17].

We will use the notation [α] for the integer part of a
number α. Now given user ui’s privacy parameters εi, χi, the
sanitization mechanism M i for count profile ci = (cij)j is
defined as follows:

M i(ci) = (max(0, [cij + dij ])j ,

where the following conditions for (dj)j hold: (dij)j∈χi are
independent Laplacian random variables of standard deviation

1√
2×ε ; and dij = 0 if j /∈ χi. The maximum and the rounding

steps are used in order to provide consistent results for counts,
that is to obtain non-negative integer values at the end of the
processing.

Proposition 9. Let εi > 0 and χi ⊂ Rm be privacy
parameters. Then mechanism M i is dχi,εi -private.

As in the case of boolean profiles, one can play with the
parametrization over χi in order to gain flexibility on privacy.
It would be possible to define some notion of affinity (see
the previous section) that takes into account the frequency
information, rather than only the predicates from boolean
profiles. However, for simplicity in the presentation of our
model, we chose to apply the same process for choosing χi as
for boolean profiles. In other words, we will apply mechanism
M i for χi = N(bi, ni), where bi is ui’s boolean profile, and
ni some privacy parameter chosen by ui.

IV. DESCRIPTION OF THE ADVERSARIAL MODEL ON
SEVERAL SCENARII

In our model, each profile is a vector of m coordinates,
where each coordinate corresponds to some information as-
sociated to some POI. Assume also that we have n users
involved. Hence the collection of all users profiles is modelled
as a matrix A = (aij)i≤n,j≤m of size n × m, where row i
ai = (aij)j is user ui’s profile.

We assume that the collection of sanitized versions of
the profiles is made public, in the form of a matrix Ã =
(ãπ(i)j)i≤n,j≤m of size n ×m, where π : [1, n] → [1, n] is a
permutation, and each row (ãπ(i)j)j is a sanitized version of
user uπ(i)’s profile. The permutation π’s role is just to release
an unordered list of (fake) profiles. Hence, no information
about π is known to the attacker a priori, one of whose goal

is precisely to correctly guess (part of) the map π−1, that is
to re-identify users from their fake profiles.

For our experiments, a fake profile (ãij)j will be a sanitized
version of a boolean or count profile, with some dχ-privacy
guarantees. The sanitization process will be instantiated by one
of the mechanisms introduced in Section III. Now we provide
models to describe two scenarii that may happen in real-life,
and that may strongly harm users privacy, even in the case of
sanitized data.

A. Scenario 1: data leakage during a bounded time slot

The first scenario models what could happen when some
data leakage occurs during some period T1, and other data
related to the same users, but on a later period T2, is sanitized
and published. When correlating information from periods T1
and T2, one should naturally observe a correlation between
the seriousness of the leakage at T1, and the required privacy
level at T2 in order to provide some pre-determined privacy
guarantee.

A data leakage situation as above may happen in real-life.
As data becomes more and more valuable, data leakage scan-
dals occur more and more often. Nowadays, it is a well-known
fact that a large amount of data is sold on the black market or
obtained by data leakage ([18],[19]. Probably less harming at
the global scale, but also very destructive for privacy at the user
scale, the data leakage may come from the user itself. Indeed,
in the case where the user decides his/her privacy level, it is
very tempting to lower the privacy level during some periods
(potential periods T1) in order to benefit from the complete
accuracy necessary for services provided by LBS or other
services providers. For instance, some applications that are
designed to protect geo-locations (e.g. Location Guard [12])
could be shut down (intentionally or not) at some moments.
We will show that the situation described here strongly harms
the potential use of such applications.

Our model is as follows. The attacker A learns about
leaked information at T1, modelized as a matrix AT1 =
(aT1
ij )i∈I,1≤j≤m of some of the true profiles observed during

period T1. Moreover, sanitized data ÃT2 is published, and
so it is also known to A. Recall that we have ÃT2 =
(ãT2

π(i)j)1≤i≤n,1≤j≤m is the collection of all sanitized profiles
observed during period T2.

Then attacker A’s goal is to infer more information than
expected about the true profiles observed at T1. For instance,
A could guess the level of privacy used by some user ui, which
may be a sensitive information on its own. He could also infer
new information for profiles aT2

i , and even for those users ui
whose profiles were not leaked (ai for i /∈ I).

B. Scenario 2: partial profiles leakage

As for scenario 1, we will test the robustness of dχ-privacy
depending on the privacy parameters values, by measuring the
inference potential of the adversary during a single time slot
T . In scenario 2, the adversary is assumed to have partial
knowledge about some of the true profiles ([20],[21]). With the
knowledge of (complete) fake profiles, the attacker strives to
learn new information about the missing items of the involved
profiles.
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There are potentially an important threat for user’s privacy
caused by such partial data leakage. Indeed, the information
that a user has visited a particular place (shop, market, ...),
represented as a POI in our model, is extremely valuable
for marketing purposes. While it seems not so harming when
considering a single POI, such practices lead to strong privacy
issues if an entity collects the data from multiple providers
(shops, ...) and correlate them. Then, partial profiles may be
retrieved, with accuracy depending on the number of POIs
observed by providers. As for scenario 1, a partial leakage can
also happen when a user decides to control his/her privacy on
some POIs: the user could decide to protect his/her geoloca-
tions only on some particular places (home, workplace, ...).

In our model, a partial profiles leakage can be modelled
in two ways. In our scenario 2.1, we assume that the attacker
A knows a submatrix A(Ji)i = (aij)i∈[1,n],j∈Ji of matrix A,
where for each i, Ji ⊂ [1,m] is a subset of the set of POIs
[1,m]. For i ∈ [1, n], the set Ji represents the POIs involved
in the information leakage for user ui. For simplicity, we will
assume some uniformity on the leakage: we assume that Ji =
J for all i, and for some subset J ⊂ [1,m] of the POIs. In other
words, we assume that the leakage involves the same POIs for
each user. We will denote AJ = A(Ji)i in that case. Scenario
2.2 models the attacker’s side information by the following
partial matrix: AI = (aij)i∈I,1≤j≤m for some subset I ⊂
[1, n] of users. This illustrates what could happen when the
data of some (but not all) users is leaked.

As said before, A also knows Ã, and will strive to correlate
information from Ã and AJ (or AI ), in order to recover new
features about the missing values of true profiles (for instance
values in A[1,m]\I ).

V. DEVELOPMENT OF ATTACKS FOR EACH SCENARIO

In the configuration of scenarii in Section IV and for
sanitization mechanisms from Section III, we provide details
about algorithms performed by the attacker to de-sanitize the
data. Each attack is associated to some well-understood risk
(re-identification, inference of important features), and will be
assigned a level of success depending on the sanitization tech-
nique which is used (and in particular on privacy parameters).

A. Re-identification

The first privacy risk that we evaluate is re-identification.
Concretely, for a given privacy parameter, we estimate the
number of fake profiles that are sufficiently close to their
corresponding real profiles. To formalize this, we need to
introduce some definitions. Recall that ai stands for the real
profile of user ui, and ãi for its sanitized version. Here, d is
assumed to be the distance obtained from `1-norm on profiles.

Definition 10. ((δ,M)-success for fake profiles) Let δ >
0,M > 0. The set profilesGuess(i, δ) is defined as follows:

profileGuess(i, δ) = { j | d(aj , ãi) ≤ δ }

We say that an attack on fake profile ãi is a (δ,M)-success if
i ∈ profileGuess(i, δ) and |profileGuess(i, δ)| ≤M .

The intuition behind the previous definition is that in case
of success, an attacker has guessed the correct profile, up to

M − 1 other profiles. For small values of M , it becomes easy
to guess the real profile, using partial auxiliary information.

We will discuss later an ad-hoc choice of parameter δ.
Regarding parameter M , we allow parameter values M > 1
since randomized mechanisms may yield different concurrent
profiles in the set profileGuess(i, δ). Even for a small
amplitude of noise, it can occur that ai is not one of the closest
profiles to ãi (typically, in a case where many real profiles are
close one from each other).

Now we propose an evaluation method to understand to
what extent such profiles guesses succeed. Experimented for
different values of privacy parameter, it provides more insights
on the privacy risks, and the privacy level of sanitization
mechanisms at stake.

Algorithm 11.
Algorithm re-identification
Parameters: δ, M , n the number of profiles
. For all i ≤ n, compute sets guessProfiles(i, δ)
. Compute the following re-identification rate
r(δ,M, n) = |{ i | attack on ãi is a (δ,M)−success }|

n

B. De-randomization: exploiting inconsistencies in random-
ized results

As already discussed in Section III, a sanitized mechanism
may add noise on some inconsistent locations, simply because
the design of the mechanism allows to create non-realistic
random values. The most obvious situation may happen when
creating a fake location very far from the usual visiting
locations of a user.

From auxiliary information (data leakage, wifi hotspot, ...),
the attacker A may collect information about a population
(for us, the collection of profiles), and compare it to sanitized
profiles to find inconsistencies. Here we model this auxiliary
information in terms of global statistics about the whole
collection of profiles. More precisely, we compute what we
call the affinity between POIs, that is an indicator estimating
the probability to have two POIs in the same profile. We
introduced this notion in Definition 8, and we provide now
a concrete realization for it.

In our work, affinity is estimated using real profiles ex-
tracted from our CDRs dataset. A real de-sanitization attack
would make use of some public information to estimate this
value. For all j1, j2, we define our affinity indicators Affj1,j2
as follows:

Affj1,j2 =
|{ i | bij1 = 1 and bij2 = 1 }|

n
.

With our choice of affinity, two POIs are close if they both
appear in a relatively large number of profiles. Note that matrix
(Affj1j2)j1j2 may be computed from count profiles too, since
bi = 1 if and only if ci 6= 0 for user ui.

Algorithm 12.
Algorithm discard inconsistencies
Parameters: profile id i, affinity thresholds τ,N ,
number of profiles n, affinity matrix (Affj1j2)j1j2
. For j such that ãij 6= 0, tag j as an inconsistency
if Affjj′ < τ for at least N values of j′ such that ãij′ 6= 0
. Create a new profile ai by discarding all inconsistencies
from profile ãi
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As τ goes smaller and N larger, inconsistencies are harder
to find, and a suitable choice is required in order to optimize
the attack. Algorithm 12 can be used together with Algorithm
11 to define an algorithm re-identification on consistent
profiles: first, apply Algorithm 12 to each profile; then perform
Algorithm 11 by replacing fake profiles ãi by their correspond-
ing consistent profiles ai. We will denote r(δ,M, n, τ,N) the
identification rate obtained by this process.

In the previous analysis, we only have exploited partial
information from matrix (Affj1j2). Indeed, we focused on
the detection of wrong fake POIs in a profile by considering
small values of Affj1j2 . An analogous analysis on large values
of Affj1j2 would provide insights of possible locations that
disappeared during the sanitization process.

C. De-randomization: denoising profiles

Here we assume that the attacker possesses partial knowl-
edge on some true profiles. This can be the case for both
scenarii 1 and 2. In particular, comparing a true (even partial)
profile of a user to its sanitized version permits to accurately
estimate the level of noise in some cases. For boolean profiles,
it is then possible to guess the true number of POIs in the user’s
profile. In the case of scenario 2, the following algorithms
should be understood with T1 = T2 = T .

Algorithm 13.
Algorithm guess Bernoulli Parameter
Parameters: profile id i, true boolean profiles (bT1

ij )j∈J
for subset J ⊂ [1,m]

. Compute αi = 1
|J| ×

∑
j∈J | ã

T2
ij − a

T1
ij |

. Estimate Bernoulli parameter as p̃i = αi/|J |

Note that for count profiles, the attacker collects more
information. He certainly can retrieve the amount of noise
added to each count.

Algorithm 14.
Algorithm guess Laplacian Parameter
Parameters: profile id i, true count profiles (cT1

ij )j∈J
for subset J ⊂ [1,m]
. Estimate the Laplacian parameter
1
ε̃i

= 1√
2×|J| ×

∑
j∈J | c̃

T2
ij − c

T1
ij |

Accurate results of both of the above algorithms are
supported by the law of large numbers, and should produce
accurate estimations whenever profiles aT1

i are sufficiently
close to profiles aT2

i . These algorithms induce in turn natural
attacks to infer new knowledge in our scenarii.

For the case of boolean profiles, knowing both the
Bernoulli parameter pi and a fake profile b̃i, it is possible to
bound the set of possible candidates for true profile bi, with a
high level of confidence. Indeed, the following formula holds
(see the appendix for a justification):

P ( d(bi, b̃i) ≤ δ ) =
∑
k≤δ

(
|χi|
k

)
× pki × (1− pi)|χi|−k.

If the attacker has some idea about the size of user ui’s profile,
the value |χi| can be estimated from the profile b̃i and the
value pi. Then the formula above can be exploited to decide

a reasonable value δ for Algorithm 11 for instance. To do so,
probabilities P ( d(bi, b̃i) ≤ δ ) can be computed successively
for increasing values of δ, until the result reaches a sufficient
level of confidence: then the corresponding value δ should be
a relevant candidate for computing profileGuess(i, δ).

D. Guess important features in profiles

Count profiles are much more precise representations than
boolean profiles, and so their sanitized versions are more likely
to leak information. For instance, the higher the count is on a
POI, the more likely the user has visited this POI. Moreover, if
a user has visited many times a POI during periods T1 and T2,
attacker can certainly infer that this POI is part of the profile,
and possibly an important place (home, work location ...).

Definition 15. Let εi, χi be the privacy parameters for mecha-
nism M i. The set of most significative POIs in sanitized count
profile c̃i is defined as follows:

poiGuess(i) = { j ∈ c̃i | c̃ij = max
j′∈χi

˜cij′ }.

The next algorithm searches the most significative POI
among the best candidates for true profile ci.

Algorithm 16.
Algorithm guess most significative POI
Parameters: profile id i, δ, n
. Compute Pi,δ = profileGuess(i, δ)
. For j ∈ Pi,δ , compute poiGuess(j, δ)
. Compute the set P i,δ = ∩jpoiGuess(j, δ)
. Compute the following rate
r̃(δ, n) =

|{ i | i∈P i,δ }|
n .

With the information contained in P i,δ , and a semantic
knowledge on the POIs in it, the attacker can infer precise
information about the user. As an example, geolocation data
of the POIs could be used to know the semantic properties of
the most important POI. Some open-source tools such as Open
Street Map provide such semantic information about locations:
residential zone, roads,... The attacker could then deduce if
some significative POI is a workplace, a home, or a shop.

VI. EXPERIMENTS

To illustrate the different scenarii, we realized experimental
evaluations of the described attacks. Then we analyse the
experimental results to provide insights about the choice of
privacy parameters in dχ-private sanitization processes.

A. Settings

All the algorithms were implemented in Scala on a personal
computer with 2.30 GHz Intel i5 CPU and 8 GB RAM
Memory. We use a Call Detail Records dataset from a large
mobile phone provider to model our system. POIs are defined
to be antennas cells co-located in some region around some
big city, so that our dataset contains exactly m = 29 POIs
and more than 100 000 users. In order for profiles to have
sufficiently many information, we filtered our dataset and
considered only the profiles having visits on at least 6 distinct
POIs during a day.
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1≤j≤m f1(j). It should be compared
to the average number of visitors on a POI, which is 25 here.

Here are some information about the parameters we chose
to conduct the experiments:

• We consider subsamples of n = 100 users to conduct
our experiments. We consider an observation period T
equivalent to a whole day. For scenario 2.2, we used
a subsample of |J | = 50 users. In the case of scenario
1, T1 represents the first half of a day (from 00:00 to
11:59), and T2 the second half (from 12:00 to 23:59).

• Even if a by-user choice of privacy parameters is pos-
sible in our system, we chose uniform values for ni,
χi and εi (that is common values for each i ∈ [1, n]:
εi = ε...), in order to facilitate the comprehension in
analysis.
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Fig. 6. The mean error is 1/m×
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to the average number of visits on a POI, which is 98 here.
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Fig. 7. The mean error is 1/m×
∑

1≤j≤m f2(j). It should be compared
to the average number of visits on a POI, which is 98 here.

We chose to restrict our experiments to restricted samples
of 100 users (n = 100 with our notations) for several reasons.
First, this enforces a more difficult task from the sanitization
point of view, and tends to prevent from finding more threat-
ening privacy risks: as was observed in many prior works,
sanitization would be made easier with larger values of n, since
overlaps over profiles are more likely to happen, which hides
users in the crowd while preserving the statistics accuracy.
Second, attack scenarii need to be realistic. In the case of
partial information leakage (see in particular our scenarii 2.1
and 2.2 in Section IV), the attacker’s ability to collect personal
information from users should be reasonably bounded: for
instance, while it may be possible for the attacker to retrieve
all the users who visited the same wifi hotspot, the number
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of such users is inherently bounded since visiting this place
depends on the user’s habits.

The global purpose of our experiments is to associate, for
each attack described in Section V, suggestions on how to
apply (if applying is reasonable) dχ-private mechanisms on
boolean and count profiles. As exposed previously in the paper,
the first step of our system consists in deciding an admissible
range for privacy parameters regarding global statistics utility
(statistician’s view). In a second step, we instantiate various
attacks on the sanitized profiles (attacker’s view).

B. Admissible range for privacy parameters

For boolean profiles, the mean error we consider is the
average over all POIs of the error between the computation of
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Fig. 10. Re-identification on sanitization mechanisms M i, using attack
parameter M = 1.
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Fig. 11. Sanitization mechanism Mi with ε = 6 and χi = Rm. Then
reidentification given only partial profiles with 15 POIs.

f1 on true profiles and its computation on fake profiles (see
Section II), that is

mean error =
1

m
×

∑
1≤j≤m

|f1((bi)i, j)− f1((b̃i)i, j)|.

The latter quantity should be small compared to the average of
f1 over all POIs, whose value is 25 for the considered sample
of users.

Figures 4 and 5 display the trade-off privacy/utility for
mechanism Mi applied to boolean profiles. When used with
parameter χi = Rm, mechanism Mi shows to be useful for
values ε in the range [6,+∞[. In particular, values lower than
6 should not be considered, since they completely destroy
the information from the statistician point of view. This is
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to be compared to the range [0.1,+∞[, admissible for Mi

parametrized by ni = 5 and χi = N(bi, ni). We warn the
reader that even if a value ε = 0.1 seems much more appealing
from the privacy aspect than ε = 6, the restriction of χi from
Rm to N(bi, ni) has also consequences over privacy. We will
clarify this comparison using our system, through some attacks
from Section V on both mechanisms.

For count profiles, we adopt the same protocol using f2 in
place of f1, and M i in place of Mi. Hence we have:

mean error =
1

m
×

∑
1≤j≤m

|f2((bi)i, j)− f2((b̃i)i, j)|.

Here the quantity to be compared with, that is
1
m

∑
1≤j≤m f2(j), is equal to 98 for our sample.
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Fig. 14. The relative error is |ε̃−ε|
ε

where ε̃ is computed with algorithm
guess Laplacian parameter.

Figure 6 shows that range [2,+∞[ seems admissible for
ε values, in order to have reasonable utility for statistic f2.
By contrast with boolean profiles, the restriction from χi =
Rm to χi = N(bi, ni) (and small ni) has much less impact
on utility in the case of count profiles. in fact, some similar
range [1,+∞[ may be chosen. This is completely normal, and
results from the design of algorithm M i: while twisting 0 to 1
and 1 to 0 radically defaces a boolean profile, the amount of
noise added by Laplacian mechanism may be relatively small
compared to counts in a count profile.

C. Re-identification

As illustrated by Figures 8 and 9, the choice of attack
parameters M and δ seems to be not straightforward in general.
It is far from being clear how an attacker could design an
optimal choice for (M, δ). But since the attacker’s strategy is
not known a priori, the worst case should be considered for
designing the sanitization mechanism. Our system permits to
compute attacks over many pairs (M, δ) and thus to choose
the one having the best reidentification rate r(δ,M, n). Recall
also that values of M are supposed to be sufficiently small,
since otherwise it is useless for the reidentification performed
by the attacker (too many candidates). Here experiments were
conducted in scenario 2.2, if not explicitly precised.

Worst-case for Mi and χi = Rm occurs with a reidentifi-
cation rate r(δ,M, n) ∼ 0.9 (meaning 90 % of the population
was re-identified), which is far from being admissible from the
security point of view. On the contrary, as shown in Figure 9,
the choice of χi = N(bi, ni), ni = 5 leads to much more
interesting results for ε = 0.1, that is a reidentification rate
r(δ,M, n) close to 0.05.

Experiments on reidentification over a single observation
period T were also conducted for sanitization mechanism M i

on count profiles. As was the case for the utility, mechanism
M i performs similarly with χi = Rm or χi = N(bi, ni) for
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some small ni. This point was already explained in the previ-
ous subsection. A much more interesting fact is that privacy
is unreasonably harmed (more than 80 % of reidentification)
when using such mechanisms. Indeed, count profiles contain
very precise information about the user, and so provides quite
easily a strong fingerprint to reidentify him/her. The use of
such mechanisms should be avoided, in any case where a
leakage scenario as in Section IV could happen.

We have also measured to what extent a side information
composed of partial profiles (in the sense of scenario 2.1)
may be exploited by the attacker. To do so, we provide the
attacker half of the true profiles, that is the profiles restricted
to 15 POIs. Then attacker attempts to maximize r(δ,M, n)
combining both partial profiles, and sanitized profiles. It is
reasonable in realistic scenarii to assume that the attacker A
knows the POIs on which the partial profiles are defined.
Hence, as a pre-processing step, A restricts also the sanitized
profiles to these 15 POIs. Then A applies Algorithm 11, some
of whose results are displayed in Figure 11 for the case of
boolean profiles and mechanism Mi. The graph shows that it
is much more difficult to re-identify with partial information
on the profiles, as expected (compare to Figure 4). However,
it is worth noticing also that if we allow the attacker to make
less precise approximations for profileGuess(i, δ) (that is
letting M grow larger), the attack may harm the privacy to
some unreasonable level (40 % of almost re-identification in
the worst case). For mechanism M i and reidentification from
partial count profiles, results in Figure 12 displays a 50 %
reidentification rate for the best attacker’s strategy.

D. De-randomization

For experiments to validate our system, side information is
modelled as a matrix (Affj1j2)j1j2 defined in Section V. Figure
13 proves that (Affj1j2)j1j2 may be exploited to improve
reidentification attacks, for sufficiently small values of the
inconsistency threshold τ and suitable value of the minimal
number of inconsistencies N (N = 8 for the graph in Figure
13). Indeed, small values of τ may provide 10 % more
reidentification in the sample.

Such a non-negligible improvement on the attack should
suggest to relativise any result regarding the privacy provided
by (any) sanitization mechanism. Improved attacks may always
be designed if a sufficient amount of side information is
available to the attacker. As briefly suggested in Section V,
even matrix (Affj1j2)j1j2 could be exploited further to gain
information on the true profiles. It is clear than adding other
sources of side information may have disastrous impacts on
the dχ-private mechanisms at stake in the current paper.

Fortunately (for users privacy), the choice of τ and N is
highly non-trivial to perform an attack. It is unlikely that the
attacker could guess the optimal values for attack parameter.
However, our goal is to validate some worse case for privacy,
defined in terms of attack parameters τ,N , against which users
should be protected.

Figure 14 reflects to what extent the privacy parameter
εi can be deduced from sanitized profiles and some of the
true profiles. Algorithm 14 performs particularly well (in the
case of scenario 2.2), and as expected better as the value
ε increases. This corroborates the well-admitted idea in the

scenario privacy parameters r̃(0.3, 100)
scenario 1 χi = Rm, ε = 6 0.76
scenario 1 χi = N(bi, ni), ni = 5, ε = 3 0.70

scenario 2.1 χi = Rm, ε = 4 0.99
scenario 2.1 χi = N(bi, ni), ni = 5 ε = 2 0.95
scenario 2.2 χi = Rm, ε = 2 1.0
scenario 2.2 χi=N(bi, ni), ni = 3, ε = 1 0.85

security community that the security parameters should be
made public.

E. Guess on important features

The following array shows to what extent the most im-
portant POI in a true count profile ci can be guessed from
its corresponding sanitized version M i(ci). We consider this
experiment with privacy parameters that optimize the privacy
level in the admissible range of privacy values (regarding
utility).

To be protected against such an inference attack, mech-
anism M i tuned with a restricted neighborhood N(bi, ni)
(ni small) seems to be a better option. However, the attack
success rate r̃(0.3, 100) is too large to consider M i a sufficient
protection against that risk.

F. Concluding remarks about our experimental results

Several concluding remarks can be drawn from our ex-
perimental evaluation. First, when performing mechanism Mi

on boolean profiles, the use of neighborhoods χi = N(bi, ni)
for small ni values permits to outperform the case χi = Rm,
both with regards to privacy and utility. The benefits of such
improvements for mechanisms M i are not significative.

Second, subsection on de-randomization highlights the
well-known fact that auxiliary information may have disastrous
impact on the privacy guarantee provided by sanitization
mechanisms. A valuable approach from the sanitizer point of
view would be to measure the impact of the amount of side
information on the attack success rate. We did not address this
issue in the current paper, but it would be very interesting to
integrate such parametrizations in our system.

Experiments also showed that the use of mechanism M i

should be avoided, whenever any scenario from Section IV
could be met in reality. We do not pretend that the use of dχ-
private mechanisms on fine-grained data such as count profiles
is useless. Such mechanisms, once completely defined through
their privacy parameters, are inherently associated to some
risk regarding specific scenarii of attacks. The current work
suggests that the latter risks should be well understood before
applying these sanitization mechanisms in practice. In other
words, privacy applications require some management of risks,
made in interaction with a suggestion on privacy parameters
for each possible and reasonable risk. Our system helps to fill
the current gap between the choice of privacy parameters and
the management of risks: for some situations (e.g. sanitization
M i before statistical task f2), our system proves that there is
no appealing trade-off between privacy and accuracy of the
statistics; for others (e.g. sanitization Mi, ε = 6 and statistical
task f1), the system provides a level of privacy risk (which can
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be considered as reasonable or not) together with the privacy
parameters to achieve this level.

Finally, we think that randomized mechanisms on count
profiles would have a better success if sanitization is designed
for sanitizing a group of users with some privacy guarantee.
This was for instance the initial goal of differential privacy:
similar users could be aggregated together to produce a group
profile, that could in turn be sanitized in the sense of differ-
ential privacy.

VII. RELATED WORK

Here we discuss the closest works to ours, already appeared
in the literature:

• Tuning the privacy parameter ε in differential
privacy:
In [17], Naive Bayes classifiers are used to produce
prediction functions that map quasi-identifiers tuples
to their (supposed) corresponding sensitive attribute.
Experiments are provided on histograms sanitized in
a differentially private manner. Letting the privacy
parameter ε vary, the author highlights interesting
features about differentially private mechanisms: even
small value of ε (ε = 0.01) yields non-trivial attacks,
but the corresponding differentially private mechanism
certainly offers much more protection (avoiding to
guess sensitive attributes from quasi-identifiers) than
raw histograms. Our approach follows the same line
as the work [17], but only from a high-level point
of view: we follow the principle of designing attacks
in order to understand the limits and the benefits of
randomized mechanisms. In particular, we broaden
the scope of privacy from differential privacy to dχ-
privacy. Also, our attacks are fundamentally different
since we have no notion of quasi-identifiers in our data
representation.
Differential privacy guarantee only asserts that the par-
ticipation of a single individual in a statistical game is
not noticeable, and does not pretend to hide the infor-
mation of a single individual (which can be deduced
entirely from the data of other individuals in some
cases). In [22], a new privacy notion is introduced,
called ρ-differential identifiability, and designed to
measure the ability of an adversary (via the privacy
parameter ρ) to infer the presence of a single individ-
ual in a database, from some sanitized results. Authors
of [22] show relationships between ρ-differentially
identifiable mechanisms and ε-differentially private
mechanisms, and that their new notion can be used to
provide an upper safe bound for parameter ε. In fact,
the same authors have already discussed the choice
of meaningful (in terms of tractable privacy) upper
bounds on ε in some prior work [23]. Our current
work also provides such upper bounds, but directly
by designing re-identification or inference attacks,
and without requiring additional contextual parameters
(see parameter |ψ| in [22]).
The paper [24] proposes a model to choose relevant
values for ε, depending on two interacting parties, the
data analyst (for us, the statistician) and the user. This
issue was not deeply addressed in the current paper,

while the issue of risk assessment was not tackled in
[24]. Hence our works are complementary and both
point of views should be considered to produce a more
complete model.

• Understanding the differential privacy guarantee:
A more theoretical approach aims at understand-
ing privacy through the introduction of other pri-
vacy notions, such as mutual-information differential
privacy(MI − DP ) in [25]. A clear advantage by
doing that is to view the differential privacy picture
by means of a better known theory (here information
theory). However, it still locate the choice of the
privacy parameter ε in a theoretical domain, which
can be difficult to grasp for non-specialists.

• About de-sanitization attacks on mobility data:
In [26], a summary of the various attacks on mobility
data is provided in Figure 1, with for each attack,
the re-identification rate: [27] [28] [29] [30] [31]
[32] [33] [34]. In most attacks against mobility data,
attackers use a period of training and the objective
is re-identification. In our case we do not restrict
ourselves to such a configuration (which is scenario 1
with reidentification attacks). We propose a panel of
different attacks, and other possible scenarii (scenarii
2.1 and 2.2). As an example close to our work, authors
of [35] show that they can re-identify at least 63
% of the users from a sanitized dataset with geo-
indistinguishability guarantees. As is the case for the
current paper, such attacks do not break the geo-
indistinguishability guarantee, whose goal is more to
obfuscate precise locations rather than avoiding re-
identification. But such attacks permit to understand
to what extent geo-indistinguishability protects user’s
privacy.

VIII. CONCLUSION

In this paper, we addressed the issue related to the choice
of privacy parameters values in randomized sanitization mech-
anisms. We propose a model that instantiates well-known
attacks on sanitized data. First, our model provides a better
understanding of the privacy level hidden behind the parame-
ters values. Second, it allows any party with sufficiently many
data to make relevant suggestions concerning the choice of
such parameters values, in order to optimize the trade-off
between privacy and utility. We applied our framework on
mobility data extracted from Call Detail Records, and we
have provided meaningful insights about dχ-privacy, related
sanitization randomized mechanisms, and their applications on
mobility data sanitization.

For the current work, we decided to study the privacy
parameters involved in dχ-private sanitization processes. Al-
though we chose to apply dχ-privacy to protect privacy at
the user-scale, dχ-privacy can also provide privacy guaran-
tees among a large set of users, as was the case for prior
applications of ε-differential privacy. Group profiles may be
introduced instead of users profiles, in order to twist from
a user-scale privacy to a global scale (over many users).
Once group profiles are correctly defined, our system and
experiments will apply easily to provide more understanding
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of the privacy parameters ε and δ, when using ε-differential
privacy or (ε, δ)-differential privacy. We postponed this study
to a further work.
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APPENDIX

A. Privacy proofs

Proposition 7 Let r ≥ 0. For all boolean profile y = (yi)i,
and for all boolean profiles b, b′ such that d(b, b′) = r, we have
to show

P (b+ d = y mod 2)
P (b′ + d = y mod 2)

≤ eε×r.

For i ∈ χ, we have P (bi + di = yi mod 2) = P (di = yi +
bi mod 2). The latter quantity is equal to p if yi+ bi = 0, and
1− p if yi + bi = 1.
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Since by assumption d(b, b′) = r, yi+bi differ from yi+b
′
i

on exactly r indices i ∈ χ. It follows that

P (b+ d = y mod 2)
P (b′ + d = y mod 2)

≤ max(
p

1− p
,
1− p
p

)r.

Then a sufficient condition for the required inequality to hold
is the following:

p ≤ eε × (1− p) and 1− p ≤ eε × p.

The proposition is proved.

Proposition 9 Since both maximum and rounding are post-
processing not depending on a particular instance of dataset,
it suffices to prove that the mechanism c → c + d satisfies
dχ-privacy. Let c = (cj)j , c

′ = (c′j)j be two profiles. For all
y ∈ Rm, we have

log(
P (cj + dj = yj)

P (c′j + dj = yj)
) = ε× |cj − c′j |

The result follows from the independence of the random
variables (dj)j , and by summing over 1 ≤ j ≤ m.

B. Missing justifications

Now let Mi(bi) = b̃i be the sanitized version of boolean
profile bi under mechanism Mi introduced in Section III, with
privacy parameters pi and χi ⊂ Rm. Let also δ > 0. We justify
the following formula:

P ( d(bi, b̃i) ≤ δ ) =
∑
k≤δ

(
|χi|
k

)
× pki × (1− pi)|χi|−k.

Indeed, we have

P ( d(bi, b̃i) ≤ δ ) = P (
∑
j∈χi

|bij − b̃ij | ≤ δ )

=
∑
k≤δ

P (
∑
j∈χi

|bij − b̃ij | = k )

=
∑
k≤δ

(
|χi|
k

)
× pki × (1− pi)|χi|−k

since independent random variables (|bij− b̃ij |)j are Bernoulli
variables of parameter pi.
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