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Abstract

We introduce identity-based format-preserving encryption (IB-FPE) as a way to localize and
limit the damage to format-preserving encryption (FPE) from key exposure. We give definitions,
relations between them, generic attacks and two transforms of FPE schemes to IB-FPE schemes.
As a special case, we introduce and cover identity-based tweakable blockciphers. We apply all
this to analyze DFF, an FPE scheme proposed to NIST for standardization.
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1 Introduction

Schemes for format-preserving encryption (FPE) have been standardized [20] and are in widespread
use for the encryption of credit-card numbers. Towards limiting the damage from key exposure,
we introduce identity-based FPE (IB-FPE). We provide a provable-security treatment involving
definitions, attacks and two design paradigms. We apply this to analyze DFF [39], an FPE scheme
proposed to NIST for standardization.

FPE. Format-preserving encryption (FPE) originates with [9, 12]. An FPE scheme F specifies
a deterministic encryption function F.E : {0, 1}F.kl × F.TS × F.Dom → F.Dom that takes a F.kl-
bit key J , a tweak T and a message X to return a ciphertext Y = F.E(J, T,X). There is a
corresponding decryption function F.D : {0, 1}F.kl × F.TS × F.Dom → F.Dom such that the maps
F.E(J, T, ·),F.D(J, T, ·) are permutations over F.Dom that are inverses of each other. What makes
FPE special is that the domain F.Dom can be arbitrary and in particular very small. Some examples
are F.Dom = {0, 1}8 —encrypt a byte so that the ciphertext is also a byte— F.Dom = Z4

10 —encrypt
a 4 digit PIN so that the ciphertext is also four decimal digits— F.Dom = Z16

10 —encrypt a 16-digit
credit-card number so that the result is also a 16-digit credit-card number. FPE is motivated by
legacy constraints which in many systems mandate that the ciphertext replace the plaintext, and
must thus have the same “format” as the plaintext. Tweakable blockciphers [28] are the special
case where F.Dom = {0, 1}F.bl for some integer F.bl called the block length.

The canonical metric of security for an FPE scheme F is prp security [9, 27]. The game picks
a challenge bit b and random key J ∈ {0, 1}F.kl. For each tweak T it also lets Π(T, ·) be a random
permutation over F.Dom. The adversary A can ask for encryption under a tweak T and message
X of its choice, being returned F(J, T,X) if b = 1 or Π(T,X) if b = 0, and similarly for decryption.

FPE is not easy to build. Today the most practical approach is Feistel with strong —AES-
based— round functions and a number of rounds r ≥ 8. NIST SP 800-38G [20] standardizes two
such schemes, FF1 (r = 10) and FF3 (r = 8). Recent attacks [6, 18] suggest that it would be good
to increase the number of rounds when the inputs are very short, but this is largely orthogonal to
our work.

Corporations offering FPE-based products include HPE Voltage, Verifone, Protegrity, Ingenico,
Thales/Vormetric and Gemalto. Tens of millions of credit-cards have been encrypted with these
products.

IB-FPE. We define an identity-based FPE (IB-FPE) scheme as a pair (F,KDF) consisting of a
(base) FPE scheme F and an associated key-derivation function KDF. The latter takes a master
key K and identity I to (deterministically) return a key J = KDF(K, I) ∈ {0, 1}F.kl for I to use
with F.

In the traditional usage of an FPE scheme F, an organization would have a single key K
for F stored at many different devices (for example, point-of-sale terminals) that each encrypts
directly under K. But each device is at some risk of compromise due to physical, insider or side-
channel attacks. Compromise of even one device (which could be quite likely) then has the global
consequence of exposure of K. IB-FPE allows us to localize, and thus limit, the damage from key
exposure. With IB-FPE, we can associate an identity I to a device and delegate to it the derived
key JI = KDF(K, I), allowing the device to (effectively) encrypt under K without actually having
K. (The master key K would be stored in a secure location, for example in secure hardware.)
Compromise of device I would now have only local consequences, encryptions under JI being
compromised but (for an IB-FPE scheme meeting the definitions we will give) encryption under
other identities remaining secure.

Another benefit of IB-FPE is to increase the lifetime of the key K. In practice it is recommended
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to limit the number of encryptions under a particular key, changing (rotating) the key periodically.
With u identities each performing q encryptions, direct encryption with a traditional FPE scheme
would result in uq encryptions under the base key. With IB-FPE, we have u key derivations under
the master key and only q encryptions under each of u different derived keys. This structure can
significantly increase the number uq of encryptions that can be safely performed [1, 37].

IB-FPE security. Let (F,KDF) be an IB-FPE scheme. We give a prp style definition of security
called ib-prp. We also give two key-recovery security definitions called ib-kr-ai and ib-kr-ti. We
show relations between them, summarized in Fig. 4.

While natural, these definitions are strong, in particular allowing selective opening attacks [19,
7, 5, 23] that make them hard to provably achieve. We also define non-adaptive versions, which
continue to relate to each other as per Fig. 4, and which our schemes are shown to achieve.

The definitions. The ib-prp game picks a random challenge bit b and random master key K,
and associates key JI = KDF(K, I) ∈ {0, 1}F.kl to identity I. The adversary gets oracle Enc taking
identity I, tweak T and message X, and oracle Dec taking I, T and ciphertext Y . Initially, they
respond with F.E(JI , T,X) and F.D(JI , T, Y ), respectively. At any point, the adversary can either
expose the key of I, querying Exp(I) to get JI , or switch I to challenge mode by querying Ch(I),
restricted, of course to not being able to do both for the same I. If I is switched to challenge
mode, oracles Enc,Dec change in the b = 0 case, with Enc(I, T, ·) and Dec(I, T, ·) now becoming
permutations that are random but consistent with prior replies.

Theoretical work has traditionally formalized only strong goals that represent the most desirable
targets for security proofs, ib-prp in our case. But we also formalize weaker key-recovery security
goals (ib-kr-ai and ib-kr-ti). Oracles in the games are like in the b = 1 case of ib-prp. The adversary
returns a key J ′ and identity I ′. In the ib-kr-ti (target identity) case, it wins if J ′ = JI′ is the
key for the identity it names, while in the ib-kr-ai (any identity) case, I ′ is ignored and it wins if
J ′ = JI for any un-exposed challenge identity I. The motivation is that (1) We are interested not
just in security proofs but in attacks, for which we want to make claims that are strong (violating
ib-kr-ai or ib-kr-ti is much more damaging than violating ib-prp) as well as precise (which requires
that key-recovery advantages be formalized), and (2) We might be able to prove better security (in
terms of bounds on adversary advantage) for ib-kr-ai or ib-kr-ti than for ib-prp.

So far adversaries are adaptive in the sense that they can query Enc,Dec with I before deciding
to expose I. We say that an adversary (whether ib-prp, ib-kr-ai or ib-kr-ti) is non-adaptive if its
exposure decision for I does not depend on seeing encryptions or decryptions under I: if it queries
Exp(I), it has not previously queried Enc(I, ·, ·) or Dec(I, ·, ·).

Security in the face of exposure queries captures the above-mentioned application goal that
the damage from compromise is local rather than global. (Encryption for an identity is secure
even if the keys of other identities are known to the attacker.) Exposure is thus a central element
of the framework, and is a powerful adversary capability even in the non-adaptive case. The
definition adapts the classical one for IBE [13], differences being that our setting is symmetric
(there is no public master key), encryption is deterministic, the goal is prp style security (rather
than semantic security) and there are multiple challenge identities, not just one. In the adaptive
case, the combination of these elements allows a selective opening attack [19, 7, 5, 23]. We stress
that non-adaptive security, even if weaker than adaptive, is hardly a weak notion, and seems more
than adequate for practice.

Relations. It is clear that ib-kr-ai security (tightly) implies ib-kr-ti security. (If you can find the
key for an identity you name, you can find a key for some identity.) Proposition 3.2 says that,
conversely, ib-kr-ti tightly implies ib-kr-ai, because, given a candidate key, one can (under some
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conditions) test to see which identity it matches. We would expect that ib-prp implies ib-kr-ti
(and thus, by the above, ib-kr-ai), and while Theorem 3.3, at the highest level, validates this, the
truth it shows is more delicate. The difficulty is that in FPE the domain size can be small, and
the reduction is parameterized to adjust. The relations, summarized in Fig. 4, hold in both the
adaptive and non-adaptive cases.

Attacks. We give attacks on the security of any IB-FPE scheme (F,KDF), showing inherent
limitations in achievable security. The attacks are strong (they violate non-adaptive ib-kr-ai, not
just ib-prp) and rigorously analyzed (Theorems 4.1 and 4.2 provide and prove precise lower bounds
on adversary advantage). Their implication is that for (F,KDF) to have k-bits of (even non-adaptive,
ib-kr-ai) security, FPE scheme F must have 2k-bit keys, regardless of the length of the master key
and the choice of KDF. We call this the double-key condition.

The challenge with the attacks is to cover all IB-FPE schemes (F,KDF). We give two attacks,
calling the first the matching attack and the second, which generalizes DP [21], the exhaustive search
attack. Depending on the value of a quantity we define, called the diversity of the key-distribution
function KDF, we are able to show that one or the other attack always has constant non-adaptive
ib-kr-ai advantage with effort around 2F.kl/2.

Building IB-FPE schemes. We now turn to constructing IB-FPE schemes that do as well as
possible subject to the limitations uncovered by our attacks. Given that FPE schemes F (satisfying
standard prp security) are hard to build, we want to leverage existing constructions of them.
Accordingly, our approach is modular: taking as given a (base) FPE scheme F, we design key-
derivation functions KDF for it and prove non-adaptive ib-prp security of (F,KDF) assuming the
prp security of F and also possibly assuming something about KDF. We aim to make the master key
of KDF as short as we can and to make KDF as efficient as we can. We also aim for instantiations of
our key-derivation functions that use only a blockcipher, and moreover one that (like AES) has the
same key and block length. (This is because practical FPE schemes already use such blockciphers, as
Feistel round functions.) Below we first give a natural, standard-model key-derivation construction
PRF. Then, to improve efficiency and get an analysis of DFF, we give and analyze an ideal-cipher
model construction Dbl.

The PRF construction. We show in Section 5 that PRFs make good key-derivation functions:
If KDF : KDF.MKS × KDF.IS → {0, 1}F.kl is a PRF and base FPE scheme F is prp secure then
IB-FPE scheme (F,KDF) is non-adaptive ib-prp secure. We call this the PRF construction of an
IB-FPE scheme. Assuming F.kl = 2k, the concrete reduction, as given by Theorem 5.1, implies
that if KDF has k-bits of prf security and F has 2k-bits of prp security then (F,KDF) has k bits of
non-adaptive ib-prp security. Our attacks discussed above imply that the reduction is optimal.

For an instantiation we would like to base KDF solely on AES and achieve full 128-bit security
with the master key being a (128-bit) AES key. Abstractly, assuming given a base FPE scheme
F that has 2k bits of prp security with F.kl = 2k, this means that we want to build KDF : {0, 1}k
× KDF.IS → {0, 1}2k, with k bits of prf security, solely from a blockcipher E : {0, 1}k × {0, 1}k →
{0, 1}k having k bits of prp-cpa security. This is a challenging goal, but we can reach it via DHT’s
new analysis [15] of the XOR prp-to-prf transform of BKR [8]. Our key-derivation function, shown
in Fig. 9, has a computational cost of four invocations of the blockcipher E.

In summary, the PRF construction instantiated as above is an efficient way to generically
turn an FPE scheme into an IB-FPE scheme with optimal security, a standard-model proof and
a reasonable key-derivation cost of four blockcipher invocations. There are two motivations for
the alternative key-derivation method that follows: (1) Our results about it will eventually yield
an analysis of the DFF scheme proposed to NIST for standardization, and (2) It uses only two
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blockcipher invocations.

The Dbl construction. Letting F be the given prp-secure FPE scheme with F.kl = 2k, our Dbl
(“Double”) construction of an IB-FPE scheme (F,KDF) lets E : {0, 1}k × {0, 1}k → {0, 1}k be a
blockcipher and then defines key-derivation function KDF : {0, 1}k × KDF.IS→ {0, 1}2k by

KDF(K, I) = E(K,M0(I)) ‖ E(K,M1(I)) , (1)

where M0,M1 : KDF.IS → {0, 1}k are injective functions with disjoint ranges. We refer to M as
an embedding scheme, and it parameterizes the construction. Theorem 6.1 implies that (F,KDF)
has k-bits of ib-prp security assuming F has 2k-bits of prp security and E is an ideal cipher. The
double-key condition emanating from our attacks says that the analysis of Theorem 6.1 is optimal.
Next we discuss some technical elements of the result.

One might have hoped to establish prf security of KDF in the ideal-cipher model and then
apply our result about PRF, but, even in the ideal-cipher model, the key-derivation function KDF
of Eq. (1) has only k/2 bits of prf security. Instead we give a direct analysis.

In practice we expect that E = AES will be used, not only by KDF, but also by F. To model this,
we allow F to have oracle access to the same ideal cipher E that is used by KDF. This common use
of the ideal primitive precludes a modular proof and makes the analysis more challenging. Given
an ib-prp adversary A against F under KDF, the reduction aims to build a prp adversary A and
bound ε, the ib-prp advantage of A against F,KDF, as a function of ε, the prp advantage of A
against F. The natural approach is a hybrid argument. The difficulty is that, due to the structure
of KDF, keys of different users are not statistically independent. If u is the number of users invoked
by A, the straightforward hybrid argument would incur a loss of O(u/2k) per hybrid step, resulting
in a bound of the form ε ≤ uε+ δ where δ = O(u2/2k). This would imply only k/2 bits of security
for F under KDF, well short of what we want and believe to be true. Theorem 6.1 gives a different
proof that includes a more sophisticated hybrid argument to obtain δ = O(u/2k), which implies
k-bit ib-prp security for (F,KDF), as desired.

IB-FPE from Pre-masking FPE. Dbl builds an IB-FPE scheme (F,KDF) assuming as given
the base FPE scheme F : {0, 1}2k × F.TS× F.Dom→ F.Dom. We now ask if the assumption can be
dropped. That is, we want to build a practical F from our blockcipher E : {0, 1}k×{0, 1}k → {0, 1}k
so that, with KDF as in Eq. (1), IB-FPE scheme (F,KDF) can be shown to have k bits of ib-prp
security assuming nothing more than ideality of E. The difficulty is that practical FPE schemes
F are mostly Feistel-based, and Feistel (as we explain further in Section 7) notoriously lacks tight
analyses showing prp security for small domains and number of rounds. However we show that the
goal can be reached if we target key-recovery security rather than prp security.

Our results are quite general. We define a class of FPE schemes that we call pre-masking. This
class includes Feistel-based schemes. The schemes use a blockcipher E : {0, 1}k × {0, 1}k → {0, 1}k
but have 2k-bit keys. Encryption and decryption do not have direct access to the key but can call
an oracle that uses the key in conjunction with the blockcipher in a restricted way. (See Section 7
for the full definition.) Now, take any F in this class and adjoin the key-derivation function KDF of
Dbl as per Eq. (1) to get IB-FPE scheme (F,KDF). Then Theorem 7.3 establishes that (F,KDF)
has k bits of ib-kr-ti security.

Security of DFF. Two FPE schemes proposed to NIST for standardization, namely FF2 [38] —
not standardized due to the attack of [21]— and DFF [39] —still under consideration— derive a
subkey from the tweak and then encrypt under the subkey with an un-tweaked cipher. The authors
highlight this method as providing a feature they call delegation, where knowledge of the subkey for
one tweak would not impact security of encryption under another tweak. Our IB-FPE framework
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allows us to formalize this claim and evaluate the security, relative to it, of DFF.
We view FF2 = (Fff2,KDFff2) and DFF = (FFdff ,KDFdff) as IB-FPE schemes with identity

space the tweak space of the original scheme, and a tweak space that is trivial, consisting, say,
of just the empty string. In FF2, the master key K is 128 bits and the key delegated to I is
JI = KDFff2(K, I) = AES(K, I). Since Fff2 (accordingly) has 128-bit keys, our attacks from Section 4
say that FF2 has at most 64 bits of ib-kr-ti security, explaining the Dworkin and Perlner (DP)
attack [21]. Arguing that a scheme with a 128-bit (master) key should provide 128-bits of security,
NIST rejected FF2. Seeking 128 bits of security, DFF continues to have a 128-bit master key, but
derived keys (and thus keys for FFdff) are 256 bits long. Our attacks indicate that the security is at
most 128 bits. The question relevant to standardization is whether it actually is 128, or significantly
less.

Let the domain be Znrdx, the set of length n strings over alphabet Zrdx (2 ≤ rdx, n < 28),
and regard rdx, n as fixed. Let k = 128. Then the key-derivation function KDFdff of DFF =
(FFdff ,KDFdff) can be viewed as obtained by applying our Dbl transform with E = AES and
embedding scheme M defined by M0(I) = [rdx]1‖[|I|]1‖[n]1‖[I]13 and M1(I) = [0]3‖[I]13, where [x]`

denotes the encoding of x as an `-byte string. Then (1) our results from Section 6 say that DFF
has about 128 bits of ib-prp security if E is ideal and FPE scheme FFdff is assumed to have about
256 bits of prp security, and (2) Observing that FFdff is an E-based pre-masking FPE scheme, our
results from Section 7 say that DFF has about 128 bits of ib-kr-ti security assuming only that E is
ideal.

There is, however, a caveat that our analysis uncovers. For our results to apply, the functions
M0,M1 defined above must be injective. This is not, strictly speaking, true for DFF, because the
identity space is the set of all binary strings of length at most 13 bytes, and so, for example,
M1(001) = M1(01). It is true (our conditions on M are met) if we restrict identities further, for
example to all have the same length, or so that no two represent, in binary, the same integer. For
the general case we have neither a proof, nor an attack showing security to be significantly smaller
than the desired 128 bits. In Section 8 we expand on this and also give the best attack we know
for the general case. We would suggest that the embedding function used in DFF be changed to
meet our conditions, so that our results would apply to validate security in the general case as well.
For example, let identities be binary strings of at most 12 bytes, let M0(I) = [0]1‖[rdx]1‖[|I|]1‖[n]1‖
[I]12 and M1(I) = [1]1‖[rdx]1‖[|I|]1‖[n]1‖[I]12.

We clarify that, as designed and presented in [38, 39], FF2 and DFF are FPE schemes targeting
key delegation based on tweaks, not IB-FPE schemes. To translate findings above back to the
original context, read “tweak” for “identity”.

Related work. Identity-based cryptography was suggested by Shamir [36]. Identity-based en-
cryption (IBE) was formalized and achieved by BF [13].

BHT [6] give message-recovery attacks on Feistel-based FPE schemes F, including the FF1 and
FF3 standards [20] and FFdff , in the case that the domain is tiny. DV [18] give small-domain attacks
on FF3. FF1 and FF3 are not relevant for us. (Having 128 bit keys, they cannot, by our attacks,
be base schemes for high-security IB-FPE.) For F = FFdff , the validity of Theorems 5.1 (for PRF)
and 6.1 (for Dbl) is not affected, but to get the full possible k-bits of security for the IB-FPE
scheme (FFdff ,KDF) from these results, one would have to increase the number of rounds in FFdff

for tiny inputs. The BHT attacks do not contradict our proof of ib-kr-ti security of DFF because
they are message-recovery attacks and do not succeed in key recovery.

Shuffle-based FPE schemes [22, 30, 34] are a possible choice in the role of F to obtain IB-FPE
schemes via the PRF or Dbl constructions. For efficiency, however, schemes in practice, including
FFdff , have been Feistel based, so we have focused on the latter in considering instantiating F via
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Game Gprf
GG(A)

b←$ {0, 1};K←$ GG.Keys
b′←$AFn ; Return (b′ = b)

Fn(X)

If T[X] 6= ⊥ then return T[X]

If b = 0 then T[X]←$ GG.Rng
Else T[X]← GG(K,X)

Return T[X]

Game Gprp-cpa
GG (A)

b←$ {0, 1};K←$ GG.Keys
b′←$AFn ; Return (b′ = b)

Fn(X)

If ET[X] 6= ⊥ then return ET[X]

If b = 0 then Y ←$ {Y ∈ GG.Dom : DT[Y ] = ⊥}
Else Y ← GG(K,X)

ET[X]← Y ; DT[Y ]← X ; Return Y

Figure 1: Games defining PRF security (left) and PRP-CPA security (right) of GG.

pre-masking FPE schemes.

2 Preliminaries

Notation and conventions. We let ε denote the empty string. If y is a string then |y| denotes its
length and y[i] denotes its i-th bit for 1 ≤ i ≤ |y|, and for 1 ≤ i ≤ j ≤ |y|, let y[i : j] = y[i] · · · y[j]. If
X is a finite set, we let x←$X denote picking an element of X uniformly at random and assigning
it to x. Algorithms may be randomized unless otherwise indicated. Running time is worst case.
If A is an algorithm, we let y ← A(x1, . . . ; r) denote running A with random coins r on inputs
x1, . . . and assigning the output to y. We let y←$A(x1, . . .) be the result of picking r at random
and letting y ← A(x1, . . . ; r). We let [A(x1, . . .)] denote the set of all possible outputs of A when
invoked with inputs x1, . . ..

We use the code based game playing framework of [10]. By Pr[G ⇒ y] we denote the event
that the execution of game G results in the game returning y. We write Pr[G] as an abbreviation
of Pr[G⇒ true]. In code of games, unless otherwise indicated, sets are assume initialized to empty,
booleans to false, integers to 0 and anything else to ⊥. We adopt the convention that the running
time of an adversary refers to the worst-case execution time of the game with the adversary, so that
the time for the execution of oracles to compute replies to oracle queries is included. This means
that usually in reductions, adversary running time is roughly maintained.

If D,R are sets then Func(D,R) denotes the set of all functions from domain D to range R, and
Perm(D) the set of all permutations on D.

PRFs and PRPs. Recall that the prf advantage of an adversary A against a family of functions
GG : GG.Keys × GG.Dom → GG.Rng is defined as Advprf

GG(A) = 2 Pr[Gprf
GG(A)] − 1, where game

Gprf
GG(A) is shown in Fig. 1. Also the prp-cpa advantage of an adversary A against a family of

permutations GG : GG.Keys×GG.Dom→ GG.Dom is defined as Advprp-cpa
GG (A) = 2 Pr[Gprp-cpa

GG (A)]−
1, where game Gprp-cpa

GG (A) is shown in Fig. 1.

Ideal primitives. An ideal primitive is defined simply as a set of functions. An instance (meaning,
a particular function) P will be picked at random in the games and provided as an oracle, to
algorithms that need it and to the adversary. For example, the ideal primitive corresponding to a
random oracle with domain D and range R is Func(D,R). Ideal ciphers are a bit more work since
one must give access to both the map and its inverse. If K,D are sets then IC(K,D) is the set of all
maps P : K×D×{+,−} → D with the property that P (K, ·,+), P (K, ·,−) ∈ Perm(D) are inverses
of each other for every K ∈ K. If P ←$ IC(K,D), and then P is provided as an oracle, we are
in the ideal cipher model where one has oracle access to both the cipher P (·, ·,+) and its inverse
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P (·, ·,−). As an abbreviation, we let IC(k, n) = IC({0, 1}k, {0, 1}n), capturing ideal blockciphers
with key length k and block length n.

A useful inequality. In some proofs we’ll use the following.

Lemma 2.1 Let p ≥ 1 be an integer and a ≥ 0 a real number. Assume ap ≤ 1. Then (1 − a)p ≤
1− pa/2.

Proof: Let x = 2− a(p− 1). We assumed ap ≤ 1 and a ≥ 0. This implies that x = 2− ap+ a ≥
2− ap ≥ 2− 1 = 1. By inclusion-exclusion we have

(1− a)p ≤ 1− pa+

(
p

2

)
a2

= 1− pa+
p(p− 1)

2
a2 = 1− pa

2
(2− (p− 1)a)

= 1− pa

2
x ≤ 1− pa

2
.

The last inequality is because x ≥ 1.

3 FPE and IB-FPE

We give definitions and basic results, including relations between notions, for FPE and IB-FPE.

FPE schemes. A format-preserving encryption (FPE) scheme F [9, 12] specifies a deterministic
encryption algorithm F.E : {0, 1}F.kl × F.TS × F.Dom → F.Dom together with a deterministic de-
cryption algorithm F.D : {0, 1}F.kl×F.TS×F.Dom→ F.Dom. Here {0, 1}F.kl is the keyspace, F.Dom
is the domain and F.TS is the tweak space. For every key J ∈ {0, 1}F.kl and tweak T ∈ T, the
functions F.E(J, T, ·),F.D(J, T, ·) ∈ Perm(F.Dom) are permutations over F.Dom that are inverses of
each other. We refer to F.kl as the key length. The scheme may have an associated ideal primitive
F.IP, in which case F.E,F.D have oracle access to a function P ∈ F.IP. Tweakable blockciphers [28]
are a special case: FPE scheme F is a tweakable blockcipher if F.Dom = {0, 1}F.bl for an integer F.bl
called the blocklength.

FPE security. We recall the standard prp metric for an FPE scheme F [9, 12]. It coincides with
the classic (strong) tweakable-prp metric of [27] in the case that F is a tweakable blockcipher. Let
A be an adversary and define Advprp

F (A) = 2 Pr[Gprp
F (A)] − 1, where game Gprp

F (A) is on the left
in Fig. 2. The game picks a random challenge bit b and runs the adversary. The latter gets oracles
Enc,Dec for encryption and decryption, and access to an instance P of the ideal primitive F.IP.
It returns a bit b′ and wins if b′ = b. Enc takes a tweak T and message X and returns ciphertext
Y , with Dec correspondingly taking tweak T and ciphertext Y to return message X. If b = 1,
encryption and decryption are done using F with key J . If b = 0, each tweak is associated with a
random permutation on F.Dom under which both encryption and decryption are done.

Letting A again be an adversary, we also define Advprpa
F (A) = 2 Pr[Gprpa

F (A)] − 1, where game
Gprpa

F (A) is on the right in Fig. 2. This captures what we call adaptive prp security, a notion we
will find useful for proofs. Oracles Enc and Dec use F under key J until the adversary calls Ch
to switch the game to challenge mode by setting flag ch to true. At that point, for each tweak,
the associated permutation starts behaving randomly but consistent with the prior queries and
(F-based) answers for that tweak. The prp notion corresponds to the special case where the first
query is Ch(). We will exploit the following, which says that adaptivity can increase advantage by
a factor of at most two in general.
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Game Gprp
F (A)

b←$ {0, 1} ; J ←$ {0, 1}F.kl ; P ←$ F.IP
b′←$AEnc,Dec,P ; Return (b = b′)

Enc(T,X)

If ET[T,X] 6= ⊥ then return ET[T,X]

If b = 0 then

Y ←$ {Y ∈ F.Dom : DT[T, Y ] = ⊥}
Else Y ← F.EP (J, T,X)

ET[T,X]← Y ; DT[T, Y ]← X ; Return Y

Dec(T, Y )

If DT[T, Y ] 6= ⊥ then return DT[T, Y ]

If b = 0 then

X ←$ {X ∈ F.Dom : ET[T,X] = ⊥}
Else X ← F.DP (J, T, Y )

ET[T,X]← Y ; DT[T, Y ]← X ; Return X

Game Gprpa
F (A)

b←$ {0, 1} ; J ←$ {0, 1}F.kl ; P ←$ F.IP ; ch← false
b′←$AEnc,Dec,Ch,P ; Return (b = b′)

Enc(T,X)

If ET[T,X] 6= ⊥ then return ET[T,X]

If (ch and b = 0) then

Y ←$ {Y ∈ F.Dom : DT[T, Y ] = ⊥}
Else Y ← F.EP (J, T,X)

ET[T,X]← Y ; DT[T, Y ]← X ; Return Y

Dec(T, Y )

If DT[T, Y ] 6= ⊥ then return DT[T, Y ]

If (ch and b = 0) then

X ←$ {X ∈ F.Dom : ET[T,X] = ⊥}
Else X ← F.DP (J, T, Y )

ET[T,X]← Y ; DT[T, Y ]← X ; Return X

Ch()

ch← true

Figure 2: Games defining security of an FPE scheme F. Left: prp. Right: prpa.

Proposition 3.1 Let F be an FPE scheme. Given a prpa adversary Aprp, we can build a prp
adversary Aprp of about the same running time, and making at most as many Fn queries, such
that Advprpa

F (Aprp) ≤ 2 ·Advprp
F (Aprp).

Proof of Proposition 3.1: The adversary Aprp first picks a bit a←$ {0, 1} and then runs Aprp.
Before the latter calls Ch, the former always use its Enc/Dec oracles to reply to the Enc/Dec
queries of Aprp. After Aprp has called Ch to enter the challenge phase, if a = 1 then Aprp continues
to use its Enc/Dec oracles to reply to Aprp’s Enc/Dec queries. However, if a = 0 then Aprp gives
answers that are random but still consistent with prior queries and answers. When Aprp outputs
its guess b′ then Aprp outputs 1 if b′ = a, and outputs 0 otherwise. Let cprp be the challenge bit of
game Gprpa

F (Aprp). We claim that

Pr[Gprp
F (Aprp)⇒ true | cprp = 1] = Pr[Gprpa

F (Aprp)] (2)

Pr[Gprp
F (Aprp)⇒ false | cprp = 0] =

1

2
. (3)

This is because (1) when cprp = 0, the answers for Aprp’s Enc and Dec queries are always simulated
via an ideal family of permutations, meaning that whatever Aprp receives is independent of a, but
(2) when cprp = 1, the guess of Aprp is incorrect if and only if b′ = a. Subtracting Eq. (2) and
Eq. (3) side by side we have

Advprp
F (Aprp) =

1

2
Advprpa

F (Aprp)

as claimed.

Proposition 3.1 says that prpa is an alternative, equivalent (up to a factor two in advantage)
characterization of classic (strong) prp security for FPE schemes and tweakable blockciphers. For
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Game Gib-prp
F,KDF(A)

b←$ {0, 1} ; K←$ KDF.MKS
XI← ∅ ; ChI← ∅ ; P ←$ F.IP
For every I ∈ KDF.IS do JI ← KDFP (K, I)

b′←$AEnc,Dec,Exp,Ch,P ; Return (b = b′)

Enc(I, T,X)

If ET[I, T,X] 6= ⊥ then return ET[I, T,X]

If (I ∈ ChI and b = 0) then

Y ←$ {Y ∈ F.Dom : DT[I, T, Y ] = ⊥}
Else Y ← F.EP (JI , T,X)

ET[I, T,X]← Y ; DT[I, T, Y ]← X ; Return Y

Dec(I, T, Y )

If DT[I, T, Y ] 6= ⊥ then return DT[I, T, Y ]

If (I ∈ ChI and b = 0) then

X ←$ {X ∈ F.Dom : ET[I, T,X] = ⊥}
Else X ← F.DP (JI , T, Y )

ET[I, T,X]← Y ; DT[I, T, Y ]← X ; Return X

Exp(I)

If I ∈ ChI then return ⊥
XI← XI ∪ {I} ; Return JI

Ch(I)

If I ∈ XI then return ⊥
ChI← ChI ∪ {I}

Game Gib-kr-ti
F,KDF (A) / Gib-kr-ai

F,KDF (A)

K←$ KDF.MKS
XI← ∅ ; ChI← ∅ ; ChK← ∅ ; P ←$ F.IP
For every I ∈ KDF.IS do JI ← KDFP (K, I)

(J ′, I ′)←$AEnc,Dec,Exp,Ch,P

Return ((J ′, I ′) ∈ ChK) // ib-kr-ti

Return (∃ I : (J ′, I) ∈ ChK) // ib-kr-ai

Enc(I, T,X)

Return F.EP (JI , T,X)

Dec(I, T, Y )

Return F.DP (JI , T, Y )

Exp(I)

If I ∈ ChI then return ⊥
XI← XI ∪ {I} ; Return JI

Ch(I)

If I ∈ XI then return ⊥
ChI← ChI ∪ {I}
ChK← ChK ∪ {(JI , I)}

Figure 3: Games defining security of an IB-FPE scheme (F,KDF). Left: ib-prp. Right:
ib-kr-ti and ib-kr-ai.

untweaked blockciphers, Desai and Miner [17] consider a notion of indistinguishable uniform per-
mutation that is prpa with the adversary restricted to just one post-challenge encryption query and
no decryption queries, showing it is equivalent to classic prp security up a factor two in advantage.
Our proof extends theirs.

For FPE, we do not need to consider key-recovery security. We will for IB-FPE.

IB-FPE. A key-derivation function for FPE scheme F is a function KDF : KDF.MKS × KDF.IS →
{0, 1}F.kl that takes a master key K in the master-key space KDF.MKS and a user identity I in
the identity-space KDF.IS to return a key KDF(K, I) ∈ {0, 1}F.kl for F. An identity-based FPE
(IB-FPE) scheme is a pair (F,KDF) consisting of a (base) FPE scheme F and a key-derivation
function KDF for F. An IB-FPE scheme (F,KDF) is an identity-based tweakable blockcipher if F is
a tweakable blockcipher.

The key-derivation function KDF may have an associated ideal primitive, denoted KDF.IP, in
which case KDF has oracle access to a function P ∈ KDF.IP. We require that F.IP = KDF.IP,
meaning the ideal primitive of the key-derivation function is the same as that of the FPE scheme,
and in games a single instance P of the ideal primitive will be used as the oracle for F.E,F.D and
KDF. This is not only for simplicity but, more importantly, because the primitive in practice is
often instantiated via the same cryptographic function, for example via AES.

IB-FPE security. Security requires that encryption under the key of some identity remains secure
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even if the adversary can obtain the keys of other identities. In terms of application and motivation,
an identity might represent a point-of-sale terminal as discussed in Section 1, and thus our security
requirement ensures that the damage from compromise of a terminal remains local, not affecting the
security of encryption performed by other terminals. We give a prp style notion, ib-prp. We also
give two variants of key-recovery security, ib-kr-ai and ib-kr-ti. The core notions are adaptive, but
each has a corresponding non-adaptive version, obtained by restricting attention to non-adaptive
adversaries as defined below. We establish relations between the notions as summarized in Fig. 4.
The shown relations hold in both the adaptive and non-adaptive cases.

IB-PRP security. Let (F,KDF) be an IB-FPE scheme and A an adversary we call an ib-prp
adversary. Define

Advib-prp
F,KDF(A) = 2 Pr[Gib-prp

F,KDF(A)]− 1,

where game Gib-prp
F,KDF(A) is on the left in Fig. 3. The game picks a random challenge bit b and runs

the adversary. The latter gets oracles Enc,Dec for encryption and decryption, an expose oracle
Exp, a challenge oracle Ch and access to an instance P of the ideal primitive F.IP = KDF.IP. It
returns a bit b′ and wins if b′ = b. XI is the set of exposed identities and ChI is the set of challenge
identities. These sets stay disjoint throughout the game. Let us refer to an identity as neutral if
it is in neither of these sets. All identities start neutral, since the sets XI,ChI are initialized to
empty. Encryption oracle Enc takes an identity I, tweak T and message X and returns ciphertext
Y , while decryption oracle Dec correspondingly taking identity I, tweak T and ciphertext Y to
return message X. For neutral identities (and thus at the start of the game), these oracles behave
honestly, meaning use F under keys derived via KDF under master key K, regardless of the value
of the challenge bit b. Imagine the adversary querying these for a while. Adaptively, at any point
in this process, it can either expose the key of an identity I via a Exp(I) query (this captures
real-world compromise of the key of this identity), or switch I to challenge mode via a Ch(I)
query. If I is exposed, the encryption and decryption oracles for it continue to behave honestly. If
I is switched to a challenge identity, then encryption and decryption continue to behave honestly if
b = 1, but, if b = 0, they use, for any given tweak, a permutation that is random subject to being
consistent with prior queries and replies for that identity and tweak.

IB-KR security. Let (F,KDF) be an IB-FPE scheme and A an adversary we call an ib-kr adver-
sary. Define

Advib-kr-ti
F,KDF (A) = Pr[Gib-kr-ti

F,KDF (A)]

Advib-kr-ai
F,KDF (A) = Pr[Gib-kr-ai

F,KDF (A)] ,

where the games are defined (together, they differ on just one indicated line) on the right in Fig. 3.
There is no challenge bit, and the encryption and decryption oracles are always honest, using F.
Oracle Exp again allows key exposure. Choice of challenge identities is again adaptive, meaning an
identity can be named as a challenge one after encryption and decryption queries, either to it or to
other identities. The adversary returns a key and an identity. In the target-identity case (ib-kr-ti),
it wins if the key it provides is the correct one for the identity it provides. In the all-identity
(ib-kr-ai) case, the identity it provides is ignored, and the adversary wins if the key it provides is
correct for some (any) identity. In both cases, of course, the adversary can only win if the identity
for which it finds the key is not exposed.

Key-derivation functions. In designs of IB-FPE schemes we will of course want efficient key-
derivation functions. But in analyses and for other conceptual purposes, it will be useful to consider
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ib-prp ib-kr-ti

ib-kr-ai

P
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p
.

3.
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Prop. 3.3

Figure 4: Relations between notions of IB-PRP security. An arrow A→ B is an impli-
cation: if an IB-PRP scheme meets A then it also meets B. A barred arrow A 6→ B is a
separation: there exists an IB-PRP scheme meeting A but not B. Unannotated lines
represent trivial relations. The relations hold in both the adaptive and non-adaptive
settings.

key-derivation functions that are not efficient. In particular we define the uniform key-derivation
function U = U[F, ID], associated to F and a set ID of identities, to capture users having random,
independent keys. Formally, let the master-key space U.MKS = Func(ID, {0, 1}F.kl) be the set of
all functions from ID to {0, 1}F.kl, so that a master key K : ID → {0, 1}F.kl is a function taking an
identity and returning the key K(I). Then the function U : U.MKS × ID → {0, 1}F.kl is defined
by U(K, I) = K(I). Picking K at random means the keys of different identities are random and
independent.

Non-adaptive security. Let A be either an ib-prp or an ib-kr adversary. We say that it is
non-adaptive if there is no identity I for which A makes both a Exp(I) query and a non-Exp(I)
—that is, Ch(I), Enc(I, ·, ·) or Dec(I, ·, ·)— query. Thus, the adversary must make its decision
to expose the key of an identity I up front, without prior queries to Enc(I, ·, ·) or Dec(I, ·, ·).
(The definition also excludes post Exp(I) queries Enc(I, ·, ·), Dec(I, ·, ·) and Ch(I), but these are
redundant anyway.) The security we prove for our constructions of IB-FPE schemes is restricted
to non-adaptive adversaries as adaptivity allows selective-opening attacks (SOAs) [19, 7]. We
elaborate on this below.

Discussion. In the definition of security for identity-based encryption (IBE) [13], the adversary
can pick its (single) challenge not just while querying an exposure oracle (and, in the CCA case,
a decryption oracle), but as a function of encryptions under identities of its choice. The latter is
captured, trivially, by giving the adversary the master public key up front. Our setting is symmetric,
so there is no master public key. As per the paradigm of [4], we accordingly give the adversary
an encryption oracle. (To capture CCA, we also give it a decryption oracle. We continue of
course to give the exposure oracle.) We allow multiple challenge identities, not just one. Starting
encryption (and decryption) for an identity as honest and switching to challenge mode via Ch
captures an adaptive (encryption-dependent) choice of challenge identities to mirror IBE security.
However, the presence of multiple challenges means that this effectively allows a SOA. SOAs are
notoriously subtle, and security against them is known (at least for other primitives) to be hard to
achieve [19, 7, 5, 23]. Correspondingly (and unsurprisingly) we find that we are unable to show our
schemes meet our ib-prp definition for adaptive adversaries. We prove it, instead, for non-adaptive
adversaries. These adversaries are still very powerful. (It is unclear that adaptivity is realistic or
possible in practice.) We leave adaptive security as an open question.

13



Game Gfp
F,d(J, J ′)

P ←$ F.IP ; T ←$ F.TS
For i = 1, . . . , d do Xi←$ F.Dom \ {X1, . . . , Xi−1}
V ← (F.EP (J, T,X1), . . . ,F.EP (J, T,Xd))

V ′ ← (F.EP (J ′, T,X1), . . . ,F.EP (J ′, T,Xd))

Return (V = V ′)

Figure 5: Game to define the false positive advantage of F on d random messages, for
subkeys J and J ′.

The multi-user (mu) setting [3, 2] considers many users, having keys that are uniformly and
independently distributed. Mu security of an FPE scheme F can be viewed as a special case of our
setting, as follows. Let n be the number of users, and let ID = {1, . . . , n}. Let U = U[F, ID] be the
uniform key-derivation function for F over this set of identities, and consider the IB-FPE scheme
(F,U). Let us call an ib-prp adversary A a mu adversary if it begins by querying all n identities
to its Ch oracle, and makes no Exp queries. Then mu security of F is exactly ib-prp security
of (F,U) relative to mu adversaries. In this way, certain results about IB-FPE will automatically
imply results on the mu security of the base FPE scheme. Also, this lends a different perspective
on IB-FPE, viewing it as a generalization of mu security in which keys of different users are not
necessarily random and independent, key exposures are permitted and identities can be adaptively
and optionally made challenge ones. We thank Stefano Tessaro for pointing out this connection
and viewpoint to us.

A tweakable blockcipher [28] is the special case of an FPE scheme F in which F.Dom = {0, 1}F.bl

for some F.bl. Mu security for tweakable blockciphers was considered in [40, 26]. The work of
LLMM [26], which is concurrent to, and independent of, ours, goes further to allow a key-derivation
function so that they consider what in our language is effectively an identity-based tweakable
blockcipher. Their definition of security, however, does not allow exposures and does not allow
challenge identities to be adaptively determined. It is the special case of our ib-prp in which we
restrict attention to what, above, we called mu adversaries.

False positive rate. Fix an IB-FPE scheme (F,KDF). In some settings, we have an F-key J and
an identity I and want to test whether J = KDF(K, I). We don’t have K, or the task is of course
easy, but we do have access to an oracle F.EP (KDF(K, I), ·, ·). The strategy is pick some tweak
T and inputs X1, . . . , Xd, and declare J correct if F.EP (KDF(K, I), T,Xi) = F.EP (J, T,Xi) for all
i ∈ {1, . . . , d}. This test is not always correct. There may be false positives, meaning it might

accept even if J 6= KDF(K, I). Here we give definitions to quantify this. Consider game Gfp
F,d(J, J

′)

defined in Fig. 5 associated to F, keys J, J ′ ∈ {0, 1}F.kl and integer d ≤ |F.Dom|. Then define the
false positive advantage

Advfp
F,d = max

J 6=J ′
Pr[Gfp

F,d(J, J
′)]

as the maximum, over all distinct keys J, J ′ ∈ {0, 1}F.kl, of the probability that the game returns
true.

We now compute this advantage for the case that F is ideal. Let N = |F.Dom| be the size of
the domain. If J 6= J ′ then F.EP (J, T, ·) and F.EP (J ′, T, ·) are independent random permutations,
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and hence

Advfp
F,d =

1

N(N − 1) · · · (N − d+ 1)
. (4)

The choice of d required to make the bound of Eq. (4) negligible is usually quite small. For example
if N = 232 then setting d = 9 will be enough, by Eq. (4), to ensure a false positive advantage of

only Advfp
F,d ≤ 2−256.

When F is not ideal, the false positive advantage depends on the structure of F. It is easy
to give artificial examples of F for which Advfp

F,d remains high even for large d, for example by
having two distinct keys J, J ′ that induce the same encryption function on all tweaks, meaning
F.E(J, T,X) = F.E(J ′, T,X) for all T,X, in which case Advfp

F,d = 1 for all d. Real and natural
designs of FPE schemes, however, are not expected to have such anomalies, and so it is customary
to assume that the false positive advantage is about the same as that of an ideal FPE with the
same domain, meaning approximated by Eq. (4). We will do this in our estimates.

Equivalence of ib-kr notions. It is clear that ib-kr-ai tightly implies ib-kr-ti; we now prove the
converse. Given an ib-kr-ai adversary Aai, one can construct an ib-kr-ai adversary Ati by running
the former to get a candidate (I, J), and then testing J for all identities in the challenge set ChI to

find a matching identity. We will use Advfp
F,d defined above to account for the probability of false

positive.

Proposition 3.2 Let (F,KDF) be an IB-FPE scheme. Suppose that we are given an ib-kr-ai ad-
versary Aai of q Ch queries. For a parameter d ∈ N, we can construct an ib-kr-ti adversary Ati of
about the same running time plus qd calls to F.E such that

Advib-kr-ai
F,KDF (Aai) ≤ Advib-kr-ti

F,KDF (Ati) + q ·Advfp
F,d .

Adversary Ati uses the same number of queries as Aai, plus qd additional Enc queries. Finally, if
Aai is non-adaptive, so is Ati.

Proof of Proposition 3.2: Adversary Ati runs Aai and uses its oracles to answer the queries of
Aai. When the latter outputs a candidate (I ′, J), the former samples messages X1, . . . , Xd uniformly
without replacement from F.Dom, and picks a tweak T at random. Then for every identity I in the
challenge set ChI, it compares the answers of F.E(J, T,Xi) and Enc(I, T,Xi), for all i ∈ {1, . . . , d},
and returns (I, J) if those answers are consistent. Let Hit be the event that J is the subkey of some
identity in the challenge set ChI. Let Bad be the event that there is an identity I ∈ ChI such that
J is not the subkey of I, but the testing for I returns consistent answers. Then

Advib-kr-ai
F,KDF (Aai) = Pr[Hit], and

Advib-kr-ti
F,KDF (Ati) ≥ Pr[Hit ∧ Bad] ≥ Pr[Hit]− Pr[Bad] .

On the other hand, let Badi be the event that among the q involved identities, the subkey J ′ of
the ith identity is not J , but the encryption of the messages X1, . . . , Xd for tweak T under J ′ are
consistent with those under the subkey J . Then

Pr[Bad] ≤ Pr
[ q⋃
i=1

Badi
]
≤

q∑
i=1

Pr[Badi] ≤ q ·Advfp
F,d .

Summing up, we have

Advib-kr-ai
F,KDF (Aai) ≤ Advib-kr-ti

F,KDF (Ati) + q ·Advfp
F,d

15



Adversary AEnc,Dec,Exp,Ch,P
prp

(J, I)←$AEncSim,DecSim,Exp,Ch,P
kr ; TI ← arg minT |Q(I, T )|

For i = 1, . . . , n do

X ←$ F.Dom \Q(I, TI) ; Q(I, TI)← Q(I, TI) ∪ {X}
If Enc(I, TI , X) 6= F.E(J, TI , X) then return 0

Return 1

Subroutine EncSim(I, T,X)

Y ← Enc(I, T, Y );Q(I, T )← Q(I, T ) ∪ {X}
Return Y

Subroutine DecSim(I, T, Y )

X ← Dec(I, T, Y ); Q(I, T )← Q(I, T ) ∪ {X}
Return X

Figure 6: Adversary Aprp for Proposition 3.3.

as claimed.

ib-prp implies ib-kr. One would expect that prpa security of an IB-FPE scheme implies its
ib-kr-ti (and thus ib-kr-ai as per Proposition 3.2) security. A basic template for showing that
indistinguishability style security implies key-recovery security is given in [35]. The kr adversary
is executed to obtain a candidate key J ′. To determine its challenge bit, the executing adversary
now tests J ′ by seeing if encryption under it, on some “un-used” input, equals the output of the
encryption oracle on the same input, where “un-used” means not already queried to the encryption
oracle in the simulation of the kr-adversary. In the b = 1 case, the test will succeed. In the b = 0
case, the output of the encryption oracle is random and will equal the encryption under J ′ with a
probability inverse in the size of the domain. Since the latter is usually large, the probability p of
success in this case will be small.

Here we follow the basic template above. Given an ib-kr-ti adversary Akr, without loss of
generality, we can assume that the adversary makes only a single Ch query, and it is the very last
query before the adversary outputs its guess (I, J). We say that Akr leaves at least v unused points
if there is a tweak T such that Akr makes at most (|F.Dom|−v) Enc(I, T, ·) or Dec(I, T, ·) queries.

Proposition 3.3 Let (F,KDF) be an IB-FPE scheme and let d = |F.Dom| be the size of the domain
of F. Suppose we are given an ib-kr adversary Akr leaving at least v unused points. Let n be an
integer parameter satisfying 1 ≤ n ≤ v. Then we build an adversary Aprp (shown in Fig. 6) such
that

Advib-kr-ti
F,KDF (Akr) ≤ Advib-prp

F,KDF(Aprp) + p ,

where

p = 2F.kl · (v − n)!

v!
.

Adversary Aprp makes the same number of queries as Akr, plus n additional Enc queries. The
running time of Aprp is that of Akr plus the time for n executions of F.E. Finally, if Akr is non-
adaptive, so is Aprp.
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If d is large then p can be easily made small. The difficult case is when d is small. To illustrate
the quality of our bounds in this case, let us consider an example, namely d = 104, corresponding
to the encryption of 4 decimal digits of a credit-card number. With DFF, the key length will be
F.kl = 256. Setting v = d/2 = 5000 and n = 30 we have

p = 2256 · (5000− n)!

5000!
≤ 2256 · 2−368 ,

which is tiny.

Proof of Proposition 3.3: Adversary Aprp, shown in Fig. 6, runs Akr. It answers all the latter’s
oracles via its own oracles of the same names, but also records related quantities. The set Q(I, T )
holds all X such that either an Enc(I, T,X) query was made or a Dec(I, T, ·) query returned X.
As per our initialization conventions, sets are assumed initialized to empty and integers to 0. Once
Akr has terminated and returned (J, I), adversary Aprp tests whether J is the right key for I. It
first finds a tweak TI , called a minimal tweak for I, that minimizes the number of Enc(I, T, ·) and
Dec(I, T, ·) queries, thereby allowing the maximum number of possible tests. Aprp obtains further
example encryptions under I and its minimal tweak. This ensures the presence of at least v unused
points for tweak TI . The examples are then compared to the values predicted by J , and b′ ends up
being 1 if all examples match. Adversary Aprp returns b′.

For the analysis, let b denote the challenge bit in the execution of Gib-prp
F,KDF(Aprp). We claim that

Pr[ b′ = 1 | b = 1 ] ≥ Advib-kr-ti
F,KDF (Akr) (5)

Pr[ b′ = 1 | b = 0 ] ≤ p . (6)

Subtracting we get

Advib-prp
F,KDF(Aprp) = Pr[ b′ = 1 | b = 1 ]− Pr[ b′ = 1 | b = 0 ]

≥ Advib-kr-ti
F,KDF (Akr)− p ,

which establishes the theorem. We now justify the two numbered equations above.

First suppose b = 1. The replies thatAkr gets to its oracle queries match those in game Gib-kr-ti
F,KDF (Akr).

If Akr succeeds in the latter, then J = KDF(K, I) so b′ will be 1 and Aprp will return 1. This justifies
Eq. (5).

Now suppose b = 0. Recall that there are n unused points for tweak TI . If we make Enc queries on
those points, the answers are random and distinct, subject to being consistent with prior queries
and answers. For any fixed key J , the probability that the tests succeed is at most

n∏
i=0

1

v − i
=

(v − n)!

v!
.

Since there are 2F.kl keys, the union bound yields Eq. (6).

Ib-kr doesn’t imply ib-prp. Conversely, we claim that ib-kr-ti (and thus ib-kr-ai due to Propo-
sition 3.2) does not imply ib-prp. (This is the hatched arrow in Fig. 4.) This can be shown by
counter-example. Thus, consider the FPE scheme F defined by F.E(J, T,X) = X for all J, T,X.
Let ID be some non-empty set of identities and let KDF = U[F, ID] be the associated uniform
key-derivation function as defined above. IB-FPE scheme (F,KDF) is certainly not ib-prp secure.
However an adversary A has Gib-kr-ti

F,KDF (A) ≤ 2−F.kl, making it ib-kr-ti secure if the key length of F is
large.
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4 Attacks

In this section we give generic non-adaptive attacks on any IB-FPE (F,KDF) that show inherent
quantitative limits to the security that is achievable. Our attacks recover derived keys (meaning,
have good advantage under our ib-kr-ai metric), not just violate ib-prp security. An important
implication of these attacks is that for k bits of ib-kr-ai security, the key-length of F (which is
the length of derived keys) must be at least 2k-bits regardless of the length of the master key.
The reason, roughly, is that collisions between derived keys can be exploited to violate security.
These attacks are important to show that our constructions of IB-FPE schemes in later sections
are optimal in security given the key lengths.

Overview and diversity. Let (F,KDF) be an IB-FPE scheme. For integer parameters q, p ≥ 1,
we will show that there is an attack (adversary) A that succeeds in key recovery with advantage
Advib-kr-ai

F,KDF (A) ≥ Ω(pq) · 2−F.kl. The adversary makes O(q) Enc and Ch queries and has offline
computation effort about the cost of O(p) encryptions under F.E. In particular, to allow p, q to
reach O(2k), one must have F.kl ≥ 2k.

We define the diversity KDivKDF(q) of KDF relative to q as the expected size of the set
{KDFP (K, I1), . . . ,KDFP (K, Iq)}, where the expectation is over P ←$ KDF.IP, K←$ KDF.MKS,
and I1, . . . , Iq sampled uniformly without replacement from KDF.IS (that is, sampled uniformly
and independently subject to being distinct). High diversity means that keys of different identities
are largely distinct, while low diversity means keys of distinct identities frequently collide. We will
give two, separate attacks. The first, called the matching attack (MA) works when the diversity is
low. Specifically, it has a high (constant) ib-kr-ai advantage when KDivKDF(q) ≤ q/4. The second,
called the exhaustive-search attack (ESA) works when the diversity is high. Specifically, it has
ib-kr-ai advantage around Ω(pq) · 2−F.kl when KDivKDF(q) > q/4. All cases for the diversity being
covered, one or the other attack always applies to get ib-kr-ai advantage of the claimed form. The
analyses of the attacks are made more difficult by the fact that F and KDF share the same instance
of the ideal primitive.

The matching attack. Let (F,KDF) and q be given. We associate to them the matching adver-
sary MAq described in Fig. 7. In this attack, the adversary first samples without replacement q
identities I1, . . . , Iq, and picks a random `←$ {1, . . . , q}. The goal of the adversary is to recover the
key of some identity Ii, for i ∈ {1, . . . , q}\{`}. To achieve this, it queries Exp(I`) to get the key
J` corresponding to I`, and outputs J` as its guess. The intuition is that if the set {J1, . . . , Jq} of
keys for all identities involved is small (which happens on the average if the diversity is low) then
J` is likely to equal Ji for some i 6= `, and the adversary wins. The cost of the attack is q queries
to Enc and one query to Exp. The following theorem gives a precise lower bound on adversary
advantage.

Theorem 4.1 Let (F,KDF) be an IB-FPE scheme. Then for any q ∈ N we have

Advib-kr-ai
F,KDF (MAq) ≥

1

2
− KDivKDF(q)

q
.

In particular if KDivKDF(q) ≤ q/4 then Advib-kr-ai
F,KDF (MAq) ≥ 1/2− 1/4 = 1/4, meaning the ib-kr-ai

advantage is very high.

Proof of Theorem 4.1: Let K be the master key of KDF and let P ←$ KDF.IP. From Markov’s
inequality,

Pr
[∣∣{KDFP (K, I1), . . . ,KDFP (K, Iq)}

∣∣ ≥ q/2] ≤ KDivKDF(q)

q/2
.
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Adversary MAEnc,Dec,Exp,Ch,P
q

S ← ∅ ; T ←$ F.TS
X ←$ F.Dom ; `←$ {1, . . . , q}
For i← 1 to q do

Ii←$ KDF.IS\S ; S ← S ∪ {Ii}
For i ∈ {1, . . . , q}\{`} do

C ← Ch(Ii, T,X)

Pick arbitrary I ∈ {I1, . . . , Iq}\{I`}
Return (I,Exp(I`))

Adversary ESAEnc,Dec,Exp,Ch,P
q,p,d

S1, S2 ← ∅ ; T ←$ F.TS
For `← 1 to d do

X`←$ F.Dom\S1 ; S1 ← S1 ∪ {X`}
For i← 1 to q do

Ii←$ KDF.IS\S2 ; S2 ← S2 ∪ {Ii}
For `← 1 to d do V` ← Enc(Ii, T,X`)

Zi ← (V1, . . . , Vd)

For j ← 1 to p do

Jj ←$ {0, 1}F.kl

For `← 1 do d do U` ← F.EP (Jj , T,X`)

Z ← (U1, . . . , U`) ; i← Find(Z,Z1, . . . , Zq)

If i > 0 then Ch(Ii); Return (Ii, Jj)

Figure 7: Top: The matching attack. Bottom: The exhaustive search attack.

Let S = {KDFP (K, I1), . . . ,KDFP (K, Iq)} and suppose |S| ≤ q/2 which occurs with probability
at least 1 − 2 · KDivKDF(q)/q. We say that identity Ii is bad if there is some j ∈ {1, . . . , q} \ {i}
such that Ii and Ij have the same derived key, meaning KDFP (K, Ii) = KDFP (K, Ij). Note that if
there are at most r bad identities then the set S must have size at least q − r. Since we assumed
|S| ≤ q/2, there are at least q/2 bad identities. Since we pick ` at random, the chance that I` is
bad is at least 1/2. Hence Advib-kr-ai

F,KDF (MAq) ≥ 1/2−KDivKDF(q)/q as claimed.

The exhaustive search attack. Let (F,KDF) be given, as well as integer parameters p, q, d.
We associate to them adversary ESAq,p,d described in Fig. 7. Algorithm Find(Z,Z1, . . . , Zq), used
in the attack as a subroutine, returns an index i such that Z = Zi if Z ∈ {Z1, . . . , Zq}, and 0
otherwise. The attack somewhat generalizes and extends the NIST/NSA attack on FF2 [21], and
also resembles Biham’s key-collision attack on DES [11]. Biham’s attack can be viewed as a special
case of ours, where the key-derivation function is the uniform one, the domain is large, and the
parameters p and q are close to 2F.kl/2. The main novelty is a rigorous analysis lower-bounding
the ib-kr-ai advantage. The attack uses dq queries to Enc, q queries to Ch, and no Exp queries.
The running time is that of dp executions of F.E plus p executions of Find. With appropriate data
structures, the latter should cost about O(p log q). The value of d will be a small constant that, in
estimates above, we absorbed into the big-oh.

The idea is as follows. The adversary picks distinct identities I1, . . . , Iq. Let J ′i = KDFP (K, Ii),
where K is the master key chosen in the overlying key-recovery game Gib-kr-ai

F,KDF (ESAq,p,d). The
adversary aims to find one of the target keys J ′1, . . . , J

′
q via exhaustive search over the space of

FPE keys. It picks at random p keys J1, . . . , Jp from the key space {0, 1}F.kl of F. Now, for
each i, j, it aims to test whether J ′i = Jj . If any such test succeeds, it can call Ch(Ii), return
(Ii, Jj) and win. If the tests are perfectly correct, then it wins with probability about pm · 2−F.kl

where m = |{J ′1, . . . , J ′q}|, and if the diversity is high, like ≥ q/4, then this looks like the ib-kr-ai
advantage we want. There are however several difficulties. One is that there is no reasonable way
to do perfectly correct testing. We will handle this by using the false positive advantage Advfp

F,d
defined in Section 3. Another difficulty is the analysis. In particular, KDivKDF(q) is an expectation
taken over the choice of P , but the same P is used by the encryption algorithm in the tests, so we
cannot use independence of the success and false-positive probabilities.

The following gives a lower bound on the ib-kr-ai advantage of the exhaustive search attack.
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Theorem 4.2 Let (F,KDF) be an IB-FPE scheme. Then for any p, q, d ∈ N such that pq ≤ 2F.kl

we have

Advib-kr-ai
F,KDF (ESAq,p,d) ≥

p ·KDivKDF(q)

2F.kl+1
− pq ·Advfp

F,d .

We saw above that if KDivKDF(q) ≤ q/4 then the matching attack already gives an attack with high
(constant) ib-kr-ai advantage. The exhaustive search attack is effective in the complementary case

where KDivKDF(q) > q/4. In this case, assuming Advfp
F,d is negligible, Theorem 4.2 says the attack

has ib-kr-ai advantage about pq/2F.kl+3. In particular p = q ≈ 2F.kl/2 yields constant advantage,
showing that k bits of security requires F.kl ≥ 2k.

Proof of Theorem 4.2: Let T and X1, . . . , Xd be the tweak and test messages that the adversary
samples. Let K denote the master key chosen in the overlying key-recovery game Gib-kr-ai

F,KDF (ESAq,p,d)

and let J ′i = KDFP (K, Ii) for 1 ≤ i ≤ q. Let Hit be the event that some guess Jj of the adversary is
one of the target keys, meaning there are i, j such that Jj = J ′i . For i ∈ {1, . . . , q} and j ∈ {1, . . . , p}
let Badi,j be the event that Jj 6= J ′i and (F.EP (Jj , T,X1), . . . ,F.E

P (Jj , T,Xd)) = (Enc(Ii, T,X1),
. . . ,Enc(Ii, T,Xd)). Let Bad be the event ∃ i, j : Badi,j . If Hit ∧ Bad happens then one of the
adversary’s guesses is one of the target keys, and there are no false positive during the testing. So

Advib-kr-ai
F,KDF (ESAq,p,d) ≥ Pr[Hit ∧ Bad] ≥ Pr[Hit]− Pr[Bad] .

Separating these probabilities allows us to analyze them independently even though the P they use
is the same. First we lower bound Pr[Hit]. Let Y be the random variable taking value the size of
the set {J ′1, . . . , J ′q}. Then

Pr[Hit] = E

[
1−

(
1− Y

2F.kl

)p]
.

Let a = Y/2F.kl ≥ 0. We assumed pq ≤ 2F.kl, and clearly Y ≤ q, so ap ≤ 1. This means the
conditions of Lemma 2.1 for a and p are met. We now apply the lemma to get

E

[
1−

(
1− Y

2F.kl

)p]
≥ E

[
pY

2 · 2F.kl

]
=
p ·E[Y ]

2F.kl+1
=
p ·KDivKDF(q)

2F.kl+1
.

Next we upper bound Pr[Bad]. For any i ∈ {1, . . . , q} and j ∈ {1, . . . , p}, if Jj 6= J ′i then the
probability that (F.EP (Jj , T,X1), . . . ,F.E

P (Jj , T,Xd)) = (Enc(Ii, T,X1), . . . ,Enc(Ii, T,Xd)) is at

most Advfp
F,d, and hence Pr[Badi,j ] ≤ Advfp

F,d. By the union bound we have Pr[Bad] ≤ pq ·Advfp
F,d.

Putting all this together we have

Advib-kr-ai
F,KDF (ESAq,p,d) ≥

p ·KDivKDF(q)

2F.kl+1
− pq ·Advfp

F,d

as claimed.

5 The PRF construction

We give a modular approach to build IB-FPE schemes. Given a prpa-secure FPE scheme F we set
KDF to a PRF to get an ib-prp-secure IB-FPE scheme (F,KDF). Then we instantiate KDF to get
IB-FPE schemes with security matching our attacks.

The PRF construction. Theorem 5.1 below proves ib-prp security of (F,KDF) assuming prpa
security of F and prf security of KDF. The different resource metrics for A referred to below were
defined in Section 3. The proof is a standard hybrid argument.
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Theorem 5.1 Let (F,KDF) be an IB-FPE scheme. Suppose we are given a non-adaptive ib-prp
adversary A whose Enc,Dec,Ch queries involve at most u different identities, with at most q1
queries to Enc,Dec per identity. Assume A makes qe queries to Exp. Then we can construct a
prpa adversary A of q1 Enc/Dec queries, and a prf adversary B making u+ qe queries to its Fn
oracle, such that

Advib-prp
F,KDF(A) ≤ u ·Advprpa

F (A) + 2 ·Advprf
KDF(B) . (7)

The running time of A and B is about the same as that of A plus the time for q1 executions of F.E.

Proof of Theorem 5.1: We construct adversary B as follows. It runs A and simulates game
Gib-prp

F,U (A). However, instead of sampling a random 2k-bit key for each identity I, it calls its PRF
oracle on input I. Then

Pr[Gprf
KDF(A)⇒ true | b = 1] = Pr[Gib-prp

F,KDF(A)], and

Pr[Gprf
KDF(A)⇒ false | b = 0] = Pr[Gib-prp

F,U (A)],

where b is the challenge bit in game Gprf
KDF(A) and U = U[F,KDF.IS] is the uniform key-derivation

function. Subtracting, we obtain

Advprf
KDF(B) = Pr[Gib-prp

F,KDF(A)]− Pr[Gib-prp
F,U (A)]

=
1

2
Advib-prp

F,KDF(A)− 1

2
Advib-prp

F,U (A) .

We now construct the prp adversary A via a standard hybrid argument. The code of A is shown
in Fig. 8. It picks an index g ← [1..u] and uses its Enc/Dec oracles to respond to queries on the
g-th identity. Consider games Gg in Fig. 8, for 0 ≤ g ≤ u. Note that

Advib-prp
F,U (A) = Pr[Gu]− Pr[G0] .

On the other hand,

Advprpa
F (A) =

1

u

u∑
g=1

Pr[Gg]− Pr[Gg−1]

=
1

u
(Pr[Gu+1]− Pr[G0])

=
1

u
Advib-prp

F,U (A) .

Summing up,
Advib-prp

F,KDF(A) ≤ u ·Advprpa
F (A) + 2Advprf

KDF(B) ,

which concludes the proof.

From Theorem 5.1, one can obtain an IB-FPE scheme in the standard model, by setting F to
a standard-model FPE scheme such as the Sometimes-Recurse shuffle [30]. This answers in the
affirmative the theoretical question of whether IB-FPE is achievable in the standard model.

Tightness of bound. Suppose F.kl = 2k and F has ideal behavior. Then we would expect
Advprp

F (A) ≈ q1/2
2k, corresponding to exhaustive key search being the best attack on prp secu-

rity, and consequently from Proposition 3.2, Advprpa
F (A) . 2q1/2

2k. Similarly assuming KDF has
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Adversary AEnc,Dec,Ch,P

g←$ [1..u]; c← 0

For i ∈ [1..u] do Ji←$ {0, 1}2k
b′←$AEncSim,DecSim,ExpSim,ChSim,P

Return b′

EncSim(I, T,X)

If ET[I, T,X] 6= ⊥ then return ET[I, T,X]

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

J ← Jv[I]
If (v[I] = g) then Y ← Enc(T,X)

Else

If I ∈ ChI then

If (v[I] < g) then Y ← F.E(J, T,X)

Else Y ←$ {Y ∈ F.Dom : DT[I, T, Y ] = ⊥}
Else Y ← F.E(J, T,X)

ET[I, T,X]← Y ; DT[I, T, Y ]← X; Return Y

DecSim(I, T, Y )

If DT[I, T, Y ] 6= ⊥ then return DT[I, T, Y ]

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

J ← Jv[I]
If (v[I] = g) then X ← Dec(T, Y )

Else

If I ∈ ChI then

If (v[I] < g) then X ← F.D(J, T, Y )

Else X ←$ {X ∈ F.Dom : ET[I, T,X] = ⊥}
Else X ← F.D(J, T, Y )

ET[I, T,X]← Y ; DT[I, T, Y ]← X ; Return X

ExpSim(I)

J ←$ {0, 1}2k; Return J

ChSim(I)

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

ChI← ChI ∪ {I}
If v[I] = g then Ch()

Game Gg (0 ≤ g ≤ u)

For i ∈ [1..u] do Ji←$ {0, 1}2k
c← 0; b′←$AEnc,Dec,Exp,Ch,P

Return (b′ = 1)

Enc(I, T,X)

If ET[I, T,X] 6= ⊥ then return ET[I, T,X]

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

J ← Jv[I]
If I ∈ ChI then

If (v[I] ≤ g) then Y ← F.E(J, T,X)

Else Y ←$ {Y ∈ F.Dom : DT[I, T, Y ] = ⊥}
Else Y ← F.E(J, T,X)

ET[I, T,X]← Y ; DT[I, T, Y ]← X; Return Y

Dec(I, T, Y )

If DT[I, T, Y ] 6= ⊥ then return DT[I, T, Y ]

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

If I ∈ ChI then

If (v[I] ≤ g) then X ← F.D(J, T, Y )

Else X ←$ {X ∈ F.Dom : ET[I, T,X] = ⊥}
Else X ← F.D(J, T, Y )

ET[I, T,X]← Y ; DT[I, T, Y ]← X ; Return X

Exp(I)

J ←$ {0, 1}2k; Return J

Ch(I)

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

ChI← ChI ∪ {I}

Figure 8: The games and constructed adversary A in the proof of Theorem 5.1.

optimal prf security and |KDF.MKS| ≥ 2k, we would expect Advprf
KDF(B) ≈ (qe + u)/2k. Then the

bound of Eq. (9) becomes

Advib-prp
F,KDF(A) .

2uq1
22k

+
2(qe + u)

2k
. (8)

This allows u, q1, qe to reach O(2k), which as per our attacks means the bound from Theorem 6.1
is essentially tight.

Instantiating KDF. Recall that we want to use only AES as our cryptographic primitive. Thus
one needs to show how to instantiate KDF from a blockcipher E : {0, 1}k × {0, 1}k → {0, 1}k such
that KDF achieves k-bits of prf security assuming that E has k bits of prp-cpa security. This is non-
trivial, and as a stepping stone, we first aim to achieve a good PRF F : {0, 1}k×{0, 1}k−1 → {0, 1}k.
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KDF[E](K, I)

J0 ← EK(I ‖ 00)⊕EK(I ‖ 01); J1 ← EK(I ‖ 10)⊕EK(I ‖ 11)

Return J0 ‖ J1

Figure 9: Key-derivation function KDF[E], where E : {0, 1}k × {0, 1}k → {0, 1}k is a block-
cipher.

BKR [8] suggest that one can build F by way of

FK(x) = EK(x ‖ 0)⊕EK(x ‖ 1) .

The following result by DHT [15] confirms that F indeed has k-bit prf security.

Lemma 5.2 [15] Let E : {0, 1}k×{0, 1}k → {0, 1}k be a blockcipher. Let F : {0, 1}k×{0, 1}k−1 →
{0, 1}k be constructed by EK(x) = FK(x ‖ 0)⊕FK(x ‖ 1). Then for any prf adversary A making
q ≤ 2k−5 queries to Fn, we can construct an adversary A of about the same running time and 2q
oracle queries such that

Advprf
F (A) ≤ Advprp-cpa

E (A) +
1.5q + 3

√
q

2k
.

We then can construct a key-derivation function KDF[E] : {0, 1}k × {0, 1}k−2 → {0, 1}2k by

KDF[E](K, I) = FK(I ‖ 0) ‖FK(I ‖ 1)

for any k-bit master key K and (k − 2)-bit identity I. The key-derivation function KDF[E] can be
expressed in terms of E as in Fig. 9. Proposition 5.3 below shows that KDF[E] also has k-bit prf
security.

Proposition 5.3 Let E : {0, 1}k × {0, 1}k → {0, 1}k be a blockcipher. Let KDF[E] : {0, 1}k ×
{0, 1}k−2 → {0, 1}2k be as in Fig. 9. Then for any adversary A that makes q ≤ 2k−6 queries, we
can construct another adversary A of about the same running time and 4q oracle queries such that

Advprf
KDF[E](A) ≤ Advprp-cpa

E (A) +
3q + 5

√
q

2k
.

Proof of Proposition 5.3: Without loss of generality, suppose that A does not repeat a prior
query. We first reduce the prf security of KDF to the prf security of F , by constructing an adversary
B attacking F . Adversary B runs A. When the latter queries Fn(I), the former queries I ‖ 0 and
I ‖ 1 to its oracle to get answer Z0 and Z1, and returns Z0 ‖Z1 to A. When A finally outputs a

bit b′, B outputs the same bit. Let a and b be the challenge bit in game Gprf
KDF(A) and Gprf

F (B)
respectively. Then

Pr[Gprf
KDF[E](A) | a = 1] = Pr[Gprf

F (B) | b = 1], and

Pr[Gprf
KDF[E](A) | a = 0] = Pr[Gprf

F (B) | b = 0] .

Adding the equations above side by side we have

Advprf
KDF[E](A) ≤ Advprf

F (B) .
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Adversary B has about the same running time as A, and makes 2q ≤ 2k−5 oracle queries. Using
Lemma 5.2, one can construct another adversary A of about the same running time as B, and 4q
oracle queries such that

Advprf
F (B) ≤ Advprp-cpa

E (A) +
3q + 3

√
2q

2k

≤ Advprp-cpa
E (A) +

3q + 5
√
q

2k
.

Putting all this together we get the claimed result.

Discussion. The KDF construction above uses 4 blockcipher calls. Alternatively, one might
consider using Iwata’s CENC method [24] that makes only 3 blockcipher calls. Specifically, let
G : {0, 1}k × {0, 1}k−2 → {0, 1}k be constructed via

GK(I) = (Z⊕E(K, I ‖ 01)) ‖ (Z⊕E(K, I ‖ 10)) ,

for any k-bit master key K and (k−2)-bit identity I, where Z = E(K, I ‖ 00). IMV [25] claim that
G has k-bit prf security, but their analysis is based on a combinatorial result by Patarin [32] whose
proof is very involved with some unproven claims [15]. We therefore use the KDF[E] construction
above, as it has a rigorous proof.

6 The Dbl construction

In Section 5, we followed the natural route to building IB-FPE in which the key-derivation func-
tion KDF is a PRF, and showed that one can instantiate KDF using four calls to an underlying
blockcipher. In this section, we’ll consider how to build a faster key-derivation function KDF for
a class of FPE schemes F that we call square. It is in fact an abstraction of the key-derivation
function of the proposed DFF standard [39]. The key-derivation function makes just two calls to
the underlying blockcipher. Interestingly, it has poor (only birthday-bound) prf security, but we’ll
give a dedicated analysis to justify the (non-adaptive) ib-prp security of the IB-FPE scheme.

We use a common ideal primitive framework. All schemes use a common instance of a single
ideal primitive—an ideal cipher IC(k, k) in which the key and block length are the same. In
particular we allow the starting square FPE scheme F to use P ∈ IC(k, k), and then define KDF
using the same P . This is because, for efficiency and implementation ease, we aim for all final
constructions to be (only) AES-based.

The analysis is made challenging by two elements. First is to not only prove security, but with
a good bound. Second is that the ideal primitive being in common means there can be queries
made to it (directly, or indirectly via other oracles) by both the key-derivation function and the
encryption and decryption functions, so we cannot use independence in a straightforward way.

Square FPE schemes. Let F be an FPE scheme. We say that it is square if there is an integer
k ≥ 1 such that F.kl = 2k and F.IP = IC(k, k). That is, the ideal primitive associated to F is the
ideal cipher with key and block length both the same value k, and moreover keys for the scheme
are of length 2k. DFF is underlain by such a square scheme [39]. (In contrast, FF2 was not.) The
term “square” refers to the fact that the key space has size 22k, the square of the size 2k of what,
below, will be the master key space of the IB-FPE scheme, which is crucial for getting high security
due to the attacks from Section 4.

The Dbl construction. Let F be a square FPE scheme with F.kl = 2k. We first define embedding
schemes, and then a key-derivation function KDF to turn F into an IB-FPE scheme (F,KDF).
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KDFP (K, I)

J0 ← P (K,M0(I),+) ; J1 ← P (K,M1(I),+) ; J ← J0‖J1
Return J

Figure 10: Key-derivation function KDF = Dbl[k,M] associated to embedding scheme M,
where P ∈ IC(k, k).

An embedding scheme M specifies a pair of functions M0,M1 : M.IS → {0, 1}k satisfying two
conditions: (1) Both M0 and M1 are injective and (2) the two maps have disjoint images, meaning
M0(I1) 6= M1(I2) for all I1, I2 ∈ M.IS. We refer to M0,M1 as the embedding functions, and M.IS as
the identity space, of M.

Now we define the key-derivation function KDF = Dbl[k,M] to construct an IB-FPE scheme
(F,KDF). We let KDF.IS = M.IS, meaning the identity space is that of M. We let KDF.mkl = k,
so that a master key is a k-bit string. Then the key-derivation function KDFP : {0, 1}k ×M.IS →
{0, 1}2k is as specified in Fig. 10. The key for identity I is the result of applying the ideal cipher,
keyed with the master key K, to M0(I) and M1(I), and concatenating these k-bit strings to get
a 2k-bit key. The key-derivation function, the encryption algorithm and the decryption algorithm
all have access to P ∈ IC(k, k). We stress that, as discussed above for this common ideal prim-
itive framework, the key derivation uses the same instance of the ideal cipher as encryption and
decryption.

Resistance to attacks. Let F be a square FPE scheme with F.kl = 2k. We consider how well the
attacks of Section 4 do against F under KDF = Dbl[k,M]. First, we claim that our choice of KDF
renders the matching attack entirely ineffective. Indeed, since P (K, ·,+) is a permutation, the keys
for distinct identities will be distinct. Thus for any K ∈ {0, 1}k and any identities I1, . . . , Iq ∈ M.IS,
the set {KDFP (K, I1), . . . ,KDFP (K, Iq)} will have size exactly q. So its expected size, which is our
diversity metric KDivKDF(q) from Section 4, will equal q. Not only does Theorem 4.1 become
vacuous, but, looking at the attack in Fig. 7, we see that it will have ib-kr-ai advantage zero,
because the key returned by Exp(I`) will not equal any of the keys corresponding to the other
identities. This shows a benefit of using a block cipher as the tool in key derivation for KDF. Had
we used even a random oracle, the matching attack would have had at least some success.

The exhaustive search attack does have a non-trivial ib-kr-ai advantage. We noted above
that KDivKDF(q) = q. Assuming the false positive advantage Advfp

F,d is negligible, recall that
Theorem 4.2 says that the ib-kr-ai advantage of the exhaustive search attack is about p·KDivKDF(q)·
2−F.kl−1 = pq · 2−F.kl−1 = pq · 2−2k−1, where q is the number of adversary Enc queries and p is
roughly its running time. So the ib-kr-ai advantage stays below 1 as long as p and q each stay
below 2k. This means we have k-bits of security against this attack, and explains the choice of
square schemes.

In summary, KDF = Dbl[k,M] has been designed so that the attacks we gave in Section 4 are
not threats to the security of F under KDF, in particular because F.kl = 2k while KDF.mkl = k.
However, this does not guarantee security, since there may well be other attacks. Moreover, KDF
has only birthday-bound prf security, and thus using Theorem 5.1 gives us only k/2-bits of ib-prp
security for (F,KDF). The main purpose of this section is to supply proof-based evidence of k-bit
security.

Goals and naive reduction. The assumption we make is that the given square FPE scheme
F satisfies prpa security. (This is equivalent to conventional prp security as per Proposition 3.1.)
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Our goal is thus to reduce the ib-prp security of (F,Dbl[k,M]) to the prpa security of F. As F
is defined in the ideal-cipher model, this involves something somewhat novel, namely a reduction
in the ideal cipher model. (Usually, in idealized models, one directly proves bounds on adversary
advantage rather than giving reductions.) Given a non-adaptive ib-prp adversary A we aim to

build another adversary A and bound Advib-prp
F,KDF(A) as a function of Advprpa

F (A) and the resources

of A, in particular the number u of users (identities) queried. A will simulate A’s P oracle.
The natural approach is a hybrid argument. The naive way of doing this, however, will incur a

loss of u2/2k in the advantage. This is undesirable since we want to show security up to u ≈ 2k, not
u ≈ 2k/2. In more detail, the i-th hybrid game would let the keys of the first i identities be random,
and the rest be specified via KDF as per Fig. 10 (0 ≤ i ≤ u). Adversary A would pick i at random
to play the role of its single user, aiming to simulate the other identities for A. Let Ji denote the
key (underlying the single identity queried) in A’s game. The difficulty is that, for the simulation to
be correct in the case that A’s challenge bit is 1, the j = u− i+1 keys Ji, . . . , Ju must be consistent
with the structure imposed by KDF, meaning be formed by taking 2j distinct, random k bit strings
and concatenating them in pairs. But Ji is random since A is in the prpa game, and while A can
pick Ji+1, . . . , Ju to have the desired structure, this leaves a probability ε = O(u/2k) that Ji will
not have a consistent structure. Specifically, regardless of how A picks distinct Ji+1, . . . , Ju, the
chance that one of those is Ji is ε = (u − i)/2k = O(u/2k). This means a loss of ε in each hybrid
step, meaning, when A picks i, its advantage is the difference in probabilities from the (i + 1)-th
and i-th hybrid games plus ε. When we sum over all hybrids (corresponding to the random choice
of i), we get a uε loss. What we want instead is a reduction with a loss that is O(u/2k) globally.
This is what we will provide below, thereby showing security matching our attacks.

Key usage metric. When invoked with a particular key J , the algorithms F.E,F.D of the square
FPE scheme will invoke their ideal cipher instance P with certain keys. Specifically there is a set
T (J) ⊆ {0, 1}k such that all P -queries of F.E and F.D only use keys in T (J), regardless of the
inputs to F.E,F.D and responses to oracle queries. We let F.nk be the maximum, over all J , of
the size of T (J). This may sound complicated but it is really simple because typical constructions
will evaluate the ideal cipher only on some fixed number of keys related to J . For example, for
F = FFdff , we have F.nk = 1. That is, there is only one blockcipher key used in the construction.
We define this because our bounds will depend on it.

Reduction theorem. We now reduce the non-adaptive ib-prp security of our constructed IB-FPE
scheme to the prpa security of the underlying FPE scheme. (The latter can be further reduced
to its conventional prp security via Proposition 3.1.) The following theorem gives a good bound,
where the global loss (the second term in the bound) is only O(q/2k) over and above the inevitable
linear loss from the hybrid argument, where q is linear (not quadratic) in the number of queries
that A makes to its different oracles. The quality of the bound is the same as that of Theorem 5.1,
despite the low prf security of Dbl[k,M].

Theorem 6.1 Let F be a square FPE scheme with F.kl = 2k. Let KDF = Dbl[k,M] be a key-
derivation function as per Fig. 10. Suppose we are given a non-adaptive adversary A whose Enc,
Dec,Ch queries involve at most u different identities, with at most q1 queries to Enc,Dec per
identity. Assume A makes qe queries to Exp and p queries to IP. The proof constructs an adversary
A such that

Advib-prp
F,KDF(A) ≤ u ·Advprpa

F (A) +
8u+ 8qe + 2p+ 2u · F.nk− 6

2k
. (9)

Adversary A makes at most q1 queries to Enc,Dec and p queries to IP. Its running time is about
the same as that of A.
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Starting above, we may use IP as the name of the game procedure that implements the ideal
primitive instance. Where Fig. 3 gives A oracles Enc,Dec,Exp,Ch, P , we would now give it
oracles Enc,Dec,Exp,Ch, IP, with IP(x) defined to simply return P (x) in the games of Fig. 3.
The reason it helps to name the procedure is that in our proofs it will be programmed, and not
always set to P . It will also be useful to define the key-derivation function KDF : Perm({0, 1}k)×
M.IS→ {0, 1}2k by

KDF(π, I) = π(M0(I)) ‖π(M1(I)) (10)

for all π ∈ Perm({0, 1}k) and all I ∈ M.IS. We prove Theorem 6.1 by invoking lemmas that will
follow.

Proof of Theorem 6.1: Let N = u + qe. Let KDF be the key derivation function defined by
Eq. (10). Using Lemma 6.2 and then Lemma 6.3 we have

Advib-prp
F,KDF(A) ≤ Advib-prp

F,KDF
(A) +

2p+ 2u · F.nk

2k

≤ u ·Advprpa
F (A) +

8N − 6 + 2p+ 2u · F.nk

2k
,

where A is the adversary given by Lemma 6.3.

Lemmas. The first lemma allows a move to a setting where key derivation no longer uses the ideal
primitive P that is used by F, but instead generates keys independently, although still with the
same distribution as that of the prescribed key-derivation scheme. This lemma holds for both
adaptive and non-adaptive adversaries A.

Lemma 6.2 Let F be a square FPE scheme with F.kl = 2k. Let KDF = Dbl[k,M] be the key-
derivation function of Fig. 10. Let KDF be the key derivation function defined by Eq. (10). Let A
be an adversary. Then

Advib-prp
F,KDF(A) ≤ Advib-prp

F,KDF
(A) +

2p+ 2u · F.nk

2k
(11)

where p is the number of IP queries of A and u is the number of different identities involved in the
Enc,Dec queries of A.

Note that the reduction does not change the adversary. Our claim is that the ib-prp advantage of A
with respect to the original key-derivation scheme is bounded by its ib-prp advantage with respect
to the newly-defined key-distribution scheme plus an error term that is linear in the resources.

Proof of Lemma 6.2: Consider games G0 and G1 of Fig. 11. They optimistically imagine that
key generation works as per KDF, picking a random permutation π and using it to specify the user
keys. The notation (L,W, s)← x in the code for IP means this oracle parses its query x as a triple
consisting of a key L ∈ {0, 1}k, an input W ∈ {0, 1}k, and a sign s ∈ {+,−}. If L equals the master
key K, the bad flag is set to true, and game G0, which includes the boxed code, corrects by setting
P (K, ·,+) to π and its inverse P (K, ·,−) to π−1. Game G1, however, does not include the boxed
code. The result is that game G0 is using KDF for key generation while game G1 is using KDF.
Thus

Advib-prp
F,KDF(A) = 2 Pr[G0]− 1 (12)

Advib-prp

F,KDF
(A) = 2 Pr[G1]− 1 . (13)
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Game G0 , G1

b←$ {0, 1} ; K←$ {0, 1}k ; XI← ∅ ; ChI← ∅
P ←$ IC(k, k) ; π←$ Perm({0, 1}k)

For every I ∈ M.IS do

JI,0 ← π(M0(I)) ; JI,1 ← π(M1(I))

JI ← JI,0‖JI,1
b′←$AEnc,Dec,Exp,Ch,IP

Return (b = b′)

Enc(I, T,X)

If ET[I, T,X] 6= ⊥ then return ET[I, T,X]

If (I ∈ ChI and b = 0) then

Y ←$ {Y ∈ F.Dom : DT[I, T, Y ] = ⊥}
Else Y ← F.EIP(JI , T,X)

ET[I, T,X]← Y ; DT[I, T, Y ]← X ; Return Y

Dec(I, T, Y )

If DT[I, T, Y ] 6= ⊥ then return DT[I, T, Y ]

If (I ∈ ChI and b = 0) then

X ←$ {X ∈ F.Dom : ET[I, T,X] = ⊥}
Else X ← F.DIP(JI , T, Y )

ET[I, T,X]← Y ; DT[I, T, Y ]← X ; Return X

Exp(I)

If I ∈ ChI then return ⊥
XI← XI ∪ {I} ; Return JI

Ch(I)

If I ∈ XI then return ⊥
ChI← ChI ∪ {I}
IP(x)

(L,W, s)← x

If (L = K) then

bad← true ; P (K, ·,+)← π ; P (K, ·,−)← π−1

y ← P (x) ; Return y

Figure 11: Games for proof of Lemma 6.2.

Games G0,G1 are identical-until-bad, so by the Fundamental Lemma of Game Playing [10] we have

2 Pr[G0]− 1 = 2 Pr[G1]− 1 + 2 · (Pr[G0]− Pr[G1])

≤ 2 Pr[G1]− 1 + 2 Pr[G1 sets bad] . (14)

Queries to IP may be made directly by the adversary, and there are p such. However, such queries
may also be made by the F.E and F.D algorithms when invoked in Enc and Dec queries. But we
know that for any J the total number of different keys that F.EIP(J, ·, ·) and F.DIP(J, ·, ·) ever use
in their oracle queries is limited to F.nk. Since a total of u identities is involved across the Enc
and Dec queries we have

Pr[G1 sets bad] ≤ p+ u · F.nk

2k
. (15)

Putting together Equations (12)—(15) yields Eq. (11).

The next lemma bounds the ib-prp advantage of a non-adaptive adversary A relative to KDF via
the prpa advantage of a constructed adversary A against the FPE scheme F. This uses a hybrid
argument, but done in such a way that the global loss from the structure of the key-derivation
scheme remains linear (not quadratic) in the resources.

Lemma 6.3 Let F be a square FPE scheme with F.kl = 2k. Let KDF be the key derivation function
defined by Eq. (10). Let A be a non-adaptive adversary whose Enc,Dec,Ch queries involve at most
u different identities, with at most q1 queries to Enc,Dec per identity. Assume A makes qe queries
to Exp and p queries to IP. The proof constructs an adversary A such that

Advib-prp

F,KDF
(A) ≤ u ·Advprpa

F (A) +
8u+ 8qe − 6

2k
. (16)
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Game G2,g , G3,g (0 ≤ g ≤ u)

P ←$ IC(k, k) ; ChI← ∅ ; N ← u+ qe
c← 0 ; e← u

D ← ∅ ; R← {0, 1}k
For i ∈ [1..N ] \ {g} and j ∈ {0, 1} do

Ji,j ←$R ; R← R \ {Ji,j} ; D ← D ∪ {Ji,j}
Jg,0←$ {0, 1}k ; Jg,1←$ {0, 1}k

If (Jg,0 ∈ D) then

bad← true ; Jg,0←$R ; R← R \ {Jg,0}
If (Jg,1 ∈ D ∪ {Jg,0}) then bad← true ; Jg,1←$R

b′←$AEnc,Dec,Exp,Ch,P

Return (b′ = 1)

Enc(I, T,X)

If ET[I, T,X] 6= ⊥ then return ET[I, T,X]

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

J ← Jv[I],0‖Jv[I],1
If (I ∈ ChI and v[I] > g) then

Y ←$ {Y ∈ F.Dom : DT[I, T, Y ] = ⊥}
Else Y ← F.EP (J, T,X)

ET[I, T,X]← Y ; DT[I, T, Y ]← X ; Return Y

Dec(I, T, Y )

If DT[I, T, Y ] 6= ⊥ then return DT[I, T, Y ]

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

J ← Jv[I],0‖Jv[I],1
If (I ∈ ChI and v[I] > g) then

X ←$ {X ∈ F.Dom : ET[I, T,X] = ⊥}
Else X ← F.DP (J, T, Y )

ET[I, T,X]← Y ; DT[I, T, Y ]← X ; Return X

Exp(I)

If (v[I] = ⊥) then e← e+ 1 ; v[I]← e

J ← Jv[I],0‖Jv[I],1 ; Return J

Ch(I)

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

ChI← ChI ∪ {I}

Adversary AEnc,Dec,Ch,IP

ChI← ∅ ; N ← u+ qe ; c← 0 ; e← u

g←$ [1..u] ; R← {0, 1}k
For i ∈ [1..N ] \ {g} and j ∈ {0, 1} do

Ji,j ←$R ; R← R \ {Ji,j}
Jg,0 ← ⊥ ; Jg,1 ← ⊥
b′←$AEncSim,DecSim,ExpSim,ChSim,IP

Return b′

EncSim(I, T,X)

If ET[I, T,X] 6= ⊥ then return ET[I, T,X]

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

J ← Jv[I],0‖Jv[I],1
If (I ∈ ChI and v[I] > g) then

Y ←$ {Y ∈ F.Dom : DT[I, T, Y ] = ⊥}
If (v[I] = g) then Y ← Enc(T,X)

If (I 6∈ ChI or v[I] < g) then Y ← F.EIP(J, T,X)

ET[I, T,X]← Y ; DT[I, T, Y ]← X ; Return Y

DecSim(I, T, Y )

If DT[I, T, Y ] 6= ⊥ then return DT[I, T, Y ]

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

J ← Jv[I],0‖Jv[I],1
If (I ∈ ChI and v[I] > g) then

X ←$ {X ∈ F.Dom : ET[I, T,X] = ⊥}
If (v[I] = g) then X ← Dec(T, Y )

If (I 6∈ ChI or v[I] < g) then X ← F.DP (J, T, Y )

ET[I, T,X]← Y ; DT[I, T, Y ]← X ; Return X

ExpSim(I)

If (v[I] = ⊥) then e← e+ 1 ; v[I]← e

J ← Jv[I],0‖Jv[I],1 ; Return J

ChSim(I)

If (v[I] = ⊥) then c← c+ 1 ; v[I]← c

If (v[I] = g) then Ch(I)

ChI← ChI ∪ {I}

Figure 12: Games and adversary for proof of Lemma 6.3.

Adversary A makes at most q1 queries to Enc,Dec and p queries to IP. Its running time is about
the same as that of A.

Proof of Lemma 6.3: Let N = u + qe. Let I1, . . . , Iu denote the identities involved in A’s
Enc,Dec,Ch queries. Since A is non-adaptive, these are distinct from the identities, denoted
Iu+1, . . . , IN , in A’s Exp queries. To be more precise, since this is how the proof makes crucial use
of the non-adaptivity assumption on A, the sets {I1, . . . , Iu} and {Iu+1, . . . , IN} are disjoint.

We would like to use a hybrid argument in which Ig is viewed as the target for A. The difficulty is
that the keys of different identities are not independent so we cannot simulate the keys of non-target
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identities without knowing the target key, and the latter is of course denied to us in the reduction.
We could move to a game with random, independent keys, but this would result in an additive
security loss involving terms like N2/2k. The following argument keeps the loss to N/2k.

Consider games G2,g,G3,g of Fig. 12, where g ∈ [0..u] is an associated parameter. Here Ji = Ji,0‖Ji,1
is the key associated to Ii for i ∈ [1..N ]. Rather than specify the keys via a permutation π as
prescribed by KDF, we consider sampling them directly, meaning the 2N k-bit strings Ji,j for
i ∈ [1..N ] and j ∈ {0, 1} are random subject to being distinct. The games do this, but not quite.
The key Jg = Jg,0‖Jg,1 is treated differently, being sampled uniformly at random, independently of
other keys. If Jg,0, Jg,1 coincide with some other Ji,j or with each other, the distribution is incorrect.
Game G2,g, which includes the boxed code, corrects, re-sampling this key to obey the distinctness
rule, but game G3,g, which excludes the boxed code, does not correct. The former reflects the real
game, the latter the one conducive to doing our hybrid because non-target keys can be sampled
without knowing the target key. (It is important that we did not overkill by asking all keys to be
independent of each other in the second game, for this would incur the quadratic security loss.)
While we have discussed Ji as associated to Ii, the identities to be queried are not known upfront,
and the allocation of an index v[I] to identity I is made dynamically at the time identity I is first
queried to Enc or Dec. Queries to Exp are answered directly, simply revealing the created keys.
The games do not pick a challenge bit, instead returning true when the output b′ of A is 1, and
false otherwise. When g = u, all Enc,Dec queries are answered via F, and when g = 0 they are
answered randomly but consistently with prior replies, so that

Advib-prp
F,KDF(A) = Pr[G2,u]− Pr[G2,0] . (17)

For each g, the two games G2,g,G3,g are identical-until-bad, so by the Fundamental Lemma of Game
Playing [10] we have

Pr[G2,u]− Pr[G2,0]

= Pr[G3,u] + (Pr[G2,u]− Pr[G3,u])− Pr[G3,0] + (Pr[G3,0]− Pr[G2,0])

≤ Pr[G3,u]− Pr[G3,0] + Pr[G3,u sets bad] + Pr[G3,0 sets bad] . (18)

In game G3,g, the set D has size 2N − 2 at the time of the test “Jg,0 ∈ D,” so bad is set here
with probability (2N − 2)/2k. Similarly the test involving Jg,1 sets bad with probability at most
(2N − 1)/2k, so

∀ g ∈ [0..u] : Pr[G3,g sets bad] ≤ 4N − 3

2k
. (19)

Using Equations (17), (18) and (19), we have

Advib-prp
F,KDF(A) ≤ Pr[G3,u]− Pr[G3,0] +

8N − 6

2k
. (20)

We use a hybrid argument to bound Pr[G3,u] − Pr[G3,0]. Consider adversary A of Fig. 12. It
picks g at random from [0..u], and then picks keys Ji,j for i 6= g to be random but distinct. It
then runs A. It simulates the latter’s Enc,Dec,Exp,Ch oracles with the shown sub-routines
EncSim,DecSim,ExpSim,ChSim, respectively. For IP, it directly uses its own IP oracle. The
ability to do the latter is important and is why we needed Lemma 6.2 to remove all uses of the
ideal primitive other than those made by F. In answering Enc,Dec queries of A for an identity Ii,
it uses F under the keys it has created if i < g, forwards the queries to its own Enc,Dec oracles
if i = g —so that Jg is identified with the hidden key in game Gprp

F (A)— and answers randomly if
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i > g, all this adjusted to take into account whether or not the identity is in ChI. A Exp(I) query
of A can be answered because v[I] 6= g so A created, and has, the relevant key, and can return it.
In answering a Ch(I) query, A calls its own Ch oracle with I if v[I] = g. We have

Advprp
F (A) =

1

u
·
u∑
i=1

Pr[G3,i]− Pr[G3,i−1]

=
1

u
(Pr[G3,u]− Pr[G3,0]) . (21)

Equations (20) and (21) imply Eq. (16).

7 Pre-masking-based IB-FPE

While Theorem 6.1 shows that if we adjoin Dbl[k,M] to an ideal square FPE F, the resulting
IB-FPE scheme (F,Dbl[k,M]) has k-bit ib-prp security, we’d like to have some provable guarantees
if F is concretely instantiated from the base FPE scheme of DFF. However, while the Feistel
structure of DFF seems to have very strong empirical security, it’s notoriously hard to give even a
satisfactory prp bound on Feistel networks on small domains. Let us now elaborate on the reason
of this difficulty. Recall that in an information-theoretic proof for prp security of Feistel (such as
the classic Luby-Rackoff result [29]), all current techniques can only give a bound based on the
number of queries of the adversary, but not its running time. However, for a r-round balanced
Feistel network on domain {0, 1}2n, by a simple counting argument, if r < 2n, there is an adversary
(of astronomical running time) that makes only 2n Enc queries and wins with advantage very close
to 1. But in our setting, n can be any number greater than 3, whereas in practice, r is often at
most 36.

Given the huge obstacle in proving ib-prp security as described above, we turn into ib-kr-ti
security. We now give a class of square FPE constructions that we call pre-masking FPE, such that
for any F in this class, (F,Dbl[k,M]) has nearly k-bit ib-kr-ti security. Members of this class use
an ideal cipher P ∈ IC(k, k) (which will be instantiated via AES), but we make no other hardness
assumption. This class includes the FPE scheme of DFF, and thus justifies the design choice of DFF.
We warn that we only claim ib-kr security, and a pre-masking FPE therefore might be subject to
different attacks. Thus our security guarantee here doesn’t contradict the message-recovery attacks
of BHT [6] on Feistel-based FPE schemes, including DFF. (These attacks, however, are easily
put out of reach by increasing the number of rounds on small inputs.) Likewise, our security
claim for pre-masking FPEs does not contract the recent message-recovery attack of Durak and
Vaudenay [18] that exploits a bug in the design of round functions of FF3.

Pre-masking FPE. Let F be a square FPE scheme, meaning F has key-length F.kl = 2k and
its ideal primitive is F.IP = IC(k, k). We say that F is pre-masking if it additionally specifies
algorithms F.EC,F.DC (we call them encode and decode) such that

F.EP (J, T,X) = F.ECRoundP (J,·)(T,X)

F.DP (J, T, Y ) = F.DCRoundP (J,·)(T, Y ) ,

where we have defined

RoundP (J, U)

J1 ← J [1 : k] ; J2 ← J [k + 1 : 2k]
Return P (J1, U⊕J2,+).
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F.ECf (T,X)

L← X[1 : n];R← X[n+ 1 : 2n]

`← k − n− t
For i = 1 to 10 do

V ← f([i]` ‖T ‖R)

L′ ← R;R← L⊕V [1 : n] ; L← L′

Return L ‖R

F.DCf (T, Y )

L← Y [1 : n];R← Y [n+ 1 : 2n]

`← k − n− t
For i = 10 downto 1 do

V ← f([i]` ‖T ‖R)

L′ ← R;R← L⊕V [1 : n] ; L← L′

Return L ‖R

Figure 13: A 10-round Feistel-based pre-masking FPE scheme F. Here [i]` denotes the
`-bit encoding of a number i ∈ {1, . . . , 10}. The oracle f : {0, 1}k → {0, 1}k is implemented
as RoundP (J, ·).

That is, F.E and F.D use the 2k-bit key J in a limited way, through Round. The latter takes a k-
bit input and implements Rivest’s classical DESX construction on top of the ideal-cipher instance
P , but omits the post-whitening (meaning that the output is not XOR’ed with J2). Note the
encoding and decoding functions do not have direct access to the key J ; they can only access it
indirectly through queries to RoundP (J, ·). As an example, if F.Dom = {0, 1}2n and F.TS = {0, 1}t
for n+ t ≤ k − 4, a 10-round Feistel-based pre-masking FPE scheme can be built as in Fig. 13.

The efficiency improvement we obtain (due to dropping the post-whitening in DESX) is based
on the fact that Round only calls the forward direction of the ideal cipher.

Security analysis. As a stepping stone in obtaining the ib-kr-ti security of a pre-masking FPE
scheme F, we consider security of the following FPE scheme F. Informally, the scheme F is a blockci-
pher, implementing the DESX variant on top of AES. That is, FPE scheme F has F.Dom = {0, 1}k
and F.TS = {ε}. Its encryption scheme F.EP (J, T,X) returns Round(J,X), and the decryption
scheme is defined accordingly.

In Lemma 7.1 below, we’ll reduce the ib-kr-ti security of F to the ib-kr-ti security of F, both
relative to Dbl[k,M]. The constructed adversary however makes no Dec query in attacking F.
This restriction is crucial, because in F, there’s pre-whitening but no post-whitening of the output
of P (J1, ·,+).

Lemma 7.1 Let F be a pre-masking FPE scheme of F.kl = 2k and F be as described above. Let
KDF be the key-derivation function Dbl[k,M]. Suppose that we are given an adversary A whose
Enc/Dec queries involve at most q calls to Round. Assume A makes qe queries to Exp and p
queries to IP. Then we can construct an adversary A of the same number of IP and Exp queries
such that

Advib-kr-ti
F,KDF (A) ≤ Advib-kr-ti

F,KDF
(A) .

Adversary A makes at most q Enc queries and no Dec query.

Proof of Lemma 7.1: Adversary A runs A and shares the Exp and P oracles with it. When A
wants to encrypt (I, T,X), adversary A runs F.ECEnc(I,ε,·)(T,X), where Enc is A’s own encryption
oracle. Likewise, when A wants to decrypt (I, T, Y ), adversary A runs F.DCEnc(I,ε,·)(T, Y ). Finally,
when A outputs its guessed key, adversary A returns the same output. Hence game Gib-kr-ti

F,KDF
(A)

coincides with game Gib-kr-ti
F,KDF (A), and thus

Advib-kr-ti
F,KDF (A) ≤ Advib-kr-ti

F,KDF
(A) ,
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as claimed.

Next, we bound the ib-kr-ti security of F relative to Dbl[k,M], but the adversary is forbidden
from calling Dec. The analysis is challenging, because there’s no post-whitening of the output of
P (J1, ·,+) in the encryption scheme of F, yet the adversary can still query P (·, ·,−). The proof is
in Appendix A. We note that if q is small, say q ≤ 2k/k3, then in Lemma 7.2 the blowup k/ lg(k)
can be reduced to 3k

k−lg(q) . However, for the practical choice k = 128, the blowup k/ lg(k) is smaller
than 19 and the bound in Lemma 7.2 is already satisfactory.

Lemma 7.2 Let F be as described above and let KDF be the key-derivation function Dbl[k,M].
Assume that k ≥ 128. Then for any adversary A that makes at most q ≤ 2k−2 queries to Enc, no
query to Dec, qe ≤ 2k−3 queries to Exp, and p queries to IP,

Advib-kr-ti
F,KDF

(A) ≤ 2q(p+ 1)

22k
+

4(p+ 1)k

2k · lg(k)
+
q + qe + p+ 5

2k
.

Combining Lemma 7.1 and Lemma 7.2, we immediately obtain the following result.

Theorem 7.3 Let F be a pre-masking FPE scheme of F.kl = 2k and let KDF be the key-derivation
function Dbl[k,M]. Assume that k ≥ 128. Suppose that we are given an adversary A whose
Enc/Dec queries involve at most q calls to Round. Assume A makes qe queries to Exp and p
queries to IP. Then

Advib-kr-ti
F,KDF (A) ≤ 2q(p+ 1)

22k
+

4(p+ 1)k

2k · lg(k)
+
q + qe + p+ 5

2k
.

We note that the results of Lemma 7.2 and Theorem 7.3 hold even for adaptive adversaries if the
ideal cipher is programmable. If the ideal cipher is non-programmable then these results only work
for non-adaptive adversaries.

A matching attack. In Lemma 7.2, at the first glance, the blowup k/ lg(k) looks like an artifact
of the analysis. However, Proposition 7.4 shows that it’s inherent by demonstrating a matching
key-recovery attack. The proof is nontrivial. In both Lemma 7.2 and Proposition 7.4, the term
k/ lg(k) comes from some balls-into-bins phenomena.

Proposition 7.4 Let F be as described above. Let KDF be the key-derivation function Dbl[k,M].
Assume that k ≥ 128. Let r = bk/9 lg(k)c and let q = rb2k/9r2c ≈ 2k lg(k)/k. Then we can
construct a non-adaptive adversary A making at most q+ r queries Enc queries and q+ r queries
to IP, a single query to Ch, and no query to Exp or Dec query, yet

Advib-kr-ti
F,KDF

(A) ≥ (1− 5 · 2−k/9)qr
2k+1

≥ 1

19
.

Proof of Proposition 7.4: The adversary A is constructed as in Fig. 14. It first picks arbitrary
distinct identities I1, . . . , Ir and distinct messages X1, . . . , Xq/r, X

∗. It then queries Enc(Ii, ε,Xj),
for every i ∈ {1, . . . , r} and every j ∈ {1, . . . , q/r}. View each such query as throwing a ball into
2k possible bins corresponding to strings in {0, 1}k. Of course the throws are not independent. For
example, the balls corresponding to Enc(I1, ε,X1) and Enc(I1, ε,X2) must land into different bins.
Note that each bin can have at most r balls. Further below, we’ll adapt techniques from classic
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Adversary AEnc,Dec,Exp,Ch,P

Pick distinct identities I1, . . . , Ir ∈ KDF.IS
Pick distinct messages X1, . . . , Xq/r, X

∗ ∈ {0, 1}k
For i = 1 to r, j = 1 to q/r do Bi,j ← Enc(Ii, ε,Xj)

(C,C ′,M1,M
′
1, . . . ,Mr,M

′
r)← Match(X1, . . . , Xq/r, B1,1, . . . , Br,q/r)

If C = ⊥ then return ⊥ // Terminate if there are no two full bins

J1, . . . , Jq←$ {0, 1}k
For j = 1 to q do

Uj ← P (Jj , C,−) ; U ′j ← P (Jj , C
′,−) ; Vj ← Uj⊕U ′j

For i = 1 to r do

V ←Mi⊕M ′i ; j ← Find(V, V1, . . . , Vq)

If j > 0 then // Test for false positive

R1 ← Enc(Ii, ε,X
∗) ; R2 ← P (Jj , X

∗⊕Uj⊕Mi)

If R1 = R2 then (Ch(Ii); return (Ii, Jj ‖ (Uj⊕Mi))

Figure 14: Constructed ib-kr-ti adversary for F. Here procedure Find(V, V1, . . . , Vq)
returns an index j such that V = Vj , and returns 0 if no such j exists. Procedure
Match(X1, . . . , Xq/r, B1,1, . . . , Br,q/r) returns (C,C ′,M1,M

′
1, . . . ,Mr,M

′
r) such that for every i ∈

{1, . . . , r}, there are 1 ≤ `i < si ≤ q/r such that Mi = X`i , M
′
i = Xsi , C = Bi,`i , and C ′ = Bi,si .

balls-into-bins papers [33] to show that with probability at least 1 − 4 · 2−k/9, there are two bins
that both have r balls.

Suppose that there exist two bins of r balls. That is, for each identity Ii, there are two messages
Mi and M ′i whose balls fall into these two bins. Let C and C ′ be the answer for Enc(Ii, ε,Mi)
and Enc(Ii, ε,M

′
i), respectively. Let Li be the subkey of Ii, and K the master key. The adversary

then picks J1, . . . , Jq←$ {0, 1}k, and queries P (Jj , C,−) and P (Jj , C
′,−) to get answers Uj and U ′j ,

respectively, for every j ∈ {1, . . . , q}. For each i ∈ {1, . . . , r}, it tries to find an index j ∈ {1, . . . , q}
such that Mi⊕M ′i = Uj⊕U ′j . For each matched pair (i, j), it is likely that Jj ‖ (Uj⊕Mi) is the
subkey of Ii. The adversary will compare Enc(Ii, ε,X

∗) and P (Jj , X
∗⊕(Uj⊕Mi)) to eliminate

false positive.

For analysis, let Hit be the event that there are some i and j such that Jj = Li[1 : k]. If Jj is
Li[1 : k] then Uj = Mi⊕Li[k+ 1 : 2k] and U ′j = M ′i⊕Li[k+ 1 : 2k], and thus Uj⊕U ′j = Mi⊕M ′j and
consequently, the subkey Li is indeed Jj ‖ (Uj⊕Mi). Under the key-derivation function KDF, the
strings L1[1 : k], . . . , Lr[1 : k] are distinct, because they are P (K,M0(I1),+), . . . , P (K,M0(Ir),+)
respectively, and I1, . . . , Ir are distinct. Hence

Pr[Hit] = 1− (1− r/2k)q ≥ rq/2k+1,

where the last inequality is from applying Lemma 2.1 for a = r/2k ≤ 1/q. For i ∈ {1, . . . , r} and
j ∈ {1, . . . , q}, let Badi,j be the event that Jj 6= Li[1 : k], butMi⊕M ′i = Uj⊕U ′j and Enc(Ii, ε,X

∗
i ) =

P (Jj , X
∗
i ⊕(Uj⊕Mi)). Let Bad be the event ∃ i, j : Badi,j . If Bad does not happen then the testing

eliminates all false positive. From union bound,

Pr[Bad] ≤
r∑
i=1

q∑
j=1

Pr[Badi,j ] ≤
qr

(2k − 1)(2k − 2)
≤ qr

21.5k+1
.

Note that if Hit∧Bad happens then the adversary wins. So if there are two bins of r balls then the
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adversary wins with advantage at least

Pr[Hit ∧ Bad] ≥ Pr[Hit]− Pr[Bad] ≥ (1− 2−k/2)

2k+1
.

Putting all this together,

Advib-kr-ti
F,KDF

(A) ≥ (1− 4 · 2−k/9)(1− 2−k/2)qr

2k+1

≥ (1− 5 · 2−k/9)qr
2k+1

.

What’s left is to prove that there are two bins of r balls with probability at least 1− 4 · 2−k/9. Let
c = q/r = b2k/9r2c. For any 1 ≤ i < j ≤ 2k, the chance that bins i and j have r balls is((

2k−2
c−2
)(

2k

c

) )r =
( c(c− 1)

2k(2k − 1)

)r
≥

((2k/9r2 − 1)(2k/9r2 − 2)

2k(2k − 1)

)r
≥

( 1

9r2
− 1

2k

)r( 1

9r2
− 3

2k − 1

)r
≥

( 1

100r4

)r
≥ 1

k4r

≥ 1

k4k/9 log2(k)
=

1

24k/9
.

Let Yi,j be the Bernoulli random variable such that Yi,j = 1 if bins i and j both have r balls, and
Yi,j = 0 otherwise. Hence E[Yi,j ] = Pr[Yi,j = 1] ≥ 2−4k/9. Let Y =

∑
1≤i<j≤2k Yi,j , and thus

E[Y ] =
∑

1≤i<j≤2k
E[Yi,j ] ≥

(2k − 1)25k/9

2
.

Our goal is to prove that 1− Pr[Y ≥ 1] ≤ 4 · 2−k/9. Note that

1− Pr[Y ≥ 1] = Pr[Y = 0] ≤ Pr
[∣∣Y −E[Y ]

∣∣ ≥ E[Y ]
]
≤ Var[Y ]

(E[Y ])2
,

where the last inequality is due to Chebyshev’s inequality. Hence what’s left is to prove that
Var[Y ] ≤ 2k(2k−1)2. One the one hand, for 1 ≤ i < j ≤ 2k and 1 ≤ ` < s ≤ 2k, if {i, j}∩{`, s} = ∅
then the random variables Yi,j and Y`,s are negatively correlated, because if two bins already have r
balls, then it’s less likely that two other bins also have r balls. Hence the covariance Cov(Yi,j , Y`,s)
is at most 0. On the other hand, for 1 ≤ i < j ≤ 2k and 1 ≤ ` < s ≤ 2k, if {i, j} ∩ {`, s} 6= ∅, since
0 ≤ Yi,j , Y`,s ≤ 1, we have

Cov(Yi,j , Y`,s) = E(Yi,j · Y`,s)−E(Yi,j)E(Y`,s) ≤ 1 .

Moreover, for each 1 ≤ i < j ≤ 2k, there are exactly (2k− i)+j pairs (`, s) such that 1 ≤ ` < s ≤ 2k
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and {i, j} ∩ {`, s} 6= ∅. Thus there are at most∑
1≤i<j≤2k

(2k + j − i) = 2k
(

2k

2

)
+

∑
1≤i<j≤2k

(j − i)

=
22k(2k − 1)

2
+

2k−1∑
t=1

t(2k − t)

≤ 22k(2k − 1)

2
+

2k−1∑
t=1

(t+ 2k − t)2

4

=
3 · 22k(2k − 1)

4
≤ 2k(2k − 1)2

tuples (i, j, `, s) such that 1 ≤ i < j ≤ 2k, 1 ≤ ` < s ≤ 2k, and {i, j} ∩ {`, s} 6= ∅. Therefore,

Var[Y ] = Var
[ ∑
1≤i<j≤2k

Yi,j

]
=

∑
1≤i<j≤2k
1≤`<s≤2k

Cov(Yi,j , Y`,s)

≤
∑

1≤i<j≤2k
1≤`<s≤2k
{i,j}∩{`,s}6=∅

Cov(Yi,j , Y`,s) ≤ 2k(2k − 1)2 .

This concludes the proof.

8 Security Analysis of DFF

Here we discuss how to cast DFF as an IB-FPE scheme obtained via the Dbl transform and apply
the results of Sections 6 and 7 to validate its security, as long as (1) the tweak (identity) space is
appropriately restricted and (2) the radix and input length are fixed. Limitation (1) arises because,
over the full tweak (identity) space, the M1 embedding function is not injective: even for a fixed
radix and input length, two tweaks may have derived keys with the same second halves. This does
not, as far as we know, give rise to a damaging attack (we give below the best attack we could
find) but it can be viewed as a design weakness. We suggest modifications to the embedding that
restore injectivity and allow our results to apply. Limitation (2) means that a (master) key is used
for just one choice of radix and tweak. To prove security for varying radix and input lengths would
require that we use the broader definition of FPE from [9] in which the domain is a union of slices,
in our case a slice being associated to a choice of radix, input length, and tweak.

DFF as IB-FPE. We first briefly explain how to view DFF [39] as an IB-FPE scheme (F,KDFdff).
(See Appendix B for the complete specification.) The DFF specification allows different choices
of radix rdx and input length n, but here we fix both, so that F.Dom = Znrdx. F has 256-bit keys
and tweak space the singleton set {ε}. The algorithm itself is a 10-round Feistel network. The
identity space KDFdff .IS is the set of all I ∈ {0, 1}∗ such that |I| is at most 13 bytes. The underlying
blockcipher E : {0, 1}128×{0, 1}128 → {0, 1}128 is AES. Let [x]b denote the representation of x as a b-
byte string. The embedding scheme M = (M0,M1) is specified via M0(I) = [rdx]1 ‖ [|I|]1 ‖ [n]1 ‖ [I]13

and M1(I) = [0]3 ‖ [I]13. Note that M1 is not injective: for example, M1(00) = M1(000).

Security over restricted identity spaces. If the radix and input length are fixed, and one
restricts the identities to a subset S ⊂ KDFdff .IS such that no two strings in S correspond to the
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Adversary KREnc,Dec,Exp,Ch,P
p,d

For i← 0 to 104 do Ii ← 0i

J ← Exp(I0); R← J [k + 1 : : 2k]; S ← ∅
For `← 1 to d do X`←$ F.Dom\S ; S ← S ∪ {X`}
For i← 1 to 104 do

For `← 1 to d do V` ← Enc(Ii, ε,X`)

Zi ← (V1, . . . , Vd)

For j ← 1 to p do

Lj ←$ {0, 1}128; Jj ← Lj ‖R
For `← 1 do d do U` ← F.EP (Jj , T,X`)

Z ← (U1, . . . , U`) ; i← Find(Z,Z1, . . . , Z104)

If i > 0 then (Ch(Ii); Return (Ii, Jj))

Figure 15: The attack KRp,d on the IB-FPE scheme (F,KDFdff).

same integer in binary, then the embedding functions M0 and M1 above are injective and have
disjoint images. Under these restrictions, our results in Sections 6 and 7 apply, and DFF has k-bit
non-adaptive ib-prp security, and k-bit adaptive ib-kr-ti security.

Security over the full identity space. The non-injectivity of M1 allows an adversary to get
the second half of the subkey of an identity I without querying Exp(I), by picking another identity
I ′ such that [I ′]13 = [I]13, and calling Exp(I ′). Note that for any I ′ ∈ KDFdff .IS, there are up to
104 other identities I ∈ KDFdff .IS such that [I ′]13 = [I]13. This leads to the non-adaptive ib-kr-ti
adversary KRp,d shown in Fig. 15. It picks identities I0 = ε, I1 = 0, I2 = 02, . . . , I104 = 0104. Note
that [I0]

13 = · · · = [I104]
13. It first queries J ← Exp(I0), and let R ← J [k + 1 : 2k]. Note that

for any i ≤ 104, R is also the right half of the subkey of identity Ii. The adversary now picks
p candidates subkeys J1, . . . , Jp such that Jj [k + 1 : 2k] = L. Now, for every i ∈ {1, . . . , 104}
and j ∈ {1, . . . , p}, it aims to test whether Jj is the subkey of Ii by comparing Enc(Ii, ε, ·) and
F.E(Jj , ε, ·) on d messages. Proposition 8.1 below shows that this attack achieves ib-kr-ti advantage

about 104p/2129−104p·Advfp
F,d, where the false positive advantage Advfp

F,d was defined in Section 3.

Proposition 8.1 Let (F,KDFdff) be as above. Then for any p, d ∈ N such that p ≤ 2128/104 we
have

Advib-kr-ti
F,KDFdff

(KRp,d) ≥
104p

2129
− 104p ·Advfp

F,d .

Proof of Proposition 8.1: Let X1, . . . , Xd be the test messages that the adversary samples.
Let K denote the master key chosen in the overlying key-recovery game Gib-kr-ti

F,KDFdff
(KRp,d) and let

J ′i = KDFPdff(K, Ii) for 0 ≤ i ≤ 104. Let Hit be the event that some guess Jj of the adversary is
one of the target keys, meaning there are i ∈ {1, . . . , 104} and j ∈ {1, . . . , p} such that Jj = J ′i .
For i ∈ {1, . . . , 104} and j ∈ {1, . . . , p} let Badi,j be the event that Jj 6= J ′i and (F.EP (Jj , ε,X1),
. . . ,F.EP (Jj , ε,Xd)) = (Enc(Ii, ε,X1), . . . ,Enc(Ii, ε,Xd)). Let Bad be the event ∃ i, j : Badi,j . If
Hit ∧ Bad happens then one of the adversary’s guesses is one of the target keys, and there are no
false positive during the testing. So

Advib-kr-ti
F,KDFdff

(KRp,d) ≥ Pr[Hit ∧ Bad] ≥ Pr[Hit]− Pr[Bad] .
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First we lower bound Pr[Hit]. Note that Jj and J ′i have the same right half for any i and j, and
the target keys J ′1, . . . , J

′
104 are distinct. Then

Pr[Hit] = 1−
(

1− 104

2128

)p
≥ 104p

2129
,

where the inequality is due to Lemma 2.1. Next we upper bound Pr[Bad]. For any i ∈ {1, . . . , 104}
and j ∈ {1, . . . , p}, if Jj 6= J ′i then the probability that (F.EP (Jj , T,X1), . . . ,F.E

P (Jj , T,Xd)) =

(Enc(Ii, T,X1), . . . ,Enc(Ii, T,Xd)) is at most Advfp
F,d, and hence Pr[Badi,j ] ≤ Advfp

F,d. By the

union bound we have Pr[Bad] ≤ 104p ·Advfp
F,d. Putting all this together we have

Advib-kr-ti
F,KDFdff

(KRp,d) ≥
104p

2129
− 104p ·Advfp

F,d ,

completing the proof.

Discussion. While the attack KRp,d above is impractical and does not significantly affect the 128-
bit security claim of DFF, our results, at least, offer no proof that a better attack is not possible.
Furthermore, that the right halves of the keys of two different identities can coincide does not
feel right. Accordingly, we recommend fixing this. If rdx is fixed, this could be done by setting
M1(I) = [0]1 ‖ [|I|]1 ‖ [n]1 ‖ [I]13. Alternatively one could restrict the identities as mentioned above.
If rdx cannot be viewed as fixed and we want a more natural space of identities, we would suggest
to let identities be binary strings of at most 12 bytes, let M0(I) = [0]1‖[rdx]1‖[|I|]1‖[n]1‖[I]12 and
M1(I) = [1]1‖[rdx]1‖[|I|]1‖[n]1‖[I]12. All these choices ensure the embedding functions satisfy our
conditions so that our results in Sections 6 and 7 apply.

Earlier, we mentioned that one can generalize our definition for a general domain that is a
union of slices, where a slice is associated with a choice of radix, input length, and tweak. There
are several ways to do that. For example, one might treat a triple (radix, input length, tweak)
as a generalized tweak, so each identity is associated with a single subkey, for all choices of radii
and input lengths. The IB-FPE scheme of DFF, as recast above, however, does not follow this
approach. Instead, for each identity, there will be a subkey per (radix, tweak) pair. This means
that a local device now may have to hold up to s subkeys, where s is the number of supported
pairs (radix, input length). The security definitions would be modified so that Exp(I) returns all
s subkeys corresponding to identity I. For those generalized notions, the attack KRp,d above can

be improved to have advantage about 104ps
2129
− 104ps ·Advfp

F,d, while the running time increases only

O(log(s)) times. While the DFF specification allows s to be nearly 216, in real usage, s would be
very small, and thus a local device will not have to store too many subkeys, and the improved KRp,d
attack still does not significantly affect the 128-bit security claim of DFF.
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A Proof of Lemma 7.2

In this section, we will give the proof of Lemma 7.2 via the H-coefficient technique of Patarin [31, 14].
The proof also uses some technical balls-into-bins results. Therefore, we begin by reviewing the
H-coefficient technique, and then describing the balls-into-bins lemmas.

H-coefficient technique. Let A be a deterministic, computationally unbounded adversary that
tries to distinguish two games Greal and Gideal. Let Treal and Tideal be the random variables for the
transcript that records everything that the adversary is able to observe during its interaction with
Greal and Gideal, respectively. We call a transcript τ valid if Pr[Tideal = τ ] > 0. Partition the set
of valid transcripts into Γgood and Γbad; we refer to them as the set of good and bad transcripts,
respectively. The following result bounds the distinguishing advantage of A.

Lemma A.1 [31, 14] Let ε, δ ∈ [0, 1] be such that

(a) Pr[Tideal ∈ Γbad] ≤ ε, and

(b) 1− Pr[Treal=τ ]
Pr[Tideal=τ ] ≤ δ for every τ ∈ Γgood.

Then ∣∣Pr[Greal(A)⇒ 1]− Pr[Gideal(A)⇒ 1]
∣∣ ≤ ε+ δ .
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Some balls-into-bins technical results. Consider the following game. Let k and q be inte-
gers, and let S be a finite set. An adversary A is given oracle access to Q←$ IC(S, {0, 1}k) and
can make at most q queries. If the adversary makes Q(i, Y,−) to get answer X, it’s not allowed
to call Q(i,X,+). Each query Q(i,X,+) is considered throwing a ball into 2k possible bins that
correspond to the 2k possible answers. Of course the throws are not independent, since the two
balls for Q(i, 0k,+) and Q(i, 1k,+) must land in different bins. The goal of the adversary is to
maximize the load of the heaviest bin. Let Balls(A, q, S, k) denote the random variable for the
number of balls in the heaviest bin in this game. The following result gives a strong concentration
bound on Balls(A, q, S, k).

Lemma A.2 Let k, q ∈ N such that k ≥ 128 and q ≤ 2k−1 and let S be a finite set. Then for any
adversary A,

Pr
[
Balls(A, q, S, k) ≥ 3.5k

log2(k)

]
≤ 21−k .

To justify Lemma A.2, we’ll need the following technical result of Dai and Steinberger [16] that
reduces the problem above to the classic balls-into-bins setting.

Lemma A.3 ([16]) Let k, q ∈ N such that q ≤ 2k−1 and let S be a finite set. Let X be the random
variable for the number of balls in the heaviest bin when one throws q balls uniformly to 2k−1 bins.
Then for any adversary A and any s ∈ N,

Pr
[
Balls(A, q, S, k) ≥ s] ≤ Pr[X ≥ s] .

We then need the following classic balls-into-bins result.

Lemma A.4 ([33]) Let m, q ∈ N such that q ≤ 2m. Let X be the random variable for the num-
ber of balls in the heaviest bin when one throws q balls uniformly to 2m bins. Then Pr[X ≥
3m/ log2(m)] ≤ 2−m.

Combining Lemma A.3 and Lemma A.4 leads to Lemma A.2; the proof is given below.

Proof of Lemma A.2: Let X be the random variable for the number of balls in the heaviest bin
when one throws q balls uniformly to 2k−1 bins. From Lemma A.3,

Pr
[
Balls(A, q, S, k) ≥ 3.5k

log2(k)

]
≤ Pr

[
X ≥ 3.5k

log2(k)

]
.

On the other hand,

3.5k

log2(k)
≥ 3.5(k − 1)

log2(2k − 2)
=

3.5(k − 1)

log2(k − 1) + 1
≥ 3(k − 1)

log2(k − 1)
,

where the last inequality is due to the hypothesis that k ≥ 128. Then using Lemma A.4 with
m = k − 1,

Pr
[
X ≥ 3.5k

log2(k)

]
≤ Pr

[
X ≥ 3(k − 1)

log2(k − 1)

]
≤ 21−k .
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Game Gideal(B)

K←$ {0, 1}k; XI← ∅
ChI← ∅; π←$ Perm({0, 1}k)

For I ∈ KDF.IS do Π(I, ·)←$ Perm({0, 1}k)

b′←$ BEnc,Exp,Ch,P ; Return (b′ = 0)

Enc(I, ε,X)

Y ← Π(I,X); L0 ← π(M0(I)); L1 ← π(M1(I))

EM[L0, X⊕L1]← Y ; DM[L0, Y ]← X⊕L1

Return Y

Exp(I)

If I ∈ ChI then return ⊥
L0 ← π(M0(I)); L1 ← π(M1(I))

XI← XI ∪ {I}; KT[L0]← I; Return L0 ‖L1

Ch(I)

If I ∈ XI then return ⊥
ChI← ChI ∪ {I}
P (L,X,+)

If ET[L,X] 6= ⊥ then return ET[L,X]

Y ← EM[L,X]

If KT[L] = ⊥ or Y = ⊥ or DT[L, Y ] 6= ⊥ then

Y ←$ {R : DT[L,R] = ⊥}
ET[L,X]← Y ; DT[L, Y ]← X; Return Y

P (L, Y,−)

If DT[L, Y ] 6= ⊥ then return DT[L, Y ]

X ← DM[L, Y ]

If KT[L] = ⊥ or X = ⊥ or ET[L,X] 6= ⊥ then

X ←$ {R : ET[L,R] = ⊥}
ET[L,X]← Y ; DT[L, Y ]← X; Return X

Figure 16: Game Gideal in the proof of Lemma 7.2.

Putting this all together,

Pr
[
Balls(A, q, S, k) ≥ 3.5k

log2(k)

]
≤ 21−k

as claimed.

Main proof. Without loss of generality, assume that once the adversary queries Exp(I) to get
subkey J , it will not make further Enc(I, ·, ·) queries. Assume that the adversary always outputs
(I, J) such that I is in the challenge set ChI.

We will construct from A an adversary B that aims to distinguish the following two games Greal

and Gideal. Game Greal is Gib-prp

F,KDF
(B) for challenge bit 1, but there is no Dec oracle. Game Gideal

is instead implemented as in Fig. 16. In this game, the Enc answers and the subkeys are generated
independent of the ideal primitive. After B obtains a subkey J = L0 ‖ J1 of an identity I from the
Exp oracle, the answers for the subsequent queries (L0, R, ·) to the ideal primitive are programmed
to be random but still consistent to (a) the prior ideal-primitive queries, and (b) the prior Enc
queries on identity I. In some rare cases, the information in (b) is inconsistent with that in (a). If
so, the answers will be consistent to just (a). Note that if B is non-adaptive then we do not need
to program the ideal cipher.

The adversary B is constructed as follows. It runs A. When the latter makes a query, the
former uses its corresponding oracle to answer. When A outputs its answer (I, J), let J = L0 ‖L1.
Adversary B picks an arbitrary message M such that there is no prior query Enc(I, ε,M), no
prior query P (L0,M⊕L1,+) and no prior query P (L0, Y,−) whose answer is M⊕L1. Since p +
q ≤ 2k−1 − 2, there exists such an M . Adversary B then queries Enc(I, ε,M), and also queries
(L0,M⊕L1,+) to the ideal cipher. If the answers match then B returns 1; otherwise it returns
0. In the real game, the chance that B outputs 1 is at least Pr[Gib-kr-ti

F,KDF
(A)]. In the ideal game,

since the subkey for I was not exposed, so the two answers above are independently generated.
Moreover, as p + q ≤ 2k−1 − 2, each of the two answers above has at least 2k−1 possible, equally
likely choices. Hence the chance that the adversary B outputs 1 in the ideal game is at most 21−k.
Thus the advantage of B in distinguishing Greal and Gideal is at least Advib-kr-ti

F,KDF
(A)− 21−k.
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Note that B queries Exp(I) to get subkey J , it will not make further Enc(I, ·, ·) queries.
Moreover, if A is non-adaptive then so is B. Adversary B makes at most q+1 Enc and Ch queries,
qe Exp queries, and p + 1 ideal-cipher queries, but the Enc and Ch queries involve at most q
identities.

We now give an upper bound on the advantage of B in distinguishing the games Greal and
Gideal. Since the adversary is computationally unbounded, without loss of generality, assume that
it’s deterministic. Assume that B always makes exactly qe Exp queries. Assume that the adversary
doesn’t make any redundant queries: it never repeats a prior query, and if it queries P (L,X,+) to
get Y , then it won’t query P (L, Y,−), and likewise, if it queries P (L, Y,−) to get X then it won’t
query P (L,X,+). or P (J [1 : k], ·, ·) queries.

Wlog, assume that if the adversary queries Exp(I) to get J , then it will not later queries
P (J [1 : k], ·, ·). The reason is that, if the Enc(I, ε, ·) queries and the pre-exposure P (J [1 : k], ·, ·)
queries give contradictory information, then the adversary can simply output 0 and wins. Oth-
erwise, the answers will be random but consistent to the information in prior Enc(I, ε, ·) and
P (J [1 : k], ·, ·) queries in both games. Moreover, those answers are independent of the answers of
Enc(I ′, ε, ·) and P (L′, ·, ·), for any I ′ 6= I and L′ 6= J [1 : k]. The adversary thus can sample those
answers by itself instead of using the ideal cipher.

We now bound B’s advantage via the H-coefficient technique. After the adversary finishes
querying, we’ll grant it the master key K and the subkeys J1, . . . , J` of all involved identities that
are not exposed. We stress that the adversary is forbidden from making further queries after it
receives the keys. This key revelation can only help the adversary. A transcript consists of the
adversary’s queries/answers and the keys (returned via Exp queries or granted at the end). We
say that a transcript is bad if one of the following properties holds:

(i) The master key K is the left half of some subkey.

(ii) There is some query P (K, ·, ·) in τ .

(iii) There is a query Enc(I, ε,X) such that the subkey J of I is not exposed by Exp, and there
is another query P (J [1 : k], X⊕J [k + 1 : 2k],+).

(iv) There is a query Enc(I, ε,X) such that the subkey J of I is not exposed by Exp, and there
is another ideal-cipher query (J [1 : k], Y,−) whose answer is X⊕J [k + 1 : 2k].

(v) There is a query Enc(I, ε,X) of answer Y such that the subkey J of I is not exposed by
Exp, and there is another query P (J [1 : k], Y,−). We say that this ideal-cipher query hits
identity I.

If a valid transcript is not bad, we say that it’s good. Let Γgood and Γbad be the set of good and
bad (valid) transcripts, respectively. We first bound the probability Pr[Tideal ∈ Γbad].

• First, the chance that Tideal satisfies property (i) is at most (q + qe)/2
k, since in the ideal

game, K←$ {0, 1}k is independent of all other subkeys.

• Next, because K←$ {0, 1}k is independent of whatever the adversary receives until it is
granted K, the chance that Tideal satisfies property (ii) is at most (p+ 1)/2k.

• Moreover, for each granted subkey J , before it is granted, there are at least (2k − 2qe)(2
k −

2qe − 1) ≥ 22k−1 choices for the pair (J [1 : k], J [k + 1 : 2k]) and those choices are equally
likely. Hence the chance that Tideal satisfies properties (iii) or (iv) is at most 2q(p+ 1)/22k.
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• Finally, view each query Enc(I, ε,X) as throwing a ball into 2k possible bins. From Lemma A.2,
with probability at least 1 − 2/2k, in Tideal, no bin contains more than 3.5k/ lg(k) balls. In
other words, each query P (L, Y,−) can target at most 3.5k/ lg(k) identities to hit. But for
each such identity, before the adversary is granted its subkey, there are at least 2k−2qe ≥ 7

8·2k
choices for its left half, and all those choices are equally likely. Hence the chance that Tideal
satisfies (v) is at most 2/2k + 4k(p+ 1)/2k log2(k).

Summing up,

Pr[Tideal ∈ Γbad] ≤ 4k(p+ 1)

2k log2(k)
+

2(p+ 1)q

22k
+
q + qe + p+ 3

2k
. (22)

Next, fix an arbitrary valid good transcript τ . We claim that

1− Pr[Treal = τ ]

Pr[Tideal = τ ]
≤ 0 . (23)

From Eq. (22) and Eq. (23), using Lemma A.1 yields

Advib-prp

F,KDF
(B) ≤ 2q(p+ 1)

22k
+

4(p+ 1)k

2k · log2(k)
+
q + qe + p+ 3

2k
,

and thus

Advib-kr-ti
F,KDF

(A) ≤ Advib-prp

F,KDF
(B) +

2

2k

≤ 2q(p+ 1)

22k
+

4(p+ 1)k

2k · log2(k)
+
q + qe + p+ 5

2k
.

To justify Eq. (23), consider an arbitrary good transcript τ , and suppose that according to τ ,
the involved, un-exposed identities are I1, . . . , I`. Let I`+1, . . . , I`+qe be the identities for the Exp
queries, and let J`+1, . . . , J`+qe be the subkeys, respectively. Suppose that according to τ , there are
qi queries to Enc(Ii, ε, ·), and pi queries to P (Ji[1 : k], ·, ·). We call a query P (L, ·, ·) useless if L is
not the left half of some Ji, for i ∈ {1, . . . , `}.

Since τ is valid and the adversary is deterministic, at each moment in the real game, as long as
the queries/answers that the adversary has received is consistent with τ , the adversary has to make
the next query according to τ . Hence the event Treal = τ can be decomposed into the following
events in the real game:

• Keyreal : The master key is K, and querying P (K,M0(Ii),+) and P (K,M1(Ii),+) return
Ji[1 : k] and Ji[k + 1, 2k] respectively, for every i ∈ {1, . . . , `+ qe}.

• Qr0real: If we ask the useless queries in τ to P , we’ll receive the answers as indicated in τ .

• Qrireal, with i ∈ {1, . . . , `}: If we query Enc(Ii, ε, ·) and P (Ji[1 : k], ·, ·) according to τ , we’ll
get the answers as indicated in τ .

Since τ is good, the events Qr0real,Qr1real, . . . ,Qr`real are conditionally independent, given Keyreal.
Moreover, Qr0real is independent of Keyreal. Hence

Pr[Treal = τ ]

= Pr[Keyreal] · Pr[Qr0real | Keyreal]
∏̀
i=1

Pr[Qrireal | Keyreal]

= Pr[Keyreal] · Pr[Qr0real]
∏̀
i=1

1

2k · · · (2k − qi − pi + 1)
.
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Likewise, the event Tideal = τ can be decomposed into the following events in the ideal game:

• Key$ : When we query Exp(Ij), we’ll get Jj , for j ∈ {` + 1, . . . , ` + qe}. Moreover, when we
sample keys to grant them to the adversary, we get K,J1, . . . , J`.

• Qr0$: If we ask the useless queries in τ to P , we’ll receive the answers as indicated in τ .

• Qri$, with i ∈ {1, . . . , `}: If we make queries Enc(Ii, ε, ·) and P (Ji[1 : k], ·, ·) according to τ ,
we’ll get the answers as indicated in τ .

Note that Key$,Qr0$,Qr1$, . . . ,Qr`$ are independent, and thus

Pr[Tideal = τ ]

= Pr[Key$] · Pr[Qr0$]
∏̀
i=1

Pr[Qri$]

= Pr[Key$] · Pr[Qr0$]
∏̀
i=1

1

2k · · · (2k − qi + 1)2k · · · (2k − pi + 1)

≤ Pr[Key$] Pr[Qr0$]
∏̀
i=1

1

2k · · · (2k − qi − pi + 1)
.

On the other hand, Pr[Qr0$] = Pr[Qr0real], because both events only involve queries to P . Moreover,

Pr[Keyreal] = Pr[Key$] =
1

2k
· 1

2k · · · (2k − 2`− 2qe + 1)
.

Put all this together
Pr[Treal = τ ]

Pr[Tideal = τ ]
≥ 1 .

B The FF2 and DFF IB-FPE schemes

FF2 and DFF scheme are conventionally presented as FPE schemes. Here we cast them as IB-FPE
schemes FF2 = (Fff2,KDFff2) and DFF = (FFdff ,KDFdff), respectively, by defining, in each case, the
base FPE schemes and the key-derivation functions (cf. Fig. 17). This is done so that the original
FF2 and DFF are recovered by viewing identities in the IB-FPE scheme as tweaks in the original
scheme.

Notation and conventions. For simplicity, we consider a special case, corresponding to partic-
ular choices of parameters for the standard. Thus, we fix

• A radix rdx, in the range 2 ≤ rdx < 28, for example rdx = 10.

• An input length n that is an even integer in the range 2 ≤ n ≤ 30, for example n = 4.

• Identity space ID =
⋃13
i=0{0, 1}8i, meaning an identity is a string of at most 13 bytes.

• A number r of rounds in the range 1 ≤ r < 28, for example r = 10 in the current standards.

We define the alphabet Σrdx = {0, 1, . . . , rdx − 1}. Members of Σrdx are referred to as digits. If
X ∈ Σ∗2 and m = |X| then StToNum(X) is the integer representing X, namely

StToNum(X) =

m−1∑
i=0

X[m− i] · rdxi .
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Algorithm Fff2.E(J, ε,X)

u← bn/2c ; v ← n− u
A← X[1 : u] ; B ← X[u+ 1 : n]

For i = 0 to r − 1 do

Q← [i]1‖[B]15

Y ← E(J,Q) ; y ← StToNum(Y )

If (i is even) then m← u else m← v

c← (StToNum(A) + y) mod rdxm

C ← NumToStm(c)

A← B ; B ← C

Return A‖B

Algorithm Fff2.D(J, ε, Z)

u← bn/2c ; v ← n− u
A← Z[1 : u] ; B ← Z[u+ 1 : n]

For i = r − 1 downto 0 do

Q← [i]1‖[B]15

Y ← E(J,Q) ; y ← StToNum(Y )

If (i is even) then m← u else m← v

c← (StToNum(A)− y) mod rdxm

C ← NumToStm(c)

A← B ; B ← C

Return A‖B

Algorithm KDFff2(K, I)

t← |I|
P ← [rdx]1‖[t]1‖[n]1‖[I]13

J ← E(K,P )

Return J

Algorithm FFdff .E(J1‖J2, ε,X)

u← bn/2c ; v ← n− u
A← X[1 : u] ; B ← X[u+ 1 : n]

For i = 0 to r − 1 do

Q← [i]1‖[B]15

Y ← E(J1, Q⊕J2) ; y ← StToNum(Y )

If (i is even) then m← u else m← v

c← (StToNum(A) + y) mod rdxm

C ← NumToStm(c)

A← B ; B ← C

Return A‖B

Algorithm FFdff .D(J1‖J2, ε, Z)

u← bn/2c ; v ← n− u
A← Z[1 : u] ; B ← Z[u+ 1 : n]

For i = r − 1 downto 0 do

Q← [i]1‖[B]15

Y ← E(J1, Q⊕J2) ; y ← StToNum(Y )

If (i is even) then m← u else m← v

c← (StToNum(A)− y) mod rdxm

C ← NumToStm(c)

A← B ; B ← C

Return A‖B

Algorithm KDFdff(K, I)

t← |I|
P1 ← [rdx]1‖[t]1‖[n]1‖[I]13

P2 ← [0]1‖[0]1‖[0]1‖[I]13

J1 ← E(K,P1) ; J2 ← E(K,P2)

Return J1‖J2

Figure 17: The FF2 = (Fff2,KDFff2) (left) and DFF = (FFdff ,KDFdff) (right) IB-FPE schemes.

By convention, StToNum(X) = 0 if X = ε is the empty string, meaning the string of length 0. If
0 ≤ c < rdxm is an integer then NumToStm(c) is the string X in Σm that represents c, namely
such that StToNum(X) = c. If b ≥ 1 is an integer, then [x]b denotes the representation of x as a
b-byte string. This notation is used both for x an integer in the range 0, . . . , 28b− 1 —for example,
[2]1 = 00000010— and for x a binary string of length at most 8b —for example, [101]1 = 00000101.
By E : {0, 1}128 × {0, 1}k → {0, 1}128 we denote the AES blockcipher.

FF2. We describe IB-FPE scheme FF2 = (Fff2,KDFff2). The encryption function Fff2.E : {0, 1}128
× {ε} × Σn

2 → Σn
2 of the base FPE scheme is a Feistel network, shown at the top left of Fig. 17.

Shown right below it is the decryption function Fff2.D : {0, 1}128×{ε}×Σn
2 → Σn

2 of the base FPE
scheme. Note the base FPE scheme has trivial tweak space {ε}. Below that is the key derivation
function KDFff2 : {0, 1}128 × ID→ {0, 1}128.

DFF. We describe IB-FPE scheme DFF = (F,KDFdff). The encryption function FFdff .E : {0, 1}256
× {ε} × Σn

2 → Σn
2 of the base FPE scheme is a Feistel network, shown at the top right of Fig. 17.

Note that the key length is 256, not 128. Shown right below it is the decryption function FFdff .D :
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{0, 1}256 × {ε} × Σn
2 → Σn

2 of the base FPE scheme. Note the base FPE scheme has trivial tweak
space {ε}. Below that is the key derivation functions KDFdff : {0, 1}128 × ID→ {0, 1}256. Note the
master key length is 128, not 256.
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