
Instantaneous Decentralized Poker

Iddo Bentov1, Ranjit Kumaresan2 and Andrew Miller3

1 Cornell University, iddobentov@cornell.edu
2 Microsoft Research, vranjit@gmail.com

3 University of Illinois at Urbana–Champaign, soc1024@illinois.edu

Abstract. We present efficient protocols for amortized secure multi-
party computation with penalties and secure cash distribution, of which
poker is a prime example. Our protocols have an initial phase where the
parties interact with a cryptocurrency network, that then enables them
to interact only among themselves over the course of playing many poker
games in which money changes hands.
The high efficiency of our protocols is achieved by harnessing the power
of stateful contracts. Compared to the limited expressive power of Bit-
coin scripts, stateful contracts enable richer forms of interaction between
standard secure computation and a cryptocurrency.
We formalize the stateful contract model and the security notions that
our protocols accomplish, and provide proofs in the simulation paradigm.
Moreover, we provide a reference implementation in Ethereum/Solidity
for the stateful contracts that our protocols are based on.
We also adapt our off-chain cash distribution protocols to the special
case of stateful duplex micropayment channels, which are of independent
interest. In comparison to Bitcoin based payment channels, our duplex
channel implementation is more efficient and has additional features.

1 Introduction

As demonstrated by Cleve [13], fair multiparty computation without an honest
majority is impossible in the standard model of communication. Hence, there
have been numerous attempts to circumvent this theoretical impossibility re-
sult, in particular by relying on techniques such as gradual release (cf. [35] for a
survey) and optimistic fair exchange [4]. With the introduction of Bitcoin [33],
the academic study of decentralized cryptocurrencies gave rise to a line of re-
search that seeks to impose fairness in secure multiparty computation (MPC) by
means of monetary penalties [8]. In this model, the participating parties make
security deposits, and the deposits of parties who deviate from the protocol are
used to compensate the honest parties.

Still, interacting with a Proof-of-Work based decentralized network entails
long waiting times due to the need to be secure against reversal of the ledger
history. A recent work by Kumaresan and Bentov [27] showed a Bitcoin based
amortization scheme in which the parties run an initial setup phase requiring
interaction with the cryptocurrency network, but thereafter they engage in many
fair secure computation executions, communicating only among themselves for
as long as all parties are honest.

1.1 Our Contributions

Asymptotic gains in amortized protocols. We present new protocols that
rely on stateful contracts instead of Bitcoin transactions, and thereby improve
upon the previous results in several ways. First, the setup phase of [27] re-
quires the n parties to execute O(n2) PoW-based rounds of interaction with the
cryptocurrency network, while our stateful protocols require O(1) rounds. The
protocols of [27] for secure MPC with penalties also require a security deposit
of O(n2) coins per party, while our protocols require O(n) coins per party. We
use UC-style definitions [11] to formalize the security notions that are achieved
by our amortized protocols, and provide proofs using the simulation paradigm.

Amortized SCD. Unlike the protocols in [27], our protocols support secure
cash distribution with penalties (SCD), rather than only fair secure MPC with
penalties. The distinction between SCD and fair MPC with penalties is that in
SCD the inputs and outputs of the parties are comprised of both money and
data, while fair MPC with penalties has only data for inputs and outputs (but
uses money to compensate honest parties who did not learn the output).

Real poker. A canonical example of SCD is a mental poker game, where the
outcome of the computation is not intrinsically useful, but rather determines
how money should change hands. This means that following an on-chain setup
phase, the parties can play any number of instantaneous poker games, for as
long as no party has run out of money. Hence, while there is a large body of
work on efficient mental poker schemes, to the best of our knowledge we are
the first to provide a practical poker protocol with actual money transfers from
the losers to the winners. Moreover, we accompany our poker protocol with an
implementation for the Ethereum cryptocurrency.

Highly efficient payment channels. As a special case, our off-chain cash
distribution protocols can also be used for stateful bi-directional payment chan-
nels. This use case does not require secure computation and yet it is particu-
larly important. The reason for this is that micropayment channels can reduce
the amount of transaction data that the decentralized cryptocurrency network
maintains, and thus the long-term scalability pressures that a cryptocurrency
faces can be relieved by well-functioning off-chain payment channels (see, e.g.,
[18] for further discussion). In comparison to Bitcoin based off-chain payment
channels, our stateful approach yields better efficiency and extra features. Since
micropayment channels are of independent interest, we provide a self-contained
protocol and implementation of our stateful duplex off-chain channel.

1.2 Related Works

The first secure computation protocols that utilize Bitcoin to guarantee fairness
are by Maxwell [30], Barber et al. [5], Andrychowicz et al. [3,2]. and Bentov
and Kumaresan [8]. Bitcoin based protocols for reactive cash distribution and

2

poker were given by Kumaresan, Moran, and Bentov [26]. The technique for
amortized secure computation with penalties in the Bitcoin model was intro-
duced by Kumaresan and Bentov [27]. Our protocols subsume and improve on
these, providing both the amortization benefit of [27] with the cash distribu-
tion functionality of [26], and furthermore reduce the on-chain costs and the
necessary amount of collateral. Several other works analyze fair protocols in rig-
orous models, in particular Kiayias, Zhou, and Zikas [24] and Kosba et al. [25]
introduced formal cryptocurrency modeling and presented fair (non-amortized)
protocols that improve upon the PoW-based round complexity and collateral
requirements of the Bitcoin-based protocols in the prior works.

The cash distribution contract we present (see Section 2.3) is closely related
to an ongoing proposal in the cryptocurrency community for “state channels”
(cf. Coleman [14]), wherein a group of parties agrees on a sequence of “off-
chain” state transitions, and resort to an on-chain reconciliation process only in
the case that the off-chain communications break down. To our knowledge, no
security definition has yet been provided for such applications. Furthermore, our
application is much more expressive, since we can implement state transitions
that depend on parties’ private information, while still guaranteeing fairness.

The original mental poker protocol by Shamir, Rivest, and Adelman [36]
relies on commutative encryption. However, their protocol was only for two par-
ties and was found to have security vulnerabilities [29,15]. Following that, many
different protocols for mental poker were proposed. For example, Crépeau pre-
sented secure poker protocols that are based on probabilistic encryption [16] and
zero-knowledge proofs [17], but his constructions are rather inefficient. In 2003,
a breakthrough by Barnett and Smart [6] gave a far more efficient poker pro-
tocol. Castellà-Roca et al. [12] utilized homomorphic encryption to construct a
poker protocol that is similar to [6]. Bayer and Groth [7] later gave a secure and
efficient shuffle procedure that can be integrated with [6].

The poker protocol that we integrate into our SCD implementation is by
Wei and Wang [23], with a full version by Wei [22]. This protocol uses a proof
of knowledge scheme that is slightly faster than [6,7,12], and provides a security
proof using the simulation paradigm.

2 Overview

In Bitcoin, the full nodes maintain a data structure that is known as the “unspent
transaction outputs set” (UTXO set), which represents the current state of the
ledger. Each unspent output in the UTXO set incorporates a circuit (a.k.a. script
or predicate), such that any party who can provide an input (a.k.a. witness)
that satisfies the circuit can spend the coins amount of this output into a new
unspent output. Therefore, if there is only one party who knows the witness for
the circuit, then this party is in effect the holder of the coins.

Standard Bitcoin transactions use a signature as the witness. The signature
is applied on data that also references the new unspent output, thereby binding

3

the transaction to the specific receiver of the coins and thus prevents a man-in-
the-middle attack by the nodes in the decentralized Bitcoin network.

However, Bitcoin allows the use of more complex circuits as well. Such circuits
allow us to support quite elaborate protocols in which money changes hands, as
opposed to using Bitcoin only for simple money transfers between parties.

Specifically, protocols for fair secure computation and fair lottery can be im-
plemented with a blackbox use of an F?CR functionality [8,26,28]. Essentially,
F?CR specifies that a “sender” P1 locks her coins in accordance with some circuit
φ, such that a “receiver” P2 can gain possession of these coins if she supplies a
witness w that satisfies φ(w) = 1 before some predefined timeout, otherwise P1

can reclaim her coins. As shown in [8,27], the F?CR functionality can be realized
in Bitcoin, as long as the circuit φ can be expressed in the Bitcoin scripting lan-
guage. In the aforementioned secure computation and lottery protocols [8,26,28],
the particular circuit that is needed verifies a signature (just as in standard trans-
actions) and a decommitment according to some arbitrary hardcoded value. Such
a circuit can be realized by using a hash function for the commitment scheme
(Bitcoin supports SHA1,SHA256,RIPEMD160). Since signature verification is an or-
der of magnitude more complex than hash invocation, the complexity of an F?CR

transaction is only marginally higher than that of standard Bitcoin transactions.

Note that our underlying assumption is that an honest party can interact with
the cryptocurrency network (within a bounded time limit) to ensure her mon-
etary compensation. We also assume that the off-chain communication among
the parties takes place in a separate point-to-point synchronous network. Given
that the network is synchronous, our MPC protocols will be secure even if only
one party is honest.

The F?CR model can be regarded as a restricted version of the Bitcoin model,
which is expressive enough for realizing multiparty functionalities that are im-
possible in the standard model. One may ask whether it is possible to design
better protocols in a model that is more expressive than the Bitcoin model. In
this work we will answer the question in the affirmative.

A possible extension to the Bitcoin transaction structure is covenants [32,34],
where each unspent output specifies not only the conditions on who can spend
the coins (i.e., the circuit φ), but also conditions on who is allowed to receive
the coins. Indeed, as shown in [32], covenants can be used to implement certain
tasks that the current Bitcoin specifications do not support (e.g., vaults that
protect against coin theft).

Generalizing further, each unspent output can maintain a state. That is, an
unspent output will be comprised of a circuit φ and state variables, and parties
can update the state variables by carrying out transactions that satisfy φ in
accord with the current values of the state variables. Additionally, parties can
deposit coins into the unspent output, and a party can withdraw some partial
amount of the held coins by satisfying φ with respect to the state variables. This
approach is used in Ethereum [38,10], where the notion of “outputs” is replaced
with “user accounts” and automated “contract accounts”.

4

With a slight abuse of terminology, the transaction format of the Bitcoin
model can thus be described as “stateless”. By this we mean that the coins of an
unspent Bitcoin output are controlled by a hardcoded predicate that represents
their current state, and anyone who can supply a witness that satisfies this
predicate is able to spend these coins into an arbitrary new state.

Let us mention that the Bitcoin transaction format can still enable “smart
contracts”, in the sense of having coins that can be spent only if some other
transaction took place (i.e., without relying on a third party). The technique
for achieving this would generally involve multiple signed transactions that are
prepared in advance and kept offline. Then, depending on the activity that occurs
on the blockchain, some of the prepared transaction will become usable. However,
in certain instances the amount of offline transactions may grow exponentially,
as in the case of zero-collateral lotteries [31].

The protocols that we present in this work will be in a model that has stateful
contracts. As described, this refers to unspent outputs that are controlled ac-
cording to state variables. It should be emphasized that our protocols do not rely
on a Turing-complete scripting language, as all the loops in the contracts that
we design (in particular our poker contract) have a fixed number of iterations.

To justify our modeling choice, let us review the advantages of stateful con-
tracts over stateless transactions. As a warmup, we begin by examining simple
protocols for 2-party fair exchange.

2.1 Fair Exchange with Penalties between Two Parties

Suppose that P1, P2 execute an unfair secure computation that generates secret
shares of the output x = x1⊕ x2 and commitments T1 = h(x1), T2 = h(x2), and
delivers (xi, T1, T2) to party Pi. Consider the naive protocol for fair exchange of
the shares x1, x2 via F?CR transactions:

P1
T2−−−−−−−−−−−−−→
q,τ

P2 (1)

P2
T1−−−−−−−−−−−−−→
q,τ

P1 (2)

An arrow denotes an F?CR transaction that lets Pi collect q coins from P3−i
before time τ , by revealing a decommitment y such that h(y) = Ti.

The above protocol is susceptible to an “abort” attack by a malicious P2

that waits for P1 to make the deposit transaction (i.e., Step 1), after which P2

simply does not execute Step 2 to make a deposit transaction. Instead, P2 claims
the first transaction, and obtains q coins while P1 obtains x2. Now, P2 simply
aborts the protocol. In effect, this means that an honest P1 paid q coins to learn
P2’s share. Fairness with penalties requires that an honest party never loses any
money, hence this naive approach does not work (cf. [8] for precise details).

The above vulnerability can be remedied via the following protocol:

5

P1
T1∧T2−−−−−−−−−−−−−−−−→
q,τ2

P2 (1)

P2
T1−−−−−−−−−−−−−→
q,τ1

P1 (2)

For this improved protocol to be secure, two sequential PoW-based waiting
periods are necessary. Otherwise, a corrupt P2 may be able to reverse transaction
(2) after P1 claims it, so that P1 would reveal her share and not be compensated.

By contrast, consider the 2-party fair exchange protocol that is based on a
stateful contract, as illustrated in Fig. 1. Here, both parties should deposit q coins
each, concurrently. If the 2q coins were not deposited into the contract before
the timeout is reached, then an honest party who deposited into the contract can
claim her coins back. In the case that the 2q coins were deposited, it triggers the
contract to switch to a new state, where each party Pi can claim her deposit by
revealing the hardcoded decommitment Ti. In contrast to the F?CR protocol, the
stateful contract requires only one PoW-based waiting period before the honest
parties may reveal their shares.

P1

P2

x1: h(x1)=h1
q

q
x2: h(x2)=h2

q?+qswitch from
state=deposit
to state=claim
upon receiving
the 2q coins

q?+q

Fig. 1. Stateful contract for fair secure 2-party computation with penalties.

While the quantitative difference between stateful and stateless contracts in
the above discussion may appear to be unimpressive, the distinction becomes
more pronounced in the case of multiparty fair exchange (a.k.a. fair reconstruc-
tion [8]), and even more so in amortized protocols. Let us demonstrate the amor-
tized multiparty case in the next section.

2.2 Amortized Multiparty Fair SFE with Penalties

We illustrate in Fig. 2 the stateful contract for n parties who wish to engage in
amortized fair secure function evaluation (SFE) with penalties. The lifespan of
this contract can be thought of as having three phases:

– Deposit Phase: All parties should deposit q(n − 1) coins each. If nq(n − 1)
coins were deposited before the initial timeout is reached, then the contract
switches into an “active” state. Otherwise, each honest party who deposited
will claim her q(n− 1) coins back.

6

– Execution Phase: While the state is “active”, the n parties will not interact
with the contract at all. Instead, they will engage in multiple executions of
SFE. In the ith execution, the secure computation prepares secret shares
{xi,j}nj=1 of the output, as well as commitments {hi,j = h(xi,j)}nj=1, and de-
livers (xi,j ;hi,1, hi,2, . . . , hi,n) to party Pj . Each party will then use her secret
key (for which the corresponding public key is hardcoded in the contract)
to create a signature si,j for the tuple (hi,1, hi,2, . . . , hi,n), and send the sig-
nature si,j to the other parties. Upon receiving all the signatures {si,j}nj=1,
each honest Pj will send her secret share xi,j in the clear to the other parties.

– Claim Phase: In the case that a corrupt party Pc did not reveal her share
xi,c during the execution phase, each honest party Pj will send mi,j =
(xi,j ; si,1, si,2, . . . , si,n) to the contract, and thereby transition the contract
into a “payout” state. The message mi,j also registers that Pj deserves to
receive a compensation of q coins, in addition to her initial q(n − 1) coins
deposit. Until a timeout, any party P` can avoid being penalized by sending
mi′,` = (xi′,`; si′,1, si′,2, . . . , si′,n) with i′ ≥ i to the contract. In case i′ > i,
this would invalidate the q coins compensation that was requested via mi,j ,
and instead register that P` is owed q coins in compensation.

P1

P2

P3

Pn

q(n-1)

q(n-1)

q(n-1)

q(n-1)

P1,P2,...,Pn
x1, signature (i,(h(x1) ␣ ␣ ␣ ...))

P1,P2,...,Pn
x2, signature (i,(␣ h(x2) ␣ ␣ ...))

P1,P2,...,Pn
x3, signature (i,(␣ ␣ h(x3) ␣ ...))

P1,P2,...,Pn
xn, signature (i,(␣ ␣ ␣ ... h(xn)))

waiting
period

q?+q(n-1)

q?+q(n-1)

q?+q(n-1)

q?+q(n-1)

Fig. 2. Stateful contract for amortized multiparty fair SFE with penalties.

As can be observed, the n parties can engage in an unlimited amount of off-
chain SFE executions (where the executions can compute different functions),
and no interaction with the blockchain will take place as long as all parties are
honest. When a corrupt party Pc deviates from this protocol, each honest party
will receive q coins compensation, that is taken from Pc’s initial security deposits
of q(n−1) coins. The actual protocol handles more technical issues, cf. Section 4.

By contrast, achieving the same guarantees in the F?CR model is known to
possible only via an intricate “see-saw” construction that requires O(n2) PoW-
based rounds, and collateral of O(qn2) coins from each party [27]. Moreover, the
stateless nature of Bitcoin transactions entail a global timeout after which the
entire see-saw construction expires. Setting the global timeout to a high value
enables many off-chain SFE executions, but also implies that a DoS attack by a
corrupt party (who would abort before signing any secret shares of the output

7

of the first execution) will cause each honest party to wait for a long time before
being able to regain possession of her O(qn2) coins deposit. Due to the time value
of money, this is obviously undesirable. The stateful approach does not require a
global timeout that is measured in absolute terms. Instead, the contract remains
operational for as long as all the parties wish to engage in the off-chain protocol,
and transitioning the contract into the “payout” state will trigger an event whose
expiration is relative to the time at which the transition occurred.

We stress that a corrupt party can always pretend to be inactive and force
honest parties to interact with the cryptocurrency network. Thus, for example,
this protocol can be combined with a reputation system. Further, our implemen-
tation uses a technique that shares the on-chain transaction fees among all the
parties equally, so that corrupt parties always have to pay the fee (cf. Section 6).
An Ethereum implementation of this contract is provided in [9, Fig. 18].

Can stateful contracts provide even more benefits? As the next section shows,
the answer is “yes”.

2.3 Stateful Off-Chain Cash Distribution Protocols

Suppose that the parties P1, P2 wish to play a multiple-round lottery game,
such that either of them is allowed to quit after each round. Thus, P1 enters the
lottery with m coins, P2 enters with w coins, and in the first round P1 picks a
random secret x1 and commits to com(x1), P2 picks x2 and commits to com(x2),
and then they decommit x1, x2 so that the least significant bit of x1⊕x2 decides
whether P1’s balance is incremented to m+1 and P2’s balance is decremented to
w− 1, or P1’s balance is decremented to m− 1 and P2’s balance is incremented
to w + 1. If both of them wish to continue, then they will proceed to the next
round and repeat this protocol.

Obviously, the parties must not be allowed to quit in the middle of a round
without repercussions. That is, if P1 reveals her decommitment x1 and P2 aborts,
then P1 should be compensated. Moreover, as in Section 2.2, it is better that
the parties play each round without any on-chain interaction.

Therefore, in each round i, P1 and P2 will sign the current balance mi, wi
together with the round index i and the commitments com(xi,1), com(xi,2). After
the parties exchange these signed messages, they can safely send their decom-
mitments xi,1, xi,2 in the clear. The logic of the stateful contract allows each
party to send her decommitment along with the signed message, and thus fi-
nalize the game according to the current balances. If the other party does not
reveal her decommitment during a waiting period, then the contract increments
the balance of the honest party. If both parties reveal, then the contract com-
putes x1⊕x2 to decide who won the last round, so that the balance of the winner
is incremented and the balance of the loser is decremented. During the waiting
period, an honest party can send a signed message with an index i′ > i and
thereby invalidate the message that a corrupt party sent to the contract.

It should also be noted that an honest party should not continue to play after
the balance of the other party reaches 0, since the contract cannot reward the
winner more money than what was originally deposited.

8

We illustrate the contract in Fig. 3, and provide an Ethereum implementation
in [9, Figs. 18-20]. The multiparty version of our lottery code is available at [1].

P1

P2
w

P1,P2
x1, signature (m',w',h(x1),i)

P1,P2
x2, signature (m',w',h(x2),i)

m'±1

w'±1

m
waiting
period

Fig. 3. Off-chain 2-party lottery.

Such a 2-party lottery is a very simple example of a secure cash distribution
with penalties (SCD) functionality [26]. Another special case of SCD is a multi-
party poker game in which money (i.e., coins of the cryptocurrency system that
the parties hold) is transferred from losers to winners. In Section 3 and onwards
we formulate the ideal functionalities and protocol for fair MPC and SCD, and in
Section 6 we provide an efficient off-chain poker protocol with implementation.

As noted in Section 1, SCD can also be realized in the F?CR model via a non-
amortized (i.e., on-chain) protocol, though the construction requires a setup
phase with O(n2) PoW-based rounds. To the best of our knowledge, there is no
amortized SCD realization in the F?CR model.

A slight variation can turn the above lottery contract into a bi-directional
off-chain micropayment channel, see [9, Section 2.4].

3 Preliminaries

We say that a function µ(·) is negligible in λ if for every polynomial p(·) and all
sufficiently large λ’s it holds that µ(λ) < 1/|p(λ)|. A probability ensemble X =
{X(t, λ)}t∈{0,1}∗,n∈N is an infinite sequence of random variables indexed by a
and λ ∈ N. Two distribution ensembles X = {X(t, λ)}λ∈N and Y = {Y (t, λ)}λ∈N
are said to be computationally indistinguishable, denoted X

c≡ Y if for every non-
uniform polynomial-time algorithm D there exists a negligible function µ(·) such
that for every t ∈ {0, 1}∗,

|Pr[D(X(t, λ)) = 1]− Pr[D(Y (t, λ)) = 1]| ≤ µ(λ).

All parties are assumed to run in time polynomial in the security parameter λ.
We prove security in the “secure computation with coins” (SCC) model pro-
posed in [8]. Note that the main difference from standard definitions of secure
computation [21] is that now the view of Z contains the distribution of coins.
Let idealf,S,Z(λ, z) denote the output of environment Z initialized with in-
put z after interacting in the ideal process with ideal process adversary S and
(standard or special) ideal functionality Gf on security parameter λ. Recall that

9

our protocols will be run in a hybrid model where parties will have access to
a (standard or special) ideal functionality Gg. We denote the output of Z after
interacting in an execution of π in such a model with A by hybridgπ,A,Z(λ, z),
where z denotes Z’s input. We are now ready to define what it means for a
protocol to SCC realize a functionality.

Definition 1. Let n ∈ N. Let π be a probabilistic polynomial-time n-party pro-
tocol and let Gf be a probabilistic polynomial-time n-party (standard or special)
ideal functionality. We say that π SCC realizes Gf with abort in the Gg-hybrid
model (where Gg is a standard or a special ideal functionality) if for every non-
uniform probabilistic polynomial-time adversary A attacking π there exists a
non-uniform probabilistic polynomial-time adversary S for the ideal model such
that for every non-uniform probabilistic polynomial-time adversary Z,

{idealf,S,Z(λ, z)}λ∈N,z∈{0,1}∗
c≡ {hybridgπ,A,Z(λ, z)}λ∈N,z∈{0,1}∗ .

Definition 2. Let π be a protocol and f be a multiparty functionality. We say
that π securely computes f with penalties if π SCC-realizes the functionality F?f
according to Definition 1.

Throughout this paper, we deal only with static adversaries and im-
pose no restrictions on the number of parties that can be corrupted. Our
schemes also make use of a digital signature scheme which we denote as
(SigKeyGen,SigSign,SigVerify). Please see [8,26,28,27] for additional details on
the model including the necessary modifications to UC. Please also see [24]
which extensively treats these modifications, proposes alternative models, and
uses protocol compilers different from GMW.

3.1 Ideal Functionalities

Secure computation with penalties—multiple executions. We now
present the functionality F∗MSFE which we wish to realize. Recall that secure
computation with penalties guarantees the following.

An honest party never has to pay any penalty.

If a party aborts after learning the output and does not deliver output to
honest parties, then every honest party is compensated.

See Figure 4 for a formal description. Note that F∗MSFE directly realizes multiple
invocations of non-reactive secure computation with penalties. In the first phase
referred to as the deposit phase, the functionality F∗MSFE accepts safety deposits
coins(d) from each honest party and penalty deposit coins(hq) from the adversary.
Note that the penalty deposit suffices to compensate each honest party in the
event of an abort. Once the deposits are made, parties enter the next phase
referred to as the execution phase where parties can engage in unbounded number
of secure function evaluations. In each execution, parties submit inputs and wait
to receive outputs. As usual, the ideal adversary S gets to learn the output first
and then decide whether to deliver the output to all parties. If S decides to

10

Notation: session identifier sid, parties P1, . . . , Pn, adversary S that corrupts
{Ps}s∈C , safety deposit d, penalty amount q. Set H = [n] \ C and h = |H|.
Deposit phase: Initialize flg = ⊥. Wait to get message (setup, sid, ssid, j, coins(d))
from Pj for all j ∈ H. Wait to get message (setup, sid, ssid, coins(hq)) from S.

Execution phase: Set flg = 0. For id = 1, 2, · · · , sequentially do:

– If a message (exit, sid) is received from Pj , then send (exit, sid, j) to all parties,
and go to the claim phase.

– Wait to receive a message (input, sid, ssid‖id, j, y(id)j , g(id)) from Pj for all j ∈ H.

Then send (function, sid, ssid‖id, g(id)) to all parties.

– Wait to receive a message (input, sid, ssid‖id, {y(id)s }s∈C , g(id)) from S. If no such
message was received, then go to the claim phase.

– Compute z(id) ← g(id)(y
(id)
1 , . . . , y

(id)
n) and send (output, sid, ssid‖id, z(id)) to S.

– If S returns (continue, sid, ssid‖id), send (output, sid, ssid‖id, z(id)) to each Pj .
– Else if S returns (abort, sid, ssid), update flg = 1, and go to the claim phase.

Claim phase:

– If flg = 0 or ⊥, send (return, sid, ssid, coins(d)) to Pj for j ∈ H. If flg = 0, send
(return, sid, ssid, coins(hq)) to S.

– Else if flg = 1, send (penalty, sid, ssid, coins(d+q+qi)) to Pi for all i ∈ H where
qi = 0 unless S sent a message (extra, sid, ssid, {(i, qi)}i∈H , coins(

∑
i∈H qi)).

Fig. 4. Special ideal functionality F∗MSFE for multiple sequential SFE with penalties.

abort, then no further executions are carried out, parties enter the claim phase,
and honest parties get coins(d + q), i.e., their safety deposit plus the penalty
amount. Now if S never aborts during a local execution, then the safety deposits
are returned back to the honest parties, and S gets back its penalty deposit. Note
that we explicitly allow an exit command that enables parties to exit the contract
immediately. Prior works [26,27] required parties to wait for a pre-specified time
out parameter before parties can reclaim their deposits.

Supporting cash distribution via F∗MSCD. See Figure 5 for a formal definition
for F∗MSCD. The definition for amortized secure cash distribution with penalties
in the reactive setting F∗MSCD is identical to F∗MSFE except that we repeatedly
evaluate reactive functions which is composed of multiple stage functions. Now,
S can abort between different stages of a reactive function evaluation or within a
single stage. In either case, the honest parties will be compensated via the penalty
deposit coins(hq) submitted by S in the deposit phase. Furthermore, F∗MSCD

also supports cash distribution which makes it useful for many applications. In
particular, we allow parties to dynamically add deposits. The reactive functions
that are evaluated take into account the current balance which is maintained in
the variable b, and the output of the evaluations update b to reflect how the cash
is redistributed. That is, the amount of coins are specified as input to the reactive
functions, and the output will influence how the coins are redistributed. Finally
we note that unlike prior formulations [26,27], we do not require an apriori

11

upper bound on the number of stages that is common to the reactive functions
supported by F∗MSCD. Like most prior works (with the exception of [25]), we do
not attempt to hide the (updated) balance vectors or the amount of coins.

3.2 Stateful contract — Ideal Functionality

We now present the functionality F∗StCon which we use to abstract the smart
contracts functionality provided by cryptocurrencies. At a high level, F∗StCon

lets parties run a time-dependent stateful computation. In other words, the con-
tract encodes a finite state computation where each transition could potentially
be dependent on the time of the transition. Time-dependent transitions in our
stateful contract functionality allow us to design protocols that can support early
termination of contracts which could be a potentially critical feature in certain
settings. Such features are not supported by claim-or-refund F?CR.

As is typical in the penalty model, we let parties make an initial deposit to
the F∗StCon functionality. Following this, parties together specify a finite state
computation denoted Prog along with an initial state st. The functionality then
simply waits for a state transition to be triggered by any of the parties. Upon a
valid trigger w (i.e., for which Prog produces non-⊥ output), the contract runs
Prog on the tuple (j, w, t; st) where j is the index of party Pj who supplies the
trigger w at time t, and where st is the current state of Prog. Prog then outputs
the current state which will be stored in the variable st and the amount of money
e that Pj is supposed to obtain. Both st and e are revealed to all parties (i.e.,
F∗StCon has public state), and F∗StCon will distribute coins(e) to party Pj . The
formal description of F∗StCon is given in Figure 6. The functionality repeatedly
accepts state transitions until it has distributed all the coins that were deposited
to it in the initialization phase.

Analogous to the script complexity definition for F?CR-based protocols, we
can define the script complexity (also referred to as “validation complexity”) of
a protocol in the F∗StCon-hybrid model. See [9, Section 3.2] for more details.

Definition 3 (F∗StCon Script Complexity). Let Π be a protocol among
P1, . . . , Pn in the F∗StCon-hybrid model where F∗StCon is initialized with pro-
gram Prog and initial state st. We say a trigger T = (j, w, t) is valid iff
Prog(j, w, t; st) 6= ⊥ where st is the current state of F∗StCon. We say a state
st is valid iff there exists a valid sequence of triggers starting from some initial
state st0 that result in st becoming the current state of F∗StCon. For a trigger T
acting on input state st, we let C(Prog, T, st) denote the sum of the size of T ,
the size of the input states and the output states and the running time of Prog
on input (T ; st). We define the F∗StCon-validation complexity of Π, or in short
transition validation complexity of Π as the maximum value of C(Prog, T, st)
maximized over all possible choices of a valid trigger T and a valid state st. ♦

Functionality F∗StCon+. We also present another variant of F∗StCon, which we
call F∗StCon+. The main difference is that F∗StCon+ accepts coin deposits, via
an update command even during the execution phase. We note that dynamic

12

Notation: session identifier sid, parties P1, . . . , Pn, adversary S that corrupts
{Ps}s∈C , safety deposit d, penalty amount q, set H = [n] \ C.

Deposit phase: Initialize flg = ⊥.

– Wait to receive a message (setup, sid, ssid, j, coins(d)) from Pj for all j ∈ H.
– Wait to receive a message (setup, sid, ssid, coins(hq)) from S where h = |H|.
Execution phase: Initialize flg = 0 and b← 0. For id = 1, 2, . . ., sequentially do:

– If a message (exit, sid, ssid) is received from Pj , then send (exit, sid, ssid, j) to
all parties, and go to the claim phase.

– If a message (addmoney, sid, ssid‖id, bj , coins(bj)) is received from some Pj ,
and a message (addmoney, sid, ssid‖id, bj) was received from every Pk with
k 6= j, then send (addmoney, sid, ssid‖id, bj) to all parties. Update b ←
b+ (· · · , 0, bj , 0, · · ·).

– Initialize state = ⊥. Wait to receive message (function, sid, ssid‖id, g(id)) from
Pj for all j ∈ H. Then send (function, sid, ssid‖id, g(id)) to all parties.

– Parse g(id) = {g(id)k }k∈[ρ]. For k = 1, . . . , ρ, sequentially do:

• Wait to receive message (input, sid, ssid‖id‖k, j, y′j) from Pj for all j ∈ H.
• Wait to receive a message (input, sid, ssid‖id‖k, {y′s}s∈C) from S. If no such

message was received, update flg = 1 and go to the claim phase.
• Compute (z, b′, state)← g

(id)
k (y′1, . . . , y

′
n; state, b).

• Send message (output, sid, ssid‖id‖k, z, b′) to S.
• If S sends (continue, sid, ssid‖id‖k), send (out, sid, ssid‖id‖k, z, b′) to all Pi.
• If S returns (abort, sid, ssid‖id‖k), set flg = 1, and go to the claim phase.
• Update b← b′.

Claim phase:

– If flg = 0 or ⊥, send (return, sid, ssid, coins(d + br)) to all Pr for r ∈ H. If
flg = 0, send (return, sid, ssid, coins(hq +

∑
s∈C bs)) to S.

– Else if flg = 1, send (penalty, sid, ssid, coins(d+ q+ bi + qi)) to Pi for all i ∈ H
where qi = 0 unless S sent a message (extra, sid, ssid, {qi}i∈H , coins(

∑
i∈H qi)).

Send (remaining, sid, ssid, coins(
∑
s∈C bs)) to S.

Fig. 5. Special ideal functionality F∗MSCD for multiple sequential MPC with penalties.

Notation: session identifier sid, parties P1, . . . , Pn, initial deposit vector
(d1, . . . , dn), program Prog and an initial state st. We assume that the initial
deposit vector is specified in Prog.

Initialization phase: Wait to get message (init, sid, ssid,Prog, st, coins(dj)) from
Pj for all j ∈ [n]. Initialize Q←

∑
j∈[n] dj .

Execution phase: Repeat until termination:

– Wait to receive a message (trigger, sid, ssid, w) from some party Pj at time t
such that Prog(j, w, t; st) 6= ⊥. Then, let (st, e) ← Prog(j, w, t; st). If e < Q,
then send (output, sid, ssid, j, w, t, st, e) to each Pk and send (pay, sid, ssid,
coins(e)) to Pj . Update Q← Q− e. If Q = 0, then terminate.

Fig. 6. Special ideal functionality F∗StCon for stateful contracts.

13

Notation: session identifier sid, set of parties {P1, . . . , Pn}, initial deposit vector
d1 = · · · dn = (n− 1)q, where q is the penalty amount, a program Prog, an initial
state st, and a validation function for updates Update. During the execution phase,
parties will be able to add coins via Update.

Initialization phase: Wait to get (init, sid, ssid,Prog,Update, st, dj , coins(dj))
from each Pj . Initialize Q←

∑
j∈[n] dj .

Execution phase: Repeat until termination:

– If a message (update, sid, ssid, u, b, coins(b)) is received from Pj at time t
such that Update(j, w, t; st) 6= ⊥, then set (Prog,Update, st) ← Update(j, u,
t; Prog, st), accept coins(b), update Q ← Q + bj , and send (update, sid, ssid,
j, u, t, st,Prog,Update) to all parties.

– If a message (trigger, sid, ssid, w) is received from Pj at time t such that
Prog(j, w, t; st) 6= ⊥. Then, let (st, e) ← Prog(j, w, t; st). If e < Q, then send
(output, sid, ssid, j, w, t, st, e) to each Pk and send (pay, sid, ssid, coins(e)) to
Pj . Update Q← Q− e. If Q = 0, then terminate.

Fig. 7. Special ideal functionality F∗StCon+ for stateful contracts.

updates to Prog is supported by our definition (although we do not rely on this
feature in our protocols). We note that F∗StCon+ is also supported by Ethereum.

4 Realizing F∗
MSFE from F∗

StCon

In this section, we describe the protocols for amortized secure computation with
penalties in the F∗StCon-hybrid model. Due to lack of space we only give a brief
overview. See [9, Appendix A] for full details.

The protocol for implementing F∗MSFE has three phases. In the first phase,
parties interact with the on-chain stateful contract, i.e., the ideal functionality
F∗StCon. In particular, parties agree on setting contract parameters that fix the
number of parties, the allowed state transitions of the contract, the time-out,
and the compensation amounts to parties in case of an abort (cf. Figure 9). Then
in the second phase (cf. Figure 8), parties perform the actual computation. This
is done off-chain via local MPC executions. In addition to performing the com-
putation, these MPC executions also provide hooks to the on-chain contract (to
handle aborts). We describe the local executions first because they will intro-
duce new variables which will serve as hooks to the contract via the contract
parameters. In the next phase, we describe the process which honest parties use
in case an off-chain local execution was aborted. In particular, in this phase,
parties will go on to the on-chain contract to either continue the aborted local
execution or claim their compensation. This phase occurs immediately following
an abort in the local executions phase. Figure 10 describes how parties handle
notifications received from F∗StCon.

14

Local executions. The formal description of the local executions is in Figure 8.
In this section, we describe this phase in more detail. Suppose the parties are
interested in computing a function g(id). At a high level, parties begin by run-
ning a standard secure computation protocol (that does not guarantee fairness)
which computes z = g(id)(y1, . . . , yn) where yj represents the input of Pj . In
addition this secure computation protocol also additively secret shares z into
z1, . . . , zn and computes commitments hj on each zj using uniform randomness

ωj . Finally, the secure computation protocol outputs x
(id)
j = (zj ;ωj) (i.e., the

decommitment to hj) and the value h(id) = h1‖ · · · ‖hn to each party Pj . For
the simulation to work, we need to use an honest-binding commitment scheme
(cf. [9, Appendix D]).

Note that there could be aborts here and in every subsequent stage of the
local execution. In each step, we assume that parties stop the protocol if they
do not receive valid messages (i.e., including signatures) from any other party.
Importantly, there is an additional (implicit) time-interval parameter δ which is
used to detect aborts. In more detail, we say that a party aborted the protocol
if (1) it is its turn to send a message, and (2) if the party does not send a valid
protocol message within time-interval δ of the previous event. (We assume that
all honest parties act immediately, i.e., within time-interval δ.) In the event of
an abort (as defined above), parties go up to the on-chain contract for resolution
(cf. Figure 10). Once the local secure computation protocol ends, we ask each
party Pj to compute a signature σj on the message (id,h(id)) under its secret
signing key skj and then broadcast it to all parties. In the next step, each party

Pj broadcasts the decommitment x
(id)
j to the value hj contained in h(id) (which

in particular includes the secret share zj of the output z). Once this step is
completed, then all parties can recover the output of the id-th computation as⊕

k∈[n]zk. Please see [9, Appendix A] for more details.

Contract parameters. See Figure 9 for a formal description. The state pa-
rameters are established in the following way. The variables d1, . . . , dn represent
the amount coins((n− 1)q) that the parties are expected to put in as the initial
deposit to the contract.
State components and initialization. The variable st denotes the current state of
the contract. The values pk and ∆ are constant parameters to the contract and
are always maintained as part of the state. The parameter pk represents the
set of public keys of all the parties. The parameter ∆ represents the length of
the time interval within which parties need to act in order to keep the contract
from defaulting. In addition, each state variable has five components: (1) st.mode
represents the current mode in which the contract is in, and is one of {“init”,
“exec”, “exit”, “payout”, “abort”, “inactive”}; (2) st.id represents the id of the
execution that is being continued currently on the on-chain contract; (3) st.tt
represents the current transcript of the execution that is being continued on the
chain; (4) st.t represents the time when the on-chain contract was triggered and
either (a) was moved to “exit” or (b) resulted in a change of the variable st.tt;
(5) st.L is a boolean array that represents which parties have already withdrawn
their deposits and compensations from F∗StCon.

15

1. (MPC step) Parties run a standard MPC protocol that
– obtains inputs y1, . . . , yn from the parties; and
– computes z = g(id)(y1, . . . , yn); and
– secret shares z into z1, . . . , zn; and
– computes hj = com(x

(id)
j = (zj ;ωj)); where each ωj is chosen uniformly

at random; and
– outputs (x

(id)
j ,h(id) = h1‖ · · · ‖hn) to each Pj .

2. (Signature broadcast) Each Pj computes a signature σj on message (id,h(id))
under the signing key skj and then broadcasts it. Let Sj denote the set of
parties whose signature on message (id,h(id)) was received by Pj . If Sj = [n],

then let σ(id) = σ1‖ · · · ‖σn and update bestj ← (id, ((j, x
(id)
j),h(id),σ(id))).

Else, parties abort the local execution and go to the on-chain contract for
resolution (cf. Figure 10).

3. (Share broadcast) Each Pj broadcasts x
(id)
j . Let S

(id)
j denote the set of parties

whose share (authenticated against h(id)) was received by Pj and let X
(id)
j de-

note the corresponding set of decommitments received by Pj . Each Pj updates

bestj ← (id, (Xj ,h,σ)). If |S(id)
j | = [n], then Pj computes the output of the

id-th local execution as
⊕n

k=1zk where we parse x
(id)
k ∈ X(id)

j as (zk;ωk). Else,
parties abort the local execution and go to the on-chain contract for resolution
(cf. Figure 10).

Fig. 8. id-th off-chain local execution for implementing F∗MSFE.

We represent the state variable st as a five tuple (st.mode, st.id, st.tt,
st.t, st.L). Also, st.tt is either ⊥ (denoting the null transcript) or is a tuple of
the form (X,h,σ). The initial state is st and its components are initialized in
the following way: (1) st.mode = “init”; (2) st.id = −1; (3) st.tt = NULL; (4)
st.t = −1; and (5) st.L = (1, . . . , 1). Recall that st also contains the list of all
public keys of the participants pk, and the global time-out parameter ∆.

Triggering state transitions. During course of the execution, the state of the
contract would either (1) remain in the initial state with st.mode = “init”; or
(2) be in exit mode, i.e., with st.mode = “exit”, where contract participants
are trying to get their initial deposit out of the contract (and terminate the
contract); or (3) be trying to continue an incomplete off-chain local execution
by keeping track of the current state of the local execution computation, i.e.,
with st.mode = “exec”; or (4) be in payout mode with st.mode = “payout”
where parties have successfully completed all executions so far and are waiting
to get their initial deposits out of F∗StCon; or (5) be in “abort” mode where an
execution was aborted and honest parties are waiting to get their initial deposits
and compensation out of F∗StCon; or (6) be in “inactive” mode where F∗StCon no
longer accepts any further state transitions and in particular, has given out all
the money that was deposited to it.

Transitions to different states will be triggered by a witness (j, w, t). Here
j represents the party triggering the contract, i.e., party Pj . The value t rep-

16

resents the time at which the contract is triggered. Note that when st.mode =
“payout”/“abort”/“inactive”, the triggering witness w is simply the token value
exit. As we will see later, the transitions from these states depends only on
st.L and the triggering time t and st.t. The more interesting case is when
st.mode = “init”/“exit”/“exec”. In this case, the triggering witness w provides
the most recent state of the current local execution. We will use a separate sub-
routine pred to determine the validity of a trigger (j, w, t) when the witness w
represents a transcript of an execution.

Notation. The variable st denotes the current state of the contract. We represent
the state variable st as a five tuple (st.mode, st.id, st.tt, st.t, st.L). We omit
pk and ∆ from the state to keep the presentation simple. The initial deposits are
d1 = · · · = dn = (n− 1)q. The initial state is (“init”, −1, ⊥, −1, 1).

Subroutine pred. Let pred(j, w, t; st) = 1 if

– w is parsed as (id,tt = (X,h,σ)) with h = h1‖ · · · ‖hn, σ = σ1‖ · · · ‖σn; and
– for each k ∈ [n] it holds that SigVerify((id,h), σk; pkk) = 1; and
– for each k such that X[k] 6= NULL it holds that hk = com(X[k]); and
– either (1) st.mode = “init”; or (2) st.mode = “exec”/“exit” and t ≤ st.t + ∆

and either (2.1) id > st.id or (2.2) id = st.id and X 6⊆ st.tt.X.

State transitions. Prog(j, w, t; st): Initialize e← 0.

– If w = (id,tt) and pred(j, w, t; st) = 1: If st.id = id, then update st.tt.X ←
st.tt.X ∪ tt.X, else set st.tt← tt. Set st← (“exec”, id, st.tt, t, st.L).

– Else if w = exit:
• If (1) st.mode = “init” or (2) st.mode = “exec” and |st.tt.X| = n: Set

st.mode← “exit” and st.t← t.
• If st.mode = “exec” or “abort”, and t > st.t + ∆ and st.L[j] = 1 and
|st.tt.X| 6= n: Then update st.L[j] ← 0 and st.mode ← “abort” and
st.L[k]← 0 for all k such that st.tt.X[k] = ⊥. Further, if st.tt.X[j] 6= ⊥,
then set e← n(n− 1)q/|st.tt.X|.

• If st.mode = “exit” or “payout”, and t > st.t + ∆ and st.L[j] = 1: Set
e← (n− 1)q and update st.mode← “payout” and st.L[j]← 0.

If st.L[k] = 0, for all k ∈ [n] then we update st.mode← “inactive”.

Fig. 9. F∗StCon parameters for F∗MSFE.

Subroutine pred. The predicate pred essentially decides if a trigger to the contract
is a valid continuation of the computation on the chain. Now, pred takes a trigger
(j, w, t) and examines it in conjunction with the current state of the contract.
First, pred parses the witness w as (id,tt = (X,h,σ)) where id represents the
(off-chain) execution that is being attempted to be continued on the chain by
party Pj . The value tt = (X,h,σ) essentially provide (along with a proof)
the most recent state of a computation (typically the last incomplete off-chain

17

computation). In particular and in the context of non-reactive functionalities,
the value X maintains the set of parties who have completed their step of the
computation on the chain along with their broadcasted decommitments to the
secret share of the final output. The values h and σ essentially authenticate to
the contract that values in X are legitimate values corresponding to the id-th
off-chain computation. In more detail, h = h1‖ · · · ‖hn is the set of commitments
(that is public to all parties). The value h should be consistent with the broadcast
valuesX in the sense that com(X[k]) = hk for all k such thatX[k] 6= ⊥. Likewise,
the commitment values h need to be accompanied with σ = σ1‖ · · · ‖σn where
σi is the signature of party Pi attesting to the correctness of h. Note that the
signatures also tie the value of h to id.

Clearly, pred should output 1 if the witness is valid and if (j, w, t) happens
to be the very first trigger to the contract. On the other hand, if (j, w, t) is
not the first trigger to the contract, then we have to ensure that the trigger
(j, w, t) provides a valid update to the contract state. Now the contract state
could be in exit mode, i.e., st.mode = “exit”, and in this case the trigger (j, w, t)
with a valid witness w could be by an honest party to continue an incomplete
off-chain execution. This is to ensure that a malicious party cannot subvert the
continuation of the off-chain execution on the on-chain contract by trying to exit
prematurely (i.e., when st.mode = “init”). Likewise a malicious party might also
submit an old completed execution (even while the current off-chain execution
has not yet completed). Thus, we must have pred output 1 when the new id
present in w is greater than st.id.

Now the contract could be in exec mode, i.e., st.mode = “exec”, in which case
the contract is typically waiting for the on-chain execution to be completed.
There are essentially two cases: (1) the current state does not correspond to
or continue the most recent off-chain execution; in this case, the id in the new
trigger must satisfy id > st.id (i.e., the contract is essentially reset to the “correct
last computation”), and (2) the new trigger continues the current state of the
contract and for this id = st.id must hold and also we need X to contain at
least one value which is not in st.tt.X, i.e., there is some k ∈ [n] such that
X[k] 6= ⊥ = st.tt.X. In either case, the new trigger must appear within the
time interval ∆ of the previous trigger (i.e., before time st.t+∆).

State transitions. The state transition function Prog takes as input the trigger
(j, w, t) and the current state st. First, we check if the witness provided corre-
sponds to an execution transcript. In this case, we invoke the predicate pred and
if pred outputs 1, then we update st.tt depending on whether (1) st.id = id, in
which case we update st.tt.X to include decommitments specified in X; or (2)
st.id < id, in which case we update st.tt ← tt. If w does not correspond to
an execution transcript, then we assume that it is a token value exit. There are
effectively three cases to handle:

– If st.mode equals “init” or equals “exec” with a fully completed transcript,
then we change st.mode to “exit” and store the triggering time t in st.t. This
transition is provided to ensure that honest parties’ deposits are not “locked
in” and to enable them to withdraw their deposits from F∗StCon.

18

– If st.mode = “exec”/“abort”, then we check if t > st.t+∆ and if |st.tt.X| 6=
n to confirm that the execution has indeed been aborted. In this case, if
st.L[j] = 1, then we will allow Pj to take money out of F∗StCon. We further
need to check whether Pj was a malicious party that did not contribute to
completing the execution. We do this by checking if st.tt.X[j] 6= ⊥. If all
checks pass, we let Pj to withdraw its initial deposit plus compensation, i.e.,
a total of n(n− 1)q/|st.tt.X| from F∗StCon.

– If st.mode = “exit”/“payout”, then we check if t > st.t+∆. This is to prevent
situations where a malicious party tries to subvert continuing the off-chain
aborted execution on the chain. (That is, honest parties get an additional
time ∆ to get F∗StCon out of the exit mode.) If t > st.t + ∆ indeed holds,
then we allow party Pj to take its initial deposit (n−1)q out of the contract
if it was not already paid before (i.e., st.L[j] = 1).

Parties initialize the parameters as in Figure 9. Then for id = 1, 2, · · · , parties run
the local execution prescribed in Figure 8. Recall that each party Pj maintains a
variable bestj during the local executions which is initialized as ⊥.

1. If a party Pj wants to exit the contract and reclaim its initial deposit, then it
sends w = exit to F∗StCon.

2. If there is an abort during a local off-chain execution, then each party Pj
triggers F∗StCon with the value bestj .

3. Each party Pj waits and responds to state changes in F∗StCon depending on
the current state st:
(a) If st.mode = “payout”/“abort” and st.L[j] = 1, send w = exit to F∗StCon.
(b) If (1) st.id < bestj .id, or (2) st.id = bestj .id and st.tt.X[j] = ⊥, then

submit bestj to F∗StCon.

(c) If st.id > bestj .id, then submit bestj ← (st.id, ((j, x
(st.id)
j), st.tt.h,

st.tt.σ)) to F∗StCon.

Finally, parties also keep track of whether st.mode = “exit” or “exec” and the
current time t is such that t > st.t+∆. In this case, parties send w = exit in order
to claim their payout or compensation.

Fig. 10. Main protocol for implementing F∗MSFE.

Main protocol. The formal description can be found in Figure 10. In this
section we will describe the main protocol that makes use of the local execution
subprotocol of Figure 8 and also how parties interact with F∗StCon according
to the parameters described in Figure 9. Parties basically start by initializing
the F∗StCon parameters as in Figure 9. Following this, they begin off-chain local
executions. Recall that each party Pj maintains a variable bestj which denotes
the transcript corresponding to the latest active execution (both on-chain and
off-chain) according to the local view of party Pj (see Figure 8). This value will

19

provide the necessary hook to the on-chain contract to handle off-chain aborts.
In particular, the value bestj will be submitted by party Pj in order to recover
from aborted off-chain executions.

In our main protocol, we essentially deal with three different scenarios: (1)
when parties want to exit the contract and get back their deposits and compen-
sation, (2) when parties want to continue an aborted off-chain execution on the
chain, and (3) when parties are notified of state changes in F∗StCon.

Exiting the contract. First, we deal with the situation when parties would like
to terminate the protocol and retrieve their initial deposits from the contract.
To do so, we simply let parties submit a token value w = exit to trigger and put
the contract into exit mode. Note that malicious parties might revert F∗StCon

to go into exec mode. In this case, F∗StCon will notify honest parties of the
change. Honest parties will be able to recover from this and put the contract
back into exit mode. This will be described when we discuss how parties react
to notifications from F∗StCon.

Continuing an aborted off-chain execution. This is where the value bestj comes in
handy as it stores the most recent state of the off-chain executions. We instruct
parties to trigger F∗StCon with the value bestj which includes Pj ’s decommitment

x
(id)
j which in turn ensures (by the logic in Figure 9) that Pj will not be penalized.

Responding to notifications from F∗StCon. First, if st.mode = “payout”/“abort”,
then parties send a token value w = exit to get their deposits out of F∗StCon.
In addition, if st.mode = “abort”, then parties would also get compensation
from F∗StCon. Second, if the on-chain execution does not correspond to the most
recent execution, then we ask parties to submit bestj to the contract. (This
will also handle the case when honest parties try to exit the contract but a
malicious party feeds an older execution to F∗StCon.) Checking if the on-chain
execution corresponds to the most recent execution is handled by checking first
if st.id < bestj .id and then if st.id = bestj .id but st.tt.X[j] = ⊥ (i.e., party Pj ’s
decommitment is not yet part of the on-chain execution transcript). Finally,
we also need to handle the corner case when st.id > bestj .id. This scenario is
actually possible when party Pj is honest but only when st.id = bestj .id+ 1. We
now describe the sequence of events which lead to this case. Suppose in Step 2
of Figure 8 some malicious party did not broadcast its signature on h(id), then
party Pj will not update bestj . Thus bestj .id = id− 1 where id is the execution
id of the current execution. Note that each honest Pj would have submitted its
signature on h(id) in Step 2. Therefore, malicious parties would possess a valid
h(id) and σ(id) for execution id. That is, a malicious party Pk is able to trigger

F∗StCon with a witness w = (id,tt = ((k, x
(id)
k),h(id),σ(id)) which will result in

pred(k,w, t) = 1. Thus, we need a mechanism to allow honest parties to continue
the id-th execution (i.e., continue tt) and ensure that they don’t get penalized.

This is indeed possible since honest parties already obtain x
(st.id)
j from Step 1

of Figure 8. That is, we let honest parties submit w = (st.id,ttj = ((j, x
(st.id)
j),

h(id) = st.tt.h,σ(id) = st.tt.σ)) to F∗StCon.

Due to lack of space, we prove the following theorem in [9, Appendix A].

20

Theorem 1. Let λ be a computational security parameter. Assume the exis-
tence of one-way functions. Then there exists a protocol that SCC-realizes (cf.
Definition 1) F∗MSFE in the (F∗StCon,FOT)-hybrid model whose script complexity
(cf. Definition 3) is independent of the number of secure function evaluations
and depends only on the length of outputs of the functions evaluated in F∗MSFE

and is otherwise independent of them. Furthermore, in the optimistic case when
all parties are honest, there are a total of O(n) state transitions each having
complexity O(nλ).

5 Realizing F∗
MSCD from F∗

StCon+

We now discuss how to implement F∗MSCD. Since we are now dealing with re-
active functionalities, we make use of an MPC protocol that handles reactive
functionalities (say GMW). Since we are dealing with cash distribution, we will
let the MPC protocol take, in addition to regular inputs, values that represent
the current balance of each party. Note that this balance could change at the
end of each stage of the reactive function evaluation. We stress that the reactive
functions take only strings as inputs/outputs (and do not handle coins), and the
amount of coins and current balance are merely specified as strings. We assume
that the updated balance vectors can be obtained directly from the transcript
of the protocol implementing the reactive function.

The overall protocol structure closely mimics our protocol for implement-
ing F∗MSFE. We give a high level overview of the protocol and detail the main
differences from the implementation of F∗MSFE.

Local executions. See Figure 11 for a formal description. The local executions
begin by allowing parties to add coins to their deposit (which will be redis-
tributed depending on the output of the stage functions of the reactive function)
but only between different reactive function evaluations. In order to synchro-
nize (in order to make the simulation go through) and ensure that coins are
not added while a reactive function is being evaluated, we ask parties to obtain
signatures from all parties. (Then we design F∗StCon+ such that it accepts coins
only when the submitting party has signatures from all participants.) Then, in
the next step, we ask parties to agree on the transcript validation function for
the reactive protocol π implementing g(id) that they are going to execute. That
is, in the id-th local execution, parties agree on tv(id) and each party signs this
value under its signing key and broadcasts it to all parties. This is different from
the previous case where while implementing F∗MSFE, we needed parties to sign
on h(id) in the id-th execution but after the secure computation protocol was
run. Note that we also need parties to agree on the updated balance vector b
before beginning the id-th local execution.

Once the signatures are done, parties begin evaluating each stage of the re-
active computation in sequence. Parties then run a secure computation protocol
for each stage sequentially until the entire reactive protocol completes. Note
that a typical protocol for a reactive computation maintains state across differ-
ent stages by secret sharing this value among the participants. That is, when

21

1. (Adding new coins) If some party Pj wants to add coins(bj) to F∗StCon+, then it
sends b′ ← b+(· · · , 0, bj , 0, · · ·) to all parties. Each party Pk then generates a
signature ψ′k ← Sign(id, b′) and broadcasts it. If Pj receives signatures from all
parties, then Pj sends u = (update, b′,ψ, coins(bj)) to F∗StCon+. Other parties
wait to receive notification from F∗StCon+ of the updated balance. If either (1)
Pj did not obtain signatures from other parties; or (2) the remaining parties
did not receive notification from F∗StCon+, then all honest parties go to the
on-chain contract with the intention of exiting the contract. See Figure 13.
On the other hand, if the above step was successfully completed, then parties
update b← b′ and execute the next step.

2. (Parameter agreement) Initialize transcript tt = ⊥. Parties agree on the

reactive function g(id) = {g(id)k }k to be executed next. Parties also agree on a
specific MPC protocol π using which they will securely compute g(id). Let the
transcript verification predicate for this reactive MPC protocol be denoted by
tv(id). We use |tv(id)| to denote the number of messages in a valid transcript that
corresponds to a completed execution of g(id). Once they agree on tv(id), each Pj
computes σ′j ← Sign((id, tv(id), b); skj) and broadcasts this value to all parties.

Each party sets σ(id) = (σ′1, . . . , σ
′
n). If not all signatures were obtained, then

parties stop the local execution and go to the on-chain contract for resolution.
Else each party Pj updates bestj ← (transcript, id, ⊥, tv(id), b, σ(id))

3. (Reactive MPC execution) Parse g(id) = {g(id)k }k∈[ρ]. For k = 1, . . . , ρ:

– Let r
(id)
k denote the number of rounds in a standard (unfair) MPC protocol

that implements g
(id)
k . We denote party Pj ’s inputs to g

(id)
k by yj and the

corresponding randomness by ωj . For r = 1, . . . , r
(id)
k sequentially:

• Let j = r mod n. Party Pj computes its next message (mr, σr) ←
nmf(tt; (yj , ωj , b, skj)), and broadcasts (mr, σr) to all parties.

• If no message was received, then parties abort the local execu-
tion and go to the on-chain contract for resolution. Else, each
Pj updates the transcript tt ← tt‖(mr, σr) and sets bestj ←
(transcript, id, tt, tv(id), b′, σ).

– Parties compute the output of g
(id)
k using the completed transcript tt.

Note that this output specifies the new balance vector b′. Parties update
b← b′.

Fig. 11. The id-th off-chain local executions for implementing F∗MSCD.

22

parties are ready to begin the secure computation protocol for the next stage,
they supply along with the inputs for the new stage also an authenticated secret
share of the previous state. Note that the balance vectors are supplied as input
to the reactive MPC (in order to calculate the updated balance). We abstract
these details and assume that the authenticated secret shares of intermediate
states corresponding to party Pj is part of its input yj for this stage. The next
message function nmf takes the current available transcript as input, along with
the parties’ input for this stage, the randomness, the current balance vector, and
also the secret signing key of this party. Note that nmf and tv are such that for
every partial transcript tt′ such that |tt′| = (j− 1) mod n and tv(tt′) = 1, we
have that (m,σ)← nmf(tt′; (yj , ωj , b, skj)) satisfies tv(tt‖(m,σ)) = 1. Observe
that nmf produces signed messages that continue that transcript, and tv checks
whether messages are signed appropriately, and if the newly extended transcript
is valid according to the underlying reactive MPC. Such modifications to the un-
derlying reactive MPC protocol (namely, adding signatures in nmf and verifying
them in tv, and getting updated balance vectors) were also present in previous
protocols that dealt with the reactive case [26,27]. Like in the implementation of
F∗MSFE, here too we ask each party Pj to maintain a value bestj which essentially
maintains the transcript corresponding to the current execution. Note that bestj
contains both tv(id) as well signatures on it from all parties denoted by σ(id).

F∗StCon+ parameters. See Figure 12 for a formal description. The overall struc-
ture is similar to the F∗StCon parameters for F∗MSFE, and in particular we in-
terpret the state st has having multiple components which keep track of the
current mode of the state, the current transcript, the current execution id, time
of last exec mode transition, and which parties have already withdrawn money
from F∗StCon+. The main addition is now we also explicitly keep track of the
transcript validation function of the current execution as part of the state. We
denote this variable by st.tv. We also keep track of how much each party de-
posited in the variable st.B and the latest redistribution of cash (i.e., before
st.id-th execution began) in the variable st.b. As with F∗StCon parameters for
F∗MSFE, here too we make use of a subroutine pred that effectively determines if
the trigger witness w extends the state of the current/latest off-chain execution.
For the sake of presentation, we allow parties to submit a trigger witness w which
extends st.tt. Alternatively, and in cases where st.id does not correspond to the
latest execution, we also let parties submit a trigger witness w which provides
the entire transcript of an off-chain execution. In this case, pred outputs 1 if the
trigger was submitted at time t ≤ st.t + ∆ and if id > st.id or id = st.id but tt
is a longer transcript than the (partial) transcript st.tt.

The state transition function Prog will make use of pred described above. If
pred outputs 1 then, the contract moves into exec mode and records the trigger
time and updates the transcript with the transcript contained in the trigger. If
the trigger is a token value exit, then if the current mode is either “init” or “exec”
and st.tt is a completed transcript (we check this by checking if |st.tt| = |st.tv|),
then we put the contract into exit mode and record the time. The rest of the
contract specification is quite similar to the F∗MSFE case. In particular, when

23

Parameters. The variable st denotes the current state of the contract. The val-
ues pk and ∆ are constant parameters to the contract and are always main-
tained as part of the state. We represent the state variable st as a seven tuple
(st.mode, st.id, st.tt, st.t, st.L, st.tv, st.b, st.B). We omit pk and ∆ and the total
deposits so far from the state to keep the presentation simple. The initial deposits
are d1 = · · · = dn = (n−1)q. The initial state is (“init”, −1, ⊥, −1, 1, ⊥, 0, 0).
We also use a function cash (specified as part of st.tv) that takes a valid transcript
tt and j as input, and outputs the amount of coins that need to be given to Pj .

Subroutine pred. Let pred(j, w, t; st) = 1 if

– w is parsed as (message, id, (m,σ)) with id = st.id, st.tv(st.tt‖(m,σ)) = 1; or
– w is parsed as (transcript, id,tt, tv, b,σ) with (1) tv(tt) = 1; and (2) σ =

(σ1, . . . , σn) and for each k ∈ [n] it holds that SigVerify((id, tv, b), σk; pkk) = 1
and either (1) st.mode = “init”; or (2) st.mode = “exec”/“exit” and t ≤
st.t+∆ and either (2.1) id > st.id or (2.2) id = st.id and |tt| > |st.tt|.

Adding money. Update(j, u, t; Prog, st) is defined as follows: If u = (b′,
ψ, coins(bj)), then parse ψ as (ψ′, . . . , ψ′n) and verify whether bj 6= 0 and
SigVerify((j, b′), ψk; pkk) = 1 for all k ∈ [n]. Then check if

∑
k∈[n] b

′
k = bj +∑

k∈[n] st.B[k]. If all checks pass and if st.mode 6∈ {“exit”, “abort”, “payout”},
then update st.B[j]← st.B[j] + bj . Else output ⊥.

State transitions. Prog(j, w, t; st) is defined as follows: Initialize e← 0.

– If w = (transcript, id,tt, tv, b,σ) and pred(j, w, t; st) = 1: Set st ← (“exec”,
id, tt, t, st.L, tv, b, st.B).

– Else if w = (message, id, (m,σ)) and pred(j, w, t; st) = 1: Update st.tt ←
st.tt‖(m,σ).

– Else if w = exit:
• If (1) st.mode = “init”, or (2) st.mode = “exec” and |st.tt| = |st.tv|: Set

st.mode = “exit”, st.t← t.
• If st.mode = “exec”/“abort”, t > st.t+∆, st.L[j] = 1, |st.tt| 6= |st.tv| and
j 6= ja = 1 + |st.tt| mod n: Set e← nq + st.bj , st.L[j]← 0, st.L[ja]← 0
and st.mode← “abort”.

• If st.mode = “exit”/“payout”, and t > st.t + ∆ and st.L[j] = 1: Set
e← (n− 1)q + cash(j, st.tt), st.mode← “payout”, and st.L[j]← 0.

If at the end of a transition, it holds that st.L[k] = 0 for all k ∈ [n], then we
update st.mode← “inactive”.

Fig. 12. F∗StCon+ parameters for F∗MSCD.

24

the trigger is a token value w = exit and if t > st.t + ∆ and the triggering
party has not yet withdrawn money from F∗StCon+, we move the contract into
“payout” or “abort” (depending on the current mode) and refund the deposit
(plus current balance plus compensation if applicable) to the triggering party as
long as it had not contributed to an off-chain/on-chain aborted execution. To
detect whether the triggering party Pj aborted an execution, we simply check if
j = 1+|st.tt|mod n and |st.tt| 6= |st.tv| holds. In this case, we penalize the party
by not giving its deposit back but instead distributing it among the remaining
parties. This is slightly different from the F∗MSFE case, where we could potentially
penalize multiple corrupt parties depending on whether they contributed their
output secret share to the execution. Here, on the other hand, we only penalize
one party ja = 1 + |st.tt| mod n. Note that we also redistribute the deposits
made by the parties depending on the output of the latest complete execution.
If the execution was completed on-chain, then we use the function cashj (which
we assume is a part of tv for simplicity) applied on st.tt to determine how
much money party Pj is supposed to obtain. On the other hand, if the on-chain
execution was also aborted, then (in addition to paying compensation to the
honest parties) we distribute the initial deposits depending on the latest balance
prior to this execution (which is stored in variable st.bj).

Finally, the Update function provides an interface for parties to add coins
between different reactive MPCs. Upon receiving a witness u = (b′,ψ, coins(bj)),
it checks if the provided coins bj plus the coins already deposited with F∗StCon+

(i.e., sum of elements in st.B) matches the amount specified in the balance vector
(i.e., sum of elements in b′). Note that the signatures also include the party index
j (to avoid situations where a different party abuses the broadcasted signatures).
Also, note that the deposits st.B only increase which ensures that there are
no replay attacks. This is because once F∗StCon+ starts giving back coins (i.e.,
st.mode ∈ {“payout”, “abort”}), then it does not accept any more coins.

Main protocol: handling aborts and notifications from F∗StCon+. The
formal description can be found in Figure 13. As with implementing F∗MSFE, here
too parties begin by initializing F∗StCon+ with the parameters as in Figure 12,
then continue executing off-chain as in Figure 11. Each party Pj maintains a
local variable bestj which represents the most recent transcript of the current
off-chain execution. This value will be helpful while recovering from an aborted
off-chain execution (cf. Step 2 of Figure 13). While in the F∗MSFE case, party
Pj triggered F∗StCon+ with bestj when its decommitment did not appear in the
transcript in F∗StCon+, here in the F∗MSCD case, party Pj triggers F∗StCon+ with
bestj when bestj contains a longer transcript than the one that is current on
the contract. Like in the F∗MSFE case, we need to handle the corner case when
st.id = bestj .id + 1. This happens when honest parties have completed Step 1
of the st.id-th local execution phase but did not receive signatures on tv(st.id)

from all corrupt parties. In this case, each party Pj will choose new input and
fresh randomness and continue the protocol from the transcript st.tt. Note that
Pj responds only when j = 1 + |st.tt| mod n (i.e., it is its turn) and when
the execution has not already completed (i.e., |st.tt| 6= |st.tv|). Finally, there

25

is one other case which is unique to F∗MSCD implementation. Unlike the F∗MSFE

case, each party might have to send out multiple messages (corresponding to
the reactive MPC protocol) within a single execution. In particular, once the
aborted off-chain execution goes on-chain, it remains on-chain (i.e., parties have
to respond within time ∆ of the previous step in order to avoid paying a penalty)
and needs to be completed by the parties.4 This brings us to the final case
where st.id = bestj .id where in Step 3(d) of Figure 13, honest party Pj uses the
next message function in order to continue the transcript st.tt. We prove the
following theorem in [9, Appendix C].

Theorem 2. Let λ be a computational security parameter. Assume the existence
of enhanced trapdoor permutations. Then there exists a protocol that SCC-realizes
(cf. Definition 1) F∗MSCD in the (F∗StCon+,FOT)-hybrid model whose script com-
plexity (cf. Definition 3) is independent of the number of secure computations.
Furthermore, in the optimistic case (i.e., all parties are honest), there are a total
of O(n) state transitions (i.e., discounting updates) each of complexity O(nλ).

6 Efficient Poker Protocol

A tailor-made protocol for a poker game in which money changes hands was
presented by Kumaresan, Moran, and Bentov in [26, Section 6]. However, that
protocol is not efficient enough in practice, due to two distinct reasons. The first
reason is that [26, Section 6] was designed to work in the F?CR model, which
incurs an expensive setup procedure and does not support off-chain amortiza-
tion in its SCD variant (cf. Section 2). Furthermore, the F?CR verification circuits
that [26, Section 6] uses are quite complex and not supported by the current Bit-
coin scripting language. The second reason is that preprocessing shuffle protocol
that [26, Section 6] employs is a generic secure MPC that delivers hash-based
commitments to shares of the shuffled cards. It would be impractical to run a
general-purpose secure MPC protocol (typically among 3 to 9 parties in a poker
game) that performs the shuffle and the hash invocations, and indeed there are
special-purpose poker protocols that perform much better.

See Section 1.2 for a survey of the various poker protocols. Our implementa-
tion uses the poker protocol of Wei and Wang [23,22], which improves an earlier
work of Castellà-Roca et al. [12] by using a zero-knowledge proof of knowledge
scheme instead of homomorphic encryption.

A potential disadvantage of special-purpose poker protocols is the on-chain
verification cost: the generic secure MPC approach would allow us to define an
on-chain predicate that verifies that a pre-image (corresponding to a share of
a shuffled card) hashes to the commitment value, and penalize a corrupt party

4 Alternatively, when a contract goes on-chain, it is possible to make it come back off-
chain right after getting the next message from the party that aborted the off-chain
execution. Our protocol does not do this but can be easily modified to behave as de-
scribed above. Note that this modification does not change our theorem statements.

26

Parties initialize the parameters as in Figure 12. Then for id = 1, 2, · · · : Parties run
the local execution prescribed in Figure 11. Recall that each party Pj maintains
a variable bestj which is initialized as ⊥.

1. If a party Pj wants to exit the contract, then it sends w = exit to F∗StCon+.
2. If there is an abort at any stage during a local off-chain execution, then parties

do not continue any more local executions and instead trigger F∗StCon+ with
the value bestj if it is non-null.

3. Each party Pj waits and responds to state changes in F∗StCon+ depending on
the current state st:
(a) If st.mode = “payout”/“abort” and st.L[j] = 1, send w = exit to F∗StCon+.
(b) If (1) st.id < bestj .id, or (2) st.id = bestj .id and |bestj .tt| > |st.tt|, then

submit bestj to F∗StCon+.
(c) If st.id = bestj .id + 1 and j = 1 + |st.tt| mod n, then choose input yj

and use fresh randomness ωj and compute (m,σ)← nmf(st.tt; (yj , ωj , b,
skj)) and send (message, st.id, (m,σ)) to F∗StCon+ and update bestj ←
(transcript, st.id, st.tt‖(m,σ), st.tv, st.b, st.σ).

(d) If st.id = bestj .id and if j = 1 + |st.tt| mod n and if |st.tt| 6= |st.tv|, then
compute (m,σ) ← nmf(st.tt; (yj , ωj , b, skj)) where yj , ωj are inputs to
the current stage. Send bestj ← (message, st.id, (m,σ)) to F∗StCon+ and
update bestj ← (transcript, st.id, st.tt‖(m,σ), st.tv, st.b, st.σ).

Finally, parties also keep track of whether st.mode = “exit” or “exec” and the
current time t is such that t > st.t+∆. In this case, parties send w = exit in order
to claim their payout or compensation and do not participate in any further local
executions.

Fig. 13. Main protocol implementing F∗MSCD.

27

who would not supply the correct pre-image. By contrast, the efficient poker
protocols rely on constructions that are algebraic in nature, which implies that
the on-chain verification predicate would be significantly more complex.

In the case that all parties are honest, on-chain verification will never occur.
In the case that corrupt parties deviate, they can force an honest party to send
a transaction containing a witness that satisfies the complex on-chain predicate.
The on-chain fallback procedure introduces an additional cost in the form of a
transaction fee the party supplying the witness pays (to the miners). While the
on-chain fallback also introduces a delay that all of the parties would bear, a ma-
licious party may still cause an honest party to pay the fee. Fortunately, the cost
of transaction fees is quite minor (cf. [9, Section 6]). Still, our implementation
provides an improvement by employing a technique that shares the transaction
fee across all parties. In Ethereum this is not straightforward, as the initiator
of the transaction must provide all of the transaction fees up front; however,
our technique compensates this party by paying funds collected from all of the
parties in advance.

By using the efficient scheme of Wei and Wang, the main steps of our SCD
poker protocol are as follows:

1. The parties will execute a deck preparation and shuffle protocols, that output
group elements (cf. [23, Protocols 1,3,4]).

2. The parties will sign an off-chain message that commits to these group el-
ements (cf. [9, Section 3.3]). This signed message could later be sent to the
on-chain contract, in case that a corrupt party deviates from the protocol.

3. The parties will run the poker game according to the predefined rules, where
in each round a specific party performs a valid action (e.g., raise/call/fold).

4. After each round, all the parties will sign an off-chain message that encodes
the state of the poker table.

5. When a party draws a private card from the deck, the parties will execute
the card drawing protocol of [23, Protocol 6].

Per the above discussion regarding the complexity of the on-chain predicate,
it can be seen that the verification procedure for drawing a private card is domi-
nated by a zero-knowledge proof of knowledge of equality of discrete logarithms
(cf. [6,37]). To reduce the round complexity and avoid the HVZK concern, in
Step 5 the parties will use a non-interactive proof of knowledge. While there are
provably secure methods to obtain the NIZK (see [19]), our efficient implemen-
tation uses the Fiat-Shamir heuristic.

Our Ethereum implementation of the NIZK verifier is based on the
Secp256k1 ellitpic curve group, the same used in Ethereum and in Bitcoin for
digital signatures. The Ethereum language does not provide opcodes for work-
ing with elliptic curve points (though such native support is planned [20]). The
current Ethereum scripting language features a dedicated opcode for secp256k1
signature verification, but this opcode is signature-specific and cannot (to our
knowledge) be repurposed for the NIZK scheme. Thus we are forced to implement
our NIZK the “hard way,” making use of an Secp256k1 elliptic curve library (due
to Andreas Olofsson) built from low-level Ethereum opcodes that implement the

28

elliptic curve exponentiation (mul) operation. Our Ethereum implementation,
which is shown in [9, Figure 22], bears an obvious resemblance to the high-level
proof of knowledge of discrete logarithms protocol [6,37].

Using the pyethereum simulator framework, we found that the total gas cost
of the NIZK verifier is 1.3M , whereas an Ethereum block has a gas limit of 4.7M .
The cost of the verifier is dominated by the cost of four scalar multiplications. In
contrast, the signature verification opcode costs only 3000 gas (a hundred times
cheaper), despite performing a scalar multiplication anyway. Thus if Ethereum
were modified to support more general elliptic curve arithmetic, we would an-
ticipate a hundred-fold improvement with respect to the transaction fees.

NIZK Verify Scalar Multiplication Built-in Instruction

Gas cost 1287858 303401 ≤ 3000
Transactions per block 3 15 ≥ 1500

Note that the off-chain signatures in Step 4 include only the current state and
not the transcript history, because the proof of knowledge NIZKs do not branch.
That is, at a specific round a party will need to provide a NIZK that depends
only on public values: the intermediate result of the card drawing protocol, and
the group elements that the parties committed in the first step.

The poker protocol of Wei and Wang that we deploy supports all the require-
ments that were suggested by Crépeau [16]. For example, complete confidential-
ity of strategy is supported, since the proof of knowledge verification would
not reveal the cards at the end of the game. Thus, our implementation enables
poker variants such as Texas hold ’em and five-card draw, where private cards
are drawn after the game is already in progress. See Wei [22] for benchmarks
that measure the running time of the initial shuffling (which is done off-chain).

Our poker implementation is available at [1].

References

1. https://github.com/amiller/instant-poker.
2. M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Fair two-party

computations via the bitcoin deposits. In First Bitcoin Workshop, FC, 2014.
3. M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek. Secure mul-

tiparty computations on bitcoin. In IEEE Security and Privacy, 2014.
4. N. Asokan, V. Shoup, and M. Waidner. Optimistic protocols for fair exchange. In

ACM CCS, 1997.
5. S. Barber, X. Boyen, E. Shi, and E. Uzun. Bitter to better - how to make bitcoin

a better currency. In Financial Cryptography, 2012.
6. Barnett and Smart. Mental poker revisited. In IMA Conference on Cryptography

and Coding, LNCS (earlier: Cryptography and Coding II, 1992), 2003.
7. Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness

of a shuffle. In EUROCRYPT, 2012.
8. Iddo Bentov and Ranjit Kumaresan. How to use bitcoin to design fair protocols.

In Crypto (2), pages 421–439, 2014.

29

https://github.com/amiller/instant-poker

9. Iddo Bentov, Ranjit Kumaresan, and Andrew Miller. Instantaneous decentralized
poker. Technical report available at https://arxiv.org/abs/1701.06726, 2017.

10. Vitalik Buterin. https://github.com/ethereum/wiki/wiki/White-Paper, 2013.
11. Ran Canetti. Universally composable security: A new paradigm for cryptographic

protocols. In FOCS, 2001.
12. J. Castellà-Roca, J. Domingo-Ferrer, A. Riera, and J. Borrell. Practical mental

poker without a TTP based on homomorphic encryption. In INDOCRYPT, 2003.
13. Richard Cleve. Limits on the security of coin flips when half the processors are

faulty (extended abstract). In STOC, pages 364–369, 1986.
14. Jeff Coleman. State channels. http://www.jeffcoleman.ca/state-channels/.
15. Coppersmith. Cheating at mental poker. In CRYPTO, 1985.
16. C. Crépeau. A secure poker protocol that minimizes the effect of player coalitions.

In CRYPTO, 1985.
17. C. Crépeau. A zero-knowledge poker protocol that achieves confidentiality of the

players’ strategy or how to achieve an electronic poker face. In CRYPTO, 1986.
18. K. Croman, C. Decker, I. Eyal, A. Gencer, A. Juels, A. Kosba, A. Miller, P. Saxena,

E. Shi, E. Sirer, D. Song, and R. Wattenhofer. On scaling decentralized blockchains.
In Financial Cryptography 3rd Bitcoin Workshop, 2016.

19. Ivan Damg̊ard, Nelly Fazio, and Antonio Nicolosi. Non-interactive zero-knowledge
from homomorphic encryption. In Theory of Cryptography (TCC), 2006.

20. Ethereum EIP. https://github.com/ethereum/EIPs/pull/213.
21. O. Goldreich. Foundations of cryptography vol.2. 2004.
22. Tzer jen Wei. Secure and practical constant round mental poker. Inf. Sci, 2014.
23. Tzer jen Wei and Lih-Chung Wang. A fast mental poker protocol. J. Mathematical

Cryptology, 6(1):39–68, 2012.
24. Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. Fair and robust multi-party

computation using a global transaction ledger. In Eurocrypt, 2015.
25. Kosba, Miller, Shi, Wen, and Papamanthou. Hawk: The blockchain model of cryp-

tography and privacy-preserving smart contracts. In IEEE S&P, 2016.
26. R. Kumaresan, T. Moran, and I. Bentov. How to use bitcoin to play decentralized

poker. In CCS, 2015.
27. Ranjit Kumaresan and Iddo Bentov. Amortizing secure computation with penal-

ties. In CCS, 2016.
28. Ranjit Kumaresan, Vinod Vaikuntanathan, and Prashant Nalini Vasudevan. Im-

provements to secure computation with penalties. In CCS, 2016.
29. R. Lipton. How to cheat at mental poker. In AMS Short Course on Crypto, 1981.
30. G. Maxwell. https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_

Payment, 2011.
31. Andrew Miller and Iddo Bentov. Zero-collateral lotteries in bitcoin and ethereum.

IEEE S&B workshop, https://arxiv.org/abs/1612.05390, 2017.
32. Malte Möser, Ittay Eyal, and Emin Gün Sirer. Bitcoin covenants. In Financial

Cryptography Bitcoin Workshop, 2016.
33. Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System, 2008.
34. Russell O’Connor and Marta Piekarska. Enhancing bitcoin transactions with

covenants. In Financial Cryptography Bitcoin Workshop, 2017.
35. Benny Pinkas. Fair secure two-party computation. In EUROCRYPT, 2003.
36. Shamir, Rivest, and Adleman. Mental poker. The Mathematical Gardener, 1981.
37. Victor Shoup and Joel Alwen. http://cs.nyu.edu/courses/spring07/G22.

3220-001/lec3.pdf, 2007.
38. Gavin Wood. Ethereum: A secure decentralized transaction ledger. http:

//gavwood.com/paper.pdf, 2014.

30

https://arxiv.org/abs/1701.06726
https://github.com/ethereum/wiki/wiki/White-Paper
http://www.jeffcoleman.ca/state-channels/
https://github.com/ethereum/EIPs/pull/213
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://en.bitcoin.it/wiki/Zero_Knowledge_Contingent_Payment
https://arxiv.org/abs/1612.05390
http://cs.nyu.edu/courses/spring07/G22.3220-001/lec3.pdf
http://cs.nyu.edu/courses/spring07/G22.3220-001/lec3.pdf
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Related Works

	2 Overview
	2.1 Fair Exchange with Penalties between Two Parties
	2.2 Amortized Multiparty Fair SFE with Penalties
	2.3 Stateful Off-Chain Cash Distribution Protocols

	3 Preliminaries
	3.1 Ideal Functionalities
	3.2 Stateful contract — Ideal Functionality

	4 Realizing FMSFE* from FStCon*
	5 Realizing FMSCD* from FStCon+*
	6 Efficient Poker Protocol
	References

