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Abstract

We study the problem of non-interactive multiparty computation (NI-MPC) where a group of com-
pletely asynchronous parties can evaluate a function over their joint inputs by sending a single message
to an evaluator who computes the output. Previously, the only general solutions to this problem that
resisted collusions between the evaluator and a set of parties were based on multi-input functional en-
cryption and required the use of complex correlated randomness setup.

In this work, we present a new solution for NI-MPC against arbitrary collusions using a public-key
infrastructure (PKI) setup supplemented with a common random string. A PKI is, in fact, the minimal
setup that one can hope for in this model in order to achieve a meaningful “best possible” notion of
security, namely, that an adversary that corrupts the evaluator and an arbitrary set of parties only learns
the residual function obtained by restricting the function to the inputs of the uncorrupted parties. Our
solution is based on indistinguishability obfuscation and DDH both with sub-exponential security. We
extend this main result to the case of general interaction patterns, providing the above best possible
security that is achievable for the given interaction.

Our main result gives rise to a novel notion of (public-key) multiparty obfuscation, where n parties
can independently obfuscate program modules Mi such that the obfuscated modules, when put together,
exhibit the functionality of the program obtained by “combining” the underlying modules Mi. This
notion may be of independent interest.
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1 Introduction

The recent breakthrough on general-purpose program obfuscation [GGH+16] has spurred a large body of
research that studies different flavors of obfuscation and their applications. Much of this research is driven
by the goal of minimizing interaction. In this work we revisit the question of minimizing interaction in
the broad context of secure multiparty computation (MPC). This question is independently motivated by
the goal of obtaining useful multi-party variants of obfuscation and related primitives such as functional
encryption [SW08, BSW11, O’N10].

Non-Interactive MPC. Consider the following non-interactive model of computation: there are n parties
who wish to securely evaluate a function f on their joint inputs. For instance, the parties may wish to
compute a majority of their 0/1 inputs for the purpose of voting. The parties are completely asynchronous.
At any point, a party can “wake up” and submit a single message to a central server, also referred to as the
evaluator. Upon receiving all the messages, the evaluator computes the output.

The above model represents an example of MPC with limited interaction, and contrasts with traditional
MPC models [Yao86, GMW87] where the parties freely interact with each other. Indeed, there are many sce-
narios where more limited forms of interaction are desirable, e.g., when the parties cannot be simultaneously
available due to physical constraints or due to efficiency considerations.

The non-interactive model of computation was first proposed by Feige, Kilian and Naor (FKN) [FKN94].
In their model, they allow the messages of the parties to depend on secret randomness that is unknown to
the evaluator. As a result, a major disadvantage of their model is that it does not provide any security in
case the evaluator colludes with one or more parties.1

The study of collusion-resistant MPC protocols with restricted interaction was initiated by Halevi, Lindell,
and Pinkas (HLP) [HLP11]. They considered a variation of the non-interactive model in which the parties
sequentially interact with the evaluator, where this interaction can depend on a public-key infrastructure
(PKI). Subsequent to their work, Beimel et al. [BGI+14a] and Halevi et al. [HIJ+16] considered a model
(similar to FKN) where each of the parties can independently interact with the evaluator by sending it a
single message. (It was also implicitly considered in the context of multi-input functional encryption by
Goldwasser et al. [GGG+14].) Crucially, in this model, unlike the FKN model, security does not completely
break down in the presence of collusion attacks. We refer to MPC in this model as non-interactive MPC, or
NI-MPC for short.

Best-Possible Security for NI-MPC. An NI-MPC protocol should provide the “best-possible security”
for any given set of corrupted parties. The latter can be formalized via the following notion of residual
function [HLP11]: when the evaluator colludes with a set T of corrupted parties, it can inevitably learn the
value of the original function f on the honest parties’ inputs coupled with every possible choice of inputs from
T . Thus, the adversary effectively has oracle access to the residual function obtained by restricting f to the
honest parties’ inputs and allowing a free choice of the corrupted parties’ inputs. The security requirement
of NI-MPC informally asserts that the adversary learns no more than the residual function. This gives a
meaningful security guarantee in many natural cases. For instance, for the above mentioned example of
voting or, more generally, in the case of symmetric functions, the residual function still hides the sensitive
information about the inputs of the uncorrupted parties. See [BGI+14a] for a more detailed discussion.

The strongest formalization of the above security requirement is via efficient simulation. However, this
cannot be achieved in general. Indeed, NI-MPC for general functions can be easily seen to imply “vir-
tual black-box” obfuscation for general functions [GGG+14, BGI+14a], which was ruled out in [BGI+01].
Instead, we consider a natural relaxation that replaces efficient simulation by unbounded simulation, or
equivalently indistinguishability of different sets of inputs that induce the same residual function. Roughly,
the indistinguishability-based security definition is described as follows – for simplicity, we state it for the
three-party case where the last party is corrupted and is colluding with the evaluator: for any input pairs
(x, y) and (x′, y′) for the honest parties such that f(x, y, ·) ≡ f(x′, y′, ·), the adversary’s view is indistin-

1Indeed, it is not hard to see that in any protocol for a non-trivial function in this model, all inputs can be recovered from
the n messages and the common randomness. This makes such protocols inherently vulnerable to collusions.
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guishable when the inputs of the honest parties to the computation are (x, y) or (x′, y′). We refer the reader
to the technical sections for the general definition.

Necessity of Setup and iO. We next turn our attention to the necessity of setup for NI-MPC. Unlike
the FKN model, collusion-resistant NI-MPC cannot be realized with a single common source of randomness
that is shared by all clients. Instead, NI-MPC requires a setup that allows authentication of the messages
of parties, while remaining robust to collusion. This is because otherwise, an adversarial evaluator can
spoof an honest party in order to learn private information about the inputs of the other honest parties:
consider NI-MPC for three parties where the last party and the evaluator are corrupted. The security
definition for this case was described above. However, suppose there exists a “splitting input” y∗ for f s.t.
f(x, y∗, z) 6= f(x′, y∗, z), where z is some third party input. In the absence of authentication, the adversary
can prepare a message ŷ∗ on its own using y∗ and then evaluate it together with the first and third party
messages to distinguish whether the first honest party’s input to the computation is x or x′.

Further, as already noted in [BGI+14a, GGG+14, HIJ+16], NI-MPC for general functions implies indis-
tinguishability obfuscation (iO) [BGI+01, GGH+13]: recall the security definition of three-party NI-MPC
as described above, where the last party and the evaluator are corrupted. Substituting x and x′ with two
circuits C0 and C1, y and y′ with null inputs and f with a universal circuit such that f(C,⊥, z) = C(z),
we can recover the security definition of iO. We stress that this implication holds regardless of the choice of
setup used in the NI-MPC protocol.

Our Question: NI-MPC with minimal setup? Known n-party NI-MPC protocols [GGG+14, BGI+14a,
HIJ+16] require intricate n-wise correlated randomness setups where the private randomness ri input to each
party i is computed as G(r) = (r1, . . . , rn) for some function G. In particular, such a correlated randomness
setup can only be realized by using a trusted dealer with private channels to each protocol participant, or
alternatively a fully interactive MPC protocol that is executed during an offline phase. The main question
we ask is whether the use of such general correlated randomness is necessary for NI-MPC.

Indeed, secure protocols in the HLP model or even the FKN model can be realized using a standard PKI
setup.2 A PKI setup can be viewed as a special form of “pairwise” correlation that can be realized with
no direct interaction between the clients: it suffices for every client to post its own public key and read all
of the other clients’ public keys. Given that some form of setup is necessary to prevent the aforementioned
spoofing attacks in NI-MPC, using a PKI setup is the best one could hope for.3

1.1 Our Results

I. NI-MPC without Correlated Randomness Setup. We construct the first collusion-resistant NI-
MPC protocols without general correlated randomness. Instead, we use a PKI and a common random string
(CRS).4 The security of our construction is proven against malicious adversaries assuming iO and DDH,
both with sub-exponential security.

Theorem 1.1 (Informal). Assuming indistinguishability obfuscation and DDH, both with sub-exponential
security, there exists a collusion-resistant non-interactive multi-party computation protocol that achieves
security in the malicious model given a CRS and a PKI.

As explained earlier, iO is a necessary assumption for NI-MPC for general functions.

II. Multi-Party Indistinguishability Obfuscation. Our main result gives rise to a new notion of
multiparty obfuscation (and iO) that may be of independent interest. We start by explaining this notion via
a motivating example: consider a scenario where there are n parties, each holding a private program module
Mi. Suppose there is a public Combine algorithm that combines M1, . . . ,Mn to yield a program M . The

2Protocols in the FKN model can be realized using standard PKI by combining a non-interactive 2-party key agreement
protocol, which can be based on the DDH assumption, with garbled circuits. The idea is to have every party Pi agree with the
last party Pn on the input keys of Pi, and have Pn generate and send the garbled circuit based on all keys.

3In particular, note that a common random string setup cannot prevent spoofing attacks.
4We note that even a construction with a PKI and a common reference string was unknown prior to this work.
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parties wish to jointly obfuscate M ; however, due to proprietary reasons, they cannot share their modules
with each other.

One option for the parties is to simply run a standard MPC protocol using their modules as their
respective private inputs to jointly compute an obfuscation of M . We ask whether it is possible for the
parties to jointly obfuscate M in a non-interactive manner. In particular, we require that each party i
can individually obfuscate its module Mi s.t. the obfuscated modules M1, . . . ,Mn put together, exhibit the
functionality of M while still hiding the individual modules.

We refer to this as multiparty obfuscation, and in the context of iO, as multiparty iO. Roughly speak-
ing, the security of multiparty iO says that for any pair of tuples (M0

1 , . . . ,M
0
n) and (M1

1 , . . . ,M
1
n) s.t.

Combine(M0
1 , . . . ,M

0
n) and Combine(M1

1 , . . . ,M
1
n) are functionally equivalent, the pair of tuples (M0

1 , . . . ,

M0
n) and (M1

1 , . . . ,M
1
n) are computationally indistinguishable. Here M b

i denotes the obfuscation of M b
i

computed by the i’th party.
We note that if we set n = 1 and the Combine function to be the identity function, then we recover the

standard notion of iO from the above definition. Further, while the above definition considers the case where
all the parties are honest and only the obfuscation evaluator is dishonest, it can be easily modified to allow
for dishonest parties. However, in this case, the functional equivalence requirement on the modules must be
suitably modified, as in the case of NI-MPC.

Multiparty iO from NI-MPC. We now explain how our NI-MPC can be used to obtain multiparty iO.
The setup in multiparty iO is the same as in the NI-MPC, namely, a PKI and a CRS. We consider NI-
MPC between (n + 1) parties. The inputs of the first n parties are set to be their respective modules
M1, . . . ,Mn. The (n+ 1)th party is the evaluator which holds an input x for the “combined” program M =
Combine(M1, . . . ,Mn). The function computed by the parties contains the Combine algorithm hardwired in
its description. On input (M1, . . . ,Mn, x), it computes M = Combine(M1, . . . ,Mn) and outputs M(x).

Now, suppose that only the (n + 1)th party and the evaluator are corrupted. Then, this case exactly
corresponds to multiparty iO where all the parties (a.k.a., obfuscators) are honest. The case of more general
corruptions is defined similarly.

III. General interaction patterns. As observed by Halevi et al. [HIJ+16], the problem of NI-MPC can
be viewed as secure computation on a star interaction pattern. Towards a generalization, Halevi et al. also
considered the problem of secure multiparty computation with general interaction patterns. They presented
a result for the same assuming (sub-exponentially secure) indistinguishability obfuscation by using a complex
correlated randomness setup.

We improve upon their result by providing a construction in the PKI model assuming (sub-exponentially
secure) indistinguishability obfuscation and DDH. In particular, our main protocol for NI-MPC can be
extended to handle more general interaction patterns described by directed acyclic graphs, where each node
represents a party who expects to receive messages from all of its parents and can then send messages to all
of its children, and where the sinks of the graph compute the output.

We note that any interaction pattern gives rise to a “best-possible” notion of security, as formalized in
[HLP11] for the case of a “chain” pattern and in [HIJ+16, Definition 6] for general patterns. In [HIJ+16], it
was shown that the star pattern is “complete” in the sense that any pattern can be reduced to it with no
additional cryptographic assumptions. However, their reduction inherently requires a correlated randomness
setup and thus is not applicable in our setting.

Instead, we show how to directly modify our scheme to guarantee best-possible security for any interaction
pattern. A representative example is that of a chain pattern considered in [HLP11, GMRW13], namely a
simple directed path traversing all nodes. The “best-possible” security notion that can be achieved in this
case is typically stronger than the security notion for NI-MPC which corresponds to a star pattern. To see
this, notice that in the star pattern the adversary can reset the input of each party it controls, whereas in
the chain pattern he cannot reset the input of a malicious party that is followed by an honest party along
the chain. Our results for the chain pattern provide the first extension of the positive results in the HLP
model [HLP11] to general functions with a similar PKI setup, at the (necessary) price of relying on stronger
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assumptions.5

1.2 Our Techniques

We now explain the main ideas in our construction of collusion-resistant NI-MPC. As explained earlier, this
suffices to obtain multiparty iO.

Initial Challenges. Recall that in an NI-MPC protocol, each party sends a single message to the evaluator.
Then, a starting idea to construct an NI-MPC protocol is to “compile” an interactive MPC protocol into
a non-interactive one using program obfuscation. That is, let f be the function that the parties wish to
compute and let Π be an interactive MPC protocol for computing f . Then, each party i simply computes
an obfuscation NMFi of its next-message function NMFi in Π, where NMFi contains its input xi and random
tape ri hardwired. It then sends NMFi to the evaluator. Upon receiving all the obfuscated programs, the
evaluator computes a transcript of Π by acting as the communication channel between the “virtual parties”
NMF1, . . . ,NMFn. At the end, it obtains the output f(x1, . . . , xn).

The main problem with the above approach is that an adversarial evaluator (that colludes with one or
more parties) can perform resetting attacks to break the security of the underlying MPC protocol Π. Indeed,
since the obfuscated programs NMFi are computing a “reactive” functionality, an evaluator can simply reset
them to an earlier state and feed them different messages. Since the input of each honest party i is fixed
in the obfuscated program NMFi, this means that the adversary can now execute multiple “sessions” of Π
w.r.t. the same fixed inputs of the honest parties. The security of standard MPC protocols completely breaks
down in such a case.

To address this problem, a natural idea is to replace Π with a resettably secure MPC protocol [CGGM00,
GS09, GM11]. Roughly speaking, resettable MPC guarantees that the only advantage an adversary can gain
by performing a resetting attack is to change its input. As such, it can learn multiple function outputs
w.r.t. a fixed input vector of the honest parties. No information beyond this set of outputs is leaked to the
adversary. While resettably secure MPC for general functions is impossible in the plain model [GM11], it
can be realized in the CRS model by compiling a UC-secure MPC protocol [CLOS02] using pseudorandom
functions à la [CGGM00].

The security guarantee of resettable MPC coincides with our definition of NI-MPC, with the only dif-
ference that our definition is indistinguishability-based while resettable MPC security is defined w.r.t. sim-
ulation. Nevertheless, it is not immediately clear how to compile a resettably secure MPC protocol into
NI-MPC when using iO. In particular, note that the natural approach to argue security in this context is to
hardwire the simulated transcript in the obfuscated programs so as to “force” the simulated execution on the
adversary. This strategy was previously used in [GGHR14] for constructing two-round MPC protocols. In
our context, however, since the adversary can legitimately perform resetting attacks, the number of possible
transcripts we may need to hardwire is unbounded.

A Starting Point: Obfuscation Combiners. In order to find a path to a solution, let us first consider
a weaker problem: suppose we are given N candidates for program obfuscation, many of which are possibly
“bad”, i.e., either they do not hide the program or do not preserve correctness. We do not know which of
the candidates are bad. The goal is to use these candidates to obfuscate a function in a secure manner. This
problem is referred to as obfuscation combiner [AJN+16].

To see why this problem is relevant to us, note that the “bad” candidate obfuscations can be thought
of as the corrupted parties in our setting. The role of the evaluator is the same. Furthermore, in this
setting, similar to ours, resetting attacks are unavoidable. The key difference, however, is that while our
setting is inherently distributed, the above setting is centralized, in that a common entity performs all the
obfuscations.

Nevertheless, we use obfuscation combiner as a starting point for our construction. Specifically, we build
on ideas used in the obfuscation combiner of Ananth et al. [AJN+16]. In their construction, they use a

5Indeed, MPC for computing general functions on a chain implies indistinguishability obfuscation (iO). The positive results
of [HLP11, GMRW13] based on weaker assumptions are only for weaker classes of functions where positive results do not imply
(general) iO.
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special-purpose MPC protocol [MW16] based on multi-key fully homomorphic encryption [LTV12, CM15,
MW16, DHRW16] (see Section 2 for the definition). Our solution also uses this MPC scheme as a starting
basis. In particular, our construction implicitly compiles the MPC scheme of [MW16] into a resettably
secure one in an “iO-friendly” manner. In order to develop a full solution for our setting, however, we have
to address several additional challenges that do not arise in the setting of obfuscation combiners. Below, we
elaborate on the details.

Our Approach. We first recall the notion of a multi-key FHE. A multi-key FHE allows for generating
individual encryption/decryption-key pairs eki, dki such that they can be later combined to obtain a joint
public key ek. To be more precise, given a ciphertext with respect to eki, there is an Expand operation
that transforms it into a ciphertext with respect to a joint public key ek. Once this done, the resulting
ciphertext can be homomorphically evaluated just like any FHE scheme. The resulting ciphertexts can then
be individually decrypted using the dki’s to obtain partial decryptions. Finally, there is a mechanism to
combine the partial decryptions to obtain the final output.

Given a multi-key FHE, a first idea for a non-interactive MPC protocol for a function f is described
below.6

1. Setup of party i: Sample an encryption/decryption key pair eki, dki and sets its private-key to be
SKi = (dki) and published the public-key PKi = (eki).

2. Encryption of party i on input xi: Compute an encryption of xi with respect to the key eki:
CTi = Enc(eki, xi) and compute an obfuscation Gi of the circuit given in Figure 1. The message of

Gi
[
dki, {ekj}j∈[n]

]
Hardwired: the decryption key of party i, dki, and all the encryption keys {ekj}j∈[n].
Input: n ciphertexts: CT1, . . . ,CTn.

- For all j ∈ [n] compute ĈTj ← Expand((ek1, . . . , ekn), j,CTj).

- Perform ĈTout ← Eval
(
f, ĈT1, . . . , ĈTn

)
.

- Output pi ← PartDec
(
ĈTout, ek1, . . . , ekn, i, dki

)
.

Figure 1: The circuit Gi. The parameters in the square brackets are hardwired values and the inputs are
specified separately (this is the convention throughout the paper).

this party is the pair (Gi,CTi).

3. Evaluation given the messages of the parties: Given (Gi,CTi) for each i ∈ [n], the evaluator
executes each Gi on CT1, . . . ,CTn to get pi. Then, it combines all partial decryptions p1, . . . , pn to get
y

Correctness of the protocol is immediate by the correctness of the underlying obfuscator and the correctness
of the multi-key FHE scheme. However, proving security of this scheme runs into several obstacles. First,
we have to deal with the fact that the Eval operation is randomized. Second, there seems to be a very
simple attack for the evaluator stemming from the fact that the encryption keys can be used to encrypt
arbitrary values. Namely, the evaluator, given eki, can simulate ciphertexts generated by the i-th party and
potentially fully recover all inputs.

The first issue is (by now) quite standard in the iO literature and we overcome it by using a puncturable
PRF family. The second issue is more complicated to handle. Our idea is to augment the setup procedure
to generate a signature/verification key pair and let each party sign its input. The circuit that each party
will obfuscate will verify each such signature to make sure it was honestly generated. Intuitively, it seems

6For simplicity of notation we assume a single public function.
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to solve the problem, but formally arguing security using iO and an arbitrary signature scheme seems to be
problematic.7 To overcome this, we construct a special kind of signatures with which we are able to complete
the proof. Specifically, our signatures have a property that allows us to replace the verification key with a
“punctured verification key” in an indistinguishable way such that the punctured key (statistically) verifies
only a single signature.

Having these signatures, the proof proceeds by a sequence of hybrid experiments in which we slowly
replace each partial decryption with a simulation which does not require the decryption key. The number of
hybrids is proportional to the input domain of the circuit Gi. Throughout the proof, we extensively use the
probabilistic iO of [CLTV15] and the partition-programming technique of [AJN+16].

The malicious case. Notice that in the malicious case, since our protocol is non-interactive, the evaluator
can plug in any value it wishes in the corrupted parties and obtain a value for the function f . Thus, in
this case, if the evaluator colludes with a subset A ⊂ [n] of the parties (i.e. H = [n] \ A is the honest set
of parties), then we could hope to get security only for functions f and challenge ({x0

i }i∈H , {x1
i }i∈H) that

satisfy

f(〈{x0
i }i∈H , {xi}i∈A〉) = f(〈{x1

i }i∈H , {xi}i∈A〉)

for every {xi}i∈A and where 〈·〉 sorts the inputs according to the index i.
The proof and construction above do not guarantee security in the case where the evaluator colludes with

a subset of the parties. Specifically, there is no guarantee as to what happens when one of the (malicious)
parties sends a malformed ciphertext CTi. There, the partial decryption would still output some string, but
we have no guarantee on whether the simulation of this partial decryption is going to be indistinguishable.

To overcome this we use non-interactive zero-knowledge proofs (NIZKs). Specifically, during encryption of
the value xi, party i will also provide (in addition to the obfuscated circuit, the ciphertext and the signature)
a NIZK proof asserting that the ciphertext is a legal well-formed ciphertext. As in most works that combine
NIZKs and iO, we need a special kind of NIZKs called statistically-simulation-sound NIZKs (SSS-NIZKs)
[GGH+13]. However, this is still not enough for us. The reason is that for the partial-decryption simulation
we need to know the final output, but we have no control over the inputs coming from the malicious parties
(recall that they are encrypted!). To solve this we use statistical-simulation-extractable zero-knowledge
proofs (SSE-NIZKs) which are a special kind of non-interactive zero-knowledge proofs of knowledge (NIWI-
POKs) which allow us to extract from the proof of the malicious parties their decryption key, decrypt their
ciphertexts and compute the expected final output of the computation. We construct such SSE-NIZKs in
the CRS model starting with any NIWI-POK and any one-way permutation.

Reusable PKI with a session ID. The solution we described above only gives a non-reusable scheme.
Namely, the PKI cannot be used for more than one encryption. We consider a stronger model where the PKI
can be reused but this requires a more delicate security definition since the evaluator can mix-and-match
ciphertexts corresponding to honest parties which makes the security definition much less meaningful (as it
applies to a much smaller set of functions). We consider a hybrid security definition in which we support a
reusable PKI but introduce session IDs and require correctness only for ciphertexts that are generated with
the same session ID.

To support such functionality we construct puncturable signatures that can be punctured such that only
a single message with a specific prefix is allowed. The session ID is used as a prefix and after puncturing
no signature exists for messages agreeing on the prefix, except the one generated by the honest party. Our
construction uses NIZKs and statistically-binding commitments.

1.3 Related Work

The problem of devising non-interactive protocols was first addressed in [FKN94], where it was shown how
to compute any function assuming that all parties share common private randomness which is unknown to
the adversary.

7One standard way to handle this is to assume a differing-input obfuscator (diO) rather than plain iO. A diO guarantees
that if an adversary distinguishes two obfuscated circuits, then it must know a differing input.
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As observed in [HIJ+16], collusion-resistant non-interactive MPC in the correlated randomness model
follows from multi-input functional encryption [GGG+14]. Thus, the MIFE scheme of Goldwasser et al.
[GGG+14] gives an NI-MPC protocol in the correlated randomness model assuming iO and one-way func-
tions. As noted already in [GGG+14], this is in fact tight since MIFE implies iO.

Non-interactive MPC protocols in the information-theoretic setting for a simple class of functions were
constructed by [BGI+14a] (see also improvements in [HIJ+16]), again using correlated randomness.

2 Preliminaries

We use the following primitives in our constructions.

1. We use the notion of indistinguishability obfuscation (iO), as defined in [BGI+01, GGH+13].

2. We use the notion of puncturable PRFs, as defined in [BW13, BGI14b, KPTZ13, SW14]. As
observed in these works, the GGM construction [GGM86] of PRFs from one-way functions yields
puncturable PRFs.

3. We will also use the notion of threshold multi-key FHE [LTV12, CM15, MW16]. The initial
constructions of threshold multi-key FHE based on learning with errors assumption relied on a common
random string. Recently, Dodis et al. [DHRW16] constructed a multi-key FHE scheme based on iO
and DDH. We will use their scheme in our constructions.

The definitions of the above primitives are provided in Appendix A.

3 Building Blocks

3.1 Statistical Simulation-Extractable Zero Knowledge Proofs

LetR be an efficiently computable relation that consists of pairs (x,w), where x is called the statement and w
is the witness. Let L denote the language consisting of statements in R. A statistical simulation-extractable
non-interactive zero-knowledge (SSE-NIZK) proof system for a language L consists of a tuple of algorithms
(K,P,V,S1,S2, E). We start by describing the basic algorithms K,P,V below:

• σ ← K(1λ): On input the security parameter, it outputs a common random string (CRS) σ.

• π ← P(σ, x, w): On input a CRS σ, a statement x and a witness w s.t. (x,w) ∈ R, it outputs a proof
string π.

• b← V(σ, x, π): On input a CRS σ, a statement x and a proof π, it outputs 1 or 0, denoting accept or
reject.

Perfect Completeness. A non-interactive proof system is complete if an honest prover with a valid
witness for a statement can convince a verifier of the validity of the statement. Formally, for every (x,w) ∈ R,

Pr[σ ← K(1λ);π ← P(σ, x, w) : V(σ, x, π) = 1] = 1

Statistical Soundness. A non-interactive proof system is sound if it is infeasible to convince a verifier if
the statement is false. Formally, for all (possibly unbounded) adversaries A,

Pr[σ ← K(1k); (x, π)← A(σ) : V(σ, x, π) = 1 : x /∈ L] ≤ negl(λ)
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Computational Zero Knowledge. A non-interactive proof system is computational zero knowledge if
the proof does not reveal any information about the witness to the adversary. Formally, we require that for
all non-uniform PPT adversaries A, for all (x,w) ∈ R,

Pr[σ ← K(1λ) : π ← P(σ, x, w) : A(σ, x, π) = 1] ≈
Pr[(σ, τ)← S1(1λ, x) : π ← S2(σ, τ, x) : A(σ, x, π) = 1]

Statistical Simulation-Extractability. A NIZK proof system is statistical simulation-extractable if un-
der a simulated CRS, no proof for false statement exists, except for simulated proof for a fixed statement fed
into S1 to generate the simulated CRS. Furthermore, using an efficient extractor algorithm E , it is possible
to extract a witness from any accepting proof generated by an unbounded adversary using the simulated
CRS. Formally, for all statements x and all unbounded adversaries A,

Pr[(σ, τ)←S1(1λ, x) : π ← S2(σ, τ, x) : (x∗, π∗)← A(σ, x, π) : (x∗ 6= x) :

1← V(σ, x∗, π∗) : w∗ ← E(σ, τ, x∗, π∗) : (x∗, w∗) ∈ R] ≥ 1− negl(λ)

The Construction

Let (K,P,V) be a non-interactive witness-indistinguishable proof of knowledge (NIWI-POK) system in the
common random string model. Let Com(·, ·) be a non-interactive perfectly binding string commitment
scheme with pseudorandom commitments. Using these ingredients, we will construct an SSE-NIZK proof
system (K′,P ′,V ′).

Let ` be the upper bound on the length of the statements to be proven and let L = L(`) denote the
length of commitments output by Com.

• K′(1λ): Generate σ ← K(1λ) and sample random strings c1, . . . , cλ
$← {0, 1}L. Output the common

random string as σ′ = (σ, c1, . . . , cλ) (notice that σ′ is a uniformly random string).

• P ′(σ′, x, w): Parse σ′ = (σ, c1, . . . , cλ) and generate π′ ← P(σ, x′, w) where x′ is the statement:

∃w̃, r1, . . . , rλ : (x, w̃) ∈ R ∨
(
c1 = Com (x; r1) ∧ . . . ∧ cλ = Com (x; rλ)

)
. (1)

• V ′(σ′, x, π′): Parse σ′ = (σ, c1, . . . , cλ) and output V(σ, x′, π′), where x′ is as defined in Eq. (1).

Completeness. The completeness property of the scheme (K′,P ′,V ′) follows directly from the complete-
ness property of the underlying NIWI-POK scheme (K,P,V).

Statistical Soundness. Let σ′ = (σ, c1, . . . , cλ) be a CRS sampled at random by K. With overwhelming
probability, there does not exist x, r1, . . . , rλ s.t. for every i, ci = Com(x; ri).

Now, for any x /∈ L, let x′ be the corresponding statement as defined in Eq. (1). It follows from above
that the second part of the statement x′ is false. Then, from the statistical soundness of (K,P,V), it follows
that there does not exist any accepting proof for x′.

Zero-Knowledge and Statistical Simulation-Extractability. We first describe the simulator and ex-
tractor algorithms (S ′1,S ′2, E ′) below. Let E = (E1, E2) denote the extractor for the NIWI-POK scheme
(K,P,V).

• S ′1(1λ, x): On input a statement x, it first computes (σ, τ)← E1(1λ). Next, for every i ∈ [λ], it samples
a random string ri and computes ci ← Com(x; ri). It sets σ′ = (σ, c1, . . . , cλ), τ ′1 = (r1, . . . , rλ), τ ′2 = τ
and outputs (σ′, τ ′1, τ

′
2).

• S ′2(σ′, τ ′1, x): It sets w = (r1, . . . , rλ) and computes π ← P(σ′, x′, w) where x′ is as defined in Eq. (1).
Note that here the honest prover algorithm uses w to prove the second part of x′.
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• E ′(σ′, τ ′2, x∗, π∗): It parses σ′ = (σ, c1, . . . , cλ) and outputs the value returned by the extractor E2(σ, τ ′2, x
∗, π∗).

We first argue computational zero-knowledge property of our scheme. Let x ∈ L be any statement.
Consider the following sequence of hybrid experiments:

• H0: In this experiment, the CRS σ′ = (σ, c1, . . . , cλ) is honestly generated and we compute a proof π′

for x using the honest prover algorithm.

• H1: Same as above, except that the CRS σ′ = (σ, c1, . . . , cλ) is computed using the simulator algorithm
S ′1(1λ, x) as described above. Let (τ ′1, τ

′
2) be the trapdoor computed by S ′1.

• H2: Same as above, except that we now compute π′ using the simulator algorithm S ′2(σ′, x, τ ′1).

In order to prove the zero knowledge property of (K′,P ′,V ′), it suffices to show that H0 and H2 are
computationally indistinguishable. The indistinguishability of H0 and H1 follows immediately from the
hiding property of the commitment scheme Com. Further, the indistinguishability of H1 and H2 follows
from the witness indistinguishability property of the underlying NIWI-POK (K,P,V). Put together, we
have that H0 and H2 are computationally indistinguishable.

We now argue statistical simulation-extractability. We first note that if x /∈ L, then in experiment H2

described above, x is the only false statement for which an accepting proof exists. This follows from the
perfectly binding property of Com and the statistical soundness property of the scheme. Now, let (x∗, π∗)
be a statement and proof output by an unbounded adversary A who is given σ′ s.t. V(σ′, x∗, π∗) = 1. Since
x∗ 6= x, it follows from above that x∗ ∈ L. We now run the extractor E ′(σ′, τ ′2, x∗, π∗) to compute w∗. From
the proof of knowledge property of the underlying NIWI-POK (K,P,V), it follows that w∗ is a valid witness
for x∗, except with negligible probability.

3.2 Puncturable Signatures

We define a special kind of signature scheme which is puncturable at any prefix, such that after puncturing
no signature exists for messages agreeing on the prefix. A puncturable signature scheme is a tuple of efficient
algorithms PuncSig = (KeyGen,Sign,Verify,Puncture) described as follows:

• (sk, vk) ← KeyGen(1λ): is a randomized algorithm which takes as input the security parameter and
outputs a key pair.

• σ ← Sign(sk,m): is a randomized algorithm which takes as input the signing key sk, some message m
and outputs a signature σ.

• b← Verify(vk,m, σ): is a deterministic algorithm which takes as input the verification key, a message
m, and a signature σ and outputs a bit b.

• vkm,s ← Puncture(sk,m, s): is a randomized algorithm which takes as input the signing key, a message
m, a prefix s of m, and outputs a punctured verification key vkm,s.

We require following properties from the scheme.

1. Correctness: For any message m ∈ {0, 1}λ it holds that

Pr[Verify(vk,m, σ) = 1 : (sk, vk)← KeyGen(1λ), σ ← Sign(sk,m)] = 1

2. Security: For any message m, and prefix s of m it holds that:

{vkm,s,m, σ} ≈c {vk,m, σ},

where (sk, vk)← KeyGen(1λ), σ ← Sign(sk,m), vkm,s ← Puncture(sk,m, s).
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3. Punctured functionality: There exist a negligible function negl(·) such that for any message m and
for any m′ 6= m such that s is a prefix of m′ it holds that

Pr[∃σ : Verify(vkm,s,m
′, σ) = 1] ≤ negl(λ),

where (sk, vk)← KeyGen(1λ) and vkm,s ← Puncture(sk,m, s).

The Construction

We show how to construct a puncturable signature scheme from NIZK proofs and a statistically binding
commitment scheme. The construction is as follows:

• KeyGen(1λ): Sample a PRF key K, sample a crs, compute c ← Com(CK ; r) where C is a circuit that
on input x outputs PRFK(x) (padded to be large enough). Set sk = CK , r and vk = c, crs.

• Sign(sk,m): Compute y = CK(m) and a proof π that y is indeed that output of the circuit committed
in c on the input m.

• Verify(vk,m, σ): Parse σ as y and π. Verify that proof π to the instance (m, y) and that y 6= ⊥.

• Puncture(sk,m, s): Compute PRF key K∗ that is punctured at the prefix s except the message m.
That is, using K∗ one can compute the PRF value on m and on all inputs that do not begin with s.
In the verification key, replace the PRF key in the committed circuit to CK∗,s,m. In the secret key,
replace K with K∗.

Correctness is immediate from the construction. Security follows from the hiding property of the com-
mitment scheme. Punctured security follows from the statistical soundness of the NIZK proof. After the
circuit C is altered to output ⊥ on messages with prefix s, we know that (with high probability over the crs)
no valid proof exists for messages with prefix s, and thus no valid signatures.

4 Non-Interactive Multiparty Computation

A non-interactive multiparty computation protocol (NI-MPC) for a function f : Xn → Y is a protocol
between n parties and a single evaluator. Each party holds an input xi and sends exactly one message to
an evaluator, who computes the output. The correctness requirement of the protocol is that the evaluator,
given one message from each party, is able to compute the value y = f(x1, . . . , xn) correctly.

Our security guarantee is formalized as an indistinguishability game in which the evaluator commits on
a set of parties with whom he is colluding. Specifically, since our setting is non-interactive, the evaluator
can use the controlled parties to make resetting attacks that allow him to evaluate the function on different
inputs of his choice (but he has no control over the inputs of the honest parties). Thus, our security is
assuming that the “residual” function determined after fixing the challenge inputs of the honest parties is
functionally equivalent in the view of the evaluator [HLP11].

Definition 4.1 (Admissible inputs). Let f : Xn → Y be a function. We say that H ⊆ [n], {x0
i }i∈H and

{x1
i }i∈H are admissible for f if for any {xi}i/∈H it holds that

f(〈{x0
i }i∈H , {xi}i/∈H〉) = f(〈{x1

i }i∈H , {xi}i/∈H〉),

where 〈·, . . . , ·〉 sorts the inputs according to the index i.

Definition 4.2 (Non-interactive multiparty computation). A non-interactive multiparty computation proto-
col Π for the function f : Xn → Y consists of a probabilistic setup procedure Setup, a probabilistic encryption
procedure Enc and a probabilistic evaluation procedure Eval that satisfy the following requirements:

1. Setup(1λ, crs, i) takes as input a security parameter λ, a common random string crs, a party index
i ∈ [n], computes a private key SKi and outputs a public key PKi.
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2. Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i) takes as input a security parameter λ, a common random string
crs, an input xi ∈ X , public keys PK1, . . . ,PKn, a secret key SKi and a party index i ∈ [n], and outputs
a ciphertext x̂i.

3. Eval(1λ, crs, x̂1, . . . , x̂n,PK1, . . . ,PKn) takes as input a security parameter λ, a common random string
crs, n ciphertexts x̂1, . . . , x̂n, n public keys PK1 . . . ,PKn, and outputs a value y ∈ Y.

4. Correctness: This property states that the evaluation on n ciphertexts of x1, . . . , xn gives f(x1, . . . , xn).
Specifically, for every λ ∈ N and every x1, . . . , xn ∈ X , it holds that

Pr
[
y = f(x1, . . . , xn);

y = Eval(1λ, crs, x̂1, . . . , x̂n,PK1, . . . ,PKn),

∀i ∈ [n] : x̂i ← Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i),

∀i ∈ [n] : (PKi,SKi)← Setup(1λ, crs, i),

crs← {0, 1}λ
]

= 1,

where the probability is over the internal randomness of Setup,Enc and Eval.

5. Security: Informally speaking, this property states that an adversary that controls a subset of
parties does not learn anything about the underlying plaintexts from the ciphertexts of the remaining
parties, besides the output of the function. Specifically, for any probabilistic polynomial-time adversary
A = (A1,A2), any admissible H ⊆ [n], ~x0 = {x0

i }i∈H and ~x1 = {x1
i }i∈H , there exists a negligible

function negl(λ) such that

AdvNI-MPC
Π,A,H,~x0,~x1(λ)

def
=

∣∣∣∣Pr
[
ExpNI-MPC

Π,A,H,~x0,~x1(λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where the random variable ExpNI-MPC
Π,A,H,~x0,~x1(λ) is defined via the following

experiment:

1. Sample crs← {0, 1}poly(λ)
and b← {0, 1} at random.

2. For i ∈ H: (PKi,SKi)← Setup(1λ, crs, i)

3. ({PKi}i/∈H , st)← A1(1λ, crs, {PKi}i∈H)

4. For i ∈ H: x̂i ← Enc(1λ, crs, xbi ,PK1, . . . ,PKn,SKi, i).

5. b′ ← A2(1λ, crs, {PKi}i∈H , {x̂i}i∈H , st).
6. If b′ = b then output 1, and otherwise output 0.

A reusable PKI and session IDs. The above definition is not reusable. Namely, it cannot be used
across multiple ciphertexts generated by the honest parties. A definition that support multiple encryption
sessions is given below. We remark that in our non-interactive setting, session IDs are required to prevent an
adversary for combining ciphertexts from one session with another (otherwise, the definition of an admissible
function becomes very weak and makes sense only for a very restricted set of functions). Our construction
and proof given in Section 5 satisfy the weaker definition above but we sketch in Section 5.2 how to prove
that our construction satisfies the stronger reusable-PKI with session IDs notion as well.

Definition 4.3 (Non-interactive multiparty computation with session
IDs). A non-interactive multiparty computation protocol Π for the function f : Xn → Y consists of a
probabilistic setup procedure Setup, a probabilistic encryption procedure Enc and a probabilistic evaluation
procedure Eval. The setup procedure and evaluation procedure have the same syntax as in Definition 4.2
but Enc also received a session ID. Moreover, the correctness and security are modified as follows:
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1. Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i, session) takes as input a security parameter λ, a common random
string crs, an input xi ∈ X , public keys PK1, . . . ,PKn, a secret key SKi, a party index i ∈ [n], and a
session ID session ∈ {0, 1}λ, and outputs a ciphertext x̂i.

2. Correctness: This property states that the evaluation on n ciphertexts of x1, . . . , xn encrypted in
the same session gives f(x1, . . . , xn). Specifically, for every λ ∈ N, every session ID session ∈ {0, 1}λ,
and every x1, . . . , xn ∈ X , it holds that

Pr
[
y = f(x1, . . . , xn);

y = Eval(1λ, crs, x̂1, . . . , x̂n,PK1, . . . ,PKn),

∀i ∈ [n] : x̂i ← Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i, session),

∀i ∈ [n] : (PKi,SKi)← Setup(1λ, crs, i),

crs← {0, 1}λ
]

= 1,

where the probability is over the internal randomness of Setup,Enc and Eval.

3. Security: For any probabilistic polynomial-time adversary A = (A1,A2), any admissible H ⊆ [n],
~x0 = {x0

i }i∈H and ~x1 = {x1
i }i∈H , and any session ID session ∈ {0, 1}λ, there exists a negligible function

negl(λ) such that

AdvNI-MPC
Π,A,H,~x0,~x1,session(λ)

def
=

∣∣∣∣Pr
[
ExpNI-MPC

Π,A,H,~x0,~x1,session(λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where ExpNI-MPC
Π,A,H,~x0,~x1,session(λ) is a random variable defined via the

following experiment:

1. Sample crs← {0, 1}poly(λ)
and b← {0, 1} at random.

2. For i ∈ H: (PKi,SKi)← Setup(1λ, crs, i)

3. ({PKi}i/∈H , st)← A1(1λ, crs, {PKi}i∈H)

4. For i ∈ H: x̂i ← Enc(1λ, crs, xbi ,PK1, . . . ,PKn,SKi, i, session).

5. b′ ← AEnc(·,·,·)
2 (1λ, crs, {PKi}i∈H , {x̂i}i∈H , st), where the encryption oracle Enc(·, ·, ·) on input

triple (xi, i, session
′) produces an encryption of xi with respect to party i ∈ H as long as session′ 6=

session (by running Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i, session
′)).

6. If b′ = b then output 1, and otherwise output 0.

The fully honest case. A particularly interesting case is when H = [n] and the evaluator does not collude
with any party. In this case, which we call the fully honest case, we can assume without loss of generality
that one of the parties will also generate the CRS as part of the PKI and thus we get a construction in the
PKI model.

Selective vs. adaptive security. Our security definitions are selective in the sense that the adversary
commits on the challenge before the challenger published the PKI. By standard “random guessing” we can
turn any selectively secure scheme into an adaptively secure one. This is done by guessing ahead of time
all the adaptive choices made by the adversary throughout the game and reducing to the selective case. By
setting the security parameter to be large enough and using the sub-exponential security of the scheme, we
can tolerate this exponential loss. (Recall that our main result assumes sub-exponentially secure primitives
to begin with so we can get adaptive security for free.)
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4.1 Communication on a Chain

We follow Halevi et al. [HIJ+16] and consider the case of more general interaction patterns described by a
directed acyclic graph (DAG), where each node represents a party who expects to receive messages from all
of its parents and can then send messages to all of its children, and where the sinks of the graph compute
outputs. The setting of Definitions 4.2 and 4.3 is a special case of the above where the communication
pattern is a star, a graph connecting all nodes to a single central node. Another special case is a chain, a
simple directed path traversing all nodes.

Here, we focus on a chain and define NI-MPC for this pattern. We assume that there are n parties with
corresponding inputs xi. The first party is the source of the chain and party n is the last party in the chain
which sends its message to the evaluator.

Definition 4.4 (Chain admissible inputs). Let f : Xn → Y be a function. Let H ⊆ [n] with maximal index
i∗. We say that H, {x0

i }i∈H , {x1
i }i∈H , and {xi}i/∈H∧i≤i∗ are chain-admissible for f if for any {xi}i/∈H∧i>i∗ it

holds that
f(〈{x0

i }i∈H , {xi}i/∈H〉) = f(〈{x1
i }i∈H , {xi}i/∈H〉),

where 〈·, . . . , ·〉 sorts the inputs according to the index i.

Definition 4.5 (Non-interactive multiparty computation on a chain). A non-interactive multiparty com-
putation protocol Π for the function f : Xn → Y on a chain consists of a probabilistic setup procedure
Setup, a probabilistic encryption procedure Enc and a probabilistic evaluation procedure Eval that satisfy
the following requirements:

1. Setup(1λ, crs, i) takes as input a security parameter λ, a common random string crs, a party index
i ∈ [n], computes a private key SKi and outputs a public key PKi.

2. Enc(1λ, crs, x̂i−1, xi,PK1, . . . ,PKn,SKi, i) takes as input a security parameter λ, a common random
string crs, the message sent by party i− 1 an input xi ∈ X , public keys PK1, . . . ,PKn, a secret key SKi
and a party index i ∈ [n], and outputs a ciphertext x̂i. We assume that x̂0 = ⊥.

3. Eval(1λ, crs, x̂n,PK1, . . . ,PKn) takes as input a security parameter λ, a common random string crs, the
ciphertexts of the last party x̂n, n public keys PK1 . . . ,PKn, and outputs a value y ∈ Y.

4. Correctness: This property states that the evaluation on n ciphertexts of x1, . . . , xn gives f(x1, . . . , xn).
Specifically, for every λ ∈ N and every x1, . . . , xn ∈ X , it holds that

Pr
[
y = f(x1, . . . , xn);

y = Eval(1λ, crs, x̂n,PK1, . . . ,PKn),

∀i ∈ [n] : x̂i ← Enc(1λ, crs, x̂i−1, xi,PK1, . . . ,PKn,SKi, i),

∀i ∈ [n] : (PKi,SKi)← Setup(1λ, crs, i),

crs← {0, 1}λ
]

= 1,

where the probability is over the internal randomness of Setup,Enc and Eval.

5. Security: For any probabilistic polynomial-time adversary A = (A1,A2), any chain-admissible H ⊆
[n], ~x0 = {x0

i }i∈H , ~x1 = {x1
i }i∈H , and ~x = {xi}i/∈H∧i<i∗ , where i∗ is the maximal index in H, there

exists a negligible function negl(λ) such that

AdvNI-MPC
Π,A,H,~x0,~x1,~x(λ)

def
=

∣∣∣∣Pr
[
ExpNI-MPC

Π,A,H,~x0,~x1,~x(λ) = 1
]
− 1

2

∣∣∣∣ ≤ negl(λ),

for all sufficiently large λ ∈ N, where ExpNI-MPC
Π,A,H,~x0,~x1,~x(λ) is a random variable defined via the following

experiment:
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1. Sample crs← {0, 1}poly(λ)
and b← {0, 1} at random.

2. For i ∈ H: (PKi,SKi)← Setup(1λ, crs, i)

3. ({PKi}i/∈H , st)← A1(1λ, crs, {PKi}i∈H)

4. For i = 1 . . . i∗:

i. If i ∈ H: x̂i ← Enc(1λ, crs, x̂i−1, x
b
i ,PK1, . . . ,PKn,SKi, i).

ii. If i /∈ H: x̂i ← Enc(1λ, crs, x̂i−1, xi,PK1, . . . ,PKn,SKi, i)

5. b′ ← A2(1λ, crs, {PKi}i∈H , x̂i∗ , st).
6. If b′ = b, then output 1, and otherwise, output 0.

5 Our Construction

We now present our construction of NI-MPC as in Definition 4.2. The main ingredients in our construction
are:

• A threshold multi-key FHE scheme MFHE = (KeyGen,Enc,Expand,Eval,Dec,PartDec,FinDec).

• An SSE-NIZK proof system NIZK = (K,P,V,S1,S2, E) for NP.

• A puncturable PRF family F .

• A puncturable signature scheme PuncSig = (KeyGen,Sign,Verify,Puncture)

• An indistinguishability obfuscator iO for general circuits.

Let f : Xn → Y be a deterministic function that takes n inputs x1, . . . , xn ∈ X and outputs y ∈ Y. We
construct a non-interactive multiparty computation protocol Π = (Setup,Enc,Eval) for f below.

Setup(1λ, crs, i): It takes as input security parameter λ, a common random string crs, and does the following.

1. Execute the key generation procedure of the signature scheme, (ski, vki)← PuncSig.KeyGen(1λ).

2. Execute {(dki, eki)← MFHE.KeyGen(1λ)}i∈[n].

3. Output public key PKi = (vki, eki) and private key SKi = (ski, dki).

Enc(1λ, crs, xi,PK1, . . . ,PKn,SKi, i): It takes as input security parameter λ, a common random string crs,
an input xi ∈ X , a list of n public keys PK1 . . . ,PKn, one private key SKi, an index i ∈ [n], and does the
following.

1. For every j ∈ [n], parse PKj = (vkj , ekj) and let SKi = (ski, dki).

2. Encrypt the input xi using eki: CTi ← MFHE.Enc(eki, xi).

3. Sign on (CTi, i) using ski: ψi ← PuncSig.Sign(ski, (CTi, i)).

4. Sample puncturable PRF key Ki
$←− {0, 1}λ.

5. Generate a proof πi that CTi and eki are valid ciphertext and encryption key, respectively. Namely,
compute πi ← NIZK.P(crs, (CTi, eki), w = (r, r′, xi, dki)), where r and r′ are the randomness used for
the computation of CTi and (dki, eki), respectively. The exact statement is given in Figure 2.

6. Obfuscate the circuit Gi ← iO
(
1λ, G

[
i, crs,Ki, dki, {ekj}j∈[n], {vkj}j∈[n]

] )
as described in Figure 2.

7. Output the tuple x̂i = (Gi,CTi, ψi, πi).
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G
[
i, crs,Ki, dki, {ekj}j∈[n], {vkj}j∈[n]

]
Input: (CT1, ψ1, π1), . . . , (CTn, ψn, πn).

- If PuncSig.Verify(vkj , (CTj , j), ψj) is false for some j ∈ [n] then output ⊥.
- For every j ∈ [n], verify NIZK.V(crs, (ekj ,CTj), πj) for the statement:

∃r, r′,Mj , dkj : CTj = MFHE.Enc(ekj ,Mj ; r) ∧ (ekj , dkj) = MFHE.KeyGen(1λ; r′).

If this check fails for some j ∈ [n] then output ⊥.

- For all j ∈ [n] compute ĈTj ← MFHE.Expand((ek1, . . . , ekn), j,CTj).

- Perform ĈTout ← MFHE.Eval
(
f, ĈT1, . . . , ĈTn

)
.

- ri ← PRFKi(CT1‖π1‖ . . . ‖CTn‖πn).

- pi ← MFHE.PartDec
(
ĈTout, ek1, . . . , ekn, i, dki; ri

)
.

- Output pi.

Figure 2: The circuit G.

Eval(1λ, crs, x̂1, . . . , x̂n,PK1, . . . ,PKn): It takes as input security parameter λ, a common random string crs,
n strings x̂1, . . . , x̂n, a list of n public keys PK1 . . . ,PKn, and does the following:

1. Parse each x̂i = (Gi,CTi, ψi, πi).

2. Evaluate each obfuscation Gi on the input
(

(ĈT1, ψ1, π1), . . . , (ĈTn, ψn, πn)
)

to get the partial decryp-

tion pi.

3. Execute the final decryption algorithm, y ← MFHE.FinDec(p1, . . . , pn) and output y.

We proceed with the proof of correctness and security of the scheme. Correctness follows by the correct-
ness of the underlying building blocks. Specifically, let x1, . . . , xn ∈ X be inputs such that party i holds xi.
By the correctness of the signature scheme and the threshold multi-key FHE scheme, each obfuscated circuit
will output a partial decryption pi such that MFHE.FinDec(p1, . . . , pn) must be equal to f(x1, . . . , xn).

5.1 Proof of Security

We show that our scheme is secure for a restricted set of input vector pairs.

Lemma 5.1. Assume the existence of a indistinguishability obfuscator, a threshold multi-key FHE scheme,
an SSE-NIZK in the common random string model, a puncturable PRF, and a puncturable signature, all
of which are sub-exponentially secure. Then, for any H ⊆ [n], any ind ∈ H and any ~x0 = {xi}i∈H ,
~x1 = {xi}i∈H\{ind} ∪ {x′ind}, such that H,~x0, ~x1 are admissible, it holds that

AdvNI-MPC
Π,f,A,H,~x0,~x1(λ) ≤ negl(λ).

Given this lemma, we can construct a scheme that is secure as in Definition 4.2.

Lemma 5.2. Assume the existence of a indistinguishability obfuscator, a threshold multi-key FHE scheme,
an SSE-NIZK in the common random string model, a puncturable PRF, and a puncturable signature, all
of which are sub-exponentially secure. Then, there exists a secure non-interactive multiparty computation
scheme for any efficiently computable function f .
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Threshold multi-key FHE scheme exists based on the Learning with Errors assumption [MW16] in the
CRS model or on indistinguishability obfuscation and DDH [DHRW16]. In Section 3.1 we constructed an
SSE-NIZK scheme in the common random string model assuming any NIWI-POK and one-way permutations.
A NIWI-POK can be constructed from any NIWI together with a standard encryption scheme. NIWI and
one-way permutations exist based on iO and DDH [BP15]. Finally, we constructed a puncturable signature
based on NIZKs and statistically-binding commitments. In total, we can instantiate our construction based
on indistinguishability obfuscation and DDH, both with sub-exponential security.

of Lemma 5.2 using Lemma 5.1. The proof works by a hybrid argument. Recall that Lemma 5.1 gives a
protocol that is secure only if the challenge vectors differ in one coordinate. The idea is to define an
augmented function in which we can slowly “push” all the differing inputs into a single “augmented” input.

To compute the function f we use the protocol Π for computing the augmented function f ′ : (Xn)n → Y
that gets n strings z1, . . . , zn ∈ Xn and does the following:

1. If there exists a unique i ∈ [n] such that zi = (x1, . . . , xn) and x1, . . . , xn 6= ⊥, output f(x1, . . . , xn).

2. Else, parse each zi as (xi,⊥, . . . ,⊥) and output f(x1, . . . , xn).

When encrypting an input xi ∈ X , we encrypt the input zi = (xi,⊥, . . . ,⊥) ∈ Xn. Denote this new protocol
for computing f by Π′. By definition of the new protocol, for every H = {h1, . . . , hk}, ~x0 = {x0

i }i∈H , and
~x1 = {x1

i }i∈H , it holds that

AdvNI-MPC
Π′,f,A,H,~x0,~x1(λ) = AdvNI-MPC

Π,f ′,A,H,~z0,~z1(λ),

where ~zb = {zbi }i∈H = {zbh1
, . . . , zbhk} and zbi = (xbi ,⊥, . . . ,⊥) is defined as above.

Define:

~z0 = ~z1

~z1 = {(x1
1, x

1
2, . . . , x

1
n), z1

h2
, . . . , z1

hk
},

~z2 = {(x1
1, x

1
2, . . . , x

1
n),⊥, z1

h3
, . . . , z1

hk
},

. . .

~zk = {(x1
1, x

1
2, . . . , x

1
n),⊥, . . . ,⊥}

~zk+1 = {(x0
1, x

0
2, . . . , x

0
n),⊥, . . . ,⊥}

~zk+2 = {(x0
1, x

0
2, . . . , x

0
n), z0

h2
,⊥, . . . ,⊥}

. . .

~z2k = {(x0
1, x

0
2, . . . , x

0
n), z0

h2
, . . . , z0

hk
}

~z2k+1 = ~z0

By Lemma 5.1, we get that for every ` ∈ {0, . . . , 2k}:

AdvNI-MPC
Π,f ′,A,H,~z`, ~z`+1

(λ) ≤ negl(λ),

and thus

AdvNI-MPC
Π′,f,A,H,~x0,~x1(λ) = AdvNI-MPC

Π,f ′,A,H,~z0, ~z2k+1
(λ) ≤ (2k + 1) · negl(λ).

which proves the claim.

We proceed with the proof of Lemma 5.1.

of Lemma 5.1. Fix H ⊆ [n], ind ∈ H, ~x0 = {xi}i∈H , and ~x1 = {xi}i∈H\{ind} ∪ {x′ind}, such that H,~x0, ~x1

are admissible. The lemma is proved by a sequence of hybrid experiments. Denote by `(λ) a polynomial
bounding the total length of n ciphertexts and n NIZK proofs computed with security parameter λ.

Hyb1: This experiment corresponds to the original experiment ExpNI-MPC
Π,f,A,H,~x0,~x1(λ):

17



1. Sample a random bit b ∈ {0, 1}.

2. Do the following for party i ∈ H:

2.1. Sample (dki, eki)← MFHE.KeyGen(1λ; r), where r is a random string.

2.2. CTi ← MFHE.Enc(eki, x
b
i ; r
′), where r′ is a random string.

2.3. Sample (ski, vki)← PuncSig.KeyGen(1λ).

2.4. Set PKi = (vki, eki) and SKi = (ski, dki).

3. The adversary, given {PKi}i∈H and crs, publishes a public key PKi for every i /∈ H of the form
PKi = (vki, eki).

4. Do the following for party i ∈ H:

4.1. ψi ← PuncSig.Sign(ski, (CTi, i)).

4.2. Sample a PRF key Ki.

4.3. Compute πi ← NIZK.P(crs, (CTi, eki), w = (r, r′, xbi , dki)).

4.4. Compute Gi as the obfuscation of the following circuit defined in Figure 2:

G
[
i, crs,Ki, dki, {ekj}j∈[n], {vkj}j∈[n]

]
.

4.5. Let x̂i = (Gi,CTi, ψi, πi).

5. The challenge: b′ ← A(crs, {PKi}i∈H , {x̂i}i∈H) and output b′.

Hyb2: This experiment corresponds to experiment Hyb1 except that now the published verification keys
of parties in H are modified to verify only one pre-computed message and nothing else. Specifically, now
between Item 2.3. and Item 2.4. we puncture the verification key of each i ∈ H and set

vki ← PuncSig.Puncture(ski, (CTi, i),⊥),

where the ⊥ corresponds to an empty prefix. That is, the new verification key accepts the precisely one
message which is (CTi, i). The indistinguishability of this experiment and experiment Hyb1 follows directly
from the security of the signature scheme (see Item 2 at Section 3.2).

Hyb3: This experiment corresponds to experiment Hyb2 except that now the NIZK proof of the honest party
ind is generated via the zero-knowledge simulator.

1. Sample (dkind, ekind)← MFHE.KeyGen(1λ; r), where r is a random string.

2. CTind ← MFHE.Enc(ekind, x
b
ind; r

′), where r′ is a random string.

3. Sample (crs, τ)← NIZK.S1(1λ, (CTind, ekind)).

4. Sample random a bit b ∈ {0, 1}.

5. Proceed as before (Item 2) for party i ∈ H \ {ind}.

6. Do the following for party ind:

6.1. Sample (skind, vkind)← PuncSig.KeyGen(1λ).

6.2. vkind ← PuncSig.Puncture(skind, (CTind, i),⊥).

6.3. Set PKi = (vkind, ekind) and SKind = (skind, dkind).
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7. The adversary, given {PKi}i∈H and crs, publishes a public key PKi for every i /∈ H of the form
PKi = (vki, eki).

8. Proceed as before (Item 4) for party i ∈ H \ {ind}.

9. Do the following for party ind:

9.1. Sample a PRF key Kind.

9.2. πind ← NIZK.S2(crs, τ, (CTind, ekind)).

9.3. Compute Gind as the obfuscation of the following circuit defined in Figure 2:

G
[
ind, crs,Kind, dkind, {ekj}j∈[n] , {vkj}j∈H

]
.

9.4. Let x̂ind = (Gind,CTind, ψind, πind).

10. The challenge: b′ ← A(crs, {PKi}i∈H , {x̂i}i∈H) and output b′.

The indistinguishability of this experiment and experiment Hyb2 follows directly from the zero-knowledge
property of the NIZK (see definition in Section 3.1), since the adversary does not get the trapdoor τ as input.
The proof here relies on the fact that the adversary has to commit to his challenge input vectors before seeing
the common random string.

Hyb4,1,{CT∗i ,π∗i }i/∈H for {CT∗i , π∗i }i/∈H ∈ {0, 1}`(λ):

1. Sample (dkind, ekind)← MFHE.KeyGen(1λ; r), where r is a random string.

2. CTind ← MFHE.Enc(ekind, x
b
ind; r

′), where r′ is a random string.

3. Sample (crs, τ)← NIZK.S1(1λ, (CTind, ekind)).

4. Sample random a bit b ∈ {0, 1}.

5. Proceed as before (Item 2) for party i ∈ H \ {ind}.

6. Do the following for party ind:

6.1. Sample (skind, vkind)← PuncSig.KeyGen(1λ).

6.2. vkind ← PuncSig.Puncture(skind, (CTind, i),⊥).

6.3. Set PKind = (vkind, ekind) and SKind = (skind, dkind).

7. The adversary, given {PKi}i∈H and crs, publishes a public key PKi for every i /∈ H of the form
PKi = (vki, eki).

8. Proceed as before (Item 4) for party i ∈ H \ {ind}.

9. Do the following for party ind:

9.1. ψind ← PuncSig.Sign(skind, (ĈTind, i)).

9.2. Sample a PRF key Kind.

9.3. πind ← NIZK.S2(crs, τ, (CTind, ekind)).

9.4. Compute G
(2)
ind as the obfuscation of the circuit defined in Figure 3:

G(2)
[
ind, crs, {τ j}j /∈H ,Kind, {dkj}j∈H , {ekj}j∈[n], {vkj}j∈[n], {xbj}j∈H , {CT

∗
j , π
∗
j }j /∈H

]
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G(2)
[
i, crs, τ,Ki, {dkj}j∈H , {ekj}j∈[n], {vkj}j∈[n], {xj}j∈H , {CT∗j , π∗j }j /∈H

]
Input: (CT1, ψ1, π1), . . . , (CTn, ψn, πn).

- If PuncSig.Verify(vkj , (CTj , j), ψj) is false for some j ∈ [n] then output ⊥.
- For every j ∈ [n], verify NIZK.V(crs, (ekj ,CTj), πj) for the statement:

∃r, r′, xj , dkj : CTj = MFHE.Enc(ekj , xj ; r) ∧ (ekj , dkj) = MFHE.KeyGen(1λ; r′).

If this check fails for some j ∈ [n] then output ⊥.

- For all j ∈ [n] compute ĈTj ← MFHE.Expand((ek1, . . . , ekn), j,CTj).

- Perform ĈTout ← MFHE.Eval
(
f, ĈT1, . . . , ĈTn

)
.

- ri ← PRFKi(CT1‖π1‖ . . . ‖CTn‖πn).
- If {CTi, πi}i∈H < {CT∗i , π∗i }i∈H :

- For all j /∈ H, let (r, r′, xj , dkj)← NIZK.E(crs, τ, (CTj , ekj), πj).

- pi ← MFHE.Sim
(
y, ĈTout, {dkj}j∈[n]\{i}; ri

)
, where y = f(x1, . . . , xn).

- Otherwise:

- pi ← MFHE.PartDec
(
ĈTout, ek1, . . . , ekn, i, dki; ri

)
- Output pi.

Figure 3: The circuit G(2)

9.5. Let x̂ind = (Gind,CTind, ψind, πind).

10. The challenge: b′ ← A(crs, {PKi}i∈H , {x̂i}i∈H) and output b′.

Notice that when {CT∗i , π∗i }i/∈H are all equal to the all zero string, then this hybrid is identical to Hyb3.

Hyb4,2,{CT∗i ,π∗i }i/∈H for {CT∗i , π∗i }i/∈H ∈ {0, 1}`(λ): Proceed as in the previous hybrid, except that now hardwire

in the circuit G
(2)
i a punctured PRF key K∗ = Puncture(K, {CTi}i∈H‖{CT∗i }i/∈H), sample r∗i at random

instead of via a PRF.

1. Repeat steps 1–9.1. from the previous experiment.

2. Modify step 9.2.–9.4. by doing the following for party ind:

2.1. Compute punctured key K∗ind = PRF.Puncture(K, {CTi}i∈H‖{CT∗i }i/∈H).

2.2. For j /∈ H, compute ĈT∗j = MFHE.Expand((ek1, . . . , ekn), j,CT∗j ) .

2.3. Compute ĈT∗out ← MFHE.Eval
(
f, {ĈTj}j∈H , {ĈT∗j}j∈H

)
.

2.4. rind ← PRFKind
(CT1‖π1‖ . . . ‖CTn‖πn).

2.5. Compute p∗ind ← MFHE.PartDec
(
ĈTout, ek1, . . . , ekn, ind, dkind; rind

)
.

2.6. πind ← NIZK.S2(crs, τ, (CTind, ekind)).
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2.7. Compute G
(3)
ind as the obfuscation of the circuit defined in Figure 4:

G(3)
[
ind, crs, {τ j}j /∈H ,K∗ind, {dkj}j∈H , {ekj}j∈[n], {vkj}j∈[n], {xbj}j∈H , {CT

∗
j , π
∗
j }j /∈H , p∗ind

]
2.8. Let x̂ind = (G

(3)
ind , ĈTind, ψind, πind).

3. The challenge: b′ ← A(crs, {PKi}i∈H , {x̂i}i∈H) and output b′.

G(3)
[
i, crs, τ,Ki, {dkj}j∈H , {ekj}j∈[n], {vkj}j∈[n], {xj}j∈H , {CT∗j , π∗j }j /∈H , p∗i

]
Input: (CT1, ψ1, π1), . . . , (CTn, ψn, πn).

- If PuncSig.Verify(vkj , (CTj , j), ψj) is false for some j ∈ [n] then output ⊥.
- For every j ∈ [n], verify NIZK.V(crs, (ekj ,CTj), πj) for the statement:

∃r, r′, xj , dkj : CTj = MFHE.Enc(ekj , xj ; r) ∧ (ekj , dkj) = MFHE.KeyGen(1λ; r′).

If this check fails for some j ∈ [n] then output ⊥.

- For all j ∈ [n] compute ĈTj ← MFHE.Expand((ek1, . . . , ekn), j,CTj).

- Perform ĈTout ← MFHE.Eval
(
f, ĈT1, . . . , ĈTn

)
.

- ri ← PRFKi(CT1‖π1‖ . . . ‖CTn‖πn).
- If {CTi, πi}i/∈H < {CT∗i , π∗i }i/∈H and i = ind:

- For all j /∈ H, let (r, r′, xj , dkj)← NIZK.E(crs, τ, (CTj , ekj), πj).

- pi ← MFHE.Sim
(
y, ĈTout, {dkj}j∈[n]\{ind}; ri

)
, where y = f(x1, . . . , xn).

- If {CTi, πi}i/∈H = {CT∗i , π∗i }i/∈H , output p∗i .

- Otherwise:

- pi ← MFHE.PartDec
(
ĈTout, ek1, . . . , ekn, i, dki; ri

)
.

- Output pi.

Figure 4: The circuit G(3)

This hybrid is indistinguishable from Hyb4,1,{CT∗i ,π∗i } since the circuits G(2) and G(3) (with all the hardwired

values) are functionally equivalent, and therefore, their obfuscation is indistinguishable.

Hyb4,3,{CT∗i ,π∗i }i/∈H for {CT∗i , π∗i }i/∈H ∈ {0, 1}`(λ): Proceed as in the previous hybrid, except that in line 2.5.,

sample r∗ind at random instead of via a PRF. This hybrid is indistinguishable from Hyb4,2,{CT∗i ,π∗i } from the
security of the puncturable PRF.

Hyb4,4,{CT∗i ,π∗i }i/∈H for {CT∗i , π∗i }i/∈H ∈ {0, 1}`(λ): Proceed as in the previous hybrid, except that in line 2.5.,

p∗ind is computed as follows:

- For all j /∈ H, compute (r, r′, xj , dkj)← NIZK.E(crs, τ, (CT∗j , ekj), π
∗
j ).

- p∗ind ← MFHE.Sim
(
y, ĈT∗out, {dki}i 6=ind

)
for y = f({xbj}j∈H , {xj}j /∈H).

This hybrid is indistinguishable from Hyb4,3,{CT∗i ,π∗i } from the simulation security of the MFHE scheme. For
the simulation security to hold, we need to show that the value y actually corresponds to the message
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underlying the ciphertext ĈT∗out with respect to the public keys ek1, . . . , ekn. Notice that y is computed as
y = f({xbj}j∈H , {xj}j /∈H). For all j ∈ H we have that the signature ψj is punctured such that it can verify

only CTj , which is indeed an encryption of xbj . For all j /∈ H by the statistical simulation extractability
of the NIZK scheme, we get the corresponding secret key and message xj for the ciphertext CTj , and thus
indeed it is a valid encryption of xj . Altogether, we get that y is the correct value underlying the expanded
ciphertext CT∗out and thus the security of the simulation holds.

Hyb4,5,{CT∗i ,π∗i }i/∈H for {CT∗i , π∗i }i/∈H ∈ {0, 1}`(λ): Proceed as in the previous hybrid, except that in line 2.5.,

sample r∗i via the PRF instead of uniformly at random. Again, this hybrid is indistinguishable from the
previous one from the security of the puncturable PRF.

Hyb5: This experiment corresponds to experiment Hyb4,1,1`(λ) except that now in step 2.7. we obfuscate the

circuit with the values {x0
j}j∈H hardwired instead of {xbj}j∈H .

Since f is admissible (see Definition 4.1), we get that the two circuits are equivalent, and thus the in-
distinguishability of this experiment and the previous one follows from the security of the obfuscation scheme.

Hyb6: This experiment corresponds to experiment Hyb5 except that now in step 2 we encrypt x0
ind in CTind

and not xbind. Notice that this experiment is independent of the bit b and thus the probability of any adversary
in guessing b is 1/2.

The indistinguishability of this experiment and the previous one follows from the semantic security of
the MFHE scheme, since dkind is not used in this hybrid any more.

In conclusion, notice that each two experiments are indistinguishable and there are in total 5 · 2`(λ) + 3
hybrids, where in each such hybrid we lose the security of the primitive in hand. Thus, if we start with sub-
exponentially secure schemes and initialize the underlying primitives with a large enough security parameter
poly(λ), our resulting scheme is secure, as required.

5.2 Reusable PKI

As discussed, the security we defined for the MPC protocol is a single challenge, for a single PKI instantiation.
A protocol that works for many sessions using the same PKI instantiation can be achieved by using session
ids for each computation. The only modification needed is to sign the ciphertexts with a prefix of the session
id. The puncturable signature scheme is constructed to support creating verification keys that do not accept
any message within a given prefix except one. Thus, the only change in the proof would be to puncture the
signature at the given session id, instead of the prefix ⊥ as currently performed.

6 The Chain Construction

We now present our construction of NI-MPC for the chain graph communication pattern. The construction
is rather similar to the one of the start pattern, and share the same building blocks. The setup procedure
is the same, the main difference is the encryption procedure. The obfuscated circuit will take as input only
the future inputs on the chain, and the rest will be hard-wired in the circuit.

Setup(1λ, crs, i): It takes as input security parameter λ, a common random string crs, and does the following.

1. Execute the key generation procedure of the signature scheme, (ski, vki)← PuncSig.KeyGen(1λ).

2. Execute {(dki, eki)← MFHE.KeyGen(1λ)}i∈[n].

3. Output public key PKi = (vki, eki) and private key SKi = (ski, dki).
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Enc(1λ, crs, x̂i−1, xi,PK1, . . . ,PKn,SKi, i): It takes as input security parameter λ, a common random string
crs, an input xi ∈ X , a list of n public keys PK1 . . . ,PKn, one private key SKi, an index i ∈ [n], the previous
message m, and does the following.

1. For every j ∈ [n], parse PKj = (vkj , ekj) and let SKi = (ski, dki).

2. Parse x̂i−1 = (G1,CT1, ψ1, π1), . . . , (Gi,CTi−1, ψi−1, πi−1), and let
σ = (CT1, ψ1, π1), . . . , (CTi−1, ψi−1, πi−1).

3. Encrypt the input xi using eki: CTi ← MFHE.Enc(eki, xi).

4. Sign on (CTi, i) using ski: ψi ← PuncSig.Sign(ski, (CTi, i)).

5. Sample puncturable PRF key Ki
$←− {0, 1}λ.

6. Generate a proof πi that CTi and eki are valid ciphertext and encryption key, respectively. Namely,
compute πi ← NIZK.P(crs, (CTi, eki), w = (r, r′, xi, dki)), where r and r′ are the randomness used for
the computation of CTi and (dki, eki), respectively. The exact statement is given in Figure 5.

7. Obfuscate the circuit Gi ← iO
(
1λ, G

[
i, crs,Ki, dki, {ekj}j∈[n], {vkj}j∈[n], σ

] )
as described in Figure 5.

8. Output x̂i = x̂i−1, (Gi,CTi, ψi, πi).

G
[
i, crs,Ki, dki, {ekj}j∈[n], {vkj}j∈[n], σ

]
Input: (CTi, ψi, πi), . . . , (CTn, ψn, πn).

- Parse σ = (CT1, ψ1, π1), . . . , (CTi−1, ψi−1, πi−1).

- If PuncSig.Verify(vkj , (CTj , j), ψj) is false for some j ∈ [n] then output ⊥.
- For every j ∈ [n], verify NIZK.V(crs, (ekj ,CTj), πj) for the statement:

∃r, r′,Mj , dkj : CTj = MFHE.Enc(ekj ,Mj ; r) ∧ (ekj , dkj) = MFHE.KeyGen(1λ; r′).

If this check fails for some j ∈ [n] then output ⊥.

- For all j ∈ [n] compute ĈTj ← MFHE.Expand((ek1, . . . , ekn), j,CTj).

- Perform ĈTout ← MFHE.Eval
(
f, ĈT1, . . . , ĈTn

)
.

- ri ← PRFKi(CT1‖π1‖ . . . ‖CTn‖πn).

- pi ← MFHE.PartDec
(
ĈTout, ek1, . . . , ekn, i, dki; ri

)
.

- Output pi.

Figure 5: The circuit G.

Eval(1λ, crs, x̂n,PK1, . . . ,PKn): It takes as input security parameter λ, a common random string crs, a string
x̂n, a list of n public keys PK1 . . . ,PKn, and performs:

1. Parse x̂n = (G1,CT1, ψ1, π1), . . . , (Gn,CTn, ψn, πn).

2. Evaluate each obfuscation Gi on the input
(

(ĈTi, ψi, πi), . . . , (ĈTn, ψn, πn)
)

to get the partial decryp-

tion pi.

3. Execute the final decryption, y ← MFHE.FinDec(p1, . . . , pn) and output y.
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The correctness of the scheme is immediate and follows by the correctness of the underlying building
blocks. Specifically, let x1, . . . , xn ∈ X be inputs such that party i holds xi. By the correctness of the
signature scheme and the threshold multi-key FHE scheme, each obfuscated circuit will output a partial
decryption pi such that MFHE.FinDec(p1, . . . , pn) must be equal to f(x1, . . . , xn).

For security, we use the same overall strategy we used in the star case in Section 5. Note however that the
admissibility condition in the case of a chain (see Definition 4.4) is weaker than the admissibility condition
in the case of a star. Indeed, in the chain case, the “free” inputs for which the adversary can reset their
values are only those appearing after the last honest party, whereas in the star case he can reset the input
of any dishonest party.

Consider first a function f that is admissible for a star (and thus also chain admissible). Every (obfus-
cated) circuit in the chain construction is exactly like the circuit in the star construction except that it has
hardwired a subset of the inputs (appearing earlier in the chain). Then, the same sequence of hybrids from
the star case applies and proves the security for f .

For the general case, where f is admissible for a chain pattern, we follow the same sequence of hybrids,
but make appropriate modifications. Instead of hardwiring the inputs of the honest parties {xbi}i∈H , we
hardwire the whole set of inputs of parties up to i∗ (where i∗ is the index of the last honest party), namely,
{xbi}i∈H ∪ {xi}[i∗]\H . Notice that we know the inputs {xi}[i∗]\H in advance. Then, the loop of hybrids
from Hyb4,1,{CT∗i ,π∗i }i>i∗ to Hyb4,5,{CT∗i ,π∗i }i>i∗ is only over the inputs of parties whose index is larger than i∗

(rather than i /∈ H).
Notice that in the original proof the only hybrid that uses the fact that f is admissible (for a star) is for

indistinguishability (based on iO) between Hyb4,1,1`(λ) (the last hybrid in the loop) and Hyb5. Thus, here
we use a similar argument for the indistinguishability based on iO and the fact that f is admissible. Since ,
we know the input of all parties before i∗ and since f is chain admissible (with the hardwired inputs of the
parties before i∗), we get that the circuit with {xbi}i∈H ∪ {xi}[i∗]\H hardwired is functionally equivalent to
the circuit with {x0

i }i∈H ∪{xi}[i∗]\H hardwired. Thus, indistinguishability of the above hybrids follows from
the security of iO.

General interaction patterns. One can generalize the above idea, support arbitrary interaction patterns
and achieve the “best-possible” security. The formalization of the “best-possible” security per interaction
pattern is given in [HLP11, HIJ+16]. The modification of our construction is: each party will forward all
its input messages to the next party in the DAG in addition to its own message that includes an obfuscated
circuit and another ciphertext. The new obfuscated circuit, as in the chain pattern, will have hardwired all
ciphertexts it received from previous parties in the chain. The contruction, other than this change, remains
the same.

The security proof is also easily modified. Specifically, the only part in the proof that relies on the
interaction pattern is the part where we use the admissibility of the function we compute (notice that the
definition of admissible functions varies per interaction pattern). We follow the modification we did for the
chain case and obtain a security proof for every pattern.
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A Preliminaries (Contd.)

Let λ be the security parameter. A function negl(λ) is negligible if for every constant c > 0, there exists

an integer Nc such that negl(n) < n−c for all n > Nc. For a distribution D we denote by x
$←− an element

chosen from D uniformly at random. We denote that
{
D1,λ

}
≈c
{
D2,λ

}
, if for every PPT distinguisher A,∣∣∣∣Pr

[
A(1λ, x

$←− D1,λ) = 1
]
− Pr

[
A(1λ, x

$←− D2,λ) = 1
]∣∣∣∣ ≤ negl(λ) where negl is a negligible function. For a

language L associated with a relation R with denote by (x,w) ∈ R an instance x ∈ L with a valid witness
w. For an integer n ∈ N we denote by [n] the set {1, . . . , n}.

A.1 Indistinguishability Obfuscation

The notion of indistinguishability obfuscation (iO), first conceived by Barak et al. [BGI+01], guarantees that
the obfuscation of two circuits are computationally indistinguishable as long as they both are equivalent
circuits, i.e., the output of both the circuits are the same on every input. We use inp and out to denote the
input and output lengths of circuits.

Definition A.1 (Indistinguishability Obfuscator). A uniform PPT algorithm iO is called an indistinguisha-
bility obfuscator for a circuit family {Cλ}λ∈N, where Cλ consists of circuits C of the form C : {0, 1}inp →
{0, 1}out, if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}inp, where inp = inp(λ) is the
input length of C, we have that

Pr [C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1

• Indistinguishability: For any PPT distinguisher D, there exists a negligible function negl(·) such
that the following holds: for all sufficiently large λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ such that
C0(x) = C1(x) for all inputs x ∈ {0, 1}inp, where inp = inp(λ) is the input length of C0, C1, we have:∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ negl(λ)

A.2 Puncturable Pseudorandom Functions

A pseudorandom function family consisting of functions of the form PRFK(·), that is defined over input
space {0, 1}∗, output space {0, 1}χ(λ) and key K ∈ {0, 1}λ, is said to be a puncturable PRF family if there
exists a PPT algorithm Puncture that satisfies the following properties:

• Functionality preserved under puncturing. Puncture takes as input a PRF key K ∈ {0, 1}λ,
input x ∈ {0, 1}∗ and outputs Kx such that for all x′ 6= x, PRFKx(x′) = PRFK(x′).

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that A1(1λ) outputs

an input x ∈ {0, 1}∗, consider an experiment where K
$←− {0, 1}λ and Kx ← Puncture(K,x). Then for

all sufficiently large λ ∈ N, for a negligible function µ,∣∣Pr[A2(Kx, x, PRFK(x)) = 1]− Pr[A2(Kx, x, Uχ(λ)) = 1]
∣∣ ≤ µ(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).

As observed by [BW13, BGI14b, KPTZ13], the GGM construction [GGM86] of PRFs from one-way functions
yields puncturable PRFs.
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Theorem A.2 ([GGM86, BW13, BGI14b, KPTZ13]). If µ-secure one-way functions8 exist, then for a
polynomial χ(λ), there exists a µ-secure puncturable PRF family mapping {0, 1}∗ to {0, 1}χ(λ).

In addition, it is known that a simple variant of the construction above allows to puncture a collection
of points that have the same prefix rather than a single point. We will use this fact in our construction of
the punctured signatures.

A.3 Threshold Multi-key FHE

We recall the definition of multi-key fully homomorphic encryption from [DHRW16] (following [LTV12,
CM15, MW16]). A µ−threshold multi-key FHE scheme is a tuple of algorithms MFHE = (KeyGen,Enc,
Expand,Eval,Dec,PartDec,FinDec) described as follows:

• (dk, ek)← KeyGen(1λ). Keygen algorithm takes as input a security parameter and outputs a key pair.

• CT ← Enc(ek,m). The encryption algorithm takes as input the public key ek, some message m and
outputs a ciphertext CT.

• ĈT ← Expand
(
(ek1, . . . , ekN ), i,CT

)
. Given a sequence of N public-keys and a fresh ciphertext CT

under the i−th key eki, it outputs an expanded ciphertext ĈT .

• CTeval ← Eval(params, C, ĈT1, . . . , ĈTl). On input params, a circuit C of depth ≤ d and expanded

ciphertexts (ĈT1, . . . , ĈTl) the Eval algorithm outputs an evaluated ciphertext CTeval.

• pi ← PartDec(ĈT, (ek1, . . . , ekN ), i, dki). On input an expanded ciphertext ĈT under a sequence of N
keys and the i-th secret key output a partial decryption pi. Note that this is a randomized procedure.

• m← FinDec(p1, . . . , pN ). On input N partial decryptions pi for i ∈ [N ] output the plaintext m.

Such a multi-key fully homomorphic encryption scheme was constructed by Dodis et al. [DHRW16] from
indistinguishability obfuscation and DDH, and in our construction we will use this variant.

Remark A.3. Previous constructions of multi-key fully homomorphic encryption scheme [LTV12, CM15,
MW16] relied on LWE but had an additional setup phase in which public parameters are generated. Never-
theless, we can use these schemes in our construction (without further setup assumptions) using the common
random string as a seed for this generation (since the setup is “public-coin”).

We require following properties from the scheme.

Semantic Security of encryption: For any polynomial d = d(λ) and any two messages of equal length
m0,m1 the following distributions are computationally indistinguishable:(

params, ek,Enc(ek,m0)
)
≈
(
params, ek,Enc(ek,m1)

)
where params← Setup(1λ, 1d), (dk, ek)← KeyGen(params).

Correctness and Compactness: Let params← Setup(1λ, 1d). Consider any sequences of N correctly gen-
erated key pairs {(eki, dki) ← KeyGen(params)}i∈[N ] and any l-tuple of messages (m1, . . . ,ml). For any se-

quence of indices (I1, . . . , Il) where each Ii ∈ [N ] let {CTi ← Enc(ekIi ,mi)}i∈[l] and {ĈTi ← Expand
(
(ek1, . . . ,

ekN ), Ii,CTi
)
}i∈[l] be the corresponding expanded ciphertexts. Let C be a boolean circuit of depth ≤ d and

ĈT = Eval
(
C, ĈTI1 , . . . , ĈTIl

)
be the evaluated ciphertext. Then the following holds:

8We say that a one-way function family is µ-secure if the probability of inverting a one-way function, that is sampled from
the family, is at most µ(λ).
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Correctness of Expansion: ∀i ∈ [l] Dec
(
params, (sk1, . . . , skN ), ĈTi

)
= mi.

Correctness of Evaluation: Dec
(
(sk1, . . . , skN ), ĈT

)
= C(m1, . . . ,ml).

Compactness: There exists a polynomial p() such that |ĈT| ≤ p(λ, d,N). In other words the size of

ĈT should be independent of C and l, but can depend on λ, d,N .

Correctness of Part and Final decryption: It holds that

FinDec(p1, . . . , pN ) = C(m1, . . . ,ml),

where {pi ← PartDec(ĈT, (ek1, . . . , ekN ), i, dki)}i∈[N ] are partial decryptions.

Simultability of partial decryption: There exists a PPT simulator Sim which, on input an index

i ∈ [N ] and all but the i-th key {dkj}i∈[N ]\i, the evaluated ciphertext ĈT and the output message m =

C(m1, . . . ,mN ) produces a simulated partial decryption p′i ← Sim(m, ĉt, i, {dkj}j∈[N ]\i) such that

pi ≈µ p′i

where pi ← PartDec(ĈT, (ek1, . . . , ekN ), i, dki). Note that the randomness is only over the random coins of
the simulator and the PartDec procedure and all other values are assumed to be fixed (and known). Here
the indistinguishability is statistical. We call a MFHE scheme µ−secure if the statistical distance between

the distributions is bounded by µ. Note that in the construction of [MW16] the value µ is O(2−λ
Ω(1)

).
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