
Amortizing Randomness Complexity in Private
Circuits

Sebastian Faust1,2, Clara Paglialonga1,2, Tobias Schneider1,3

1 Ruhr-Universität Bochum, Germany
2 Technische Universität Darmstadt, Germany
3Université Catholique de Louvain, Belgium

{sebastian.faust,clara.paglialonga}@crisp-da.de

tobias.schneider@uclouvain.be

Abstract. Cryptographic implementations are vulnerable to Side Chan-
nel Analysis (SCA), where an adversary exploits physical phenomena
such as the power consumption to reveal sensitive information. One of the
most widely studied countermeasures against SCA are masking schemes.
A masking scheme randomizes intermediate values thereby making phys-
ical leakage from the device harder to exploit. Central to any masking
scheme is the use of randomness, on which the security of any masked
algorithm heavily relies. But since randomness is very costly to pro-
duce in practice, it is an important question whether we can reduce the
amount of randomness needed while still guaranteeing standard secu-
rity properties such as t-probing security introduced by Ishai, Sahai and
Wagner (CRYPTO 2003). In this work we study the question whether
internal randomness can be re-used by several gadgets, thereby reducing
the total amount of randomness needed. We provide new techniques for
masking algorithms that significantly reduce the amount of randomness
and achieve better overall efficiency than known constructions for values
of t that are most relevant for practical settings.

1 Introduction

Masking schemes are one of the most common countermeasures against physi-
cal side-channel attacks, and have been studied intensively in the last years by
the cryptographic community (see, e.g., [15, 17, 10, 9, 18, 7, 12] and many more).
Masking schemes prevent harmful physical side-channel leakage by concealing
all sensitive information by encoding the computation carried out on the de-
vice. The most widely studied masking scheme is the Boolean masking [7, 15],
which encodes each intermediate value produced by the computation using an
n-out-of-n secret sharing. That is, a bit b is mapped to a bit string (b1, . . . , bn)
such that bi is random subject to the constraint that

∑
i bi = b (where the sum

is taken in the binary field). To mask computation, the designer of a masking
scheme then has to develop masked operations (so-called gadgets) that enable
to compute with encodings in a secure way. The security of masking schemes is
typically analyzed by carrying out a security proof in the t-probing model [15],

where an adversary that learns up to t intermediate values gains no information
about the underlying encoded secret values.

While due to the linearity of the encoding function protecting linear oper-
ations is easy, the main challenge is to develop secure masked non-linear op-
erations, and in particular a masked version of the multiplication operation.
To this end, the masked multiplication algorithm internally requires additional
randomness to securely carry out the non-linear operation in the masked do-
main. Indeed, it was shown by Belaid et al. [4] that any t-probing secure masked
multiplication requires internally O(t) fresh randomness. Notice that complex
cryptographic algorithms typically consists of many non-linear operations that
need to be masked, and hence the amount of randomness needed to protect the
entire computation grows not only with the probing parameter t, but also with
the number of operations that are used by the algorithm. Concretely, the most
common schemes for masking the non-linear operation require O(t2) randoms,
and algorithms such as a masked AES typically require hundreds of masked
multiplication operations.

Unfortunately, the generation and usage of randomness is very costly in prac-
tice, and typically requires to run a TRNG or PRNG. In fact, generating the
randomness and shipping it to the place where it is needed is one of the main
challenge when masking schemes are implemented in practice. There are two
possibilities in which we can save randomness when masking algorithms. The
first method is in spirit of the work of Belaid et al. [4] who design masked
non-linear operations that require less randomness. However, as discussed above
there are natural lower bounds on the amount of randomness needed to securely
mask the non-linear operation (in fact, the best known efficient masked multi-
plication still requires O(t2) randomness). Moreover, such an approach does not
scale well, when the number of non-linear operations increases. Indeed, in most
practical cases the security parameter t is relatively small (typically less than
10), while most relevant cryptographic algorithms require many non-linear op-
erations. An alternative approach is to amortize randomness by re-using it over
several masked operations. This is the approach that we explore in this work,
which despite being a promising approach has gained only very little attention
in the literature so far.

On amortizing randomness. At first sight, it may seem simple to let masked op-
erations share the same randomness. However, there are two technical challenges
that need to be addressed to make this idea work. First, we need to ensure that
when randomness is re-used between multiple operations it does not cancel out
accidentally during the masked computation. As an illustrative example suppose
two secret bits a and b are masked using the same randomness r. That is, a is
encoded as (a+r, r) and b is encoded as (b+r, r) (these may, for instance, be out-
puts of a masked multiplication). Now, if at some point during the computation
the algorithm computes the sum of these two encodings, then the randomness
cancels out, and the sensitive information a + b can be attacked (i.e., it is not
protected by any random mask). While this issue already occurs when t = 1,
i.e., the adversary only learns one intermediate value, the situation gets much

more complex when t grows and we want to reduce randomness between mul-
tiple masked operations. In this case, we must guarantee that the computation
happening in the algorithm does not cancel out the randomness, but also we
need to ensure that any set of t intermediate values produced by the masked
algorithm does not allow the adversary to cancel out the (potentially shared)
randomness. Our main contribution is to initiate the study of masking schemes
where multiple gadgets share randomness, and show that despite the above chal-
lenges amortizing randomness over multiple operations is possible and can lead
in certain cases to significantly more efficient masked schemes. We provide a
more detailed description of our main contributions in the next section.

1.1 Our contributions

Re-using randomness for t > 1. We start by considering the more challenging
case when t > 1, i.e., when the adversary is allowed to learn multiple intermediate
values. As a first contribution we propose a new security notion of gadgets that
we call t–SCR which allows multiple gadgets (or blocks of gadgets) to securely
re-use randomness. We provide a composition result for our new notion and show
sufficient requirements for constructing gadgets that satisfy our new notion. To
this end, we rely on ideas that have been introduced in the context of threshold
implementations [6].

Blocks of gadgets which re-use randomness. Our technique for sharing random-
ness between multiple gadgets requires to structure a potentially complex algo-
rithm into so-called blocks, where the individual gadgets in these blocks share
their random bits. The randomness of a circuit is not totally reused. Indeed, the
last gadget in each of these blocks is usually refreshed, in order to guarantee inde-
pendence among the blocks. Moreover, an extra refreshing scheme is introduced,
when the inputs of gadgets sharing randomness have dependent masks.

Re-using randomness for t = 1. We design a new scheme that achieves security
against one adversarial probe and requires only 2 randoms for arbitrary com-
plex masked algorithms. Notice that since randomness can cancel out when it is
re-used such a scheme needs to be designed with care, and the security analysis
cannot rely on a compositional approach such as the 1-SNI property [2].1 Addi-
tionally, we provide a counterexample that securing arbitrary computation with
only one random is not possible if one aims for a general countermeasure.

Implementation results. We finally complete our analysis with a case study by
applying our new countermeasures to masking the AES algorithm. Our analysis
shows that for orders up to t = 5 (resp. t = 7 for a less efficient TRNG) we
can not only significantly reduce the amount of randomness needed, but also
improve on efficiency. We also argue that if we could not use a dedicated TRNG

1 The compositional approach of Barthe et al. [2] requires that all gadgets use inde-
pendent randomness

(which would be the case for most inexpensive embedded devices), then our new
countermeasure would outperform state-of-the-art solutions even up to t = 9. We
leave it as an important question for future research to design efficient masking
schemes with shared randomness when t > 9.

1.2 Related work

Despite being a major practical bottleneck, there has been surprisingly little
work on minimizing the amount of randomness in masking schemes. We already
mentioned the work of Belaid et al. [4], which aim on reducing the amount of
randoms needed in a masked multiplication. Besides giving lower bounds on the
minimal amount needed to protect a masked multiplication, the authors also
give new constructions that reduce the concrete amount of randomness needed
for a masked multiplication. However, the best known construction still requires
randomness that is quadratic in the security parameter. Another approach for
reducing the randomness complexity of first-order threshold implementations of
Keccak was also investigated in [5].

From a practical point of view, the concept of ”recycled” randomness was
briefly explored in [1]. The authors practically evaluated the influence of reusing
some of the masks on their case studies and concluded that in some cases the
security was reduced. However, these results do not negatively reflect on our
methodology as their reuse of randomness lacked a formal proof of security.

From a theoretical point of view it is known that any circuit can be masked
using polynomial in t randoms (and hence the amount of randoms needed is in-
dependent from the size of the algorithm that we want to protect). This question
was studied by Ishai et al. [14]. The constructions proposed in these works rely
on bipartite expander graphs and are mainly of interests as feasibility results
(i.e., they become meaningful when t is very large), while in our work we focus
on the practically more relevant case when t takes small values.

Finally, we want to conclude by mentioning that while re-using randoms
is not a problem for showing security in the t-probing model, and hence for
security with respect to standard side-channel attacks, it may result in schemes
that are easier to attack by so-called horizontal attacks [3]. Our work opens up
new research directions for exploring such new attack vectors.

2 Preliminaries

In this section we recall basic security notions and models that we consider in
this work. In the following we will use bold and lower case to indicate vectors
and bold and upper case for matrices.

2.1 Private Circuits

The concept of private circuits was introduced in the seminal work of Ishai et al.
[15]. We start by giving the definition of deterministic and randomized circuit, as

provided by Ishai et al. A deterministic circuit C is a direct acyclic graph whose
vertices are Boolean gates and whose edges are wires. A randomized circuit is
a circuit augmented with random-bit gates. A random-bit gate is a gate with
fan-in 0 that produces a random bit and sends it along its output wire; the
bit is selected uniformly and independently. As pointed out in [14], a t-private
circuit is a randomized circuit which transforms a randomly encoded input into
a randomly encoded output while providing the guarantee that the joint values
of any t wires reveal nothing about the input. More formally a private circuit is
defined as follows.

Definition 1 (Private circuit [14]). A private circuit for f : Fmi
2 → Fmo

2 is
defined by a triple (I, C,O), where

– I : Fmi
2 → Fm̂i

2 is a randomized input encoder;
– C is a randomized Boolean circuit with input in Fm̂i

2 , output in Fm̂o
2 and

uniform randomness r ∈ Fn
2

– O : Fm̂o
2 → Fmo

2 is an output decoder

C is said to be a t-private implementation of f with encoder I and decoder O if
the following requirements hold:

– Correctness: For any input w ∈ Fmi
2 we have Pr[O(C(I(w), ρ)) = f(w)] = 1,

where the probability is over the randomness of I and ρ;
– Privacy : For any w,w′ ∈ Fmi

and any set P of t wires (also called probes) in
C, the distributions CP(I(w), ρ) and CP(I(w′), ρ) are identical, where CP
denotes the set of t values on the wires from P (also called intermediate
values).

The goal of a t-limited attacker, i.e. an attacker who can probe at most t wires,
is then to find a set of probes P and two values w,w′ ∈ Fmi

2 such that the
distributions CP(I(w), ρ) and CP(I(w′), ρ) are not the same.
Privacy of a circuit is defined by showing the existence of a simulator, which
can simulate the adversary’s observations without having access to any internal
values of the circuit.

According to the description in [15], the input encoder I maps every input
value x into n binary values (r1, . . . , rn) called shares or mask, where the first
n−1 values are chosen at random and rn = x⊕r1⊕· · ·⊕rn−1. On the other hand,
the output decoder O takes the n bits y1, . . . , yn produced by the circuit and
decodes the values in y = y1⊕· · ·⊕yn. In its internal working a private circuit is
composed by gadgets, namely transformed gates which perform functions which
take as input a set of masked inputs and output a set of masked outputs. In
particular, we distinguish between linear operations (e.g. XOR), which can be
performed by applying the operation to each share separately, and non-linear
functions (e.g. AND), which process all the shares together and make use of
additional random bits. A particular case of randomized gadget is the refreshing
gadget, which takes as input the sharing of a value x and outputs randomized
sharing of the same x. Another interesting gadget is the multiplicative one, which
takes as input two values, say a and b shared in (a1, . . . , an) and (b1, . . . , bn), and

outputs a value c shared in (c1, . . . , cn) such that
⊕n

i=1 ci = a · b. We indicate
in particular with g(x, r) a gadget which takes as input a value x and internally
uses a vector r of random bits, where r is of the form (r1, . . . , rn) and each ri
is the vector of the random bits involved in the computation of the i-th output
share. For example, referring to Algorithm 6, r1 is the vector (r1, r7, r13, r8). In
the rest of the paper, if not needed otherwise, we will mainly specify a gadget
with only its random component r, so it will be indicated as g(r). Moreover, we
suppose that all the gadgets g(r) are such that every intermediate value used in
the computation of the i-th output share contains only random bits in ri.

The following definitions and lemma from [2] formalize t-probing security
with the notion of t-Non Interference and show that this is also equivalent to
the concept of simulatability.

Definition 2 ((S, Ω)-Simulatability, (S, Ω)-Non Interference). Let g be a
gadget with m inputs (a(1), . . . , a(m)) each composed by n shares and Ω be a set
of t adversary’s observations. Let S = (S1, . . . ,Sm) be such that Si ⊆ {1, . . . , n}
and |Si| ≤ t for all i.

1. The gadget g is called (S, Ω)-simulatable (or (S, Ω)–SIM) if there exists

a simulator which, by using only (a(1), . . . , a(m))|S = (a
(1)
|S1
, . . . , a

(m)
|Sm

) can

simulate the adversary’s view, where a
(k)
|Sj

:= (a
(k)
i)i∈Sj .

2. The gadget g is called (S, Ω)-Non Interfering (or (S, Ω)–NI) if for any
s0, s1 ∈ (Fm

2)n such that s0|S = s1|S the adversary’s views of g respectively

on input s0 and s1 are identical, i.e. g(s0)|Ω = g(s1)|Ω .

In the rest of the paper, when we will talk about simulatability of a gadget we
will implicitly mean that for every observation set Ω with |Ω| ≤ t, where t is
the security order, there exists a set S as in Definition 2 such that the gadget is
(S, Ω)–SIM.

Lemma 1. For every gadget g with m inputs, set S = (S1, . . . ,Sm), with Si ⊆
{1, . . . , n} and |Si| ≤ t, and observation set Ω, with |Ω| ≤ t, g is (S, Ω)–SIM if
and only if g is (S, Ω)–NI, with respect to the same sets (S, Ω).

Definition 3 (t–NI). A gadget g is t-non-interfering (t–NI) if and only if for
every observation set Ω, with |Ω| ≤ t, there exists a set S, with |S| ≤ t, such
that g is (S, Ω)–NI.

When applied to composed circuits, the definition of t–NI is not enough to guar-
antee the privacy of the entire circuit. Indeed, the notion of t–NI is not sufficient
to argue about secure composition of gadgets. In [2], Barthe et al. introduced
the notion of t−Strong Non-Interference (t–SNI), which allows for guaranteeing
a secure composition of gadgets.

Definition 4 (t−Strong Non-Interference). An algorithm A is t−Strong
Non-Interferent (t–SNI) if and only if for any set of t1 probes on intermediate
values and every set of t2 probes on output shares with t1 + t2 ≤ t, the totality
of the probes can be simulated by only t1 shares of each input.

Informally, it means that the simulator can simulate the adversary’s view, using
a number of shares of the inputs that is independent from the number of probed
output wires. An example of t–SNI multiplication algorithm is the famous ISW
scheme in Algorithm 1, introduced in [15] and proven to be t–SNI in [2], and
a t–SNI refreshing scheme is Algorithm 2, introduced in [10] by Duc et al. and
proven to be t–SNI by Barthe et al. in [2].

Algorithm 1 ISW multiplication algorithm with n ≥ 2 shares.

Input: shares (ai)1≤i≤n and (bi)1≤i≤n, such that
⊕

i ai = a and
⊕

i bi = b.
Output: shares (ci)1≤i≤n, such that

⊕
i ci = a · b.

for i = 1 to n do
for j = i+ 1 to n do

ri,j
$←− F2;

rj,i ← (ri,j + ai · bj) + aj · bi;
end for

end for
for i = 1 to n do
ci ← ai · bi +

∑n
j=1,j 6=i ri,j ;

end for

Algorithm 2 Refreshing R
Input: shares (ai)1≤i≤n, such that

⊕
i ai = a; random shares (rij)1≤i≤n,i+1≤j≤n.

Output: shares (ci)1≤i≤n, such that
⊕

i ci = a.

for i = 1 to n do
ci = ai;

end for
for i = 1 to n do

for j = i+ 1 to n do
ci = ci + ri,j
cj = cj − ri,j

end for
end for

As pointed out in [18] and [9], secure multiplication schemes, like ISW, require
that the two masks in input are mutually independent. This condition is satisfied
in two cases: when at least one of the two inputs is taken uniformly at random or
when at least one of the two inputs is refreshed by means of a secure refreshing
using completely fresh and independent randomness, as shown in Algorithm 2.
In this paper, whenever we talk about independence of two inputs, we refer to
the mutual independence of the masks, as specified above.

2.2 Threshold Implementation

As shown in [11] and [18], the probing model presented in the last section covers
attacks such as the High Order Differential Power Analysis (HO-DPA) attack.
The latter, introduced by Kocher et al. in [16], uses power consumption mea-
surements of a device to extract sensitive information of processed operations.
The following result from [6] specifies the relation between the order of a DPA
attack and the one of a probing attack.

Lemma 2 ([6]). The attack order in a Higher-order DPA corresponds to the
number of wires that are probed in the circuit (per unmasked bit).

Threshold Implementation (TI) schemes are a t−order countermeasure against
DPA attacks. It is based on secret sharing and multi party computation, and in
addition takes into account physical effects such as glitches.

In order to implement a Boolean function f : Fmi
2 → Fmo

2 , every input value
x has to be split into n shares (x1, . . . , xn) such that x = x1 ⊕ · · · ⊕ xn, using
the same procedure seen in private circuits. We denote with C is the output
distribution f(X), where X is the distribution of the encoding of an input x. The
function f is then shared in a vector of functions f1, . . . , fn, called component
functions, which must satisfy the following properties:

1. Correctness: f(x) =
⊕n

i=1 fi(x1, . . . , xn)
2. t− Non-Completeness: any combination of up to t component functions
fi of f must be independent of at least one input share xi.

3. Uniformity: the probability Pr(C = c|c =
⊕n

i=1 ci) is a fixed constant for
every c, where c denotes the vector of the output shares.

The last property requires that the distribution of the output is always a random
sharing of the output, and can be easily satisfied by refreshing the output shares.

TI schemes are strongly related to private circuits. First, they solve a similar
problem of formalizing privacy against a t-limited attacker and moreover, as
shown in [17], the TI algorithm for multiplication is equivalent to the scheme
proposed by ISW.

We additionally point out that the TI aforementioned properties imply sim-
ulatability of the circuit. Indeed, if a function f satisfies properties 1 and 2, then
an adversary who probes t or fewer wires will get information from all but at
least one input share. Therefore, the gadget g implementing such a function is
t–NI and due to Lemma 1 is simulatable.

3 Probing security with common randomness

In this section we analyze privacy of a particular set of gadgets g1, . . . , gd in
which the random component is substituted by a set of bits r = (r1, . . . , rl)
taken at random, but reused by each of the gadgets g1, . . . , gd. In particular, we
introduce a new security definition, which formalizes the conditions needed in
order to guarantee t-probing security in a situation where randomness is shared
among the gadgets.

Definition 5 (t–SCR). Let r be a set of random bits. We say that the gadgets
g1(r), . . . , gd(r) receiving each m inputs split into n shares are t−secure with
common randomness (t–SCR) if for each set Pi of ti probes on gi such that∑

i ti ≤ t, the probes in Pi can be simulated by at most n− 1 shares of the input
of gi and the simulation is consistent with the shared random component.

Let us introduce some notation that we will use in the rest of the paper.
With the term block of gadgets we define a sub-circuit composed by gadgets,
with input an encoding of a certain x and output an encoding of y. Since our
analysis focuses on the randomness, when we refer to such a block we only
consider the randomized gadgets. In particular, we indicate a block of gadgets
as G(R) = {g1(r1), . . . , gd(rd)}, where the gi represent the randomized gadgets
in the block and R = (r1, . . . , rd) constitutes the total amount of randomness
used by G. We assume without loss of generality that the input of such a G is
the input of the first randomized gadget g1. Indeed, even if actually the first
gadget of the block was a non-randomized one (i.e. a linear gadget), then this
would change the actual value of the input, but not its properties related to
the independence. We call dimension of a block G the number of randomized
gadgets gi composing the block. In Figure 1 are represented N blocks of gadgets
of dimension 4 each.

The following lemma gives a simple compositional result for multiple blocks
of gadgets, where each such block uses the same random component R. Slightly
informally speaking, let Gj be multiple sets of gadgets, where all gadgets in Gj
share the same randomness. Then, the lemma below shows that if the gadgets in
Gj are t–SCR, then also the composition of the gadgets in all sets Gj are t–SCR.
We underline that such a block constitutes itself a gadget. For simplicity, we
assume that the blocks of gadgets that we consider in the lemma below all have
the same dimension d. But our analysis can easily be generalized to a setting
where each block has a different dimension.

Lemma 3 (composition of t–SCR gadgets). Consider N blocks of gadgets
G1(R) = {g1,1(r1), . . . , g1,d(rd)}, . . . ,GN (R) = {gN,1(r1), . . . , gN,d(rd)} sharing
the same random component R = (r1, . . . , rd) . If for all j = 1 . . . , d the gad-
gets g1,j(rj), . . . , gN,j(rj) are t–SCR , then the blocks of gadgets {G1, . . . ,GN}
are t–SCR.

Proof. We can prove the statement with an inductive argument on the dimension
of the blocks.

– If d = 1, then by hypothesis {g1,1, . . . , gN,1} are t–SCR and then {G1, . . . ,GN}
are t–SCR.

– If d > 1 and {{g1,1, . . . , g1,d−1}, . . . , {gN,1, . . . , gN,d−1}} are t–SCR, then by
hypothesis {g1,d, . . . , gN,d} are t–SCR. Now the following cases hold.

• The probes are placed on the {{g1,1, . . . , g1,d−1}, . . . , {gN,1, . . . , gN,d−1}}:
in this case, by the inductive hypothesis, the adversary’s view is simu-
latable in the sense of Definition 5 of t–SCR.

. . .
.2

.2

R

⊗

R

⊗ ⊗

G1 G2 GN

g1,1

g1,2

g1,3

g1,4

g2,1

g2,2

g2,3

g2,4

gN,1

gN,2

gN,3

gN,4

⊗

R

R

⊗

R

R

⊗

Fig. 1. A set of N blocks of gadgets with dimension d = 4 each.

• The probes are placed on {g1,d, . . . , gN,d}: in this case, since by hypothe-
sis {g1,d, . . . , gN,d} are t–SCR, the adversary’s view is simulatable in the
sense of Definition 5.

• A set of the probes P is placed on {g1,d, . . . , gN,d} and a set of probes
Q is placed on {{g1,1, . . . , g1,d−1}, . . . , {gN,1, . . . , gN,d−1}}: in this case,
since the probes in P and in Q use different random bits, they can be
simulated independently each other. The simulatability of the probes in
P according to Definition 5 is guaranteed by the t–SCR of {g1,d, . . . , gN,d}
and the simulatability of the probes in Q is guaranteed by the t–SCR of
{{g1,1, . . . , g1,d−1}, . . . , {gN,1, . . . , gN,d−1}}.

Therefore, for the inductive step we conclude that for every dimension d of the
blocks Gi, with i = 1, . . . , N , the set {G1, . . . ,GN} is t–SCR. ut

We point out that the t–SCR property itself is not sufficient to guarantee a
sound composition as well. The reason for this is that t–SCR essentially is only
t–NI. Therefore, when used in combination with other gadgets, a t–SCR scheme
needs additionally to satisfy the t–SNI property. We summarize this observation
in the following theorem which gives a global result for circuits designed in blocks
of gadgets sharing the same randomness.

Theorem 1. Let C be a circuit composed by N blocks of gadgets G1(R), . . . ,GN (R)
where Gi(R) = {gi,1(r1), . . . , gi,d(rd)} for each i = 1, . . . , N and with inputs en-
coded in n shares and such that the gadgets outside such blocks are either linear
or t–SNI. If

– ∀i = 1, . . . , N Gi is t–SNI and
– ∀j = 1, . . . , d g1,j , . . . , gN,j are t–SCR

then the circuit C is t−probing secure.

Proof. The proof of the theorem is straightforward. Indeed, Lemma 3 implies
that G1, . . . ,GN are t–SCR. Moreover, we point out that the t–SNI of the Gi, for
every i = 1, . . . , N , and the independence of the outputs guarantees a secure
composition

– among the blocks Gi
– of the Gi with other randomized and t–SNI gadgets using fresh randomness
– of the Gi with linear gadgets.

This is sufficient to prove that the circuit C is t probing secure. ut

To sum up, we showed that, under certain conditions, it is possible to design
a circuit which internally reuses the random bits involved and remains probing
secure. Therefore, if used appropriately, this result allows us to decrease the
amount of randomness necessary in order to have a private circuit (because all
the blocks share the same randomness). Nevertheless, we remark that in practice
in order to have blocks of t–SCR gadgets it is necessary that the inputs of the
first gadget of each block are mutually independent, because otherwise it is not
always possible to have the independent simulation required by Definition 5. In
the next section we show one possible way to achieve this property.

3.1 The Ind gadget

In the following, we present a gadget called Ind which, given an input x, pro-
duces an output Ind(x) independent from x. Thanks to this property, Ind can be
adopted in order to create independence between inputs of gadgets sharing the
same randomness. The algorithm, already proposed in [9] as a refreshing scheme,
is depicted in Algorithm 3 and it requires the use of n fresh random bits, where
n is the number of shares. It was proven to be t–NI and not t–SNI in [2] and
therefore it must be used carefully, because not always securely composable with
other gadgets.

Algorithm 3 Refreshing gadget Ind

Input: shares a1, . . . , an such that
⊕
ai = a

Output: shares ain1 , . . . , a
in
n such that

⊕
aini = a

(ain1 , . . . , a
in
n)← (ain1 , . . . , a

in
n);

for i = 2 to n do
ri

$←− Fn
2 ;

ain1 ← ain1 + ri;
aini ← aini + ri;

end for

As we already mentioned, the scheme Ind can be applied at the inputs of the
multiplication schemes using the same randomness in order to make them inde-
pendent each other. Whenever the scheme cannot be used because not securely

composable, the multiplication schemes cannot share the same randomness, be-
cause they don’t have independent inputs.

When designing such circuits, even if on the one hand the randomness in-
volved in the gadgets can be completely reused, on the other hand additional Ind
schemes are required to guarantee the independence of the inputs of a multipli-
cation scheme sharing randomness. For this reason, in order to have an actual
reduction in the amount of randomness, it is needed to take a couple of precau-
tions when deciding to reuse randomness in a circuit and ensuring that the new
randomness injected does not exceed the one that is saved. In Section 5 we will
see an example, which shows that in some cases this procedure might actually
give a worse result than in the case of not sharing randomness and we will show
a practical application on the Sbox of the AES, with promising results.

3.2 A t-SCR Multiplication Scheme

In this subsection, we introduce multiplication schemes, which when sharing
the same randomness are t–SCR. In particular, our multiplication schemes are
based on two basic properties (i.e.,

⌊
t
2

⌋
-non-completeness and t–SNI) and we

discuss how to construct instantiations of our multiplication according to these
properties.

First, we construct a multiplication scheme in accordance with
⌊
t
2

⌋
-non-

completeness. This process is similar to finding a
⌊
t
2

⌋
-order TI of the AND-

gate [17] or multiplication [8]. However, for our application we additionally
require that the number of output shares is equal to the number of input
shares. Most higher-order TI avoid this restriction with additional refreshing-
and compression-layers. Since the

⌊
t
2

⌋
-non-completeness should be fulfilled with-

out fresh randomness, we have to construct a
⌊
t
2

⌋
-non-complete Mult : Fn

2 → Fn
2

and cannot rely on compression of the output shares. Unfortunately, this is only
possible for very specific values of n. Due to this minor difference, we cannot
directly use the bounds from the original publications related to higher-order
TI. In the following, we derive an equation for n given an arbitrary t for which
there exist a

⌊
t
2

⌋
-non-complete Mult.

Initially, due to the
⌊
t
2

⌋
-non-completeness the number of shares for which we

can construct a scheme with the above properties is given by⌊
t

2

⌋
· l + 1 = n (1)

where l denotes the number of input shares which are leaked by each of the
output shares, i.e., even the combination of

⌊
t
2

⌋
output shares is still independent

of one input share. To construct a
⌊
t
2

⌋
-non-complete multiplication, we need to

distribute
(
n
2

)
terms of the form aibj + ajbi over n output shares, i.e., each

output share is made up of the sum of n−1
2 terms. Each of these terms leaks

information about the tuples (ai, aj) and (bi, bj), and we assume the encodings
a and b are independent and randomly chosen. For a given l, the maximum
number of possible terms, which can be combined without leaking about more

than l shares of a or b, is
(
l
2

)
. The remaining aibi are equally distributed over

the output shares without increasing l. By combining these two observations, we
derive the relation

n− 1

2
=
l2 − l

2
. (2)

Based on Equation (1), the minimum number of shares for
⌊
t
2

⌋
-non-completeness

is n =
⌊
t
2

⌋
· l + 1. We combine this with Equation (2) and derive

n =

⌊
t

2

⌋2
+

⌊
t

2

⌋
+ 1. (3)

We use Equation (3) to compute the number of shares for our t–SCR multipli-
cation scheme with t > 3. For t ≤ 3, the number of shares is bounded by the
requirement for the multiplication to be t–SNI, i.e., n > t.

To achieve t–SCR, it is necessary to include randomness in the multiplica-

tions. Initially, n2

2 random components ri need to be added for the multiplication
to be t–SNI. A subset of n random components is added to each output share
equally distributed over the sum, and each of these random bits is involved a sec-
ond time in the computation of a single different output share. This ensures the
simulatability of the gadget by using a limited number of input shares as required
by the definition of t–SNI. In particular, the clever distribution of the random
bits allows to simulate the output probes with a random and independent value.

When dealing with odd order the two properties aforementioned are not
sufficient for guaranteeing privacy in our scenarios. Informally speaking, the

⌊
t
2

⌋
non completeness allows probing up to

⌊
t
2

⌋
of the values in two different gadgets

sharing the same randomness, without that the cancellation of the random bits
let the adversary know more than n−1 shares of the secret. But when the order t
is odd, the adversary could have, in addition to the

⌊
t
2

⌋
probes per gadget sharing

the same randomness, also another probe with same randomness, which might
add at least another input share to the knowledge of the adversary. Therefore,
it is needed that the scheme satisfies a third property:

Definition 6 (Special Non-Completeness). For every set of at most t probes
{p1, ..., pk, q1, ..., qh} such that

– p1, ..., pk are probes on the output shares depending respectively on the vectors
of random bit rp1

, ..., rpk , where k ≤ t
2 ,

– q1, ..., qh are probes on the internal values depending respectively on the vec-
tors of random bit rq1 , ..., rqh , where h ≤ t− 2 · k,

– ∀i ∈ [1, h] ∃j ∈ [1, k]such that rqi ⊆ rpj ,

the set {p1, ..., pk, q1, ..., qh} is non-complete without randomness.

The construction of a t–SCR multiplication scheme following the aforemen-
tioned guidelines is easy for small t. However, finding a distribution of terms

that fulfills
⌊
t
2

⌋
-non-completeness or special non-completeness becomes a com-

plex task due to the large number of possible combinations for increasing t. For
t ≤ 5, possible t–SCR multiplication schemes are defined respectively in Algo-
rithms 4, 5, 6 and 7. We underline that the computation in all the algorithms
follows from left to right and that the operations in brackets are executed in
advance. A complete description of a multiplication algorithm for higher orders
fulfilling the aforementioned properties can be found in Appendix A.

Algorithm 4 Mult2 for order t = 2 with n = 3 shares.

Input: shares a1, . . . , a3 such that
⊕
ai = a, shares b1, . . . , b3 such that

⊕
bi = b

Output: shares c1, . . . , c3 such that
⊕
ci = a · b

c1 = (a1b2 + r1) + (a2b1 + r2) + a2b2;
c2 = (a2b3 + r2) + (a3b2 + r3) + a3b3;
c3 = (a3b1 + r3) + (a1b3 + r1) + a1b1;

Algorithm 5 Mult3 for order t = 3 with n = 4 shares.

Input: shares a1, . . . , a4 such that
⊕
ai = a, shares b1, . . . , b4 such that

⊕
bi = b

Output: shares c1, . . . , c4 such that
⊕
ci = a · b

c1 = (a1b2 + r1) + (a3b1 + r5) + (a3b2 + r4) + a1b1;
c2 = (a2b1 + r1) + (a4b2 + r6) + (a4b1 + r2) + a2b2;
c3 = (a3b4 + r3) + (a2b3 + r5) + (a2b4 + r2) + a3b3;
c4 = (a4b3 + r3) + (a1b4 + r6) + (a1b3 + r4) + a4b4;

Algorithm 6 Mult4 for order t = 4 with n = 7 shares.

Input: shares a1, . . . , a7 such that
⊕
ai = a, shares b1, . . . , b7 such that

⊕
bi = b

Output: shares c1, . . . , c7 such that
⊕
ci = a · b

c1 = r15 + a1b1 + r1 + a1b2 + a2b1 + r18 + a1b3 + a3b1 + r7 + a2b3 + a3b2 + r13 + r8;
c2 = r16 + a2b2 + r2 + a2b4 + a4b2 + r17 + a2b6 + a6b2 + r1 + a4b6 + a6b4 + r14;
c3 = r17 + a4b4 + r8 + a4b1 + a1b4 + r10 + a4b5 + a5b4 + r2 + a1b5 + a5b1 + r3;
c4 = r18 + a5b5 + r9 + a5b2 + a2b5 + r16 + a5b7 + a7b5 + r4 + a2b7 + a7b2 + r11;
c5 = r5 + a7b7 + r4 + a7b1 + a1b7 + r15 + a7b6 + a6b7 + r12 + a1b6 + a6b1 + r3;
c6 = r6 + a6b6 + r13 + a6b3 + a3b6 + r5 + a6b5 + a5b6 + r9 + a3b5 + a5b3 + r11;
c7 = r10 + a3b3 + r12 + a3b4 + a4b3 + r6 + a3b7 + a7b3 + r14 + a4b7 + a7b4 + r7;

According to the multiplication scheme just presented, we now point out that
the number of new fresh random bits introduced by the gadget Ind for a certain
order t, is n− 1, where n is the number of shares required for the corresponding
multiplication scheme Mult for that particular order. In the light of this remark,

Algorithm 7 Mult5 for order t = 5 with n = 7 shares.

Input: shares a1, . . . , a7 such that
⊕
ai = a, shares b1, . . . , b7 such that

⊕
bi = b

Output: shares c1, . . . , c7 such that
⊕
ci = a · b

c1 = (a2b3 + r1) + (a3b2 + r7) + (a1b3 + r8) + (a3b1 + r13) + (a2b1 + r15) + (a1b2 + r19) + a1b1;
c2 = (a4b2 + r2) + (a2b4 + r1) + (a6b2 + r9) + (a4b6 + r14) + (a2b6 + r16) + (a6b4 + r20) + a2b2;
c3 = (a5b4 + r3) + (a1b4 + r2) + (a4b5 + r10) + (a1b5 + r8) + (a5b1 + r17) + (a4b1 + r21) + a4b4;
c4 = (a2b7 + r4) + (a5b7 + r3) + (a5b2 + r11) + (a2b5 + r9) + (a7b2 + r18) + (a7b5 + r15) + a5b5;
c5 = (a6b7 + r5) + (a7b6 + r4) + (a7b1 + r12) + (a1b7 + r10) + (a1b6 + r19) + (a6b1 + r16) + a7b7;
c6 = (a3b6 + r6) + (a6b3 + r5) + (a5b3 + r13) + (a5b6 + r11) + (a6b5 + r20) + (a3b5 + r17) + a6b6;
c7 = (a3b4 + r7) + (a7b4 + r14) + (a3b7 + r6) + (a4b7 + r12) + (a7b3 + r21) + (a4b3 + r18) + a3b3;

we notice that not always reusing randomness actually reduces the total amount
of randomness in the circuit. Let consider for example the case of Figure 2(a),
where we aim at reusing the randomness among Mult1 . . .MultN and the inputs
of different multiplication schemes are dependent each other. In order to have
independent inputs and securely reuse the randomness, we then need to add two
Ind gadgets, as in Figure 2(b).

Mult1

MultN

...

(a)

Ind

Ind

Mult1

Ind

Ind

MultN

...

(b)

Fig. 2. N parallel multiplication schemes with (a) dependent inputs and (b) indepen-
dent inputs

It is easy to check that for order 2 and 3, the number of fresh random bits
injected in the circuit by the Ind gadgets exceed the one that it would be used
if refreshing entirely the Multi without reusing randomness. On the contrary,
if only one of the two inputs of the multiplication schemes sharing randomness
are dependent, only one Ind scheme is needed per multiplication scheme, as in

Figure 3. In this case, reusing randomness is always convenient for every order
t ≥ 4 and for order t = 3 only if N ≥ 3.

Mult1

MultN

...

Ind

Ind

Fig. 3. N multiplication schemes with only one input which needs the Ind gadget in
order to become independent

The examples above show that the actual efficiency of the process of reusing
randomness is not straightforward, but it is given by the right trade off between
the fresh randomness used by the Ind gadgets and the amount of randomness
saved by sharing it. It is therefore important to make a careful analysis of the
circuit structure before applying our method: first of all in order to understand if
the randomness cost is actually amortized and secondly in order to check that the
security still holds even with the insertion of the Ind gadgets. As we will see later
in Section 5, for circuits with an obvious structure (e.g., layers for symmetric
ciphers) which contain easily-exploitable regularities, this is not a hard task and
the optimal solutions can be usually found quickly.

3.3 Security proofs

In this section we present the security analysis of the multiplication schemes
given in the previous section and we show that they can be securely composed
in blocks of gadgets sharing the same random component. We highlight that
the schemes in Algorithm 4 and 5 are both already proven to be t–SNI in [2].
We explicitly prove the scheme to be both t–SNI and t–SCR only for the orders
greater than 3. Indeed, the general nature of the simulation according to the
t–SCR property makes the proof of t–SCR valid for order t = 2 and t = 3 as well.

Proposition 1 (order t = 4). Let Mult41, . . . ,Mult4N be a set of N multipli-
cation schemes as in Algorithm 6, with inputs (a(1), b(1)), . . . , (a(N), b(N)) and
outputs c(1), . . . , c(N). Suppose that the maskings of the inputs are independent
and uniformly chosen and that for k = 1, . . . , N each Mult4k uses the same ran-
dom bits

(
ri
)
i=1,...,tn/2

. Then Mult41, . . . ,Mult4N are t–SCR and in particular Al-

gorithm 6 is t–SNI.

Proof. Let Ω = (P1, . . . ,PN) be a set of t observations respectively on the
gadgets Mult41, . . . ,Mult4N . We show that Mult41, . . . ,Mult4N satisfy definition 5,
i.e. that the probes in Pi can be consistently simulated by at most n− 1 shares
of the inputs of Mult4i . Suppose p1, . . . , pt are t adversary’s probes. We indicate
with rpi the vector of the respective randomness for every i = 1, . . . , t and we
classify such pi in the following groups:

(1) ∃j ∈ [1, t] such that rpi = rpj
(2) ∃j ∈ [1, t] such that rpi ⊂ rpj
(3) ∀j ∈ [1, t] rpi ∩ rpj = ∅
(4) rpi = 0
(5) ∃J ∈ [1, t]such that for all j ∈ J rpj ⊂ rpi and

⋃
j rpj = rpi

(6) ∀j ∈ [1, t]such that rpj ⊂ rpi :
⋃

j rpj 6= rpi

We define now the sets I1, . . . , IN , J1, . . . , JN with |Ii| < n |Ji| < n for every
i = 1, . . . , N such that the values of the wires ph can be perfectly simulated

given the values (a
(1)
i)i∈I1 , (b

(1)
i)i∈J1

, . . . , (a
(N)
i)i∈IN , (b

(N)
i)i∈JN .

The procedure to construct the sets is the following:

– For every wire in the group (1), (2), (4) or (5), add all the indices of the
shares of a(j) in Ij and of b(j) in Jj for every j = 1, . . . , N .

We remark that

– by construction of Multe, for every probe in group (4) we add at most only
one index to each set,

– there exist at most
⌊
t
2

⌋
probes per each gadget in group (1),

– there exist at most
⌊
t
3

⌋
probes per each gadget in group (5),

– for every probe pi with |rpi | < t, the number of indices added is inferior then
when |rpi | = t.

Therefore, we have at most
⌊
t
2

⌋
probes per gadget for which we add all the

indices of the shares in the sets Ij and Jj and thanks to the
⌊
t
2

⌋
non complete-

ness without randomness of Multe we can conclude that |Ii| ≤ n and |Ji| ≤ n.
In particular, we point out that if the inputs are not independent (or outputs
of another t–SCR and t–SNI gadget), we cannot guarantee this bound on the
sets of indices, because the shares of inputs of a certain gadget might provide
information regarding the shares of another one.

We now simulate, consistently with the randomness involved, the probes pi
by using (a

(1)
i)i∈I1 , (b

(1)
i)i∈J1

, . . . , (a
(N)
i)i∈IN , (b

(N)
i)i∈JN .

– The simulation starts with a preliminary phase in which for every probe in
group (1), (2) and (5) we pick at random the components of rpi .

– For every probe in group (1) and (2), we simulate pi by using the random
bits rpi selected in the preliminary phase and the indices of the inputs in
I1, J1, . . . , IN , JN .

– For every probe in group (3), since pi does not share randomness with any
other probe, we simulate it as a uniform and random bit.

– For every probe in group (4), since pi does not contain any randomness, we
simulate it only by using the indices of the inputs in I1, J1, . . . , IN , JN .

– For every probe in group (5) , since all the component of the randomness rpi
have been assigned in the preliminary phase, then we simulate pi by using
the random bits rpi selected in the preliminary phase and the indices of the
inputs in I1, J1, I2, J2.

– For every probe in group (6), since pi contains some randomness which does
not appear elsewhere in the other probes, we simulate it as a uniform and
random bit.

We now show the t–SNI property of Mult4.
Let Ω = (I,O) be a set of 4 observations respectively on the internal and on

the output wires, where |I| = t1 and in particular t1 + |O| ≤ t. We classify the
internal wires in the following groups:

(1) ai, bj , aibj
(2.1) rk
(2.2) rk + aibi
(3.1) rk + aibi + rh,
(3.2) rk + aibi + rh + aibj ,
(3.3) rk + aibi + rh + aibj + ajbi,
(4.1) rk + aibi + rh + aibj + ajbi + rl,
(4.2) rk + aibi + rh + aibj + ajbi + rl + aibu,
(4.3) rk + aibi + rh + aibj + ajbi + rl + aibu + aubi,
(5.1) rk + aibi + rh + aibj + ajbi + rl + aibu + aubi + rm,
(5.2) rk + aibi + rh + aibj + ajbi + rl + aibu + aubi + rm + ajbu,
(5.3) rk + aibi + rh + aibj + ajbi + rl + aibu + aubi + rm + ajbu + aubj

(6) ci = rk + aibi + rh + aibj + ajbi + rl + aibu + aubi + rm + ajbu + aubj + re
(7) c1 = rk +aibi + rh +aibj +ajbi + rl +aibu +aubi + rm +ajbu +aubj + re + rf

Suppose an adversary corrupts at most 4 wires w1, . . . , w4. We define two
sets I, J with |I| < t1 and |J | < t1 such that the values of the wires wh can be
perfectly simulated given the values (ai)i∈I , (bi)i∈J .
The procedure to construct the sets is the following:

– We first define a set K such that for all the probes in group (2.1) and (2.2)
we add k to K.

– Initially I, J are empty and the wi unassigned.
– (*) For every wire in the group (1) or a combination of this, add i to I and
j to J .

– (*) For every wire in group (2.2) if i /∈ I, add i to I, if i /∈ J , add i to J .
– For every wire in group (3.1), (3.2), (3.3) and such that k, h ∈ K, if i /∈ I,

for every index of the shares of a which is not in I, add the index to I and
for every index of the shares of b which is not in J , add the index to J .

– For every wire in group (4.1), (4.2), (4.3) and such that k ∈ K, h ∈ K and
l ∈ K, for every index of the shares of a which is not in I, add the index to
I and for every index of the shares of b which is not in J , add the index to
J .

– (**)For every wire in group (3.2) or (3.3) such that rk+aibi+rh was probed,
if i /∈ I, add i to I, if j /∈ I, add j to I, if i /∈ J , add i to J , if j /∈ J , add j
to J .

– (**)For every wire in group (4.2) or (4.3) such that rk + aibi + rh + aibj +
ajbi + rl was probed, if i /∈ I, add i to I, if i /∈ J , add i to J , if u /∈ I, add u
to I, if u /∈ J , add u to J .

– For every wire in group (5.2) or (5.3) such that rk + aibi + rh + aibj + ajbi +
rl + aibu + aubi + rm was probed and m /∈ K, if j /∈ I, add j to I, if j /∈ J ,
add j to J , if u /∈ I, add u to I, if u /∈ J , add u to J .

– (**) For every wire in group (3.2) or (3.3) such that rk + aibi was probed
and h ∈ K, if i /∈ I, add i to I, if j /∈ I, add j to I, if i /∈ J , add i to J , if
j /∈ J , add j to J .

– (**) For every wire in group (3.3) such that rk + aibi + rh + aibj was probed
if j /∈ I, add j to I, if i /∈ J , add i to J .

– For every wire in group (4.2) or (4.3) such that rk + aibi + rh was probed
and l ∈ K, if i /∈ I, add i to I, if i /∈ J , add i to J , if u /∈ I, add u to I, if
u /∈ J , add u to J .

– For every wire in group (5.2) or (5.3) such that rk +aibi+rh+aibj +ajbi+rl
was probed and m ∈ K, if i /∈ I, add i to I, if i /∈ J , add i to J , if j /∈ I,
add j to I, if j /∈ J , add j to J , if u /∈ I, add u to I, if u /∈ J , add u to J .

– For every wire in group (5.2) or (5.3) such that rk + aibi + rh was probed
and l,m ∈ K, if i /∈ I, add i to I, if i /∈ J , add i to J , if j /∈ I, add j to I, if
j /∈ J , add j to J , if u /∈ I, add u to I, if u /∈ J , add u to J .

– For every wire in group (4.1) such that rk +aibi + rh was probed and l ∈ K,
or such that rk + aibi was probed and h, l ∈ K, if i /∈ I, add i to I, if i /∈ J ,
add i to J , if j /∈ I, add j to I, if j /∈ J , add j to J .

– For every wire in group (5.1) such that rk+aibi+rh was probed and l,m ∈ K,
if i /∈ I, add i to I, if i /∈ J , add i to J , if j /∈ I, add j to I, if j /∈ J , add j
to J , if u /∈ I, add u to I, if u /∈ J , add u to J .

– For every wire in group (5.1) such that rk + aibi + rh + aibj + ajbi + rl was
probed and m ∈ K, if i /∈ I, add i to I, if i /∈ J , add i to J , if j /∈ I, if u /∈ I,
add u to I, if u /∈ J , add u to J .

Now, if t1 = 1, then according to the distribution of the randomness, the only
groups which add indices to I and J are the ones marked with (*). Therefore
|I| ≤ 1 and |J | ≤ 1. If t1 = 2, then the only groups which add indices to I and
J can be the ones marked with (**). Therefore, in all the previous situations
|I| ≤ 2 and |J | ≤ 2. If t1 ≥ 3, then the groups which add indices to I and J

are all the remaining and in any of these cases |I| ≤ 3 and |J | ≤ 3 if t1 = 3 or
|I| ≤ 4 and |J | ≤ 4 if t1 = 4.

We now simulate the wires w1, . . . , w4 using only the input shares (ai)i∈I and
(bj)j∈J .

– For every k ∈ K assign rk to a random and independent value. This simulates
the probes in (2.1)

– For every probe in group (1) , then by construction i ∈ I and j ∈ J and the
values are perfectly simulated.

– For every probe in group (2.2), rk has been simulated in the fist step of the
simulation. Moreover, by construction i ∈ I and j ∈ J and therefore the
probe can be perfectly simulated.

– For every probe in (3.1), if rk and rh have been observed , then the values
have been assigned to a random and independent value at the beginning of
the simulation and, since by construction i ∈ I, J , the probe can be simulated
by using rk, rh and the required shares of a and b. Otherwise, if rh or rk have
not been observed, then the probe can be simulated as a uniform and random
value.

– For every probe in (3.2), if rk and rh have been observed , then the values
have been assigned to a random and independent value at the beginning of
the simulation and, since by construction i, j ∈ I, J , the probe can be simu-
lated by using rk, rh and the required shares of a and b. If p := rk +aibi + rh
was probed, then by construction i, j ∈ I, J and the probe can be simulated
by summing p and aibj . Otherwise, if rh or rk have not been observed, then
the probe can be simulated as a uniform and random value. Otherwise, if
p := rk + aibi and rh have been probed, then rh has been assigned to a
random and independent value at the beginning of the simulation and by
construction i, j ∈ I, J . Therefore, the probe can be simulated by summing
p, rh and the needed shares of a and b. Finally, if p := rk + aibi but not rh
have been probed, then the observation can be simulated as a random and
independent value.

– For every probe in (3.3), the simulation proceeds in a similar way. Moreover,
if p := rk + aibi + rh + aibj has been probed, then by construction i ∈ J and
j ∈ I, therefore the probe can be simulated by adding p and ajbi.

– For every probe in group (4.1)

• if rk or rk + aibi and rh and rl have been observed , then the values of
the random bits have been assigned to a random and independent value
at the beginning of the simulation and, since by construction i, j ∈ I, J ,
the probe can be simulated by using rk, rh, rl and the required shares of
a and b;
• if rh or rk or rl have not been observed, then the probe can be simulated

as a uniform and random value;
• if p := rk + aibi + rh and rl have been probed, then rl has been assigned

to a random and independent value at the beginning of the simulation
and by construction i, j ∈ I, J . Therefore the probe can be simulated by
using p, rl and ai, aj , bi, bj .

• otherwise we can simulate the probe as a random and independent value.
– For every probe in group (4.2)
• if rk or rk+aibi and rh and rl have been observed , then the values of the

random bits have been assigned to a random and independent value at
the beginning of the simulation and, since by construction i, j, u ∈ I, J ,
the probe can be simulated by using rk, rh, rl and the required shares of
a and b;

• if p := rk + aibi + rh and rl have been probed, then rl has been assigned
to a random and independent value at the beginning of the simulation
and by construction i, j, u ∈ I, J . Therefore the probe can be simulated
by using p, rl and ai, aj , bi, bj , bu.

• if p := rk+aibi+rh+aibj+ajbi+rl has been probed then by construction
i ∈ I and u ∈ J . Therefore the probe can be simulated by using p and
ai, bu.

• otherwise we can simulate the probe as a random and independent value.
– For every probe in group (4.3)
• if rk or rk + aibi and rh and rl have been observed , then the values of

the random bits have been assigned to a random and independent value
at the beginning of the simulation and, since by construction i, j ∈ I, J ,
the probe can be simulated by using rk, rh, rl and the required shares of
a and b;

• if p := rk + aibi + rh and rl have been probed, then rl has been assigned
to a random and independent value at the beginning of the simulation
and by construction i, j, u ∈ I, J . Therefore the probe can be simulated
by using p, rl and ai, aj , au, bi, bj , bu.

• if p := rk + aibi + rh + aibj + ajbi + rl has been probed then by con-
struction i, u ∈ I, J . Therefore the probe can be simulated by using p
and ai, au, bi, bu.

• otherwise we can simulate the probe as a random and independent value.
– For every probe in group (5.1), (5.2) or (5.3)
• if p := rk + aibi + rh and rl, rm have been probed, then rl and rm have

been assigned to a random and independent value at the beginning of
the simulation and by construction i, j, u ∈ I, J . Therefore the probe can
be simulated by using p, rl, rm and ai, aj , au, bi, bj , bu.

• if p := rk +aibi + rh +aibj +ajbi + rl and rm have been probed, then by
construction i, u ∈ I, J . Therefore the probe can be simulated by using
p and ai, au, bi, bu.

• otherwise we can simulate the probe as a random and independent value.
– For every probe in group (6) or (7), there exists a random bit which was not

probed. Therefore, the value can be simulated as a random and independent
value.

ut

Proposition 2 (order t = 5). Let Mult51, . . . ,Mult5N be a set of N multipli-
cation schemes as in Algorithm 7, with inputs (a(1), b(1)), . . . , (a(N), b(N)) and
outputs c(1), . . . , c(N). Suppose that the maskings of the inputs are independent

and uniformly chosen and that for k = 1, . . . , N each Mult5k uses the same ran-
dom bits

(
ri
)
i=1,...,tn/2

. Then Mult51, . . . ,Mult5N are t–SCR and in particular Al-

gorithm 7 is t–SNI.

Proof. In the rest of the proof we let t = 5 and n = 7, but the general nature of
the proof allows to generalize it for any order.

Let Ω = (P1, . . . ,PN) be a set of t observations respectively on the gadget
Mult51, . . . ,Mult5N . We show that Mult51, . . . ,Mult5N satisfy definition 5, i.e. that
the probes in Pi can be consistently simulated by at most n − 1 shares of the
inputs of Mult5i , by defining now sets Ii and Ji, where i = 1, . . . , N with |Ii| <
n |Ji| < n such that the values of the wires ph can be perfectly simulated

given the values (a
(1)
i)i∈I1 , (b

(1)
i)i∈J1

, . . . , (a
(N)
i)i∈IN , (b

(N)
i)i∈JN . The procedure

to construct the sets is exactly the one of the previous proof. Now, the
⌊
t
2

⌋
non

completeness without randomness and the special non completeness, which by
construction are both satisfied by Mult5, ensure that |Ii| ≤ n and |Ji| ≤ n. The
simulation of the probes follows the same procedure than the one for the case of
t = 4.

We now show the t–SNI property of Mult5.
Let Ω = (I,O) be a set of t observations respectively on the internal and on

the output wires, where |I| = t1 and |O| = t2 (and in particular t1 + t2 ≤ t). We
can classify the internal wires in the following groups:

(1) ai, bj , aibj
(2) aibj + rk
(3) rk
(4) ci,j , which corresponds to a partial sum of the output share ci.

For example, c1,0 = a1b1, c1,2 = a1b1 + (a1b2 + r19) + (a2b1 + r15). Suppose
an adversary corrupts at most t wires w1, . . . , wt. We define two sets I, J with
|I| < t1 |J | < t1 such that the values of the wires wh can be perfectly simulated
given the values (ai)i∈I , (bi)i∈J .
The procedure to construct the sets is the following:

1. We first define a set K such that for all probes in group (2), (3) or (4) we
add the index k of each random bit rk to K.

2. Initially I, J are empty and the wi unassigned.
3. For every wire in group (1) or a combination of this, if i /∈ I add i to I and

if j /∈ J add j to J .
4. For every wire in group (2), add i to I and j to J .
5. For every wire in groups (4) such that all the indices of the random bits

appear in K at least two times, for every share ai observed, if i /∈ I, add i
to I and for every share bj observed, if j /∈ J , add j to J .

6. For every wire in groups (4) such that a certain ci,j−h was probed (with
h = 1, . . . , j − 1), if for every rk in ci,j − ci,j−h k ∈ K, then add all the
indices of the shares of a in I and all the shares of b in J , unless they are
already in I and J .

We point out that the sets just constructed are such that |I| ≤ t1 and |J | ≤ t1.
Indeed, for each probe in group (1) and (2) at most one index is added. For each
probe in (4), we add more than one index to I and J only in the following four
possible scenarios:

(a) The attacker’s probes are of the form

p1 := (aibj + rk1) + (aebf + rk2), p2 := agbh + rk1 , p3 := albm + rk2

(b) The attacker’s probes are of the form

p1 := (aibj + rk1
) + (aebf + rk2

) + (apbq + rk3
),

p2 := agbh + rk1
, p3 := albm + rk2

, p4 := arbs + rk3

(c) The attacker’s probes are of the form

p1 := (aibj + rk1
) + (aebf + rk2

) + (apbq + rk3
),+(aubv + rk4

)

p2 := agbh + rk1
, p3 := albm + rk2

, p4 := arbs + rk3
, p5 := awbz + rk4

(d) The attacker’s probes are of the form

p1 := (aibj + rk1
) + (aebf + rk2

) + (apbq + rk3
), p3 := albm + rk2

,

p2 := (agbh + rk1
) + (aubv + rk4

), p4 := arbs + rk3
, p5 := awbz + rk4

We give below table with all the possible set of probes in the previous four
scenarios and the corresponding dimension of I and J , which is indeed always
smaller than t1.

Probes in scenario (a) |I| |J |
p1 := (a2b3 + r1) + (a3b2 + r7), p2 := (a2b4 + r1), p3 := (a3b4 + r7) 2 3
p1 := (a4b2 + r2) + (a2b4 + r1), p2 := (a2b3 + r1), p3 := (a1b4 + r2) 3 3
p1 := (a5b4 + r3) + (a1b4 + r2), p2 := (a4b2 + r2), p3 := (a5b7 + r3) 3 3
p1 := (a2b7 + r4) + (a5b7 + r3), p2 := (a7b6 + r4), p3 := (a5b4 + r3) 3 3
p1 := (a6b7 + r5) + (a7b6 + r4), p2 := (a6b3 + r5), p3 := (a2b7 + r4) 3 3
p1 := (a3b6 + r6) + (a6b3 + r5), p2 := (a3b7 + r6), p3 := (a6b7 + r5) 2 3
p1 := (a3b4 + r7) + (a7b4 + r14), p2 := (a3b2 + r7), p3 := (a4b6 + r14) 2 3

Probes in scenario (b) |I| |J |
p1 := (a2b3 + r1) + (a3b2 + r7) + (a1b3 + r8), p2 := (a2b4 + r1),

p3 := (a3b4 + r7), p4 := (a1b5 + r8)
3 4

p1 := (a4b2 + r2) + (a2b4 + r1) + (a6b2 + r9), p2 := (a2b3 + r1),
p3 := (a1b4 + r2), p4 := (a2b5 + r9)

4 4

p1 := (a5b4 + r3) + (a1b4 + r2) + (a4b5 + r10), p2 := (a4b2 + r2),
p3 := (a5b7 + r3), p4 := (a1b7 + r10)

3 4

p1 := (a2b7 + r4) + (a5b7 + r3) + (a5b2 + r11), p2 := (a7b6 + r4),
p3 := (a5b4 + r3), p4 := (a5b6 + r11)

3 4

p1 := (a6b7 + r5) + (a7b6 + r4) + (a7b1 + r12), p2 := (a6b3 + r5),
p3 := (a2b7 + r4), p4 := (a4b7 + r12)

4 4

p1 := (a3b6 + r6) + (a6b3 + r5) + (a5b3 + r13), p2 := (a3b7 + r6),
p3 := (a6b7 + r5), p4 := (a3b1 + r13)

3 1

p1 := (a3b4 + r7) + (a7b4 + r14) + (a3b7 + r6), p2 := (a3b2 + r7),
p3 := (a4b6 + r14), p4 := (a3b6 + r6)

3 4

Probes in scenario (c) |I| |J |
p1 := (a2b3 + r1) + (a3b2 + r7) + (a1b3 + r8) + (a3b1 + r13),

p2 := (a2b4 + r1), p3 := (a3b4 + r7), p4 := (a1b5 + r8), p5 := (a5b3 + r13)
4 5

p1 := (a4b2 + r2) + (a2b4 + r1) + (a6b2 + r9) + (a4b6 + r14),
p2 := (a2b3 + r1), p3 := (a1b4 + r2), p4 := (a2b5 + r9), p5 := (a7b4 + r14)

5 5

p1 := (a5b4 + r3) + (a1b4 + r2) + (a4b5 + r10) + (a1b5 + r8),
p2 := (a4b2 + r2), p3 := (a5b7 + r3), p4 := (a1b7 + r10), p5 := (a1b3 + r8)

3 5

p1 := (a2b7 + r4) + (a5b7 + r3) + (a5b2 + r11) + (a2b5 + r9),
p2 := (a7b6 + r4), p3 := (a5b4 + r3), p4 := (a5b6 + r11), p5 :=

3 5

p1 := (a6b7 + r5) + (a7b6 + r4) + (a7b1 + r12) + (a1b7 + r10),
p2 := (a6b3 + r5), p3 := (a2b7 + r4), p4 := (a4b7 + r12), p5 := (a6b2 + r9)

5 5

p1 := (a3b6 + r6) + (a6b3 + r5) + (a5b3 + r13) + (a5b6 + r11),
p2 := (a3b7 + r6), p3 := (a6b7 + r5), p4 := (a3b1 + r13), p5 := (a5b2 + r11)

3 5

p1 := (a3b4 + r7) + (a7b4 + r14) + (a3b7 + r6) + (a4b7 + r12),
p2 := (a3b2 + r7), p3 := (a4b6 + r14), p4 := (a3b6 + r6), p5 := (a7b1 + r12)

4 5

Probes in scenario (d) |I| |J |
p1 := (a2b3 + r1) + (a3b2 + r7) + (a1b3 + r8), p2 := (a3b4 + r7),

p3 := (a4b2 + r2) + (a2b4 + r1), p4 := (a1b5 + r8), p5 := (a1b4 + r2)
4 4

p1 := (a2b3 + r1) + (a3b2 + r7) + (a1b3 + r8), p2 := (a2b4 + r1),
p3 := (a3b4 + r7) + (a7b4 + r14), p4 := (a1b5 + r8), p5 := (a7b4 + r14)

5 5

p1 := (a4b2 + r2) + (a2b4 + r1) + (a6b2 + r9), p2 := (a2b5 + r9),
p3 := (a2b3 + r1) + (a3b2 + r7), p4 := (a3b4 + r7), p5 := (a1b4 + r2)

5 3

p1 := (a4b2 + r2) + (a2b4 + r1) + (a6b2 + r9), p2 := (a2b5 + r9),
p3 := (a5b4 + r3) + (a1b4 + r2), p4 := (a2b3 + r1), p5 := (a5b7 + r3)

5 5

p1 := (a5b4 + r3) + (a1b4 + r2) + (a4b5 + r10), p2 := (a1b7 + r10),
p3 := (a4b2 + r2) + (a2b4 + r1), p4 := (a5b7 + r3), p5 := (a2b3 + r1)

4 5

p1 := (a2b7 + r4) + (a5b7 + r3) + (a5b2 + r11), p2 := (a7b6 + r4),
p3 := (a5b4 + r3) + (a1b4 + r2), p4 := (a4b2 + r2), p5 := (a5b6 + r11)

5 4

p1 := (a2b7 + r4) + (a5b7 + r3) + (a5b2 + r11), p2 := (a5b4 + r3),
p3 := (a6b7 + r5) + (a7b6 + r4), p4 := (a6b3 + r5), p5 := (a5b6 + r11)

4 5

p1 := (a6b7 + r5) + (a7b6 + r4) + (a7b1 + r12), p2 := (a5b4 + r3),
p3 := (a2b7 + r4) + (a5b7 + r3), p4 := (a6b3 + r5), p5 := (a4b7 + r12)

5 5

p1 := (a3b6 + r6) + (a6b3 + r5) + (a5b3 + r13), p2 := (a2b7 + r4),
p3 := (a6b7 + r5) + (a7b6 + r4), p4 := (a3b1 + r13), p5 := (a3b7 + r6)

5 5

p1 := (a3b4 + r7) + (a7b4 + r14) + (a3b7 + r6), p2 := (a2b4 + r1),
p3 := (a2b3 + r1) + (a3b2 + r7), p4 := (a3b6 + r6), p5 := (a4b6 + r14)

4 5

p1 := (a3b4 + r7) + (a7b4 + r14) + (a3b7 + r6), p2 := (a6b7 + r5),
p3 := (a3b6 + r6) + (a6b3 + r5), p4 := (a3b2 + r7), p5 := (a4b6 + r14)

4 5

Now we simulate the wires wh using only the values (ai)i∈I and (bi)i∈J .

– We start the simulation with a preliminary phase in which for every k ∈ K
assign rk to a random and independent value.

– For every probe in group (1), then i ∈ I and i ∈ J and so the values are
perfectly simulated.

– For every probe in group (2), then, since k ∈ K and rk has been simulated in
the preliminary phase as a random and independent value, we can compute
wi by using rk and the indices of the inputs which are, by construction, in
the sets I and J ;

– For every probe in group (4), then:
• if for all the random bits rk used in the computation, k ∈ K, then by

construction the indices of the shares of a and b are respectively in I and
J and the bits rk have been taken randomly in the initial step of the
simulation and the probe can be simulated using these values;
• if none of the sums ci,j−h have been probed and there exists at lest one

random bit rk used in the computation such that k /∈ K, then ci,j can
be simulated as a uniform and random value;
• if a sum ci,j−h, with h = j − 1, . . . , 1, has been probed and every rk

in ci,j − ci,j−h is such that k ∈ K, then we can simulate ci,j from rk
assigned at random in the preliminary phase, the probe ci,j−h and the
shares of a and b which are in I and J by construction.

• if a sum ci,j−h, with h = j − 1, . . . , 1, has been probed and there exists
a random bit rk in ci,j − ci,j−h such that k /∈ K, then we can simulate
ci,j as a uniform and random bit.

Finally, the simulation of the output probes ci follows the same steps of the
probes in group (4) and it can be therefore performed by using at most t1 shares
of the inputs, completing the proof. ut

From the lemmas above we deduce that we can compose the multiplication
scheme Mult in blocks of gadgets sharing the same randomness, but we point
out once more that such blocks need to receive independent inputs, otherwise
the hypothesis of the lemmas are not satisfied.

Moreover, we remark that, due to the use of n > t + 1 shares in the multi-
plication algorithm for order t > 3, the refreshing scheme in Algorithm 2 makes
use of a not optimal amount of randomness. Indeed the amount of randomness

required, namely n(n−1)
2 random bits, can be easily reduced. We propose a re-

freshing scheme which, for each security order, adds to each input share fresh
random bits such that for each output share there are t random bits involved
in the computation and each of them is used a second time in a distinct output
share. An example for order t = 4 is depicted in Algorithm 8. The new scheme
makes use of n·t

2 random bits and in Lemma 4 it is presented its security analysis.

Algorithm 8 Refreshing scheme R′ for order t = 4

Input: shares a1, . . . , a7 such that
⊕
ai = a

Output: shares c1, . . . , c7 such that
⊕
ci = a

c1 = a1 + r1 + r7 + r13 + r8;
c2 = a2 + r2 + r1 + r14 + r9;
c3 = a3 + r8 + r10 + r3 + r2;
c4 = a4 + r9 + r4 + r3 + r11;
c5 = a5 + r5 + r10 + r4 + r12;
c6 = a6 + r6 + r13 + r11 + r5;
c7 = a7 + r14 + r6 + r12 + r7;

Lemma 4 (Efficient refreshing when n 6= t + 1). Let R′1, . . . ,R′N be a set
of N multiplication schemes as in Algorithm 8, with inputs a(1), . . . ,a(N) and
outputs c(1), . . . , c(N). Suppose that the maskings of the inputs are independent
and uniformly chosen and that for k = 1, . . . , Nand that for k = 1, . . . , N each
R′k uses the same random bits

(
ri
)
i=1,...,tn/2

. Then R′1, . . . ,R′N are t–SCR and

in particular Algorithm 8 is t–SNI.

Proof. Let Ω = (P1, . . . ,PN) be a set of t observations respectively on the gadget
R′1, . . . ,R′N . We show that R′1, . . . ,R′N satisfy definition 5, i.e. that the probes
in Pi can be consistently simulated by at most n− 1 shares of the inputs of R′i.

Suppose p1, . . . , pt are t adversary’s probes. We indicate with rpi the vector of
the respective randomness for every i = 1, . . . , t and we classify such pi in the
following groups:

(1) ∃j ∈ [1, t] such that rpi = rpj
(2) ∃j ∈ [1, t] such that rpi ⊂ rpj
(3) ∀j ∈ [1, t] rpi ∩ rpj = ∅
(4) rpi = 0
(5) ∃j ∈ [1, t]such that rpj ⊂ rpi and

⋃
j rpj = rpi

(6) ∀j ∈ [1, t]such that rpj ⊂ rpi :
⋃

j rpj 6= rpi

We define now the sets I1, . . . , IN , J1, . . . , JN with |Ii| < n |Ji| < n for every
i = 1, . . . , N such that the values of the wires ph can be perfectly simulated

given the values (a
(1)
i)i∈I1 , (b

(1)
i)i∈J1

, . . . , (a
(N)
i)i∈IN , (b

(N)
i)i∈JN .

The procedure to construct the sets is the following:

– For every wire in the group (1), (2), (4) or (5), add the index of the shares
of a(j) in Ij .

We note that, since for every value probed we add at most one input share,
|Ij | < t for all j.

We now proceed with the simulation, consistently with the randomness in-
volved.

– First of all, we pick at random every component of rpi .
– Then we simulate every probe, by using the respective vector of random bits

defined in the fist phase and by using the share of the input (a
(j)
i)i∈Ij , which

exist by construction.

We now simulate the t–SNI property of R.
Let Ω = (I,O) be a set of t observations respectively on the internal and on

the output wires, where |I| = t1 and in particular t1 + |O| ≤ t. We can classify
the internal wires in the following groups:

(1) ai
(2) ai + rh, airh + rk, airh + rk + rl
(3) ci = airh + rk + rl + rm

Suppose an adversary corrupts at most t wires w1, . . . , wt. We define two sets
I with |I| < t1 such that the values of the wires wh can be perfectly simulated
given the values (ai)i∈I .
The procedure to construct the sets is the following:

– Initially I is empty and the wi unassigned.
– For every wire in the group (1), (2), (3), (4) add i to I.

Note that by construction |I| ≤ t1.

– For each observation as in the group (1), i ∈ I and then by definition of I
the simulator has access to the value of ai.

– For each observation as in the group (2), by construction i ∈ I and if all the
random bits have been probes, we can pick rh (resp. rh, rk, or rh, rk, rl) at
random and simulate the value by using the share ai. On the other hand,
if there exists at least one random value which has not been observed, the
probe can be sample uniformly at random.

As for the output wires, we distinguish two cases. If some partial sum has already
been observed, we remark that each output share involves the computation of t
random bits and each of them appears a second time in a different output share.
Therefore, since we have at most t−1 additional probes to the current one, there
exists at least one random value which has not been observed, the probe can be
sample uniformly at random. ut

4 1-probing security with constant amount of randomness

The first order ISW scheme is not particularly expensive in terms of randomness,
because it uses only one random bit. Unfortunately, when composed in more
complicated circuits, the randomness involved increases with the size of the
circuit, because we need fresh randomness for each gadget. Our idea is to avoid
injecting new randomness in each multiplication and instead alternatively use
the same random bits in all gadgets. In particular, we aim at providing a lower
bound to the minimum number of bits needed in total to protect any circuit, and
moreover show a matching upper bound, i.e., that it is possible to obtain a 1-
probing secure private circuit, which uses only a constant amount of randomness.
We emphasize that this means that the construction uses randomness that is
independent of the circuit size, and in particular uses only 2 random bits in total
per execution.

We will present a modified version of the usual gadgets for refreshing, multi-
plication and the linear ones, which, in place of injecting new randomness, use a
value taken from a set of two bits chosen at the beginning of each evaluation of
the masked algorithm. In particular, we will design these schemes such that they
will produce outputs depending on at most one random bit and such that every
value in the circuit will assume a fixed form. The most crucial change will be
the one at the multiplication and refreshing schemes, which are the randomized
gadgets, and so responsible for the accumulation of randomness. On the other
hand, even tough the gadget for the addition does not use random bits, it will be
subjected at some modifications as well, in order to avoid malicious situations
that the reusing of the same random bits in the circuit can cause. As for the
other linear gadgets, such as the powers .2, .4, etc., they will be not affected by
any change, but will perform as usual share-wise computation.

We proceed by showing step by step the strategy to construct such circuits.
First, we fix a set of bits R = {r0, r1} where r0 and r1 are taken uniformly at
random. The first randomized gadget of the circuit does not need to be substan-
tially modified, because there is no accumulation of randomness to be avoided
yet. The only difference with the usual multiplication and refreshing gadgets is

that, in place of the random component, we need to use one of the random bits
in R, as shown in Algorithm 9 and Algorithm 10. Notice that when parts of the
operations are written in parenthesizes, then this means that these operations
are executed first.

Algorithm 9 1-SecMult case (i)

Input: shares a1, a2 such that a1 ⊕ a2 = a, shares b1, b2 such that b1 ⊕ b2 = b
Output: shares ci depending on a random number rk ∈ R such that c1 ⊕ c2 = a · b,
the value rk

rk
$← R;

c1 ← a1b1 + (a1b2 + rk);
c2 ← a2b1 + (a2b2 − rk);

Algorithm 10 Refreshing case (i)

Input: shares a1, a2 such that a1 ⊕ a2 = a
Output: shares ci depending on the random number rk ∈ R such that c1 ⊕ c2 = a,
the value rk

rk
$← R;

c1 ← a1 + rk;
c2 ← a2 − rk;

Secondly, we analyze the different configurations that an element can take
when not more than one randomized gadget has been executed, i.e. when only
one random bit has been used in the circuit. The categories listed below are then
the different forms that such an element takes if it is respectively the first input
of the circuit, the output of the first refreshing scheme as in Algorithm 2 and
the one of the first ISW multiplication scheme as in Algorithm 1 between two
values x and y:

(1) a = (a1, a2);
(2) a = (a1 + r, a2 − r), where r is a random bit in R;
(3) a = (x1y1 + x1y2 + r, x2y1 + x2y2 − r), where r is a random bit in R.

This categorization is important because according to the different form of the
values that the second randomized gadget takes in input, the scheme will accu-
mulate randomness in different ways. Therefore, we need to modify the gadgets
by taking into account the various possibilities for the inputs, i.e. distinguish if:

(i) both the inputs are in category (1);
(ii) the first input is as in category (1), i.e. a = (a1, a2), and the second one in

category (2), i.e. b = (b1 + r1, b2 − r1);

(iii) the first input is as in category (1), i.e. a = (a1, a2), and the second one in
category (3), i.e. b = (c1d1 + c1d2 + r1, c2d1 + c2d2 − r1);

(iv) the first input is in category (3), i.e. a = (c1d1 + c1d2 + r0, c2d1 + c2d1− r0),
and second one in category (2), i.e. b = (b1 + r1, b2 − r1);

(v) both inputs are in category (2), i.e. a = (a1 + r1, a2 − r1) and b = (b1 +
r0, b2 − r0);

(vi) both inputs values are in category (3), i.e. a = (c1d1+c1d2+r1, c2d1+c2d2−
r1) and b = (c′1d

′
1 + c′1d

′
2 + r0, c

′
2d
′
1 + c′2d

′
2 − r0).

where for the moment we suppose that the two inputs depend on two different
random bits each, but a more general scenario will be analyzed later. The goal of
the modified gadgets that we will present soon will be not only to reuse the same
random bits, avoiding an accumulation at every execution, but also to produce
outputs in the groups (1), (2) or (3), in order to keep such a configuration of the
wires unchanged throughout the circuit. In this way we guarantee that every wire
depends only on one random bit and that we can use the same multiplication
schemes in the entire circuit. According to this remark we modify the ISW as
depicted in Algorithms 11 and 12.

Algorithm 11 1-SecMult case (ii) and (iii)

Input: shares a1, a2 such that a1⊕a2 = a, shares b1, b2 depending on a random number
ri ∈ R such that b1 ⊕ b2 = b, the set R = {r0, r1}, ri
Output: shares ci depending on the random number r1−i such that c1⊕ c2 = a · b, the
value r1−i

c1 ← a1b1 + (a1b2 + r1−i);
c2 ← a2b1 + (a2b2 − r1−i);

Algorithm 12 1-SecMult case (iv), (v) and (vi)

Input: shares a1, a2 depending on the random number ri such that a1⊕a2 = a, shares
b1, b2 depending on the random number r1−i satisfying b1⊕b2 = b, the set R = {r0, r1}
Output: shares ci depending on the random number r1−i ∈ R satisfying c1⊕c2 = a ·b,
the value r1−i

δ ← −r1−i;
δ ← δ + rib1;
δ ← δ + rib2;
c1 ← a1b1 + (a1b2 − δ);
c2 ← a2b1 + (a2b2 + δ);

It is easy to prove that the new multiplication algorithms are such that their
outputs always belong to group (3).

Lemma 5. Let a and b be two input values of Algorithm 11 or of Algorithm 12.
Then the output value e = a · b is of the form (3).

As specified before, in the previous analysis we supposed to have as input of
the multiplication schemes values depending on different random bits. Since this
is not always the case in practice, we need to introduce a modified refreshing
scheme, which replaces the random bit on which the input depends with the
other random bit of the set R. The scheme is presented in Algorithm 13 and it
has to be applied to one of the input values of a multiplication scheme every
time that they depend on the same randomness. Algorithm 13 is also useful
before a XOR gadget with inputs depending on the same random bit, because
it avoids that the randomness is canceled out. The proof of correctness is quite

Algorithm 13 Modified refreshing R′
Input: shares a1, a2 such that a1 ⊕ a2 = a depending on a random bit ri, the value ri
Output: shares ci depending on the random number r1−i such that c1 ⊕ c2 = a, the
value r1−i

c1 ← (a1 + r1−i)− ri;
c2 ← (a2 − r1−i) + ri;

straightforward, therefore we provide only an exemplary proof for a value in
category (3).

Lemma 6. Let a be an input value of the form (3) depending on a random bit
ri ∈ R for Algorithm 13. Then the output value is of the form (3) and depends
on the random bit r1−i.

Proof. Suppose without loss of generality that the input a depends on the ran-
dom bit r1, so that a = (c1d1 + c1d2 + r0, c2d1 + c2d1 − r0). Then the output
e = R′(a) is:

e1 = (c1d1 + c1d2 + r0 + r1)− r0 = c1d1 + c1d2 + r1

e2 = (c2d1 + c2d1 − r0 − r1) + r0 = c2d1 + c2d1 − r1

completing the proof. ut

Lastly, in Algorithm 14 we define a new scheme for addition, which allows to
have outputs in one of the three categories (1), (2) or (3). Note that thanks to
the use of the refreshing R′, we can avoid having a dependence on the same
random bit in the input of an addition gadget. The proof of correctness is again
quite simple

In conclusion, we notice that by using the schemes above and composing
them according to the instructions just given, we obtain a circuit where each
wire carries a value of a fixed form (i.e. in one of the categories (1), (2) or (3))
and therefore we can always use one of the multiplication schemes given in the
Algorithms 9, 11 and 12 without accumulating randomness and without the risk
of canceling the random bits. Moreover, it is easy to see that all the schemes just
presented are secure against a 1-probing attack.

Algorithm 14 Modified addition XOR′

Input: shares a1, a2 such that a1 ⊕ a2 = a depending on a random bit ri, shares b1, b2
such that b1 ⊕ b2 = b depending on a random bit r1−i

Output: shares ci depending on a random number rk ∈ R such that c1 ⊕ c2 = a+ b,
the value rk

rk
$← R;

c1 ← a1 + b1 − rk;
c2 ← a2 + b2 + rk;

4.1 Impossibility of the 1-bit randomness case

In the following we show that is impossible in general to have a 1st-order probing
secure circuit, which uses only 1 bit of randomness in total. In particular, we
present a counterexample which breaks the security of a circuit using only one
random bit.

Let us consider c and c′ two outputs of two multiplication schemes between
the values a, b and a′, b′ respectively, and let r be the only random bit which is
used in the entire circuit. Then c and c′ are of the form{

c1 = a1b1 + a1b2 + r

c2 = a2b1 + a2b2 + r
and

{
c′1 = a′1b

′
1 + a′1b

′
2 + r

c′2 = a′2b
′
1 + a′2b

′
2 + r

.

Suppose now that these two values are inputs of an additive gadget, as in Fig-
ure 4. Such a gadget could either use no randomness at all and just add the
components each other, or involve in the computation the bit r maintaining the
correctness. In the first case we obtain{

c′1 + c1 = a1b1 + a1b2 + a′1b
′
1 + a′1b

′
2 = a1b+ a′1b

′

c′2 + c2 = a2b1 + a2b2 + a′2b
′
1 + a′2b

′
2 = a2b+ a′2b

′

and then the randomness r will be completely canceled out, revealing the secret.
In the second case, if we inject in the computation another r, then, in whatever
point of the computation we put it, it will cancel out again one of the two r
revealing one of the secrets during the computation of the output. For example,
we can have{

c′1 + c1 = r + a1b1 + a1b2 + r + a′1b
′
1 + a′1b

′
2 + r = a1b+ a′1b

′
1 + a′1b

′
2 + r

c′2 + c2 = r + a2b1 + a2b2 + r + a′2b
′
1 + a′2b

′
2 + r = a2b+ a′2b

′
1 + a′2b

′
2 + r

.

In view of this counterexample, we can conclude that the minimum number of
random bits needed in order to have a 1st-order private circuit is 2.

5 Case study: AES

To evaluate the impact of our methodology on the performance of protected
implementations, we implemented AES-128 without and with common random-
ness. In particular, we consider the inversion of each Sbox call (cf. Figure 5) as

⊕

⊗ ⊗
a

b

c c′

a′

b′

Fig. 4.

a block of gadgets Gi=1,...,200 using the same random components and the last
multiplication of each of these inversions is using fresh randomness. For the im-

.2 R
Mult

.4 R
Mult .16

Mult

Mult

x

x254

Fig. 5. Inversion gadget of the AES Sbox with the insertion of the Ind

plementation without common randomness, we use the multiplication algorithm
from [18] and the refresh from [10] (cf. Algorithm 2). To enable the use of com-
mon randomness, we replace the multiplication with our t–SCR multiplication,
the refresh with Algorithm 3.3 for t > 3, and we place the Ind gadgets where
needed. In particular, since the inputs of the first call of the inversion are inde-
pendent, we do not need to add Ind before the first multiplication scheme with
common randomness, while this is needed for the next multiplications in the cir-
cuit. On the other hand, the last multiplication scheme of each inversion needs
to be completely refreshed, because the insertion of the gadgets Ind for guaran-
teeing the independence of the inputs would make the circuit insecure. For this
reason, the outputs of each inversion are independent again and therefore the
same procedure can be used for each round. The algorithm is depicted in Figure
6 and in Lemma 7 it is presented its security analysis after the introduction of
the Ind gadgets.

Lemma 7. Gadget .254, depicted in Figure 6, is t–SNI.

Proof. Let Ω = (
⋃

1≤i≤11,O) be a set of t probes such that
∑

1≤i≤11 |Ii| ≤ t1
|O|+t1 ≤ t. In the following, we show the existence of a simulator which simulates
the probes by using at most t1 internal values. The simulation is processed from
right to left, according to the enumeration in Figure 6.

.2 R
Mult

.4 R
Mult .16

Mult

Mult

x

x254

Ind

Ind

O
S1
2

S1
1

S2
2

S2
1S3S4S5

2

S5
1

S6S7S8S9
2

S9
1S10

S11

I1

I2

I3I4

I5
I6I7I8I9

I10I11

Fig. 6. Inversion gadget of the AES Sbox with the insertion of the Ind

– Gadget 1: Since Mult is t–SNI and |I1 ∪ O| ≤ t, then there exist two sets of
indices S11 and S12 such that |S11 | ≤ |I1|, |S12 | ≤ |I1| and the gadget can be
perfectly simulated from its input shares corresponding to the indices in S11
and S12 .

– Gadget 2: Since Mult is t–SNI and |I2 ∪ S12 | ≤ t, then there exist two sets of
indices S21 and S22 such that |S21 | ≤ |I2|, |S22 | ≤ |I2| and the gadget can be
perfectly simulated from its input shares corresponding to the indices in S21
and S22 .

– Gadget 3: Since .16 is linear then there exists a set of indices S3 such that
|S3| ≤ |I3| + |S21 | ≤ |I3| + |I2| and the gadget can be perfectly simulated
from its input shares corresponding to the indices in S3.

– Gadget 4: Since Ind is t–NI then there exists a set of indices S4 such that
|S4| ≤ |I4|+|S3| ≤ |I4|+|I3|+|I2| and the gadget can be perfectly simulated
from its input shares corresponding to the indices in S4.

– Gadget 5: Since Mult is t–SNI and |I5 ∪ S4| ≤ t, then there exist two sets of
indices S51 and S52 such that |S51 | ≤ |I5|, |S52 | ≤ |I5| and the gadget can be
perfectly simulated from its input shares corresponding to the indices in S51
and S52 .

– Gadget 6: Since R is t–SNI and |I6∪S52 | ≤ t, then there exist a set of indices
S6 such that |S6| ≤ |I6| and the gadget can be perfectly simulated from its
input shares corresponding to the indices in S6.

– Gadget 7: Since .4 is linear then there exists a set of indices S7 such that
|S7| ≤ |I7| + |S6| ≤ |I7| + |I6| and the gadget can be perfectly simulated
from its input shares corresponding to the indices in S7.

– Gadget 8: Since Ind is t–NI then there exists a set of indices S8 such that
|S8| ≤ |I8|+|S7| ≤ |I8|+|I7|+|I6| and the gadget can be perfectly simulated
from its input shares corresponding to the indices in S8.

– Gadget 9: Since Mult is t–SNI and |I9 ∪ S8| ≤ t, then there exist two sets of
indices S91 and S92 such that |S91 | ≤ |I9|, |S92 | ≤ |I9| and the gadget can be
perfectly simulated from its input shares corresponding to the indices in S91
and S92 .

– Gadget 10: SinceR is t–SNI and |I10∪S91 | ≤ t, then there exist a set of indices
S10 such that |S10| ≤ |I10| and the gadget can be perfectly simulated from
its input shares corresponding to the indices in S10.

– Gadget 11: Since .2 is linear then there exists a set of indices S11 such that
|S11| ≤ |I11|+|S10| ≤ |I11|+|I10| and the gadget can be perfectly simulated
from its input shares corresponding to the indices in S11.

Each of the previous steps show the existence of a simulator each of the respective
gadgets and by composing them we obtain a global simulator of the entire circuit
which uses |S11∪S92 | shares of the input. Since |S11∪S92 | ≤ I11|+|I10|+|I9| ≤ t1
we conclude that the gadget .254 is t–SNI.

ut

Table 1 summarizes the randomness requirements of both types of refresh
and multiplication algorithms for increasing orders.

Table 1. Number of random elements required for the multiplication and refresh al-
gorithms with and without common randomness from t = 1 to t = 11.

Without Common Randomness With Common Randomness

t n Multiplication Refresh n Multiplication Refresh

1 2 1 1 2 1 1

2 3 3 3 3 3 3

3 4 6 6 4 6 6

4 5 10 10 7 18 14

5 6 15 15 7 21 18

6 7 21 21 13 78 39

7 8 28 28 13 78 46

8 9 36 36 21 210 84

9 10 45 45 21 210 95

10 11 55 55 31 465 155

11 12 66 66 31 465 171

Both types of protected AES were implemented on an ARM Cortex-M4F
running at 168 MHz using C. The random components were generated using
the TRNG of the evaluation board (STM32F4 DISCOVERY) which generates
32 bits of randomness every 40 clock cycles running in parallel at 48 MHz. To
assess the influence of the TRNG performance on the result, we considered two
modes of operation for the randomness generation. For TRNG32, we use all 32
bits provided by the TRNG by storing them in a buffer and reading them in
8-bit parts when necessary. To simulate a slower TRNG, we also evaluated the
performance of our implementations using TRNG8 which only uses the least sig-
nificant 8 of the 32 bits resulting in more idle states waiting for the TRNG
to generate a fresh value. We applied the same degree of optimization on both

implementations to allow a fair comparison. While it is possible to achieve bet-
ter performances using Assembly (as recently shown by Goudarzi and Rivain
in [13]) our implementations still suffice as a proof of concept. The problem
of randomness generation affects a majority of implementations independent of
the degree of optimization and can pose a bottleneck, especially if no dedicated
TRNG is available. Therefore, we argue that our performance results can be
transferred to other types of implementations and platforms, and we expect a
similar performance improvement if the run time is not completely independent
of the randomness generation (e.g., pre-computed randomness).

As shown in Table 2, the implementations with common randomness requires
fewer calls to the TRNG for most of the considered t. Only after t > 9, the ran-
domness complexity of the fresh multiplications with increased shares becomes
too high. The runtime benefit of common randomness strongly depends on the
performance of the random number generator. While for the efficient TRNG32
our approach leads to faster implementations only until t = 5, it is superior
until t = 7 for the slower TRNG8. The dependency on the performance of the
randomness generation is visualized in Figure 7. For TRNG8, the curve is shifted
downwards compared to the faster generator. In theory, an even slower random-
ness generator could move the break-even point to after t = 9 for our scenario,
i.e., until the implementation with common randomness requires more TRNG
calls.

Table 2. Cycle counts of our AES implementations on an ARM Cortex-M4F with
TRNG32. In addition, we provide the required number of calls to the TRNG for each t.

Without Common Randomness With Common Randomness

TRNG Cycle Count TRNG Cycle Count

t n Calls TRNG32 TRNG8 n Calls TRNG32 TRNG8

2 2 73,441 73,560

1 2 1,200 112,919 187,519 2 605 86,137 99,334

2 3 3,600 308,600 548,477 3 1,415 200,423 230,334

3 4 7,200 496,698 1,089,092 4 2,430 292,579 412,523

4 5 12,000 751,670 1,812,213 7 6,082 721,438 1,151,922

5 6 18,000 1,051,323 2,729,052 7 6,699 754,117 1,255,033

6 7 25,200 1,403,243 3,836,006 13 20,712 2,299,960 3,952,722

7 8 33,600 1,779,403 5,125,072 13 20,726 2,315,160 3,960,749

8 9 43,200 2,286,003 6,603,199 21 50,798 5,656,097 10,165,790

9 10 54,000 2,814,435 8,257,996 21 50,820 5,671,608 10,208,375

10 11 66,000 3,459,684 10,096,735 31 106,705 10,908,480 22,612,297

11 12 79,200 4,046,836 12,112,375 31 106,737 10,919,488 22,630,028

2 4 6 8 10
0

1

2

3

t

C
y
c
le
s
w
it
h

c
o
m
m
o
n

ra
n
d
o
m
n
e
ss

C
y
c
le
s
w
it
h
o
u
t
c
o
m
m
o
n

ra
n
d
o
m
n
e
ss

TRNG32
TRNG8

Fig. 7. Ratio between the cycle counts of the AES implementations from Table 2 with
and without common randomness for each t.

For the special case of t = 1, we presented a solution (cf. Section 4) with con-
stant randomness independent of the circuit size. Following the aforementioned
procedure, we realized an 1-probing secure AES implementation with only two
TRNG calls. Overall, the implementation using the constant randomness scheme
requires less cycles than the one with common randomness. In general, however,
this advantage strongly depends on the performance of the TRNG as the im-
plementation with constant randomness requires additional operations to ensure
security.

6 Conclusion

Since the number of shares n for our t–SCR multiplication grows in O(t2) and
our multiplication algorithm (resp. R) requires O(n2) (resp. O(nt)) random
elements, the practicability of our proposed methodology becomes limited for
increasing t. Nevertheless, our case study showed that for small t our approach
results in significant performance improvement for the masked implementations.
The improvement factor could potentially be even larger, if we replace our effi-
cient TRNG with a common PRNG. Additionally, an improved multiplication
or R with a smaller randomness complexity, e.g., O(t2), could lead to better per-
formances even for t ≥ 10 and is an interesting starting point for future work.
This would be of interest as with time larger security orders might be required
to achieve long-term security.

Another interesting aspect for future work is designing an automatic appli-
cation of our methodology to an arbitrary circuit. While we showed how to use

our methodology on a circuit with a layered structure which contains easily-
exploitable regularities, further research might be able to derive an algorithm
which finds the optimal grouping for any given design. This would help to create
a compiler which automatically applies masking to an unprotected architecture
in the most efficient way removing the requirement for a security-literate imple-
menter and reducing the chance for human error.

Acknowledgments. Sebastian Faust and Clara Paglialonga are partially funded
by the Emmy Noether Program FA 1320/1-1 of the German Research Foundation
(DFG). Tobias Schneider is partially funded by European Unions Horizon 2020
program under project numbers 645622 PQCRYPTO and 724725 SWORD. This
work is also partially supported by the VeriSec project 16KIS0634 - 16KIS0602
from the Federal Ministry of Education and Research (BMBF).

References

1. Josep Balasch, Benedikt Gierlichs, Vincent Grosso, Oscar Reparaz, and François-
Xavier Standaert. On the cost of lazy engineering for masked software implemen-
tations. In Marc Joye and Amir Moradi, editors, Smart Card Research and Ad-
vanced Applications - 13th International Conference, CARDIS 2014, Paris, France,
November 5-7, 2014. Revised Selected Papers, volume 8968 of Lecture Notes in
Computer Science, pages 64–81. Springer, 2014.

2. Gilles Barthe, Sonia Beläıd, François Dupressoir, Pierre-Alain Fouque, and Ben-
jamin Grégoire. Compositional verification of higher-order masking: Application to
a verifying masking compiler. Technical report, Cryptology ePrint Archive, Report
2015/506, 2015.

3. Alberto Battistello, Jean-Sébastien Coron, Emmanuel Prouff, and Rina Zeitoun.
Horizontal side-channel attacks and countermeasures on the ISW masking scheme.
In CHES 2016, pages 23–39, 2016.

4. Sonia Beläıd, Fabrice Benhamouda, Alain Passelgue, Emmanuel Prouff, Adrian
Thillard, and Damien Vergnaud. Randomness complexity of private circuits
for multiplication. Cryptology ePrint Archive, Report 2016/211, 2016. http:

//eprint.iacr.org/2016/211.

5. Begül Bilgin, Joan Daemen, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen, and
Gilles Van Assche. Efficient and first-order DPA resistant implementations of
keccak. In CARDIS, volume 8419 of Lecture Notes in Computer Science, pages
187–199. Springer, 2013.

6. Begül Bilgin, Benedikt Gierlichs, Svetla Nikova, Ventzislav Nikov, and Vincent
Rijmen. Higher-order threshold implementations. In Advances in Cryptology -
ASIACRYPT 2014 - 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December 7-
11, 2014, Proceedings, Part II, pages 326–343, 2014.

7. Suresh Chari, Charanjit S. Jutla, Josyula R. Rao, and Pankaj Rohatgi. Towards
sound approaches to counteract power-analysis attacks. In CRYPTO’99, pages
398–412, 1999.

8. Thomas De Cnudde, Begül Bilgin, Oscar Reparaz, Ventzislav Nikov, and Svetla
Nikova. Higher-order threshold implementation of the AES s-box. In Smart Card
Research and Advanced Applications - 14th International Conference, CARDIS

2015, Bochum, Germany, November 4-6, 2015. Revised Selected Papers, pages 259–
272, 2015.

9. Jean-Sébastien Coron, Emmanuel Prouff, Matthieu Rivain, and Thomas Roche.
Higher-order side channel security and mask refreshing. In International Workshop
on Fast Software Encryption, pages 410–424. Springer, 2013.

10. Alexandre Duc, Stefan Dziembowski, and Sebastian Faust. Unifying leakage mod-
els: From probing attacks to noisy leakage. In Annual International Conference on
the Theory and Applications of Cryptographic Techniques, pages 423–440. Springer,
2014.

11. Sebastian Faust, Tal Rabin, Leonid Reyzin, Eran Tromer, and Vinod Vaikun-
tanathan. Protecting circuits from leakage: the computationally-bounded and noisy
cases. In Advances in Cryptology - EUROCRYPT 2010, 29th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, French
Riviera, May 30 - June 3, 2010. Proceedings, pages 135–156, 2010.

12. Louis Goubin and Jacques Patarin. DES and differential power analysis (the ”du-
plication” method). In CHES’99, pages 158–172, 1999.

13. Dahmun Goudarzi and Matthieu Rivain. How fast can higher-order masking be in
software? In Advances in Cryptology - EUROCRYPT 2017 - 36th Annual Inter-
national Conference on the Theory and Applications of Cryptographic Techniques,
Paris, France, April 30 - May 4, 2017, Proceedings, Part I, pages 567–597, 2017.

14. Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran, Amit
Sahai, and David Zuckerman. Robust pseudorandom generators. In International
Colloquium on Automata, Languages, and Programming, pages 576–588. Springer,
2013.

15. Yuval Ishai, Amit Sahai, and David Wagner. Private circuits: Securing hardware
against probing attacks. In Annual International Cryptology Conference, pages
463–481. Springer, 2003.

16. Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Differential power analysis.
In Advances in Cryptology - CRYPTO ’99, 19th Annual International Cryptology
Conference, Santa Barbara, California, USA, August 15-19, 1999, Proceedings,
pages 388–397, 1999.

17. Oscar Reparaz, Begül Bilgin, Svetla Nikova, Benedikt Gierlichs, and Ingrid Ver-
bauwhede. Consolidating masking schemes. In Advances in Cryptology - CRYPTO
2015 - 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-
20, 2015, Proceedings, Part I, pages 764–783, 2015.

18. Matthieu Rivain and Emmanuel Prouff. Provably secure higher-order masking of
AES. In Cryptographic Hardware and Embedded Systems, CHES 2010, 12th Inter-
national Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings,
pages 413–427, 2010.

Appendix

A Construction of t–SCR Multiplication Schemes

As noted in Section 3.2, our approach to construct a t–SCR multiplication schemes consists of two separate
steps. Firstly, we find a

⌊
t
2

⌋
-non-complete mapping of the input shares to the output shares and, secondly,

we include random components to achieve the required t–SNI property. Especially, the first step becomes
a non-trivial task for increasing t. In the following, we present a basic algorithm that constructs a t–SCR
multiplication for a given t and give concrete instantiations for up to t = 11.

A.1 Basic Algorithm

In the first step, we have to find a
⌊
t
2

⌋
-non-complete mapping of the input shares to the output shares.

This problem can be described as follows. Given a set containing the indices of all n input shares as

Mall = {1, 2, . . . , n− 1, n},

we have to find subsets Mi=1,...,n with cardinality l such that every element of Mall shares exactly
one subset with every other element of Mall. Each of these subsets refers to one output share and
determines which l input shares are leaked, i.e., the l elements of the subset. Therefore, this construction
automatically ensures

⌊
t
2

⌋
-non-completeness and that correctness can be achieved, since every term of

the cross-product of the input shares can be distributed to a designated output share. In the following,
we denote the set of the subsets Mi as M and describe a basic algorithm to construct it.

In our algorithm,M is accessed similar to an n× l array with n rows and l columns, e.g.,M[i, j] refers
to the j-th element of the i-th subset. At the start, every entry is initialized with zero. Our algorithm
traverses the array entry-by-entry by first processing every column of the current row before jumping to
the first unassigned column of the next row. In each processing step, the algorithm checks which element
ofMall can be used without creating a conflict with the existing elements of the row, and assigns the first
valid value to the entry. This process is illustrated in Steps 1 and 2 of Figure 8, whereM[4, 3] andM[5, 3]
are completed. If at some point there are no valid values for the current entry, the algorithm backtracks
and changes the previous entry to the next possible valid value. The same applies if all possible values
have been processed before.

To increase the performance of the algorithm, it is possible to initializeM with preassigned values. In
particular, we can fill the first l rows easily without creating conflicts. The same applies to the first two
columns of the remaining rows. Initialization reduces the search space, but requires an adjustment to the
traversing algorithm to ignore these preassigned entries. The result of the initialization for t = 4, n = 7
is depicted in the left part of Figure 8.

A pseudo-code representation of the whole process is given in Algorithm 15. We assume that the
functions Freq and PossibleEntries are efficiently implemented. This can be achieved with additional arrays
which are constantly updated for every new entry. To increase the comprehensibility of Algorithms 15
and 16, we explicitly omit these extra steps and instead provide a description of the two functions’
behavior:

– Freq(M): Returns the number of occurrence of each element of Mall in M.
– PossibleEntries(M, row): Returns a list of all valid values of the current row.

Algorithm 15 returns a
⌊
t
2

⌋
-non-complete mapping as depicted in the right part of Figure 8. To derive

the multiplication scheme, it is necessary to sum the related terms of the cross-product for each output
share, i.e., for output share ci it is required to sum ajbk + akbj for ∀j, k ∈ Mi with j 6= k. The terms
ajbj , j = 1, . . . , n can be assigned to every output shares that includes a particular j. For simplicity, we
distributed these terms equally over all output shares. We only provide the leaking indices L for every
order in Tables 3 to 5. Furthermore, we adjusted the order of indices to ensure that the first index of ci
is also present in ci−1 for the later-discussed security property. The generic multiplication based on L for
t ≥ 6 is given in Algorithm 17.

While the algorithm returns a
⌊
t
2

⌋
-non-complete mapping for t = 3, it does not lead to a correct

t–SCR multiplication scheme. As noted before, in this special case the number of shares is not bounded
by the non-completeness, but rather by the t–SNI requirement of t < n.

After finding a
⌊
t
2

⌋
-non-complete mapping for a given t, it is necessary to distribute the random

components required for t–SNI equally over the output shares. To this end, we group the terms for
each output share into equally sized groups and add the random components with increasing indices.

Each of the n2

2 components needs to be added twice during the whole process. To avoid collisions of
combinations of random components, we shift each random column by a different offset except for the
original columns. We do not provide an explicit algorithm to distribute the randomness for t < 6. Instead,
we briefly describe the intuition behind the distribution for these cases.

t = 2 Since the adversary has only two probes, there are two possible scenarios we have to consider:

1. (g = 2, g′ = 0) This attack vector is prevented by the t–SNI property of the multiplication which
implies probing security.

2. (g = 1, g′ = 1) The best case for an adversary is probing the same output share in both gadgets, i.e.,
receiving the maximum number of input shares. This attack is prevented by the non-completeness
property of the gadget which ensures that every output share only contains two of three input shares.

Therefore, the randomness distribution for t = 2 is very straight-forward as it is sufficient to have t–SNI
with non-completeness to achieve t–SCR.

t = 3 For this adversary, it is again enough to consider two possible scenarios:

1. (g = 3, g′ = 0) This attack vector is prevented by the t–SNI property of the multiplication which
implies probing security.

2. (g = 2, g′ = 1) The best case for an adversary is probing the same output share in both gadgets, i.e.,
receiving the maximum number of input shares for two shared probes. Based on the distribution of
cross-product terms this would result in two shares probed of each input. An adversary would need
to probe the remaining two shares of one of the inputs with only one probe. However, given the t–SNI
randomness distribution and the fact that the aibi are added at last to the output shares, this is not
possible, as she can only probe one term aibj , i.e., only one share of each input, because the remaining
possibilities which include two unknown shares of one input are masked by unknown randomness.

t = 4 For this adversary, it is enough to consider the following three possible scenarios:

1. (g = 4, g′ = 0) This attack vector is prevented by the t–SNI property of the multiplication which
implies probing security.

2. (g = 2, g′ = 2) Again the best case for an adversary is to probe the same pair of output shares in the
both gadgets. This leads the maximum number of shares probed. Since every output share leaks only
about three input shares thanks to our non-complete distribution, the adversary would only receive

six out of seven shares of each input in the worst case. In practice this attack would even result in
only five input shares given that every output shares exactly one input share with any other output
share.

3. (g = 3, g′ = 1) With the shared probe and one normal probe, it is again the best case for an adversary
to probe the same output share to gain information about the maximum number of input shares,
i.e., three. Given the randomness distribution, the adversary can either probe the terms of the cross-
product directly (which leak about one share of each input) or the intermediate sums of the output
shares. However, these are partly masked by unprobed randomness and, therefore, would require
additional probes on this randomness. In the first scenario, the adversary could only probe two of the
four unknown shares. In the second scenario, the adversary could probe the intermediate sum after
the first addition with a random element which was already probed with the shared probes. However,
this only results in one new share. An alternative approach would be to probe an intermediate sum
after the fourth addition. Again we assume that the first random element of this output share was
already probed before. However, this time we add another unknown random which needs to be probed
as well with the second remaining probe. Therefore, in total the adversary can only access up to two
unknown input shares.

t = 5 For this adversary, it is enough to consider the following three possible scenarios:

1. (g = 5, g′ = 0) This attack vector is prevented by the t–SNI property of the multiplication which
implies probing security.

2. (g = 3, g′ = 2) Same as for t = 4, the adversary could probe five of the seven input shares with two
shared and two normal probes. However, now there is still one additional probe remaining. Given
the computation order, the adversary has two choices for the last probe. In the first scenario, she
can probe an intermediate term aibj or aibi. However, this provides only one of the two remaining
input shares. In the second scenario, the adversary probes one of the aibi terms which also only
leaks about one input share. In the second scenario, the adversary probes an intermediate sum of the
output shares. Thanks to the randomness distribution based on rotation, the maximum number of
random terms per output share, which were leaked by the first four probes, is two. Therefore, the
adversary could only probe (aibj + rk) + (ajbi + rl) for known rk, rl. This would indeed leak about
two input shares and possibly enabling the adversary to successfully attack the scheme. Therefore,
we distributed the randomness and cross-product terms in a fashion that prevents this attack. In
particular, to probe the intermediate sum of ci, the adversary needs to probe ci−1 and ci+1 (except
for c7) with the shared probes. Otherwise, an unprobed randomness trivially prevents any attack.
The cross-products are distributed in way that output shares ci−1, ci, ci+1 (except c6, c7, c1) only leak
about six input shares at maximum preventing any attack based on the intermediate sum of ci. In
the case ci = c7, we slightly adjusted the order of the random terms such that the adversary needs
to probe c1, c2 to attack the intermediate sum of c7. Since the tuple c1, c2, c7 is again missing one of
the input shares, it cannot be used for an attack.

3. (g = 4, g′ = 1) With one shared and the corresponding normal probe, the adversary can access
three input shares and six random elements. With the remaining probes the adversary can probe
either the cross-products aibj directly (which only amounts to three of the four unknown shares) or
intermediate sums until the second term (otherwise she adds too many unknown randomness terms).
This situation corresponds to the scenario of attack (a) analyzed in the proof of Proposition 2, which
shows that this attack would give to the adversary the knowledge of at most other three input shares,
of the four needed to recover the secret inputs.

t ≥ 6 For the general construction, we need to distinguish between two cases:

1. (g = t, g′ = 0) This attack vector is prevented by the t–SNI property of the multiplication which
implies probing security.

2. (g = t−δ, g′ = δ) In the case of δ = b t2c, the security can be easily derived from the non-completeness
property of the multiplication. Based on the relationship between l, n, and t given in Section 3.2, we
can derive the maximum number of shares which can be leaked by the shared probes as

nprobed = l + (δ − 1)(l − 1) = n− b t
2
c. (4)

For even t, this property is already sufficient given that nprobed < n. However, for odd t, there is still
one remaining probe. With this, the adversary needs to probe the remaining b t2c shares targeting
an intermediate sum which uses only known random elements. Since we compute from left to right,
the adversary needs to know the first random elements used to compute the output shares. The
distribution of the cross-product terms is chosen in a way that, if the adversary knows the first
random element rk (from the shared probes) of the intermediate sum aibj + rk + ajbi + rm, then
the input shares of index i are already known. Therefore, the adversary needs to probe a sum of
2b t2c−1 cross-product terms to access b t2c unknown input shares. This process would require knowing
2b t2c − 2 random elements of an unprobed output share, which is not possible (for t ≥ 6) given that
the adversary has only b t2c shared probes (and each output share shares only one random element
with every other output share).
The other cases of δ can be reduced to this one. Using the remaining probes for cross-product terms
is not sufficient as they only leak about only share each. Therefore, it is necessary for an adversary
to target the intermediate sums. For these sums there are two possible cases: (a) all the randoms
are known from the shared probes (b) at least one random is not known. For (a), it is the most
efficient strategy to target either sums with one (leaks about one unknown share) or two (leaks about
two unknown shares) known randoms. This gives the best ratio from shared probes to newly probed
shares, as the number of randoms for the intermediate sums grow with a factor of two (2i − 2 to
probe i shares). In our considered cases t ≥ 6, the number of new shares which can be probed with
the strategy is always smaller than the required number. Therefore, this does not lead to a successful
attack. In the case of (b), the adversary needs to either directly probe the unknown randomness or a
sum which contains it. However, given that the random elements are only reused in sums with more
than t other random element, probing such a sum would lead to more than one new unknown random
element. Therefore, probing ri directly would be the only solution for these sums. However, in this
case it would be more beneficial to probe the complete output share and use the second probe in the
parallel multiplication to probe all random element and cross-product terms at once. This strategy
can, therefore, be reduced to the case of δ + 1.

Algorithm 15 FindMapping
Input: number of probes t.
Output:

⌊
t
2

⌋
-non-complete mapping of input shares M.

l =
⌊
t
2

⌋
+ 1;

n =
⌊
t
2

⌋2
+
⌊
t
2

⌋
+ 1;

(M, row, col) = InitMapping(t, l, n)
O[n, l] = {0}
while min(Freq(M)) 6= l do
E = PossibleEntries(M, row)
if |E| < O[row, col] + 1 then
O[row, col] = 0
(row, col) = PreviousEntry(row, col)
O[row, col] + +
M[row, col] = 0

else
M[row, col] = E [O[row, col] + 1]
(row, col) = NextEntry(row, col)

end if
end while

Algorithm 16 InitMapping
Input: t, l, n.
Output:M, row, col.

M[n, l] = {0}
M[1, 1] = 1
for j = 1 to l do

for i = 1 to l − 1 do
M[(j − 1)(l − 1) + i+ 1, 1] = j
M[j, i+ 1] = (j − 1)(l − 1) + i+ 1
if j == 2 then

for k = 1 to l − 1 do
M[j + k(l − 1) + i− 1, 2] = (j − 1)(l − 1) + i+ 1

end for
end if

end for
end for
row = l + 1
col = 3

1 2 3

1 4 5

1 6 7

2 4 0

2 5 0

3 4 0

3 5 0

1 2 3

1 4 5

1 6 7

2 4 6

2 5 0

3 4 0

3 5 0

1 2 3

1 4 5

1 6 7

2 4 6

2 5 7

3 4 0

3 5 0

1 2 3

1 4 5

1 6 7

2 4 6

2 5 7

3 4 7

3 5 6

. . .

After Initialization Step 1 Step 2 Final State

Fig. 8. The evolution of the mappingM for t = 4 and n = 7 from the initialization to the final
⌊
t
2

⌋
-non-complete

distribution of the input shares.

A.2 t–SCR Multiplication for t ≥ 6

Algorithm 17 Generic t–SCR multiplication algorithm for t ≥ 6.

Input: shares (ai)1≤i≤n and (bi)1≤i≤n, such that
⊕

i ai = a and
⊕

i bi = b, L, l.
Output: shares (ci)1≤i≤n, such that

⊕
i ci = a · b.

p = n·(n−1)
2

for i = 1 to n do
col = 0
for j = 1 to l − 1 do

for k = j + 1 to l do
if (i+ col · n) > p then
offset = 0

else
offset = 1

end if
ci = ci + aL(i,j) · bL(i,k) + r(((i+offset·(col−(n−1)/2+1)−1 mod n)+col·n mod p)+1)

col = col + 1
ci = ci + aL(i,k) · bL(i,j) + r(((i+offset·(col−(n−1)/2+1)−1 mod n)+col·n mod p)+1)

col = col + 1
end for

end for
ci = ci + aL(i,l+1) · bL(i,l+1)

end for

Table 3. L for t = 6/7.

c1 4 2 3 1 1

c2 1 5 6 7 5

c3 1 8 9 10 9

c4 1 11 12 13 12

c5 11 5 8 2 2

c6 2 6 9 12 6

c7 2 7 10 13 7

c8 13 5 9 3 3

c9 3 6 10 11 10

c10 3 7 8 12 8

c11 12 5 10 4 4

c12 4 6 8 13 13

c13 4 7 9 11 11

Table 4. L for t = 8/9.

c1 5 2 3 4 1 1

c2 1 6 7 8 9 6

c3 1 10 11 12 13 11

c4 1 14 15 16 17 17

c5 1 18 19 20 21 20

c6 18 6 10 14 2 2

c7 2 7 11 15 19 7

c8 2 8 12 16 20 8

c9 2 9 13 17 21 9

c10 21 6 11 16 3 3

c11 3 7 10 17 20 10

c12 3 8 13 14 19 13

c13 3 9 12 15 18 12

c14 12 6 4 17 19 4

c15 4 7 13 16 18 16

c16 4 8 10 15 21 15

c17 4 9 11 14 20 14

c18 20 6 13 15 5 5

c19 5 7 12 14 21 21

c20 5 8 11 17 18 18

c21 5 9 10 16 19 19

Table 5. L for t = 10/11.

c1 6 2 3 4 5 1 1

c2 1 7 8 9 10 11 7

c3 1 12 13 14 15 16 13

c4 1 17 18 19 20 21 21

c5 1 22 23 24 25 26 26

c6 1 27 28 29 30 31 28

c7 27 7 12 17 22 2 2

c8 2 8 13 18 23 28 8

c9 2 9 14 19 24 29 9

c10 2 10 15 20 25 30 10

c11 2 11 16 21 26 31 11

c12 31 7 13 19 25 3 3

c13 3 8 14 20 26 27 14

c14 3 9 15 21 22 28 15

c15 3 10 16 17 23 29 16

c16 3 11 12 18 24 30 12

c17 30 7 14 21 23 4 4

c18 4 8 15 17 24 31 17

c19 4 9 16 18 25 27 18

c20 4 10 12 19 26 28 19

c21 4 11 13 20 22 29 20

c22 29 7 15 18 26 5 5

c23 5 8 16 19 22 30 22

c24 5 9 12 20 23 31 23

c25 5 10 13 21 24 27 24

c26 5 11 14 17 25 28 25

c27 28 7 16 20 24 6 6

c28 6 8 12 21 25 29 29

c29 6 9 13 17 26 30 30

c30 6 10 14 18 22 31 31

c31 6 11 15 19 23 27 27

Proposition 3 (order t ≥ 6). Let Multt1, . . . ,MulttN be a set of N multiplication schemes as in Algo-
rithm 17, with inputs (a(1), b(1)), . . . , (a(N), b(N)) and outputs c(1), . . . , c(N), where t ≥ 6. Suppose that the
maskings of the inputs are independent and uniformly chosen and that for k = 1, . . . , N each Multtk uses
the same random bits

(
ri
)
i=1,...,tn/2

. Then Multt1, . . . ,MulttN are t–SCR and in particular Algorithm 17 is

t–SNI.

Proof. The procedure to prove the t–SCR is exactly the same to the one of the previous proofs, so we
proceed directly to prove t–SNI. We now show the t–SNI property of Multt.

Let Ω = (I,O) be a set of t observations respectively on the internal and on the output wires, where
|I| = t1 and in particular t1 + |O| ≤ t. We classify the internal wires in the following groups:

(1) ai, bj , aibj
(2) rk
(3) aibi + rk := p
(4) p+ aubv := q,
(5) q + rh =: s,

Suppose an adversary corrupts at most t wires w1, . . . , wt. We define two sets I, J with |I| < t1
|J | < t1 such that the values of the wires wh can be perfectly simulated given the values (ai)i∈I , (bi)i∈J .
The procedure to construct the sets is the following:

1. We first define a set K such that for all probes in group (2), (3), (4) or (5) we add the index k of
each random bit rk to K.

2. Initially I, J are empty and the wi unassigned.
3. For every wire in group (1) or a combination of this, if i /∈ I add i to I and if j /∈ J add j to J .
4. For every wire in group (3) such that all the indices of the random bits appear in K at least two

times, for every share ai observed, if i /∈ I, add i to I and for every share bj observed, if j /∈ J , add
j to J .

5. For every wire in group (4), if u /∈ I add u to I and if v /∈ J add v to J .

We point out that the sets just constructed are such that |I| ≤ t1 and |J | ≤ t1. Indeed, for each probe
in group (1) and (3) at most one index is added. For each probe in (4) and (5), we add more than one
index to I and J only if the attacker’s probes are of the form

p1 := r1, . . . , ph := ri, ph+1 := aibj + r1 + · · ·+ ri or ph+1 := aibj + r1 + · · ·+ ri + aubv

with h ≤ t−1. In any case, it trivially always holds that |I| ≤ t1 and |J | ≤ t1. Now we simulate the wires
wh using only the values (ai)i∈I and (bi)i∈J .

– We start the simulation with a preliminary phase in which for every k ∈ K assign rk to a random
and independent value.

– For every probe in group (1), then i ∈ I and i ∈ J and so the values are perfectly simulated.
– For every probe in group (3), then, since k ∈ K and rk has been simulated in the preliminary phase

as a random and independent value, we can compute wh by using rk and the indexes of the inputs
which are, by construction, in the sets I and J ;

– For every probe in group (4), then, if p has been probed, since u ∈ I and v ∈ J , then it can be
simulated by using p and the shares au and bv; otherwise, if for every random bit rk the index k
appears at least two times in K, then we can compute wh by using rk and the indexes of the inputs
which are, by construction, in the sets I and J ; finally, if there exists at least one random bit rk such
that k ∈ K only one time, then we can simulate wh as a random and independent value.

– For every probe in group (5), then, if q has been probed, since rh has been simulated in the preliminary
phase, then it can be simulated by using q and rk; otherwise, if for every random bit rk the index k
appears at least two times in K, then we can compute wh by using rk and the indexes of the inputs
which are, by construction, in the sets I and J ; finally, if there exists at least one random bit rk such
that k ∈ K only one time, then we can simulate wh as a random and independent value.

Finally, the output shares are as in group (4) and therefore the simulation of the probes on outputs are
performed using at most t1 shares of the inputs as well, completing the proof. ut

