
Enhanced Modelling of Authenticated Key

Exchange Security

Papa B. Seye and Augustin P. Sarr

Laboratoire Acca, Université Gaston Berger de Saint–Louis

Abstract. The security models for Authenticated Key Exchange do not
consider leakages on pre–computed ephemeral data before their use in
sessions. We investigate the consequences of such leakages and point out
damaging consequences. As an illustration, we show the HMQV–C proto-
col vulnerable to a Bilateral Unknown Key Share (BUKS) and an Unila-
teral Unknown Key Share (UUKS) Attack, when precomputed ephemeral
public keys are leaked. We point out some shades in the seCK model in
multi–certification authorities setting. We propose an enhancement of
the seCK model, which uses a liberal instantiation of the certification
systems model from the ASICS framework, and allows reveal queries on
precomputed ephemeral (public and private) keys. We propose a new
protocol, termed eFHMQV, which in addition to provide the same ef-
ficiency as MQV, is particularly suited for implementations wherein a
trusted device is used together with untrusted host machine. In such set-
tings, the non–idle time computational effort of the device safely reduces
to one digest computation, one integer multiplication, and one integer
addition. The eFHMQV protocol meets our security definition, under
the Random Oracle Model and the Gap Diffie–Hellman assumption.

Keywords: Unknown Key Share Attacks, seCKcs, ASICS, HMQV–C,
eFHMQV.

1 Introduction

A large body of works on the modelling of Authenticated Key Exchange (AKE)
security have been proposed since this approach was pioneered by Bellare and
Rogaway [4]. The recent security models, CK [8], eCK [22], CKHMQV [18] and
seCK [29,26] for instance, consider finely grained information leakages, including
leakages on static and ephemeral private keys, session keys, and intermediate re-
sults. Working in another direction, Boyd et al. propose the ASICS framework [6]
which provides a finely grained model of multi–certification systems and related
attacks.

In implementations of AKE protocols, ephemeral data are often pre–compu-
ted to boost implementations performance. The pre–computed data may then
leak to an adversary. To take this into account, the recent models, such as CK [8],
eCK [22], CKHMQV [18] and seCK [29,26] among others, consider adversaries
which may gain access to ephemeral secrets. Unfortunately, while leakages on

2

precomputed ephemeral secrets may occur before their use in sessions, these
models consider such leakages only while the keys are in use in a session (i. e.
after the session owner knows his peer), not before.

The works [6,7] provide a generic framework termed ASICS, which considers
not only leakages on the randomness used for ephemeral key generation, but
also various attacks related to Certification Authorities (CAs) corruptions. Ins-
tantiations of the framework lead, depending on the allowed queries, to the
eCK [22], the eCKw [10], eCK–PFS [10], and to the CKHMQV [18] models.

By considering an adversary which may learn the intermediate results in a
session, the seCK model [29,26] aims at a better capture of information lea-
kages. In this model, it is assumed at each party that a trusted computation
area (a trusted platform module, a smart card, a hardware security module,
etc.) is used together with an untrusted one (an untrusted host machine). It is
assumed also that AKE implementations may differ from one party to another.
Two implementations approaches are considered depending on the area wherein
the ephemeral keys are computed. And, reveal queries are defined to allow an
adversary to learn any information which is computed or used in the untrusted
area.

Albeit the seCK model seems to provide a better capture of information leak-
ages than the CK, eCK or ASICS models, the seCK definition considers only one
honest CA and assumes that each party registers only one public key. The at-
tacks that may occur in the multi–CA settings, wherein a party may have many
certificates, and some of the CAs may be adversary controlled are not captured.
Moreover, similar to the ASICS, eCK, and CK models, the seCK definition un–
naturally omits leakages of ephemeral public and private keys, before their use
in sessions. We investigate, in the multi–CA setting, the consequences of leak-
ages on precomputed ephemeral keys. We show that even leakages on ephemeral
public keys may have damaging consequences. As an illustration, we point out
Unknown Key Share (UKS) attacks against the HMQV–C protocol [18], which
was designed to provably provide explicit mutual key authentication.

We propose an enhancement of the seCK model which uses a liberal instan-
tiation of the ASICS certification systems model. Contrary to the previous mo-
dels, the seCKcs definition considers leakages on precomputed ephemeral public
and private keys before their use in sessions, and captures various kind of UKS
“related” attacks. We propose also an efficient protocol, termed eFHMQV, we
show to be seCKcs–secure under the Random Oracle model and the Gap Diffie–
Hellman assumption.

This paper is organized as follows. In section 2, we point out some limitations
in the security models for AKE, we illustrate with UKS attacks against HMQV–
C. In section 3 we present the seCKcs model. We propose the eFHMQV protocol
in section 4, and give its security arguments in Appendix A.

We use the following notations. H is λ bits hash function, where λ is the se-
curity parameter, H̄ is a l = λ/2 bits hash function. G = 〈G〉 is a multiplicatively
written group of prime order p, G∗ is the set non–identity elements in G. If n is
an integer, |n| denotes its bit–length and [n] denotes the set {1, · · · , n}; we refer

3

to the length of a list L by |L|. The symbol ∈R stands for “chosen uniformly at
random in”. For two bit strings m1 and m2, m1||m2 denotes their concatenation;
ǫ denotes the empty string. If x1, x2, · · · , xk are objects belonging to different
structures (group, bit–string, etc.) (x1, x2, · · · , xk) denotes the concatenation of
their representations as bit–strings.

2 Some Limitations in existing Security Models

In this section we point out some limitations in the security models used for the
analysis of Authenticated Key Exchange (AKE) protocols. We show that even
leakages on pre–computed ephemeral public keys, may have damaging conse-
quences. Such leakages are not considered in any of the security definitions for
AKE we are aware of.

There are many arguments in favour of considering leakages on ephemeral
keys (both public and private) before their use in sessions (i. e. before the peer
in the session wherein the key is used is known). First, ephemeral keys pairs
may be precomputed and stored in an untrusted memory; this matches, for in-
stance, the implementation approach 1 in the seCK model [29,26] (see Figure 1),
and motivates the HMQV analysis in [18, sect. 7]. Second, even in the seCK’s
implementation approach 2, wherein ephemeral keys are computed in a trusted
area, there may be a limited storage space in a this area (a smart card, for
instance). The ephemeral public keys may then be stored unencrypted1 in the
untrusted area, as when encrypted, the advantages of pre–computing may be
(partially) lost, because of the time required for deciphering. It seems then re-
alistic to consider leakages on precomputed ephemeral public keys before their
use in sessions.

2.1 (Bilateral) Unknown Key Share Attacks.

Key authentication is a fundamental AKE security attribute which guarantees
that, besides a session owner, a session key is (possibly) known only by the peer.
A key authentication is said to be implicit from a party Â to another party B̂, if
when B̂ completes a session with intended peer Â, then he has some assurance
that Â is the only other entity that can be in possession of the session key.
Explicit key authentication from Â to B̂ is achieved if at the completion of the
session at B̂, he has some assurance that Â is the only other entity in possession
of the session key. A protocol is said to provide mutual key authentication (either
explicit or implicit) when it provides key authentication both from Â to B̂ and
from B̂ to Â.

Unknown Key Share (UKS) attacks, also termed identity misbinding [17],
seem to have been identified for the first time in [11]. Different formulations of
an UKS attack can be found in the literature [5,24,16,17], although they convey

1 However, digests of the public keys are stored in the tamper proof device, so that it
is possible to verify that the keys were not altered.

4

essentially the same idea. The definition from [16], requires that an attacker, say
Ê, coerces two entities Â and B̂ into sharing a session key while at least one of
them does not know that the session key is shared with the other; vulnerability
to UKS attacks is then a failure in key authentication. A protocol is said to be
vulnerable to an Unilateral UKS (UUKS), if an attacker can succeed in making
two parties, say Â and B̂ share a session key, while exactly one of the parties,
say Â believes having shared the key with a party Ĉ 6= B̂. A protocol is said to
be vulnerable to a BUKS attack if an attacker is able to make two entities, say
Â and B̂, share a session key, while Â believes having shared the key with some
party Ê1 6= B̂ and B̂ believes having shared the key with Ê2 6= Â, the parties Ê1

and Ê2 may be different or not. BUKS attacks are then a specific case of UKS
attacks (see [9] for a further discussion about UUKS and BUKS attacks).

Usually, in an (B, U)UKS attack, the attacker does not know the shared
session key, he cannot then decipher or inject messages in the communications
between the parties sharing the key. However, he may take advantage from the
“unknown key share(s)”, as shown in [5, Sect. 5.1.2] for UUKS attacks. For
BUKS attacks, suppose that Â is renowned chess player, B̂ is a famous Artificial
Intelligence (AI) creator, who claims having created an AI program that can
win against Â, and the attacker Ê is an AI program creator who wants to take
advantage from the reputations of Â or B̂. If the game parties between Â and
B̂’s program are played online, using some AKE protocol Π which is vulnerable
to a BUKS, Ê may claim having created an AI program that he expects to
win against both Â and the program from B̂. Then Ê interferes in the session
between Â and B̂ such that Â (resp. B̂) believes having shared the session key
with Ê, while it is shared with B̂ (resp. Â). If Â wins the game, Ê claims that
his program won against the one from B̂. Otherwise, he claims the converse. In
any case, Ê takes advantage from the reputation of either Â or B̂. Such attacks
may be damaging in any setting wherein the attacker can get some credit from
a BUKS attack.

2.2 BUKS and UUKS Attacks against HMQV–C

The HMQV protocol is a “hashed variant” of the MQV protocol [23], designed to
provably overcome the “analytical shortcomings” in the MQV design [18,19]. In
particular, HMQV is claimed to be provably resilient to UKS attacks. The three
pass variant of HMQV, termed HMQV–C (the ‘C’ stands for key confirmation)
is designed to provide, besides the HMQV security attributes, explicit mutual
key confirmation and perfect forward secrecy. It is then a major design goal in
HMQV–C that when a session key is shared between two honest parties, say
Â and B̂, Â (resp. B̂) gets assurance that, besides himself, the session key is
known only to B̂ (resp. Â). Let Â and B̂ are two parties with respective static
key pairs (a, A = Ga) and (b, B = Gb), with A, B ∈ G∗. An execution of the
HMQV–C protocol between them is as in Protocol 1; the execution aborts if any
verification fails.

5

Protocol 1 The HMQV–C Protocol

I) The initiator Â does the following:
a) Choose x ∈R [p − 1] and compute X = Gx.
b) Send (Â, B̂,X) to B̂.

II) At receipt of (Â, B̂,X), B̂ does the following:
a) Choose y ∈R [p − 1] and compute Y = Gy .
b) Compute d = H̄(X, B̂), e = H̄(Y, Â), sB = y + eb mod p, σB = (XAd)sB ,

K = H(σB, 1), and Km = H(σB, 0).
c) Send

(

B̂, Â, Y,MACKm (“1”)
)

to Â.

III) At receipt of
(

B̂, Â, Y,MACKm (“1”)
)

, Â does the following:

a) Compute d = H̄(X, B̂), e = H̄(Y, Â), sA = x+ da mod p, σA = (Y Be)sA ,
K = H(σA, 1), and Km = H(σA, 0).

b) Validate MACKm(“1”).
c) Send

(

Â, B̂,X,MACKm (“0”)
)

to B̂.

IV) At receipt of
(

Â, B̂,X,MACKm (“0”)
)

, B̂ validates MACKm (“0”).
V) The shared session key is K.

A BUKS against HMQV–C. Suppose an attacker, with identity Ê (X509
Distinguished Name in [20]), which learns Â and B̂’s pre–computed ephemeral
public keys X and Y , respectively, before their use. Proceeding as in Attack 2,
Ê interferes such that Â and B̂ share a session key, while each of them believes
having shared the key with Ê.

Attack 2 BUKS Attack against HMQV–C

1) Compute d = H̄(X, Ê), X ′ = XAdG, u = H̄(X ′, B̂), and E1 = G−u−1
mod p.

2) Register the key E1 using the identity Ê to get a certificate crt1.

3) Compute e = H̄(Y, Ê), Y ′ = Y BeG, v = H̄(Y ′, Â), and E2 = G−v−1
mod p.

4) Register the key E2 using the identity Ê to get a certificate crt2.
5) Induce Â to initiate a session with peer Ê (using crt2), and receive (Â, Ê,X) from Â.
6) Initiate a session with peer B̂ (using crt1) by sending (Ê, B̂,X ′).
7) Receive (B̂, Ê, Y, tB = MACKm(“1”)) from B̂.
8) Send (Ê, Â, Y ′, tB) to Â.
9) Receive (Â, Ê,X, tA = MACKm (“0”)) from Â.
10) Send (Ê, B̂,X ′, tA) to B̂.

As the attacker knows the static private keys corresponding to the keys he regis-
ters using his own identity, the registrations succeed even if a proof of knowledge
of the private keys is required; he may register the keys at different CAs, in the
case CAs do not register one identifier for many keys. Furthermore, the dual
signature Â derives is σA = CDH(XAd, Y ′Ev

2) wherein d = H̄(X, Ê) and v =

H̄(Y ′, Â). As Y ′ = Y BeG where e = H̄(Y, Ê), and E2 = G−v−1

, we have Y ′Ev
2 =

Y BeG(G−v−1

)v = Y Be, and σA = CDH(XAd, Y Be). Similarly, the session sig-
nature at B̂ is σB = CDH(Y Be, X ′Eu

1) where u = H̄(X ′, B̂). As X ′ = XAdG, we

have X ′Eu
1 = XAdG(G−u−1

)u = XAd, and σB = CDH(Y Be, XAd) = σA. Then
Â and B̂ derive the same session signature, the same session key K = H(σA, 1) =

6

H(σB , 1), and also the same MACing key Km = H(σA, 0) = H(σB, 0). Hence
the MAC validations succeed in the sessions at Â and B̂, which both accept. As
a consequence, Â and B̂ share the same session key (K = H(σA, 1) = H(σB , 1))
while each of them believes having shared the key with Ê (who is not in posses-
sion of the session key).

Applicability of the Attack against other Protocols. Variants of our BUKS at-
tack can be launched against the MQV [23], HMQV [18], SIG–DH [8], P [25],
and DIKE [35] protocols; similar attacks are already known, from [9], against the
four DHKE [30], the modified STS [5], and the alternative Oakley [5] protocols.
In the HMQV instantiations under consideration for P1363 standardization(see
the current P1363 draft at tinyurl.com/jolno5n), it is not mandated that the
protocols be executed in the pre–specified–peer model (see [25] for a further dis-
cussion about the pre– and post–specified peer models). When these protocol are
executed in the post–specified–peer model, i. e. when a session initiator discovers
his peer’s identity after he receives a message from him, variants of the attack can
be launched without any leakage assumption. Without further assumptions the
attack fails against the MQV–C and FHMQV protocols. In MQV–C, B̂ provides
to Â a MAC of (2, B̂, Â, Y, X) and receives from him a MAC of (3, Â, B̂, X, Y),
so when the attack is launched, although the MACing keys at Â and B̂ are the
same, due to changes in the MACed data they expect, the validations fail.

An UUKS Attack against HMQV–C. In [25], Menezes and Ustaoglu point
out an UUKS against the two–pass HMQV protocol in post–specified peer model.
The attack can be launched if (i) a party can select its own identifier, and (ii) at
key registration a proof of knowledge of the corresponding private key is not
required. In a setting with 2k honest parties, the attack requires roughly 2|p|/2−k

operations.

Assuming that the attacker may learn precomputed ephemeral public keys, we
propose in Attack 3 an UUKS attack against HMQV–C. Our attack holds in the
pre–specified peer model and seems to be more realistic than Menezes and Us-
taoglu’s attack. When Attack 3 is launched, Â computes σA = CDH(XAd, Y ′Ev)

where d = H̄(X, Ê) and v = H̄(Y ′, Â). As Y ′Ev = Y BeG(G−v−1

)v, it follows
that σA = CDH(XAd, Y Be) where e = H̄(Y, Â). The party B̂, activated with
peer Â, computes σB = CDH(Y Be, XAd) wherein d = H̄(X, B̂) = H̄(X, Ê).
Then Â and B̂ share the same session dual signature, making the MAC vali-
dations succeed in the sessions at both Â and B̂. So, Â and B̂ derive the same
session key, while Â believes having shared the key with Ê, and B̂ believes having
shared the key with Â.

Similar to the attack from [25], in a setting with 2k parties, our attack requires
roughly 2|p|/2−k operations (the computations at step 3). For |p| = 160 and
k = 20, the attack requires 260 operations and is not then out of reach of our
computational capabilities [14,21]. Moreover, contrary to the Attack from [25],
in our attack (i) the computations at step 3 are performed offline (after the
attacker learns X), and (ii) the attacker knows the private key corresponding to

tinyurl.com/jolno5n

7

the static key he registers. Our UUKS attack (against HMQV–C) is then more
practical than the one from [25].

Attack 3 UUKS Attack against HMQV–C

1) Learn an ephemeral public key X from a part, say Â.
2) Compute D =

{

(C, H̄(X, Ĉ)) : Ĉ is an honest party
}

.

3) Find an identifier Ê (which is different from honest parties identifiers) such that for
some honest B̂, (B̂, H̄(X, Ê)) ∈ D.

4) Learn an ephemeral public key Y at B̂.

5) Compute e = H̄(Y, Â), Y ′ = Y BeG, v = H̄(Y ′, Â), and E = G−v−1
mod p.

6) Register the key E using the identifier Ê.
7) Induce Â to initiate a session with peer Ê, and receive (Â, Ê,X) from Â.
8) Send (Â, B̂,X) to B̂.
9) Intercept B̂’s response (B̂, Â, Y, tB = MACKm(“1”)).
10) Send (Ê, Â, Y ′, tB) to Â.
11) Receive (Â, Ê,X, tA = MACKm(“0”)) from Â.
12) Send (Â, B̂, X, tA) to B̂.

2.3 About the Capture of UKS Related Attacks in Security Models

By UKS related attacks we refer to the attacks wherein the attacker succeeds in
making non matching sessions yield unhashed secrets (session signatures) such
that given one of the secrets, the other can be efficiently computed. Our attacks
against HMQV–C occur in the specific case wherein the unhashed secrets are
the same.

Two weaknesses in the CKHMQV model explain the co–existence of our attack
and the HMQV(–C) security reduction. First, although the settings wherein
ephemeral keys are pre–computed motivate the analysis in [18, sect. 7], leakages
on ephemeral keys are considered only while they are in use (i. e. after the
peer in the session is known), not before. Then, the attacks assuming leakages
on ephemeral public keys before their use are not captured. Moreover, when in
addition to considering leakages on precomputed ephemeral keys, an attacker
may learn some intermediate secrets (as modelled in the seCK definition [27,29])
variants of our attacks can be launched, even if nonces or the peers identities
are included in the final digest for session key derivation (at steps IIb and IIIa
of Protocol 1); the same holds for MQV(–C) and CMQV(–C).

We stress that leakages on intermediate results is a realistic assumption. For
instance, the AKE implementations in TPM2.0 are divided into two phases.
In the first phase an outgoing ephemeral key is generated, using the command
TPM2_EC_Ephemeral() (see [32, Sect. 19.3]). In the second phase (the relevant
command is TPM2_ZGen_2Phase() [32, Sect. 14.7]) the TPM computes (using
the peer’s public keys) the unhashed shared secret (σ in the case of MQV).
The session key is computed on the host machine (which may be infected by
a malware), using the unhashed shared secret. Leakages on unhashed shared
secrets is then a realistic assumption.

8

We found no variant of our attacks against the FHMQV or SMQV proto-
cols [29,26], as long as the CAs are honest and each party has only one certificate.
However, in a multi–CA setting, where a party may have many certificates, some
shades occur. We stress that considering a multi–CA setting, as modelled in the
ASICS framework [6] wherein some of the CAs may be adversarially controlled,
seems to be realistic. Indeed, for most browsers, only few clicks are required to
add a rogue CA certificate in the trust–store (the set of CA certificates the user
trusts), and it may also occur that users do not change their systems default
trust–stores passwords.

For a party, say Â, with two certificates (with different keys), say crt1 and crt2,
the disclosure of the private key corresponding to crt1 should have no adverse
effects in the sessions wherein Â uses crt2. And, when an attacker registers a
certificate crt∗ using Â’s identity and a static key which is different from the one
corresponding to crt2, the existence of crt∗ should have no adverse effect on the
sessions wherein Â uses crt2. Hence, the notion of “corruption” should be about
certificates, not on parties. As a shade in the seCK model, in multi–CA settings,
consider two parties Â and B̂, with respective certificates crt and crt′, executing
the (C, F)HMQV protocol (see [33] and [29,26] for descriptions of CMQV and
FHMQV respectively), and an attacker which performs as in Attack 4.

Attack 4 Attack against (C, F)HMQV in a multi–CA setting

a) Register E = GA where A is Â’s static public key using Â’s identifier to obtain a
certificate crt

∗.
b) When Â initiates a session with peer B̂ intercept his message (crt, crt

′,X) and send
(crt

∗, crt
′,X) to B̂.

c) Intercept B̂’s response (crt
′, crt

∗, Y) and send (crt
′, crt, Y) to Â.

The session signatures Â and B̂ derive are respectively σA = CDH(XAd, Y Be)
and σB = CDH(X(GA)d, Y Be) = σAY Be, where B is B̂’s static key and d
and e are the H̄ digest values in (C, F)MQV. The sessions at Â and B̂ are
non–matching and the session at Â is seCK–fresh. When the attacker issues a
session signature reveal query (to learn σB), he can compute the session key at Â
and succeed in a distinguishing game. An enhancement of the seCK security
definition to clarify the shades and capture the consequences of leakages on
precomputed ephemeral public keys is desirable. We propose such a model in
the following section.

3 Enhancing the seCK Security Model

Broadly, in the seCK model [29,26], it is assumed two computation areas at
each party, a trusted one (a smart card, a tamper proof device, etc.) and an
untrusted one (a host machine), and that any information which is computed or
used in the untrusted area can leak to an adversary. In addition, it is assumed
that implementations may differ from one party to another; information leakages
may then differ from one party to another. This seems to correspond to real word

9

vulnerabilities [15,31,34]. Unfortunately, the seCK definition considers only one
honest CA, and assumes that each party has only one honestly generated static
key pair, and does not capture some attacks in a multi–CA setting.

In contrast, the ASICS framework considers a multi-CA setting, and captures
a wide class of attacks based on adversarial key registration, including small
subgroup attacks, UUKS attacks, and the attacks that may occur when a party
can register many static keys. However, the ASICS model defines reveal queries
only on static keys, randomness and session keys, leaving realistic leakages that
may occur, through side–channel attacks for instance. As an example, in the
CMQV variant, shown secure in [6,7], if an attacker learns a sufficiently large
part of the ephemeral secret exponent at a part (sA or sB in Protocol 1), he
can impersonate indefinitely the session owner to its peer [27,1]. In addition,
similar to seCK, the ASICS definition does not allow an adversary to learn pre–
computed ephemeral public or private keys.

We propose the seCKcs (the ‘cs’ stands for certification systems) to enhance
the seCK model [29,26] in the following ways: (i) seCKcs provides a capture of
the attacks exploiting leakages on pre–computed ephemeral public and private
keys, (ii) it uses a liberal instantiation of the multi–CA model from [6], and
(iii) captures various “kinds” of UKS related attacks.

3.1 The seCKcs Security Model

We suppose m parties M1, · · · , Mm, and an adversary A, modelled as PPT
Turing machines, sharing a securely generated set domain parameters, we denote
by dp. The adversary is supposed to be in total control of the communication
links between parties. We assume also n identities id1, · · · , idn, with m 6 n 6

R(λ) for some polynomial R. And, as in real word settings, we require that
different honest parties have distinct identities; we allow however a party to
have many identities.

Key generation and certificate registration. We assume a liberal certifica-
tion authority (CA) which accepts all the queries from the adversary, including
queries with the key and identity of an honest party. We only require that two
certificates issued at distinct registrations be different, even if they have the
same key and identity. In other words, we assume that each certificate has some
specific information, we denote by Unique Identifier (ui), which is unique and
efficiently computable. When various certificate formats are used, assuming that
a CA does not issue two certificates with the same date of issuance and serial
number, the ui can be, for instance, the quadruple (date of issuance, serial number,
issuer, subject).

The adversary can direct a party, say Mi, to generate a static key pair trough
GenSKP(Mi) query. This query can be issued many times at each party. When
it is issued, Mi generates (using dp) a key pair (a, A) and provides A with A.
Once A generated, A is allowed to direct Mi to honestly register A by issuing
HReg(Mi, A, idk). When this query is issued, Mi registers A with the identity
idk to obtain a certificate. We stress that the HReg query is for honest key
registration, so for the query to succeed, we require that no HReg(Mi′ , A′, idk)

10

with i′ 6= i have been successfully issued before; i. e. that when different parties
honestly register static keys, they use different identities.

The attacker can maliciously register any (valid or invalid) key, including
honest parties static keys, together with any string of its choice (including a
honest party’s identity) using the MReg(Q, id) query; this query always succeeds.
For a certificate crt, we refer to the certificate’s public key, identity, and ui
respectively by crt.pk, crt.id, and crt.ui.

Sessions. A session is an instance of a protocol run at a party; A decides
about session activations. To activate a session, say at Mi with peer Mi′ , A
issues a Create query with parameters (crt, crt′) or (crt, crt′, m), where m is a
message supposed to be from Mi′ , and crt and crt′ are certificates belonging to
Mi and Mi′ respectively. If the creation parameter is (crt, crt′), Mi is said to
be the initiator (I), otherwise he is said to be the responder (R). At session
creation, the activated party may provide A with an outgoing message (sid′, m′)
where sid′ is a session identifier and m′ is a message to be processed in sid′. Each
session is identified with a tuple (crt, crt′, out, in, role), where crt is the owner’s
certificate, crt′ is the peer’s certificate (in the owner’s view), out is the list of the
outgoing messages, in is the list of the incoming messages, and role ∈ {I, R} is
the owner’s role. For an identifier sid = (crt, crt′ out, in, role), we refer respectively
to crt, crt′, out, in, and role by sidoc, sidpc, sidin, sidout, and sidrole. For the two
pass Diffie–Hellman protocols, we refer to the incoming and outgoing ephemeral
keys by sidiEPK and sidoEPK respectively. Each session has a status we denote
by sidstatus ∈ {active, accepted, rejected}. The status is accepted if the session
has completed, i. e. the session key is computed and accepted. It is rejected if
the session has aborted, it is active if it is neither accepted nor rejected. For an
accepted session sid, sidkey denotes the derived key.

The adversary can issue a Sd(sid, m) query, where m is a message to be
processed in sid. When this query is issued, the session owner is provided with m.
He may update sidin to include m; he may also compute an outgoing message
(sid′, m′) and update sidout and sidstatus accordingly. Two sessions sid and sid′ are
said to be matching if sidoc = sid′

pc, sidpc = sid′
oc, sidout = sid′

in, sidin = sid′
out, and

sidrole 6= sid′
role.

Reveal queries. Similar to the seCK model [29,26], we assume two compu-
tation areas at each party, a trusted and an untrusted one. We suppose that
implementations may be performed differently from one party to another, and
define reveal queries to allow the adversary to learn any information that is
computed or used in the untrusted area. Moreover, the adversary may bypass
the tamper protection mechanisms and learn the long term secrets. We assume
implementations performed using one of the seCK approaches. In Approach 1,
the static key is computed and used in the trusted area, and the ephemeral keys
are computed in the untrusted area. This implementation approach corresponds
to reveal queries as defined in the eCK and ASICS models. In Approach 2, both
static and ephemeral private keys are computed and used in the trusted area,
and all the other intermediate results are used in the untrusted host–machine.

11

This approach is similar but stronger than the way AKE implementations are
performed in TPM2.0.

In both approaches, the session key is used in the untrusted area. These
approaches are not the only possible, and the model can be enriched with other
implementation approaches, however the two approaches we consider seem to be
typical in real word settings.

The adversary is allowed to direct a certificate owner, say Mi, to generate
an ephemeral public key pair using a GenEKP(crt) query. When it is issued, Mi

generates a key pair (x, X) and provides the attacker with X . If Mi, follows
the Approach 1, A can issue a RvEPK(X) query to learn the ephemeral private
key x. We stress that this query may be issued before the public key X is used
in a session. At a party using Approach 2, a reveal query is defined to allow A
to learn any information that is computed of used in the untrusted area. In both
approaches, the adversary can learn the private key corresponding to a static
public key A, by issuing RvSPK(A). For a completed session sid, the attacker
can issue a RvSesK(sid) query to learn sidkey. For the protocols of the MQV
family, at a party using the Approach 2, A can issue RvSecExp(sid) to obtain the
ephemeral secret exponent in sid (sA or sB in HMQV–C), and a RvSesSig(sid)
query to obtain the dual signature (σA or σB).

xa

sA

sA

σ

K

xa

sA

σ

K

K

Trusted area

Untrusted
area

Approach 1Approach 2

Fig. 1. (e)FHMQV Implementation Approaches in the seCK Model [29,26]

Session freshness. A completed session with identifier sid is said to be:
Locally exposed: if (a) A issued a RvSesK(sid) query, or (b) the session owner

follows the Approach 1 and A issued both RvSPK(sidoc.pk) and RvEPK(sidoEPK),
or (c) the session owner follows the Approach 2 and A issued a reveal query
on an intermediate result which is computed or used in the untrusted area.

Remark 1. For the protocols of the MQV family, the condition (c) is “the ses-
sion owner follows the Approach 2 and A issued RvSecExp(sid) or RvSesSig(sid).”

Exposed: if (a) it is locally exposed, or (b) its matching session exists and is
locally exposed, or (c) its matching session does no exist and (c.i) sidpc was
maliciously registered, or (c.ii) sidpc was honestly registered and A issued
RvSPK(sidpc.pk);

12

GenSKP static key pair generation
RvSPK static private key reveal query
HReg honest key registration
MReg malicious key registration
GenEKP ephemeral key pair generation
RvEPK ephemeral private key reveal query (in Approach 1)
Create session creation
Sd message sending
RvSesK session key reveal query
RvSecExp ephemeral secret exponent reveal query (for the MQV family in Ap-

proach 2)
RvSesSig session signature reveal query (in Approach 2)
Test test session query

Table 1. Summary of the queries

dp public domain parameters
crt a certificate
crtx,x∈{pk,id,ui} the public key (pk), identity (id), or unique identifier (ui) in the

certificate crt

sid session identifier
sidx,x∈{oc,pc,out,in,role} the owner’s certificate (oc), peer’s certificate (pc), list of outgo-

ing messages (out), list of incoming messages (in), or the owner’s
role in the session sid

sidx,x∈{iEPK,oEPK} incoming ephemeral public key (iEPK) or outgoing ephemeral
public key (oEPK) in a session (for DH protocols)

Table 2. Overview of the notations

Fresh: if it is not exposed.

The security experiment is initialized with a securely generated public set of
domain parameters dp for some security parameter λ. The adversary is allowed to
issue all the queries defined above. At some point of the game he issues a Test(sid)
query on a completed and fresh session sid. When the Test query is issued a bit

b ∈R {0, 1} is chosen, and A is provided with k =

{

sidkey if b = 1

k′ ∈R {0, 1}λ, otherwise.

Once the Test query issued, A is allowed to issue all the queries of its choice
as long as sid remains fresh. Finally, he produces a bit b′ and wins the game if
b = b′.

Definition 1 (seCKcs security). A protocol Π is said to be seCKcs secure if,

– except with negligible probability, two sessions yield the same session key
if and only if they are matching, and

– for all efficient attacker playing the above game, |2 Pr(b = b′)−1| is negligible.

13

3.2 Comparing the seCKcs with the seCK and ASICS models

The seCKcs definition encompasses the seCK model [29,26] together with a libe-
ral instantiation of the ASICS multi–CA setting [6,7]. The modelling of the
CAs is realistic, as illustrated with recent CA breaches [12,13]. And, as already
pointed out in [6, p. 6], although we explicitly consider one CA, we implicitly
capture multi–CA settings with independent CAs.

However, there are some differences between the key registration queries in
the ASICS and seCKcs models. The honest key registration query in the ASICS
model, hregister, takes two parameters, a public key and an identity. The par-
ties and their implementation approaches are modelled in seCKcs, so the honest
key registration, HReg, is enriched to include a parameter which indicates the
party registering the key. Also, we do not differentiate malicious key registra-
tions depending on the validity of the static key the adversary provides, as with
the pkregister and npkregister in ASICS. We assume simply that any malicious
registration query succeeds (i. e. the MReg query always succeeds). Moreover,
there are less restrictions in the seCKcs freshness definition than in the ASICS
instantiations from [6, sect. 3–4]. For a session sid without a matching session,
both definitions require that no RvSPK(sidpc.pk) was successfully issued. How-
ever, while [7,6, Th. 1] requires that MReg(sidpc.pk, sidpc.id) was not issued, we
require that sidpc was not registered by A, meaning that sid remains fresh even
if A issued MReg(sidpc.pk, sidpc.id), as long as sidpc was not registered by A.
Besides, the ASICS model considers only leakages on static keys, randomness
and session keys, leaving realistic leakages that may occur, on unhashed shared
secrets (in AKE implementations in TPM2.0 for instance); while seCKcs consi-
ders reveal queries on precomputed ephemeral keys and any information which
is computed or used in the untrusted area.

The seCKcs definition is strictly stronger than seCK, which is already known
to be strictly stronger than the eCK model [29]. To illustrate the separation
between the seCKcs and seCK models, we consider the Attack 4 against (C,
F)HMQV, wherein B̂ belong to the set of parties following the second imple-
mentation approach. We recall that FHMQV and CMQV are known respectively
to be secure in the seCK and ASICS models. In Attack 4, the session at Â is
seCKcs–fresh, as neither crt nor crt′ is adversarially registered, and A does not
issue RvSPK(crt′.pk) and no reveal query is issued in the session at Â. Given the
relation between the session signatures in the sessions at Â and B̂, A succeeds
in the seCKcs distinguishing game, with probability ≈ 1, as follows:

a) he chooses the session at Â as a test session,
b) issues a RvSesSig on the session at B̂ to obtain σB,
c) compute the session signature and the session key Â derives.

The attacker’s success follows from its ability to make non–matching sessions
yield related session signatures, such that given one of the session signatures,
the other can be efficiently computed. By requiring that non–matching sessions
do not yield the same session key, seCKcs–security captures classical (B, U)UKS
attacks. Moreover, it ensures that non–matching session do not yield related

14

session signatures. The seCKcs model captures not only “classical” UKS attacks,
but also the attacks related to unknown share of unhashed session secrets.

4 The enhanced FHMQV (eFHMQV) Protocol

A main improvement in FHMQV [26,27] compared to HMQV [18] is the use of
the incoming and outgoing ephemeral keys in the computation of the digest va-
lues d and e; this design choice makes FHMQV resilient to leakages on ephemeral
secret exponents (sA and sB). We use a similar idea in the eFHMQV design. An
execution of eFHMQV between two parties Â and B̂ with respective certificates
crt and crt′ is as in Protocol 5.

Protocol 5 The eFHMQV Protocol

I) The initiator Â does the following:
a) Verify that crt

′.pk ∈ G∗.
b) Choose x ∈R [p− 1] and compute X = Gx.
c) Send (crt, crt

′,X) to B̂.
II) At receipt of (crt, crt

′,X), B̂ does the following:
a) Verify that X ∈ G∗ and crt.pk ∈ G∗.
b) Choose y ∈R [p− 1] and compute Y = Gy .
c) Send (crt

′, crt,X, Y) to Â.
d) Compute d = H̄(X,Y, crt.pk, crt.id, crt.ui, crt

′.pk, crt
′.id, crt

′.ui).
e) Compute e = H̄(Y,X, crt.pk, crt.id, crt.ui, crt

′.pk, crt
′.id, crt

′.ui).
f) Compute sB = y + eb, where b = logG crt

′.pk, and σB = (X(crt.pk)d)sB .
g) Compute K = H(σB, crt.pk, crt.id, crt.ui, crt

′.pk, crt
′.id, crt

′.ui,X, Y).
III) At receipt of (crt

′, crt,X, Y), Â does the following:
a) Verify that Y ∈ G∗.
b) Compute d = H̄(X,Y, crt.pk, crt.id, crt.ui, crt

′.pk, crt
′.id, crt

′.ui).
c) Compute e = H̄(Y,X, crt.pk, crt.id, crt.ui, crt

′.pk, crt
′.id, crt

′.ui).
d) Compute sA = x+ da, where a = logG crt.pk, and σA = (Y (crt

′.pk)e)sA .
e) Compute K = H(σA, crt.pk, crt.id, crt.ui, crt

′.pk, crt
′.id, crt

′.ui,X, Y).
IV) The shared session key is K.

In an eFHMQV session with identifier sid = (crt, crt′, X, Y, I) the digests d and
e are computed as indicated in the steps IIIb) and IIIc). As a result, even if
the step a) of Attack 4 is modified to make A issues MReg(crt.pk, crt.id), i. e.
A registers Â’s key using Â’s identity to obtain crt∗, the attack fails as long as
different certificates have different unique identifiers. Indeed, as B̂ computes d′ =
H̄(X, Y, crt∗.pk, crt∗.id, crt∗.ui, crt′.pk, crt′.id, crt′.ui) and e′ = H̄(Y, X, crt∗.pk, crt∗.id,
crt∗.ui, crt′.pk, crt′.id, crt′.ui) and crt∗.ui 6= crt.ui, except with negligible probabil-
ity d′ 6= d and e′ 6= e. Then, even if A issues RvSecExp(crt′, crtA, Y, X, R) in
the distinguishing game and receives sB = y + e′b, as e′ 6= e, he cannot de-
rive σA = CDH(XAd, Y Be) wherein A = crt.pk, B = crt′.pk. A direct proof of
this claim can be obtained using the Knowledge of Exponent Assumption [3].
However, as we show in Theorem 1, this assumption is not necessary.

An execution of eFHMQV requires at most 2.5 times a single exponentia-
tion; this equals the efficiency of the famous MQV protocol. In addition, in the

15

implementation Approach 2, the ephemeral public keys can be computed in idle
time on a trusted device (a smart card for instance) and stored unencrypted
in an untrusted host machine. It is only necessary that a digest of the keys be
stored on the device so that alterations can be detected. When eFHMQV is
implemented in this way, the non–idle time computational effort on the device
reduces to one digest computation, one integer addition, and one integer multi-
plication. We stress that the (C,H)MQV protocols [23,33,18] cannot achieve such
a performance, as they do not confine the adverse effects of leakages on secrets
exponents (sA and sB). And, in the seCKcs security definition, the FHMQV and
SMQV protocols [27,29,28] are insecure, and cannot then provably achieve such
a performance.

Theorem 1. Under the Gap Diffie–Hellman assumption and the Random Or-
acle model, the eFHMQV protocol is seCKcs–secure.

We give detailed proof of the above theorem in Appendix A. The security
reduction is not tight as it uses the General Forking Lemma [2]; we defer a
concrete security analysis for a future work.

5 Concluding Remarks

We pointed out and illustrated some limitations in existing AKE security mo-
dels. We showed that even leakages on precomputed ephemeral public keys may
have damaging consequences, we illustrated with a BUKS and an UUKS at-
tack against the HMQV–C protocol. We proposed the seCKcs security definition
which encompasses the seCK model, integrates a strong model of multi–CA set-
tings, and considers leakages on precomputed ephemeral (public and private)
keys.

We proposed the eFHMQV protocol, which is particularly suited for dis-
tributed implementation environments wherein an untrusted computer is used
together with a tamper–resistant device. In such an environment, the non–idle
time computational effort of the device reduces to one digest computation, one
integer addition, and one integer multiplication. We show the eFHMQV proto-
col seCKcs–secure under the Random Oracle Model and the Gap Diffie–Hellman
Assumption.

In a forthcoming stage, we will be interested in Perfect Forward Secrecy in
the seCKcs model.

References

1. Basin D., Cremers C.: Modeling and Analyzing Security in the Presence of
Compromising Adversaries. In Proc. of ESORICS 2010, LNCS, vol. 6345, pp. 340–
356, Springer, 2010.

2. Bellare M., Neven G.: Multi–Signatures in the Plain Public–Key Model and a
General Forking Lemma. In Proc. of the 13th ACM conference on Computer and
communications security, pp. 390–399, ACM, 2006.

16

3. Bellare M., Palacio A.: The Knowledge–of–Exponent Assumptions and 3–
round Zero–Knowledge Protocols. In Proc. of Crypto 04, LNCS, vol. 3152, pp. 273–
289, Springer, 2004.

4. Bellare M., Rogaway P.: Entity Authentication and Key Distribution. In Proc.
of Crypto 93, LNCS, vol. 773, pp. 232–249, Springer–Verlag, 1993.

5. Boyd C., Mathuria A.: Protocols for authentication and key establishment.
Springer, 2003.

6. Boyd C., Cremers C., Feltz M., Paterson K. G., Poettering B., Ste-

bila, D.: ASICS: Authenticated key exchange security incorporating certification
systems. In Proc. of ESORICS 2013, pp. 381–399, Springer, 2013.

7. Boyd C., Cremers C., Feltz M., Paterson K. G., Poettering B., Ste-

bila, D.: ASICS: Authenticated key exchange security incorporating certification
systems. Cryptology ePrint Archive: Report 2013/398.

8. Canetti R., Krawczyk H.: Analysis of Key–Exchange Protocols and Their Use
for Building Secure Channels. In Proc. of Eurocrypt 01, LNCS, vol. 2045, pp. 453–
474, Springer, 2001.

9. Chen L., Tang Q.: Bilateral Unknown Key–Share Attacks in Key Agreement
Protocols. J. for Universal Computer Science, vol. 14, no 3, pp. 416–440, 2008.

10. Cremers C., Feltz M.: Beyond eCK: Perfect Forward Secrecy Under Actor Com-
promise and Ephemeral–key Reveal. Des., Codes and Cryptography vol. 74, Issue
1, pp. 183–218, Springer, 2013.

11. Diffie W., Van Orschot P. C., and Wiener M. J.: Authentication and authen-
ticated key exchanges. Des., Codes and Cryptography, vol. 2, no 2, pp. 107–125,
Springer, 1992.

12. Ducklin P.: Serious Security: Google finds fake but trusted SSL certificates for
its domains, made in France. http://tinyurl.com/hrmo8pa.

13. Fox It: Black Tulip: Report of the investigation into the DigiNotar Certificate
Authority breach (August 2012), http://preview.tinyurl.com/lj6938c.

14. Güneysu T., Pfeiffer G., Paar C., Schimmler M.: Three Years of Evolu-
tion: Cryptanalysis with COPACOBANA. In Workshop record of “Special–purpose
Hardware for Attacking Cryptographic Systems”—SHARCS’09. 2009.

15. Huq N.: PoS RAM Scraper Malware: Past, Present, and Future, A Trend Micro
Research Paper, 2014. http://tinyurl.com/jcwc8wz

16. Kaliski, B. S.: An unknown key-share attack on the MQV key agreement protocol.
ACM Transactions on Information and System Security (TISSEC), vol. 4, no 3,
pp. 275–288, ACM, 2001.

17. Krawczyk H.: SIGMA: the ‘SIGn-and-MAc’ approach to authenticated Diffie–
Hellman and its use in the IKE protocols. In Proc of Crypto 03, LNCS, vol. 2729,
pp. 400-425, Springer, 2003.

18. Krawczyk H.: HMQV: A Hight Performance Secure Diffie–Hellman Protocol.
Cryptology ePrint Archive, Report 2005/176, 2005.

19. Krawczyk H.: HMQV: A Hight Performance Secure Diffie–Hellman Protocol. In
Proc. of Crypto 05, LNCS, vol. 3621, pp. 546–566, Springer, 2005.

20. Krawczyk H.: HMQV in IEEE P1363. Submission to the IEEE P1363 working
group, July 2006. Available at http://tinyurl.com/opjqknd.

21. Kumar S., Paar C., Pelzl J., Pfeiffer G., Rupp A., and Schimmler M.: How
to Break DES for e 8,980. In International Workshop on Special-Purpose Hard-
ware for Attacking Cryptographic Systems — SHARCS’06, Cologne, Germany,
April 2006.

22. LaMacchia B., Lauter K., Mityagin A.: Stronger Security of Authenticated
Key Exchange. In Proc. of ProvSec 2007, LNCS, vol. 4784, pp. 1–16, Springer, 2007.

http://tinyurl.com/hrmo8pa
http://preview.tinyurl.com/lj6938c
http://tinyurl.com/jcwc8wz
http://tinyurl.com/opjqknd

17

23. Law L., Menezes A., Qu M., Solinas J., Vanstone S.: An efficient Protocol for
Authenticated Key Agreement. Designs, Codes and Cryptography, vol. 28, pp. 119–
134, Springer, 2003.

24. Menezes, A., Van Oorschot, P. C., Vanstone, S. A.: Handbook of applied
cryptography. CRC press, 1996.

25. Menezes A., Ustaoglu B.: Comparing the Pre– and Post–specified Peer Mod-
els for Key Agreement. Int. J. of Applied Cryptography, vol. 1(3) pp. 236–250,
Inderscience, 2009.

26. Sarr A. P., Elbaz-Vincent P.: On the Security of the (F)HMQV Protocol. In
Proc. of Africacrypt 2016, LNCS, vol. 9646, pp. 207–224, Springer, 2016.

27. Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: A Secure and Efficient Au-
thenticated Diffie–Hellman Protocol. In Proc. of EuroPKi 2009, LNCS, vol. 6391,
pp. 83-98, Springer, 2010.

28. Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: A Secure and Efficient Authen-
ticated Diffie–Hellman Protocol. Cryptology ePrint Archive: Report 2009/408.

29. Sarr A. P., Elbaz–Vincent Ph., Bajard J. C.: A New Security Model for
Authenticated Key Agreement. In Proc. of SCN 2010, LNCS, vol. 6280, pp. 219–
234, Springer, 2010.

30. Shoup V.: On Formal Models for Secure Key Exchange. Cryptology ePrint
Archive, 1999/012, 1999.

31. Trend Labs Security Intelligence Blog: RawPOS Technical Brief, April
2015. http://tinyurl.com/joyazja

32. TCG: Trusted Platform Module Library Part 3: Commands, Level 00 Revision
01.38, 2016.

33. Ustaoglu, B.: Obtaining a secure and efficient key agreement protocol from (H)
MQV and NAXOS. Des., Codes and Cryptography, vol. 46, no 3, pp. 329-342, 2008.

34. VISA Data Security Alert: Retail Merchants Targeted by Memory–Parsing
Malware, 2013. http://tinyurl.com/j3duvlg

35. Yao, A.C., Zhao, Y.: Deniable Internet Key Exchange. In Proc. of ACNS 2010,
LNCS, vol. 6123, pp. 329–348, Springer, 2010.

A Security Analysis of eFHMQV in the seCKcs Model

If two parties complete matching eFHMQV sessions, they derive the same key.
And, under the RO model, non matching sessions yield the same session key
with probability 2−λ, which is negligible.

Suppose that A succeeds in the seCKcs security game with probability sig-
nificantly greater than 1/2. As H is modelled as a RO A can succeed only in
one of the following ways: (i) he guesses correctly the test session key; (ii) he
succeeds in making non matching sessions yield the same key (key replication);
or (iii) A forges the test session signature. Under the RO model, A succeeds in
guessing or key replication with negligible probability. So, we consider the event
E: “A succeeds in forging attack”, which divides in

– E.1: “E ∧ the test session, we denote by sid, has a matching session sid
′
”, and

– E.2: “E ∧ sid does not have a matching session”.

http://tinyurl.com/joyazja
http://tinyurl.com/j3duvlg

18

Analysis of E.1

The event E.1 divides in
– E.1.1: the owners of both sid and sid

′
follow the Approach 1;

– E.1.2: the owners of both sid and sid
′

follow the Approach 2; and

– E.1.3: the owners of sid and sid
′

follow different approaches.
Analysis of E.1.1. The strongest queries related to sid A can issue in E.1.1 are
(i) RvSPK(sidoc.pk) and RvSPK(sidpc.pk); (ii) RvEPK(sidoEPK) and RvEPK(sidiEPK);
(iii) RvSPK(sidoc.pk) and RvEPK(sidiEPK); (iv) RvEPK(sidoEPK) and RvSPK(sidpc.pk).
It then suffices to show that none of the following events can occur with non–
negligible probability

– E.1.1.1: “E.1.1 ∧ A issues RvSPK(sidoc.pk) and RvSPK(sidpc.pk)”;
– E.1.1.2: “E.1.1 ∧ A issues RvEPK(sidoEPK) and RvEPK(sidiEPK)”;
– E.1.1.3: “E.1.1 ∧ A issues RvSPK(sidoc.pk) and RvEPK(sidiEPK)”;
– E.1.1.4: “E.1.1 ∧ A issues RvEPK(sidoEPK) and RvSPK(sidpc.pk)”.

Event E.1.1.1. Suppose that E.1.1.1 occurs with non–negligible probability,
using A we show the existence of an efficient CDH solver which succeeds with
non–negligible probability. The solver S takes X0, Y0 ∈R G∗ and answers to A’
queries as indicated in Sim1.1.1; wherein GenCrt(·, ·) is a certificate generation
oracle which does not perform any check, the boolean variables are implicitly
initialized to false, and all the lists and sets in are implicitly initialized to be
empty. We use the Append (Apd) and Shift (Sft) operations for the lists, we
assume to be queues i. e. for a list L and an element X , Apd(L, X) adds X at
the end of L and Sft(L) removes and returns the element at the head of the list
(if any). Once the variable abort is set to true, the simulation aborts. We denote
the set of parties following the first approach by S1, and assume wlog that A
directs each party NK = R′(λ) and NA = R(λ) times (for some polynomials R
and R′) respectively for static key generation and session initialization.

Remark 2. At the beginning of the simulation, the Initialization is executed. The
Finalization procedure is run after A provides its output. Whenever A issues a
query the corresponding procedure is called using the parameters he provides.
When reading the simulation concerning an event, the boxed code headed with
simulations not regarding the event should be skipped.

Simulation Sim1.1.1, Sim1.2, Sim1.3.1

Oracles: GenCrt(·, ·)
Input: m ∈ N, S1 ⊂ [m], X0, Y0 ∈R G

∗

and Sid = {id1, · · · , idn}
1 Initialization:

2 j0, j
′
0 ∈R [NA];

3 cnti0
← 0; cnti′

0

← 0; S2 ← [m] \ S1;

4 i0 ∈R S1; i′0 ∈R S1 \ {i0}

Sim1.1.1

5 i0 ∈R S2; i′0 ∈R S2 \ {i0}

Sim1.2

6 i0 ∈R S1; i′0 ∈R S2

Sim1.3.1

7 H̄(s):
8 if ∃ e : (s, e) ∈ SH̄ , then return e;
9 else e ∈R {0, 1}

l; Apd(SH̄ , (s, e));
10 return e

19

11 H(s):
12 if ∃ k : (s, k) ∈ SH , then return k
13 else k ∈R {0, 1}

l; Apd(SH , (s, k));
14 return k
15 GenSKP(Mi):

16 a ∈R [p − 1]; A← Ga;
17 Apd(SKPMi , (a,A)); return A
18 HReg(Mi, Q, idk):
19 if ∄ a : (a,Q) ∈ SKPMi then

20 return ⊥
21 else if ∃ crt ∈ CMi′ 6=i

: crt.id = idk then

22 return ⊥ ◮ idk was assigned to Mi′

23 else

24 crt← GenCrt(Q, idk); Apd(CMi , crt);
25 return crt

26 MReg(Q, idk):
27 crt← GenCrt(Q, idk); Apd(CA, crt);
28 return crt

29 GenEKP(crt):
30 if ∃i : crt ∈ CMi then

31 x ∈R [p − 1]; X ← Gx

32 if crt ∈ CMi0
then cnti0

← cnti0
+ 1

33 if cnti0
= j0 then

34 (x,X)← (ǫ,X0)

35 if crt ∈ CM
i′
0

then cnti′
0

← cnti′
0

+ 1

36 if cnti′
0

= j′
0 then

37 (x,X)← (ǫ, Y0)

38 Apd(EKP, (i, x,X))
39 Apd(EKPcrt, (x,X)); return X

return ⊥
40 Create(crt, crt

′):

41 if (∃i : crt ∈ Ci) and crt
′.pk ∈ G∗

then

42 if IsEmpty(EKPcrt) then

43 GenEKP(crt) ◮ call GenEKP

44 (x,X)← Sft(EKPcrt)
45 if i = i0 and X = X0 and crt

′ /∈ Ci′
0

then abort← true;

46 if i = i′0 and X = Y0 and crt
′ /∈ Ci0

then abort← true

47 sid← (crt, crt
′,X, ǫ, I);

48 Apd(Ssess, (i, sid, logG crt.pk, x, active));
49 return ((crt

′, crt, ǫ, ǫ,R),X)

50 return ⊥ ◮ no party owns crt or

crt
′.pk /∈ G∗

51 Create(crt
′, crt,X):

52 if (∃i′ : crt
′ ∈ Ci′) and X, crt.pk ∈ G∗

then

53 if IsEmpty(EKPcrt′), then

54 GenEKP(crt
′)

55 (y, Y)← Sft(EKPcrt′)
56 if (i′ = i′0 and Y = Y0) and (crt /∈
Ci0

or X 6= X0) then abort← true

57 if (i′ = i0 and Y = X0) and (crt /∈
Ci′

0

or X 6= Y0) then abort← true

58 sid← (crt
′, crt, Y,X,R);

59 Apd(Ssess, (i
′, sid, logG crt

′.pk, y, accepted))
60 return ((crt, crt

′,X, ǫ, I), Y)

61 return ⊥
62 Sd(sid, Y):
63 if ∃i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess

and sidiEPK = ǫ and stat = active and
Y ∈ G∗

then

64 if i = i0 and sidoEPK = X0 and Y 6=
Y0 then

65 abort← true ◮ sidpc ∈ Ci′
0

, see at

line 45

66 if i = i′0 and sidoEPK = Y0 and Y 6=
X0 then

67 abort← true

68 sidiEPK ← Y ;
69 sidstatus ← accepted; ◮ sidkey is needed

only at RvSesK(sid).

70 return ◮ No value is returned

71 return ⊥
72 RvEPK(X):

73 if X ∈ {X0, Y0} then abort← true

Sim1.1.1

74 if X = X0 then abort← true

Sim1.3.1

75 if (∃i, x : (i, x,X) ∈ EKP and i ∈ S1),
then return x;

76 else return ⊥
77 RvSPK(A):
78 if ∃i, a : (a,A) ∈ SKPMi , then

79 return a
80 else return ⊥

81 RvSecExp(sid):
82 if ∃i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess and sidiEPK 6= ǫ and i ∈ S2 then

20

83 if sidoEPK ∈ {X0, Y0} then abort← true

Sim1.2

if sidoEPK = Y0 then abort← true

Sim1.3.1

84 str1 = (sidoc.pk, sidoc.id, sidoc.ui); str2 = (sidpc.pk, sidpc.id, sidpc.ui)
85 if sidrole = I then d← H̄(sidoEPK, sidiEPK, str1, str2)
86 else d← H̄(sidoEPK, sidiEPK, str2, str1)

return x+ da

87 return ⊥
88 RvSesSig(sid):
89 if ∃i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess and sidiEPK 6= ǫ and i ∈ S2 then

90 str1 = (sidoc.pk, sidoc.id, sidoc.ui); str2 = (sidpc.pk, sidpc.id, sidpc.ui)
91 s←RvSecExp(sid)

92 if sidrole = I then e← H̄(sidiEPK, sidoEPK, str1, str2)
93 else e← H̄(sidiEPK, sidoEPK, str2, str1)

94 σ ← (sidiEPK(sidpc.pk)e)s; return σ

95 return ⊥
96 RvSesK(sid):
97 if ∃ i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess and sidstatus = accepted then

98 if sidoEPK ∈ {X0, Y0} then abort← true

99 return sidkey ◮ sidkey can be computed using a and x

100 return ⊥
101 Finalization:

102 if A provides (sid, σ0) with sidoEPK ∈ {X0, Y0} and sidiEPK ∈ {X0, Y0} \ {sidoEPK}

then S computes W = σ0(sidoEPKQ
d0)

−e0q′

sidiEPK
−d0q

, where d0 and e0 are the
H̄ digest values in sid (taking into account sidrole) and Q = sidoc.pk, q = logG Q,
Q′ = sidpc.pk, and q′ = logG Q

′ and provides W as a guess of CDH(X0, Y0).

Under the RO model S is polynomial, and perfect except with negligible prob-
ability. A deviation occurs when in a call of GenEKP(·), x = x0 = logG X0

(resp. x = y0 = logG Y0) is chosen at line 31; in this case at the creation of
the session using X = Gx as outgoing ephemeral key the simulator aborts (see
lines 45,46,56, and 57) even if its guess of the test session is correct. The de-
viation occurs with probability 6 2mNA/q which is negligible. S guesses cor-
rectly the test session with probability > (mNANK)−2. When the guess is cor-
rect, the ephemeral keys X0 and Y0 used in sid are chosen uniformly at ran-
dom in G∗ and have the same distribution as real ephemeral keys. The event
E.1.1.1 and the guess’ correctness are independent. When the guess is correct
and E.1.1.1 occurs, S outputs CDH(X0, Y0). Thus, S succeeds with probability
> (mNANK)−2 Pr(E.1.1.1)−2mNA/q which is non–negligible, contradicting the
CDH assumption. Under the RO model and the CDH assumption, E.1.1.2 occurs
with negligible probability.

Event E.1.1.2. If E.1.1.2 occurs with non–negligible probability, using A and
a Decisional Diffie–Hellman Oracle (DDHO), we build an efficient CDH which
succeeds with non–negligible probability. We modify the simulator S as indicated
in Sim1.1.2 (only changes compared to Sim1.1.1 are drawn).

Simulation Sim1.1.2,Sim2.1.2

Oracles: GenCrt(·, ·), DDH(·, ·, ·, ·)

21

Input: m ∈ N, S1 ⊂ [m], Sid = {id1, · · · , idn}, and A0, B0 ∈R G
∗

100 Initialization:

101 j0, j
′
0 ∈R [NK]; cnti0

← 0; cnti′
0

← 0; S2 ← [m] \ S1; i0 ∈R S1; i′0 ∈R S1 \ {i0};

102 H(s):
103 if ∃ k : (s, k) ∈ SH then return k;
104 else if ∃ (sid, k) ∈ Skey : s = (σ, sidoc.pk, sidoc.id, sidoc.ui, sidpc.pk, sidpc.id, sidpc.ui,

sidoEPK, sidiEPK) or s = (σ, sidpc.pk, sidpc.id, sidpc.ui, sidoc.pk, sidoc.id, sidoc.ui, sidiEPK,
sidoEPK) for some σ then ◮ sidkey was assigned and the sid session signature is unknown

105 str1 = (sidoc.pk, sidoc.id, sidoc.ui); str2 = (sidpc.pk, sidpc.id, sidpc.ui)
106 dI ← H̄(sidoEPK, sidiEPK, str1, str2); eI ← H̄(sidiEPK, sidoEPK, str1, str2)
107 dR ← H̄(sidoEPK, sidiEPK, str2, str1); eR ← H̄(sidiEPK, sidoEPK, str2, str1)
108 if (sidrole = I and DDH(G, sidoEPK (sidoc.pk)dI , sidiEPK(sidpc.pk)eI , σ) = 1) or

(sidrole = R and DDH(G, sidoEPK (sidoc.pk)dR , sidiEPK(sidpc.pk)eR , σ) = 1) then

109 return k
110 else k ∈R {0, 1}

l; Apd(SH , (s, k)); return k

111 GenSKP(Mi):

112 a ∈R [p − 1]; A← Ga;
113 if i = i0 then cnti0

← cnti0
+ 1

114 if cnti0
= j0 then (a,A)← (ǫ, A0)

115 if i = i′0 then cnti′
0

← cnti′
0

+ 1

116 if cnti′
0

= j′
0 then (a,A)← (ǫ, B0)

117 Apd(SKPMi , (a,A)); return A
118 GenEKP(crt):
119 if ∃i : crt ∈ CMi then

120 x ∈R [p − 1]; X ← Gx

121 Apd(EKPcrt, (x,X));
122 Apd(EKP, (i, x,X)); return X

return ⊥
123 Create(crt, crt

′):

124 if (∃i : crt ∈ Ci) and crt
′.pk ∈ G∗

then

125 if IsEmpty(EKPcrt), then

126 GenEKP(crt)

127 (x,X)← Sft(EKPcrt)
128 sid← (crt, crt

′,X, ǫ, I)
129 get (a, crt.pk) from SKPMi ;
130 Apd(Ssess, (i, sid, a, x, active));
131 return ((crt

′, crt, ǫ, ǫ,R),X)

132 return ⊥
133 Create(crt

′, crt,X):

134 if (∃i′ : crt
′ ∈ Ci′) and X, crt.pk ∈ G∗

then

135 if IsEmpty(EKPcrt′), then

136 GenEKP(crt
′)

137 (y, Y)← Sft(EKPcrt′)
138 sid← (crt

′, crt, Y,X,R);
139 get (a, crt.pk) from SKPM′

i
;

140 Apd(Ssess, (i
′, sid, a, y, accepted))

141 return ((crt, crt
′,X, ǫ, I), Y)

142 return ⊥
143 Sd(sid, Y):
144 if ∃i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess

and sidiEPK = ǫ and stat = active and
Y ∈ G∗

then

145 sidiEPK ← Y ; sidstatus ← accepted

146 return ◮ No value is returned

147 return ⊥
148 RvEPK(X):
149 if (∃i, x : (i, x,X) ∈ EKP and i ∈ S1)

then return x else return ⊥
150 RvSPK(A):
151 if A ∈ {A0, B0} then abort← true;

152 if ∃i, a : (a,A) ∈ SKPMi , then

153 return a;
154 else return ⊥

155 RvSesK(sid):
156 if ∃ i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess and sidstatus = accepted then

157 if sidoc.pk /∈ {A0, B0} then

158 return sidkey ◮ sidkey can be computed from a 6= ǫ and x

159 if sidpc.pk /∈ {A0, B0} and ∃ (i′, sid′, a′, x′, stat’) ∈ Ssess : sid
′ matches sid then

160 return sid
′
key ◮ sid

′
key can be computed from a′ = logG sidpc.pk and x′

22

161 else ◮ sidoc.pk ∈ {A0, B0} and (sidpc.pk ∈ {A0, B0} or no session matches sid)

162 if ∃ (sid′, k) ∈ Skey : sid
′ = sid or sid

′ matches sid then

163 return k ◮ RvSesK was previously issued on sid or its matching session

164 str1 = (sidoc.pk, sidoc.id, sidoc.ui); str2 = (sidpc.pk, sidpc.id, sidpc.ui)
165 dI ← H̄(sidoEPK, sidiEPK, str1, str2); eI ← H̄(sidiEPK, sidoEPK, str1, str2)
166 dR ← H̄(sidoEPK, sidiEPK, str2, str1); eR ← H̄(sidiEPK, sidoEPK, str2, str1)
167 if sidrole = I and ∃(ψ, k) ∈ SH for some k : ψ = (σ, str1, str2, sidoEPK, sidiEPK)

and DDH(G, sidoEPK(sidoc.pk)dI , sidiEPK(sidpc.pk)eI , σ) = 1 then

168 Apd(Skey, (sid, k)); return k

169 if sidrole = R and ∃(ψ, k) ∈ SH for some k: ψ = (σ, str2, str1, sidiEPK, sidoEPK)
and DDH(G, sidoEPK(sidoc.pk)dR , sidiEPK(sidpc.pk)eR , σ) = 1 then

170 Apd(Skey, (sid, k)); return k

171 k ∈R {0, 1}
λ; Apd(Skey, (sid, k)); return k ◮ sidkey was not assigned

return ⊥ ◮ No session with identifier sid exists

172 Finalization:

173 if A provides (sid, σ0) with sidoc.pk ∈ {A0, B0} and sidpc.pk ∈ {A0, B0} \ {sidoc.pk}

then, S computes CDH(A0, B0)

Sim1.1.2

Ay0+e0b0

0

Sim2.1.2

, from x0, y0, d0 and e0 with b0 = logG B0,

x0 = logG sidoEPK, y0 = logG sidiEPK, and d0 and e0 are the H̄ digest values in sid.

Under the RO model, the simulation remains perfect except with negligible
probability, and the static public keys involved in the test session are A0 and B0

with probability > (mNK)−2. If S’ guess is correct and A succeeds S outputs
CDH(A0, B0); S succeeds with probability > (mNK)−2 Pr(E.1.1.2) − 2mNK/q,
which is non–negligible unless Pr(E.1.1.2) is negligible. Under the RO model and
the GDH assumption, E.1.1.2 occurs with negligible probability.

Events E.1.1.3 and E.1.1.4. Recall that E.1.1.3 and E.1.1.4 are respectively
“E.1.1 ∧ A issues RvSPK(sidoc.pk) and RvEPK(sidiEPK)” and “E.1.1 ∧ A issues
RvEPK(sidoEPK) and RvSPK(sidpc.pk)”, the roles of the test session owner and its
peer in E.1.1.4 and E.1.1.4 are symmetrical. It then suffices to consider E.1.1.3. If
E.1.1.4 occurs with non–negligible probability, using a DDH oracle we show the
existence of an efficient CDH solver which succeeds with non–negligible proba-
bility.

Simulation Sim1.1.4,Sim1.3.2

Oracles: GenCrt(·, ·),DDH(·, ·, ·, ·)
Input: m ∈ N, S1 ⊂ [m], Sid = {id1, · · · , idn}, and A0, Y0 ∈R G

∗

200 Initialization:

201 S2 ← [m] \ S1; i0 ∈R S1; j0 ∈R [NK]; j′
0 ∈R [NA]; cnti0

← 0; cnti′
0

← 0;

202 i′0 ∈R S1 \ {i0}

Sim1.1.4

i′0 ∈R S2

Sim1.3.2

203 H(s):
204 if ∃ k : (s, k) ∈ SH then return k;
205 else if ∃ (sid, k) ∈ Skey : s = (σ, sidoc.pk, sidoc.id, sidoc.ui, sidpc.pk, sidpc.id, sidpc.ui,

sidoEPK, sidiEPK) or s = (σ, sidpc.pk, sidpc.id, sidpc.ui, sidoc.pk, sidoc.id, sidoc.ui, sidiEPK, sidoEPK)
for some σ then ◮ sidkey was assigned and the sid session signature is unknown

206 str1 = (sidoc.pk, sidoc.id, sidoc.ui); str2 = (sidpc.pk, sidpc.id, sidpc.ui)

23

207 dI ← H̄(sidoEPK, sidiEPK, str1, str2); eI ← H̄(sidiEPK, sidoEPK, str1, str2)
208 dR ← H̄(sidoEPK, sidiEPK, str2, str1); eR ← H̄(sidiEPK, sidoEPK, str2, str1)
209 if (sidrole = I and DDH(G, sidoEPK (sidoc.pk)dI , sidiEPK(sidpc.pk)eI , σ) = 1) or

(sidrole = R and DDH(G, sidoEPK (sidoc.pk)dR , sidiEPK(sidpc.pk)eR , σ) = 1) then

210 return k
211 else k ∈R {0, 1}

l; Apd(SH , (s, k)); return k

212 GenSKP(Mi):

213 a ∈R [p − 1]; A← Ga;
214 if i = i0 then cnti0

← cnti0
+ 1

215 if cnti0
= j0 then (a,A)← (ǫ, A0)

216 Apd(SKPMi , (a,A)); return A
217 GenEKP(crt):
218 if ∃i : crt ∈ CMi then

219 x ∈R [p − 1]; X ← Gx

220 if crt ∈ Ci′
0

then cnti′
0

← cnti′
0

+ 1

221 if cnti′
0

= j′
0 then

222 (x,X)← (ǫ, Y0)

223 Apd(EKPcrt, (x,X))
224 Apd(EKP, (i, x,X)); return X

return ⊥
225 Create(crt, crt

′):

226 if (∃i : crt ∈ Ci) and crt
′.pk ∈ G∗

then

227 if IsEmpty(EKPcrt) then

228 GenEKP(crt)

229 (x,X)← Sft(EKPcrt)
230 if i = i′0 and X = Y0 and

crt
′.pk 6= A0 then

231 abort← true

232 sid← (crt, crt
′,X, ǫ, I);

233 get (a, crt.pk) from SKPMi

234 Apd(Ssess, (i, sid, a, x, active))
235 return ((crt

′, crt, ǫ, ǫ,R),X)

236 return ⊥
237 Create(crt

′, crt,X):

238 if (∃i′ : crt
′ ∈ Ci′) and X, crt.pk ∈ G∗

then

239 if IsEmpty(EKPcrt′), then

240 GenEKP(crt
′)

241 (y, Y)← Sft(EKPcrt′)
242 if i′ = i′0 and Y = Y0 and

crt.pk 6= A0 then

243 abort← true

244 sid← (crt
′, crt, Y,X,R)

245 get (a, crt
′.pk) from SKPM′

i

246 Apd(Ssess, (i
′, sid, a, y, accepted))

247 return ((crt, crt
′,X, ǫ, I), Y)

248 return ⊥
249 Sd(sid, Y):
250 if ∃i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess

and sidiEPK = ǫ and stat =
active and Y ∈ G∗

then

251 sidiEPK ← Y
252 sidstatus ← accepted;
253 return ◮ No value is returned

254 return ⊥
255 RvEPK(X):
256 if X = Y0 then abort← true

257 if (∃i, x : (i, x,X) ∈ EKP and i ∈ S1)
then return x;

258 else return ⊥
259 RvSPK(A):
260 if A = A0 then abort← true

261 if ∃i, a : (a,A) ∈ SKPMi , then return a;
262 else return ⊥

263 RvSecExp(sid):
264 if ∃i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess and sidiEPK 6= ǫ and i ∈ S2 then

265 if sidoEPK = Y0 then abort← true

Sim1.3.2

266 if sidrole = I then

267 str ← (sidoEPK, sidiEPK, sidoc.pk, sidoc.id, sidoc.ui, sidpc.pk, sidpc.id, sidpc.ui)
268 else str← (sidoEPK, sidiEPK, sidpc.pk, sidpc.id, sidpc.ui, sidoc.pk, sidoc.id, sidoc.ui)

269 d← H̄(str); return x+ da

270 return ⊥

24

271 RvSesK(sid):
272 if ∃ i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess and sidstatus = accepted then

273 if sidoEPK = Y0 then abort← true

274 if sidoc.pk 6= A0 then return sidkey ◮ sidkey can be computed

275 if sidpc.pk 6= A0 and ∃ (i′, sid′, a′, x′, stat’) ∈ Ssess : sid
′ matches sid then

276 return sid
′
key

277 else ◮ sidoc.pk = A0 and (sidpc.pk = A0 or no session matches sid)

278 if ∃ (sid′, k) ∈ Skey : sid
′ = sid or sid

′ matches sid then

279 return k ◮ RvSesK was previously issued on sid or its matching session

280 str1 = (sidoc.pk, sidoc.id, sidoc.ui); str2 = (sidpc.pk, sidpc.id, sidpc.ui)
281 dI ← H̄(sidoEPK, sidiEPK, str1, str2); eI ← H̄(sidiEPK, sidoEPK, str1, str2)
282 dR ← H̄(sidoEPK, sidiEPK, str2, str1); eR ← H̄(sidiEPK, sidoEPK, str2, str1)
283 if sidrole = I and ∃(ψ, k) ∈ SH for some k : ψ = (σ, str1, str2, sidoEPK, sidiEPK)

and DDH(G, sidoEPK(sidoc.pk)dI , sidiEPK(sidpc.pk)eI , σ) = 1 then

284 Apd(Skey, (sid, k)); return k

285 if sidrole = R and ∃(ψ, k) ∈ SH for some k : ψ = (σ, str2, str1, sidiEPK, sidoEPK)
and DDH(G, sidoEPK(sidoc.pk)dR , sidiEPK(sidpc.pk)eR , σ) = 1 then

286 Apd(Skey, (sid, k)); return k

287 k ∈R {0, 1}
λ; Apd(Skey, (sid, k)); return k ◮ sidkey was not assigned

288 return ⊥
289 Finalization:

290 if A provides (sid, σ0) as output with (sidoc.pk = A0 and sidiEPK = Y0) or (sidpc.pk =
A0 and sidoEPK = Y0) then S computes CDH(A0, Y0), from x0, q′

0, d0 and e0 where
x0 and q′

0 are respectively the private keys corresponding to the ephemeral and
static keys involved in sid, other than and Y0 and A0, and d0 and e0 are the H̄
digest values in sid.

Under the RO model and the DDH assumption the simulation remains per-
fect except with negligible probability. The deviation occurs with probability
6 m(NA + NK)/q and S guesses correctly the test session with probability >

(m2NAN2
K)−1 and if S’ guess is correct and A succeeds, S outputs CDH(A0, Y0).

S succeeds with probability > (m2NAN2
K)−1 Pr(E.1.1.4) − m(NA + NK)/q which

is non–negligible unless Pr(E.1.1.4) is negligible.
The events E.1.1.1, E.1.1.2, E.1.1.3, and E.1.1.4 occur with negligible proba-

bility; E.1.1 cannot occur with non–negligible probability.

Analysis of E.1.2. In E.1.2, “A succeeds in forging attack against some session

sid which matching session sid
′

exists, and the owners of both sid and sid
′

follow
the second approach”, the strongest queries A can issue on the secrets related
to sid are RvSPK(sidoc.pk) and RvSPK(sidpc.pk). Using the simulation Sim1.2 and
the same argumentation as for E.1.1.1, we derive that S succeeds with probabil-
ity > (mNANK)−2 Pr(E.1.2) − 2mNA/q, showing that Pr(E.1.2) is negligible.

Analysis of E.1.3. In E.1.3, A succeed in forging the signature of a session sid

which matching session sid
′

exits and the owners of sid and sid
′

follow differ-
ent implementation approaches, we assume wlog that the owner of sid follows
the first implementation approach. The strongest queries on the secrets related

25

to sid A can issue in E.1.3 are(i) RvSPK(sidoc.pk) and RvSPK(sidpc.pk), and
(ii) RvSPK(sidoEPK) and RvEPK(sidpc.pk). It suffices to show that the events

– E.1.3.1: E.1.3 ∧ A issues RvSPK(sidoc.pk) and RvSPK(sidpc.pk) and
– E.1.3.2: E.1.3 ∧ A issues RvEPK(sidoEPK) and RvSPK(sidpc.pk)

occur with negligible probability.

Event E.1.3.1. Using the simulation Sim1.3.1 and the same argumentation as
in the analysis of E.1.1.1, S succeeds with probability > (mNANK)−2 Pr(E.1.3.1)−
2mNA/q, which is non–negligible, unless Pr(E.1.3.1) is negligible; E.1.3.1 occurs
with negligible probability.

Event E.1.3.2. The simulation Sim1.3.2 and the same argumentation as in
Event E.1.1.4 show that S succeeds with probability > (m2NANK)−1 Pr(E.1.3.2)−
m(NA + NK)/q. This shows that under the Gap DH assumption and the RO
model Pr(E.1.3.2) is negligible.

We have shown that none of E.1.1, E.1.2, and E.1.3 occurs with non–negligible
probability. Hence E.1 does not occur, except with negligible probability.

Analysis of E.2

We recall first some results from [26,27] we need in the analysis of E.2.

Definition 2 (FXCR Signature). The FXCR signature of a party M static
public key B on a challenge X together with a message m provided by a verifier

is FSigB(X, m) = (Y, Xy+H̄(Y,X,m)b), where y = logG Y and b = logG B.

Game 6 The FXCR Security Game

1) The attacker A is given a public key B, a challenge X0, together with a signing and
a hashing oracle.

2) The attacker halts with output (0, 0, 0, 0, 0) to indicate a failure, or a quintuple
(m0,X0, Y0, B, σ0) such that:
a) (Y0, σ0) is a valid signature with respect to B and a message–challenge pair

(m0,X0), and
b) (Y0, σ0) is a fresh signature, i. e., (Y0, σ0) was never generated by the signing

oracle on a request with parameters (m0,X0).

From [26, Thm. 1] and [27, Prop. 3], under the RO model and the CDH assump-
tion, no efficient attacker can succeed in Game 6 with non–negligible probability.

Definition 3 (FDCR Signature). The FDCR signature of two parties M
and M ′ with respective static public keys A and B, and respective challenge–
message pairs (X, m1) and (Y, m2) is FDSigA,B(m1, m2, X, Y) = (XAd)y+eb =

(Y Be)x+da, wherein d = H̄(X, Y, m1, m2) and e = H̄(Y, X, m1, m2).

From [26, Thm. 2] and [27, Prop. 4], under the RO model and the CDH assump-
tion, no efficient attacker can succeed in Game 7 with non–negligible probability.

26

Figure 7 FDCR Security Game

1) The attacker A is given a randomly chosen key pair (a, A) and a message–
challenge pair (X0, m10

); and is also given access to a hashing oracle, and a
signing oracle simulating M ′

i role.
2) The attacker halts with output (0, 0, 0, 0, 0, 0, 0) to indicate a failure, or a

septuple (m10
, m20

, X0, Y0, A, B, σ0) such that
a) σ0 is a valid FDCR signature on messages m10

, m20
and challenges X0, Y0

with respect to the public keys A and B.
b) σ0 was not generated as a signature on message–challenge pairs (m′

1, X0),
(m′

2, Y0) such that m′
1||m′

2 = m10
||m20

.

We now consider the event E.2 (A succeeds in forging the signature of a fresh
session without a matching session), which divides in

– E.2.1:“E.2 ∧ the owners of both sid and sidpc (peer’s certificate) follow the
first implementation approach”;

– E.2.2:“E.2 ∧ the owners of both sid and sidpc follow the second implementa-
tion approach”; and

– E.2.3:“E.2 ∧ the owners of sid and sidpc follow different implementation ap-
proaches”.

Analysis of E.2.1. The strongest queries on the secrets related to sid A can
issue in E.2.1 are (i) RvSPK(sidoc.pk), and (ii) RvEPK(sidoEPK). We consider the
following events:

– E.2.1.1: “E.2.1 ∧ A issues RvSPK(sidoc.pk), and
– E.2.1.2: “E.2.2 ∧ A issues RvEPK(sidoEPK).

Event E.2.1.1. If E.2.1.1 occurs with non–negligible probability, we show
the existence of an efficient FDCR forger which succeeds with non–negligible
probability. We use the simulation Sim2.1.1 (only changes compared to Sim1.1.1

are drawn).

Simulation Sim2.1.1

Oracles: GenCrt(·, ·),DDH(·, ·, ·, ·)
Input: m ∈ N, S1 ⊂ [m], X0, B0 ∈R G

∗, Sid = {id1, · · · , idn} a0 ∈R [p], A0 = Ga0

300 Initialization:

301 i0 ∈R S1; i′0 ∈R S1 \ {i0}; S2 ← [m] \ S1; j0, j
′
0 ∈R [NK], j′′

0 ∈R [NA];
302 cnt1i0

← 0; cnt2i0
← 0; cnti′

0

← 0;

303 H(s):
304 if ∃ k : (s, k) ∈ SH , then return k
305 else if ∃ (sid, k) ∈ Skey : s = (σ, sidoc.pk, sidoc.id, sidoc.ui, sidpc.pk, sidpc.id, sidpc.ui,

sidoEPK, sidiEPK) or s = (σ, sidpc.pk, sidpc.id, sidpc.ui, sidoc.pk, sidoc.id, sidoc.ui, sidiEPK, sidoEPK)
for some σ then ◮ sidkey was assigned and the sid session signature is unknown

306 str1 = (sidoc.pk, sidoc.id, sidoc.ui); str2 = (sidpc.pk, sidpc.id, sidpc.ui)
307 dI ← H̄(sidoEPK, sidiEPK, str1, str2); eI ← H̄(sidiEPK, sidoEPK, str1, str2)
308 dR ← H̄(sidoEPK, sidiEPK, str2, str1); eR ← H̄(sidiEPK, sidoEPK, str2, str1)
309 if (sidrole = I and DDH(G, sidoEPK (sidoc.pk)dI , sidiEPK(sidpc.pk)eI , σ) = 1) or

(sidrole = R and DDH(G, sidoEPK (sidoc.pk)dR , sidiEPK(sidpc.pk)eR , σ) = 1) then

310 return k
311 else k ∈R {0, 1}

l; Apd(SH , (s, k)); return k

27

312 GenSKP(Mi):

313 a ∈R [p − 1]; A← Ga;
314 if i = i0 then cnt1i0

← cnt1i0
+ 1

315 if cnt1i0
= j0 then

316 (a,A)← (a0, A0)

317 if i = i′0 then cnti′
0

← cnti′
0

+ 1

318 if cnti′
0

= j′
0 then

319 (a,A)← (ǫ, B0)

320 Apd(SKPMi , (a,A)); return A
321 GenEKP(crt):
322 if ∃i : crt ∈ CMi then

323 x ∈R [p − 1]; X ← Gx

324 if crt.pk = A0 then

325 cnt2i0
← cnt2i0

+ 1
326 if cnt2i0

= j′′
0 then

327 (x,X)← (ǫ,X0)

328 Apd(EKP, (i, x,X))
329 Apd(EKPcrt, (x,X)); return X

return ⊥
330 Create(crt, crt

′):

331 if (∃i : crt ∈ Ci) and crt
′.pk ∈ G∗

then

332 if IsEmpty(EKPcrt) then

333 GenEKP(crt)

334 (x,X)← Sft(EKPcrt)
335 if crt.pk = A0 and X = X0 and

crt
′.pk 6= B0 then abort← true; ◮ S’

guess failed

336 sid← (crt, crt
′,X, ǫ, I);

337 get (a, crt.pk) from SKPMi ;
338 Apd(Ssess, (i, sid, a, x, active));

339 return ((crt
′, crt, ǫ, ǫ,R), X)

340 return ⊥ ◮ no party owns crt

341 Create(crt
′, crt,X):

342 if (∃i′ : crt
′ ∈ Ci′) and X, crt.pk ∈ G∗

then

343 if IsEmpty(EKPcrt′), then

344 GenEKP(crt
′)

345 (y, Y)← Sft(EKPcrt′)
346 sid← (crt

′, crt, Y,X,R);
347 get (a, crt

′.pk) from SKPMi′ ;
348 Apd(Ssess, (i

′, sid, a, y, accepted))
349 return ((crt, crt

′,X, ǫ, I), Y)

350 return ⊥
351 Sd(sid, Y):
352 if ∃i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess

and sidiEPK = ǫ and stat = active and
Y ∈ G∗

then

353 sidiEPK ← Y ; sidstatus ← accepted;
354 return ◮ No value is returned

355 return ⊥
356 RvEPK(X):
357 if X = X0 then abort← true

358 if (∃i, x : (i, x,X) ∈ EKP and i ∈ S1),
then return x;

359 else return ⊥
360 RvSPK(A):
361 if A = B0 then abort← true

362 if ∃i, a : (a,A) ∈ SKPMi , then

363 return a
364 else return ⊥

365 RvSesK(sid):
366 if ∃ i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess and sidstatus = accepted then

367 if sidoEPK = X0 then abort← true;

368 if sidoc.pk 6= B0 then return sidkey ◮ sidkey can be computed from a 6= ǫ and x

369 if sidpc.pk 6= B0 and ∃ (i′, sid′, a′, x′, stat’) ∈ Ssess : sid
′ matches sid then

370 return sid
′
key ◮ sid

′
key can be computed from a′ = logG sidpc.pk and x′

371 else ◮ sidoc.pk = B0 and (sidpc.pk = B0 or no session matches sid)

372 if ∃ (sid′, k) ∈ Skey : sid
′ = sid or sid

′ matches sid then

373 return k ◮ RvSesK was previously issued on sid or its matching session

374 str1 = (sidoc.pk, sidoc.id, sidoc.ui); str2 = (sidpc.pk, sidpc.id, sidpc.ui)
375 dI ← H̄(sidoEPK, sidiEPK, str1, str2); eI ← H̄(sidiEPK, sidoEPK, str1, str2)
376 dR ← H̄(sidoEPK, sidiEPK, str2, str1); eR ← H̄(sidiEPK, sidoEPK, str2, str1)
377 if sidrole = I and ∃ (ψ, k) ∈ SH for some k : ψ = (σ, str1, str2, sidoEPK, sidiEPK)

and DDH(G, sidoEPK(sidoc.pk)dI , sidiEPK(sidpc.pk)eI , σ) = 1 then

378 Apd(Skey, (sid, k)); return k

379 if sidrole = R and ∃ (ψ, k) ∈ SH for some k: ψ = (σ, str2, str1, sidiEPK, sidoEPK)
and DDH(G, sidoEPK(sidoc.pk)dR , sidiEPK(sidpc.pk)eR , σ) = 1 then

28

380 Apd(Skey, (sid, k)); return k

381 k ∈R {0, 1}
λ; Apd(Skey, (sid, k)); return k ◮ sidkey was not assigned

return ⊥ ◮ No session with identifier sid exists

382 Finalization: If A provides (sid, σ0) with sidoc.pk = A0, sidoEPK = X0, and sidpc.pk =
B0, S outputs σ0 as a FDCR forgery (with respect to the public keys A0 and B0) on
message–challenge pairs (m10

,X0) and (m20
, Y0), where m10

= (crt0.pk, crt0.id, crt0.ui),
m20

= (sidpc.pk, sidpc.id, sidpc.ui), and Y0 = sidiEPK.

Under the RO model and the GDH assumption the simulation is perfect, except
with negligible probability. S′ guess of the parties involved in the test session
(Mi0

and Mi′
0
) is correct with probability > m−2. When S’s guess is correct,

a deviation occurs when A0 (resp. B0) is generated as a static public key for a
party Mi′ which is different from Mi0

(resp. Mi′
0
), or X0 is generated as outgoing

ephemeral key in a session which is different from sid; this occurs with probability
6 m(2NK + NA)/q. And, when S’ guess of the peers is correct, it occurs that
sidoc.pk = A0, sidpc.pk = B0, and sidoEPK = X0, with probability (N2

KNA)−1.
Then S succeeds with probability > (m2NAN2

K)−1 Pr(E.2.1.1)−m(2NK +NA)/q,
and contradicts then [26, Thm. 2] and [27, Prop. 4]. The event E.2.1.1 occurs
with negligible probability.

Event E.2.1.2. We use the same simulation and a similar argumentation
as in E.1.1.2. From A0, B0 ∈R G∗, S outputs Ay0+e0b0 with probability >

(m2N2
K)−1 Pr(E.2.1.2) − 2m(NK)/q which is non–negligible unless Pr(E.2.1.2)

is negligible. Hence, using the General Forking Lemma [2, Lem. 1], S yields an
efficient CDH, contradicting in turn the GDH assumption; E.2.1.2 occurs with
negligible probability.

Event E.2.2. We do not provide a direct simulation, instead we show that
the success probability of any efficient attacker A1 in E.2.2 is upper bounded by
that of an efficient attacker A which succeeds with negligible probability.

Let A1 be an efficient attacker which succeeds in E.2.2 with non–negligible
probability. As A1 is efficient, let LS = Q(λ) for some polynomials Q, be an
upper bound on the number of times A1 issues GenEKP(·). Whenever A1 issues
GenEKP(crt1), for some certificate crt1, to receive an ephemeral key X , let P (λ),
for some polynomials P , be an upper bound on the number of H̄ queries on
messages with format (X, Z, crt1.pk, crt1.id, crt1.ui, crt′.pk, crt′.id, crt′.ui) or (Z,
X, crt′.pk, crt′.id, crt′.ui, crt1.pk, crt1.id, crt1.ui), wherein Z ∈ G∗ and crt′ is a cer-
tificate, A1 issues before he provides the incoming ephemeral key (if any) in
the session with outgoing ephemeral key X . Using A1, we build an attacker A2

which behaves as follows:

1) A1 submits his queries to A2 who forwards them to S, and forwards the
answers back to A1, except for the following.
a) For any certificate, A2 keeps a record of the generated ephemeral public

keys which are not used yet; i. e., using the notations in the previous
simulations, for all certificate crt, A2 keeps a record of EKPcrt.

b) For all X in EKPcrt, A2 keeps a record of the H̄ queries on messages with
format (X, Z, crt.pk, crt.id, crt.ui, crt′.pk, crt′.id, crt′.ui) or (X, Z, crt′.pk, crt′.id,
crt′.ui, crt.pk, crt.id, crt.ui).

29

c) When A1 issues Create(crt1, crt2), A2 does the following:
• He forwards the query to S, forwards back the answer to A1, and keeps

a record of the answer ((crt2, crt1, ǫ, ǫ, R), X);
• When A1 issues later Sd((crt1, crt2, X, ǫ, I), Y), with some Y ∈ G∗

◦ A2 issues H̄ queries on messages with format (X, Z, crt1.pk, crt1.id,
crt1.ui, crt′.pk, crt′.id, crt′.ui) or (X, Z, crt′.pk, crt′.id, crt′.ui, crt1.pk, crt1.id,
crt1.ui), for some Z ∈ G∗ and some certificate crt′, until TS = P (λ) + 1
queries on messages with the indicated format are issued since the
generation of X , including one query on (X, Y, crt1.pk, crt1.id, crt1.ui,
crt2.pk, crt2.id, crt2.ui).

◦ He forwards the Sd((crt1, crt2, X, ǫ, I), Y) query to S, and forwards
back the answer (if any) to A1.

d) When A1 issues Create(crt1, crt2, X), A2 does the following:
• He gets from EKPcrt1

the ephemeral key Y the owner of crt1 will use
when activated (he issues GenEKP(crt1) in the case EKPcrt1

is empty).
• He issues H̄ queries on messages with format (Y, Z, crt′.pk, crt′.id, crt′.ui,

crt1.pk, crt1.id, crt1.ui) or (Y, Z, crt1.pk, crt1.id, crt1.ui, crt′.pk, crt′.id, crt′.ui)
until TS queries on messages with the indicated format are issued since
the generation of Y , including one query on (Y, X, crt2.pk, crt2.id, crt2.ui,
crt1.pk, crt1.id, crt1.ui).

• He forwards the Create(crt1, crt2, X) query to S and forwards back the
answer (if any) to A1.

2) A2 outputs whatever A1 outputs.

Using any simulator Sim which is indistinguishable from a real environment,
A2 provides for A1 a simulation which is also indistinguishable from a real en-
vironment. In addition, A2 is efficient and succeeds with the same probability
than A1. So, the pair (A1, A2) can be viewed as an efficient attacker A which
performs as follows.

1) For all certificate crt1, if EKPcrt1
is empty, A issues GenEKP(crt1) before

issuing Create(crt1, crt2) or Create(crt1, crt2, X) for some certificate crt2 and
X ∈ G∗.

2) When A issues Create(crt1, crt2) and receives ((crt2, crt1, ǫ, ǫ, R), X), before
issuing Sd((crt1, crt2, X, ǫ, I), Y), with some Y ∈ G∗, he ensures that TS H̄
queries on messages with format (X, Z, crt1.pk, crt1.id, crt1.ui, crt′.pk, crt′.id,
crt′.ui) or (X, Z, crt′.pk, crt′.id, crt′.ui, crt1.pk, crt1.id, crt1.ui), including one que-
ry on (X, Y, crt1.pk, crt1.id, crt1.ui, crt2.pk, crt2.id, crt2.ui), are issued since the
generation of X .

3) Before issuing Create(crt1, crt2, X), he ensures that TS H̄ queries on messages
with format (Y, Z, crt′.pk, crt′.id, crt′.ui, crt1.pk, crt1.id, crt1.ui) or (Y, Z, crt1.pk,
crt1.id, crt1.ui, crt′.pk, crt′.id, crt′.ui), including one query on (Y, X, crt2.pk, crt2.id,
crt2.ui, crt1.pk, crt1.id, crt1.ui), are issued since the generation of Y (the outgo-
ing ephemeral key the owner of crt will use when activated; A is in possession
of EKPcrt1

and knows Y).

As from any efficient attacker A1, we can build A2 and then A = (A1, A2),
it suffices to show that any attacker which behaves as A succeeds in E.2.2 with

30

negligible probability. We assume wlog the A directs parties for ephemeral key
generation exactly LS times. Let W = [Ts]LS and sid(j) denote the identifier
of the session which outgoing ephemeral key is generated at the j–th call of
GenEKP since the start of the game. We denote by W the random variable tak-
ing values in W such that for w = (w1, · · · , wLS

) ∈ W, Pr(W = w) denotes the

probability that for all j ∈ [LS], at the session sid(j), if A provides the owner

of sid(j) with an incoming ephemeral key and before this is performed, the2 H̄

query on (sid
(j)
oEPK, sid

(j)
iEPK, sid(j)

oc .pk, sid(j)
oc .id, sid(j)

oc .ui, sid(j)
pc .pk, sid(j)

pc .id, sid(j)
pc .ui) in

the case sid
(j)
role = I, or on (sid

(j)
oEPK, sid

(j)
iEPK, sid(j)

pc .pk, sid(j)
pc .id, sid(j)

pc .ui, sid(j)
oc .pk,

sid(j)
oc .id, sid(j)

oc .ui) in the case sid
(j)
role = R is issued for the first time at the wj–

th H̄ query (since the generation of sid
(j)
oEPK) on messages with format (sid

(j)
oEPK, Z,

sid(j)
oc .pk, sid(j)

oc .id, sid(j)
oc .ui, crt′.pk, crt′.id, crt′.ui) or (sid

(j)
oEPK, Z, crt′.pk, crt′.id, crt′.ui,

sid(j)
oc .pk, sid(j)

oc .id, sid(j)
oc .ui). We denote by Poss(W) the set {w ∈ W : Pr(W =

w) 6= 0}, and by Pr(SuccA,E.2.2) the probability that A succeeds in E.2.2.

Pr(SuccA,E.2.2) =
∑

w∈Poss(W)

Pr(SuccA,E.2.2 | W = w) Pr(W = w)

6 max
w∈Poss(W)

Pr(SuccA,E.2.2 | W = w). (1)

Then, it suffices to show that for all w ∈ W, Pr(SuccA,E.2.2 | W = w) is neg-
ligible. Suppose the existence of w ∈ W such that Pr(SuccA,E.2.2 | W = w)
is non–negligible, using A, we contradict [26, Thm. 1], and in turn the CDH
assumption. We use the simulation Sim2.2 (wherein we draw only changes com-
pared to Sim1.1.1) for this purpose. Recall that the strongest query on the secrets
related to sid A can issue in E.2.2 is RvSPK(sidoc.pk).

Simulation Sim2.2, Sim2.3.1.1

Oracles: GenCrt(·, ·)
Input: m ∈ N, S1 ⊂ [m], Sid = {id1, · · · , idn}, X0, B0 ∈R G

∗, w = (w1, · · · , wLS) ∈W

400 Initialization:

401 S2 ← [m] \ S1; j0 ∈R [NA], j′
0 ∈R [NK]; i0 ∈R S2; i′0 ∈R S2 \ {i0}

Sim2.2

i0 ∈R S1; i′0 ∈R S2

Sim2.3.1.1

402 cnti0
← 0; cnti′

0

← 0; j ← 0

403 H̄(s):
404 if ∃ d : (s, d) ∈ SH̄ , then return d;
405 else if s = (Y,Z, crt.pk, crt.id, crt.ui, crt

′.pk, crt
′.id, crt

′.ui) or s = (Y,Z, crt
′.pk, crt

′.id,
crt

′.ui, crt.pk, crt.id, crt.ui), for some Y,Z ∈ G∗ and certificates crt and crt
′

then

406 if ∃ crt1, s : (Y, crt1, s) ∈ LB0
and crt1 ∈ {crt, crt

′} then ◮ Lj,Y,crt,s,e is uniquely

defined, see lines 426–429

407 if |Lj,Y,crt,s,e| = wj − 1 then Apd(SH̄ , (s, e)); Apd(Lj,Y,crt,s,e, (s, e)); return e
408 else d ∈R {0, 1}

l; Apd(SH̄ , (s, d)); Apd(Lj,Y,crt,s,e, (s, d)); return d

409 else d ∈R {0, 1}
l; Apd(SH̄ , (s, d)); return d

2 Our construction of A ensures that such a H̄ query is issued.

31

410 GenSKP(Mi):

411 a ∈R [p − 1]; A← Ga;
412 if i = i′0 then cnti′

0

← cnti′
0

+ 1

413 if cnti′
0

= j′
0 then (a,A)← (ǫ, B0)

414 Apd(SKPMi , (a,A)); return A
415 GenEKP(crt):
416 if ∃i : crt ∈ CMi then

417 j ← j + 1
418 x ∈R [p − 1]; X ← Gx

419 if crt ∈ CMi0
then

420 cnti0
← cnti0

+ 1
421 if cnti0

= j0 then

422 (x,X)← (ǫ,X0)

423 if crt.pk = B0 then

424 s ∈R [p− 1]; e ∈R {0, 1}
l

425 Y ← GsB−e

426 if ∃i′, x : (i′, x, Y) ∈ EKP then

427 abort← true

428 Lj,Y,crt,s,e ← {}
429 Apd(LB0

, (Y, crt, s))
430 (x,X)← (ǫ, Y)

431 Apd(EKP, (i, x,X))
432 Apd(EKPcrt, (x,X)); return X

return ⊥
433 Create(crt, crt

′):

434 if (∃i : crt ∈ Ci) and crt
′.pk ∈ G∗

then

435 (x,X)← Sft(EKPcrt)
436 if i = i0 and X = X0 and crt

′.pk 6=
B0 then abort← true

437 sid← (crt, crt
′,X, ǫ, I);

438 get (a, crt.pk) from SKPMi ;

439 Apd(Ssess, (i, sid, a, x, active));
440 return ((crt

′, crt, ǫ, ǫ,R), X)

441 return ⊥ ◮ no party owns crt or

crt
′.pk /∈ G∗

442 Create(crt
′, crt,X):

443 if (∃i′ : crt
′ ∈ Ci′) and X, crt.pk ∈ G∗

then

444 (y, Y)← Sft(EKPcrt′)
445 sid← (crt

′, crt, Y,X,R);
446 get (a, crt

′.pk) from SKPMi′ ;
447 Apd(Ssess, (i

′, sid, a, y, accepted))
448 return ((crt, crt

′,X, ǫ, I), Y)

449 return ⊥
450 Sd(sid, Y):
451 if ∃i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess

and sidiEPK = ǫ and stat = active and
Y ∈ G∗

then

452 sidiEPK ← Y ;
453 sidstatus ← accepted;
454 return

455 return ⊥
456 RvEPK(X):
457 if (∃i, x : (i, x,X) ∈ EKP and i ∈ S1),

then return x;
458 else return ⊥
459 RvSPK(A):
460 if A = B0 then

461 abort← true

462 if ∃i, a : (a,A) ∈ SKPMi then

463 return a
464 else return ⊥

465 RvSecExp(sid):
466 if ∃i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess and sidiEPK 6= ǫ and i ∈ S2 then

467 if sidoc.pk = B0 then ◮ ∃s : (sidoEPK, sidoc, s) ∈ LB0

468 get s : (sidoEPK, sidoc, s) ∈ LB0
; return s

469 else

470 if sidrole = I then

471 str ← (sidoEPK, sidiEPK, sidoc.pk, sidoc.id, sidoc.ui, sidpc.pk, sidpc.id, sidpc.ui)
472 else str← (sidoEPK, sidiEPK, sidpc.pk, sidpc.id, sidpc.ui, sidoc.pk, sidoc.id, sidoc.ui)

473 d← H̄(str); return x+ da

474 else

475 return ⊥
476 RvSesK(sid):
477 if ∃ i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess and sidstatus = accepted then

478 return sidkey ◮ sidkey can be computed using the signature

479 return ⊥

32

480 Finalization:

481 if A provides (sid, σ0) with sidoEPK = X0 and sidpc.pk = B0 then S computes

σ0(Y0B
e0

0)−d0a0 = (Y0B
e0

0)x0+d0a0 (Y0B
e0

0)−d0a0 = Xy0+e0b0

0 ,

wherein Y0 = sidiEPK, x0 = logG X0, y0 = logG Y0, b0 = logG B0, a0 = logG sidoc.pk,
and d0 and e0 are the H̄ digest values in sid (taking into account sidrole), and outputs
(Y0, σ0) as an FXCR forgery on challenge X0 and message (sidoc.pk, sidoc.id, sidoc.ui,-
sidpc.pk, sidpc.id, sidpc.ui) with respect to the public key B0.

From the definition of A, the simulation is consistent, and under the RO model
it is perfect except with negligible probability. A deviation occurs (at line 427)
when a previously generated ephemeral is chosen in a call of GenEKP(crt) with
crt.pk = B0; this occurs with probability 6 (mNA)2/2q, which is negligible. S’
guess of the test-session is correct with probability > (m2NAN2

K)−1, and when
the guess is correct and A succeeds, S outputs a FXCR forgery on challenge
X0 and message (sidoc.pk, sidoc.id, sidoc.ui, sidpc.pk, sidpc.id, sidpc.ui) with respect
to the public key B0. S succeeds with probability > (m2NAN2

K)−1 Pr(SuccA,E.2.2 |
W = w)−(mNA)2/2q, which is non–negligible, unless Pr(SuccA,E.2.2 | W = w) is
negligible. As it is already known that any efficient FXCR forger succeeds with
negligible probability, it follows that for all w ∈ W, Pr(SuccA,E.2.2 | W = w) is
negligible, and from (1), and our construction of A that any efficient attacker
succeeds in E.2.2 with negligible probability.
Analysis E.2.3. If E.2.3 (sid has no matching session and the owners of sid and
sidpc follow different implementation approaches), either (i) E.2.3.1 : “E.2.3 ∧
the owner of sid follows the Approach 1” or (ii) E.2.3.2 : “E.2.3 ∧ the owner of
sid follows the Approach 2” occur with non–negligible probability.

In E.2.3.1, the strongest queries related to sid A can issue are RvSPK(sidoc.pk)
or RvEPK(sidoEPK). So, we consider the events

– E.2.3.1.1: “E.2.3.1 ∧ A issues RvSPK(sidoc.pk)”, and
– E.2.3.1.2: “E.2.3.1 ∧ A issues RvEPK(sidoEPK)”.

Event E.2.3.1.1. We consider the same attacker as in as E.2.2, and consider
the simulation Sim2.3.1.1. The same argumentation as E.2.2 shows that E.2.3.1.1
occurs with negligible probability.

Event E.2.3.1.2. We consider an attacker which behaves as in E.2.2, and the
simulation Sim2.3.1.2.

Simulation Sim2.3.1.2

Oracles: GenCrt(·, ·), DDH(·, ·, ·, ·)
Input: m ∈ N, S1 ⊂ [m], Sid = {id1, · · · , idn}, A0, B0 ∈R G

∗, w = (w1, · · · , wLS) ∈W

500 Initialization:

501 j0, j
′
0 ∈R [NK]; cnti0

← 0; cnti′
0

← 0; S2 ← [m] \ S1; i0 ∈R S1; i′0 ∈R S2

502 H̄(s):
503 if ∃ d : (s, d) ∈ SH̄ , then return d;
504 else if s = (Y,Z, crt.pk, crt.id, crt.ui, crt

′.pk, crt
′.id, crt

′.ui) or s = (Y,Z, crt
′.pk, crt

′.id,
crt

′.ui, crt.pk, crt.id, crt.ui), for some Y,Z ∈ G∗ and certificates crt and crt
′

then

505 if ∃ crt1, s : (Y, crt1, s) ∈ LB0
and crt1 ∈ {crt, crt

′} then ◮ Lj,Y,crt,s,e is uniquely

defined

33

506 if |Lj,Y,crt,s,e| = wj − 1 then Apd(SH̄ , (s, e)); Apd(Lj,Y,crt,s,e, (s, e)); return e
507 else d ∈R {0, 1}

l; Apd(SH̄ , (s, d)); Apd(Lj,Y,crt,s,e, (s, d)); return d

508 else d ∈R {0, 1}
l; Apd(SH̄ , (s, d)); return d

509 H(s):
510 if ∃ k : (s, k) ∈ SH then return k;
511 else if ∃ (sid, k) ∈ Skey : s = (σ, sidoc.pk, sidoc.id, sidoc.ui, sidpc.pk, sidpc.id, sidpc.ui,

sidoEPK, sidiEPK) or s = (σ, sidpc.pk, sidpc.id, sidpc.ui, sidoc.pk, sidoc.id, sidoc.ui, sidiEPK, sidoEPK)
for some σ then ◮ sidkey was assigned and the sid session signature is unknown

512 str1 = (sidoc.pk, sidoc.id, sidoc.ui); str2 = (sidpc.pk, sidpc.id, sidpc.ui)
513 dI ← H̄(sidoEPK, sidiEPK, str1, str2); eI ← H̄(sidiEPK, sidoEPK, str1, str2)
514 dR ← H̄(sidoEPK, sidiEPK, str2, str1); eR ← H̄(sidiEPK, sidoEPK, str2, str1)
515 if (sidrole = I and DDH(G, sidoEPK (sidoc.pk)dI , sidiEPK(sidpc.pk)eI , σ) = 1) or

(sidrole = R and DDH(G, sidoEPK (sidoc.pk)dR , sidiEPK(sidpc.pk)eR , σ) = 1) then re-

turn k
516 else k ∈R {0, 1}

l; Apd(SH , (s, k)); return k

517 GenSKP(Mi):

518 a ∈R [p − 1]; A← Ga;
519 if i = i0 then cnti0

← cnti0
+ 1

520 if cnti0
= j0 then (a,A)← (ǫ, A0)

521 if i = i′0 then cnti′
0

← cnti′
0

+ 1

522 if cnti′
0

= j′
0 then (a,A)← (ǫ, B0)

523 Apd(SKPMi , (a,A)); return A
524 GenEKP(crt):
525 if ∃i : crt ∈ CMi then

526 j ← j + 1
527 x ∈R [p − 1]; X ← Gx

528 if crt.pk = B0 then

529 s ∈R [p− 1]; e ∈R {0, 1}
l

530 Y ← GsB−e

531 if ∃i′, x : (i′, x, Y) ∈ EKP then

532 abort← true

533 Lj,Y,crt,s,e ← {}
534 Apd(LB0

, (Y, crt, s))
535 (x,X)← (ǫ, Y)

536 Apd(EKP, (i, x,X))
537 Apd(EKPcrt, (x,X)); return X

return ⊥
538 Create(crt, crt

′):

539 if (∃i : crt ∈ Ci) and crt
′.pk ∈ G∗

then

540 (x,X)← Sft(EKPcrt)
541 sid← (crt, crt

′,X, ǫ, I)
542 get (a, crt.pk) from SKPMi ;
543 Apd(Ssess, (i, sid, a, x, active));

544 return ((crt
′, crt, ǫ, ǫ,R), X)

545 return ⊥
546 Create(crt

′, crt,X):

547 if (∃i′ : crt
′ ∈ Ci′) and X, crt.pk ∈ G∗

then

548 (y, Y)← Sft(EKPcrt′)
549 sid← (crt

′, crt, Y,X,R);
550 get (a, crt.pk) from SKPM′

i
;

551 Apd(Ssess, (i
′, sid, a, y, accepted))

552 return ((crt, crt
′,X, ǫ, I), Y)

553 return ⊥
554 Sd(sid, Y):
555 if ∃i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess

and sidiEPK = ǫ and stat = active and
Y ∈ G∗

then

556 sidiEPK ← Y
557 sidstatus ← accepted

558 return ◮ No value is returned

559 return ⊥
560 RvEPK(X):
561 if (∃i, x : (i, x,X) ∈ EKP and i ∈ S1)

then return x
562 else return ⊥
563 RvSPK(A):
564 if A ∈ {A0, B0} then abort← true;

565 if ∃i, a : (a,A) ∈ SKPMi , then

566 return a;
567 else return ⊥

568 RvSecExp(sid):
569 if ∃i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess and sidiEPK 6= ǫ and i ∈ S2 then

34

570 if sidoc.pk = B0 then ◮ ∃s : (sidoEPK, sidoc, s) ∈ LB0

571 get s : (sidoEPK, sidoc, s) ∈ LB0
; return s

572 str1 = (sidoc.pk, sidoc.id, sidoc.ui); str2 = (sidpc.pk, sidpc.id, sidpc.ui)
573 if sidrole = I then d← H̄(sidoEPK, sidiEPK, str1, str2)
574 else d← H̄(sidoEPK, sidiEPK, str2, str1)

return x+ da

575 return ⊥
576 RvSesK(sid):
577 if ∃ i, a, x, stat : (i, sid, a, x, stat) ∈ Ssess and sidstatus = accepted then

578 if sidoc.pk 6= A0 then

579 return sidkey ◮ sidkey can be computed

580 if sidpc.pk 6= A0 and ∃ (i′, sid′, a′, x′, stat’) ∈ Ssess : sid
′ matches sid then

581 return sid
′
key ◮ sid

′
key can be computed from a

′
= logG sidpc.pk and x

′

582 else ◮ sidoc.pk = A0 and (sidpc.pk = A0 or no session matches sid)

583 if ∃ (sid′, k) ∈ Skey : sid
′ = sid or sid

′ matches sid then

584 return k ◮ RvSesK was previously issued on sid or its matching session

585 str1 = (sidoc.pk, sidoc.id, sidoc.ui); str2 = (sidpc.pk, sidpc.id, sidpc.ui)
586 dI ← H̄(sidoEPK, sidiEPK, str1, str2); eI ← H̄(sidiEPK, sidoEPK, str1, str2)
587 dR ← H̄(sidoEPK, sidiEPK, str2, str1); eR ← H̄(sidiEPK, sidoEPK, str2, str1)
588 if sidrole = I and ∃(ψ, k) ∈ SH for some k : ψ = (σ, str1, str2, sidoEPK, sidiEPK)

and DDH(G, sidoEPK(sidoc.pk)dI , sidiEPK(sidpc.pk)eI , σ) = 1 then

589 Apd(Skey, (sid, k)); return k

590 if sidrole = R and ∃(ψ, k) ∈ SH for some k : ψ = (σ, str2, str1, sidiEPK, sidoEPK)
and DDH(G, sidoEPK(sidoc.pk)dR , sidiEPK(sidpc.pk)eR , σ) = 1 then

591 Apd(Skey, (sid, k)); return k

592 k ∈R {0, 1}
λ; Apd(Skey, (sid, k)); return k ◮ sidkey was not assigned

return ⊥ ◮ No session with identifier sid exists

593 Finalization: If A provides (sid, σ0) such that sidoc.pk = A0 and sidpc.pk = B0 S
computes Ay0+e0b0

0 , from x0, d0 and e0 with x0 = logG sidoEPK, and d0 and e0 are
the H̄ digest values in sid.

Using a similar argumentation as in E.2.2, given A0, B0 ∈R G∗, S outputs
(Y0, Ay0+e0b0

0), where b0 = logG B0 and y0 = logG Y0, with probability greater
than (mNK)−2 Pr(SuccA,E.2.3.1.2 | W = w) − 2(mNK)/q. Hence, from the General
Forking Lemma [2], the existence of w ∈ W such that Pr(SuccA,E.2.3.1.2 | W =
w) yields the existence of an efficient CDH solver and contradicts the GDH
assumption.

The event E.2.3.1 occurs with negligible probability. A similar analysis shows
that E.2.3.2 (E.2.3 and the owner of sid follows the Approach 1) occurs with
negligible probability. So, none of the events E.2.1, E.2.2, or E.2.3 occur with
non–negligible probability. Both E.1 and E.2 occur with negligible probability,
hence under the RO model ad the GDH assumption, eFHMQV is seCKcs–secure.

	Enhanced Modelling of Authenticated Key Exchange Security

