The First Thorough Side-Channel
Hardware Trojan

Maik Ender', Samaneh Ghandali?, Amir Moradi', and Christof Paar!:?

! Horst Gortz Institute for IT Security, Ruhr-Universitat Bochum, Bochum, Germany
{firstname.lastname}@rub.de

2 University of Massachusetts Amherst, USA
samaneh@umass.edu

Abstract. Hardware Trojans have gained high attention in academia,
industry and by government agencies. The effective detection mechanisms
and countermeasures against such malicious designs are only possible
when there is a deep understanding of how hardware Trojans can be built
in practice. In this work, we present a mechanism which shows how easily
a stealthy hardware Trojan can be inserted in a provably-secure side-
channel analysis protected implementation. Once the Trojan is triggered,
the malicious design exhibits exploitable side-channel leakage leading to
successful key recovery attacks. Such a Trojan does not add or remove
any logic (even a single gate) to the design which makes it very hard to
detect. In ASIC platforms, it is indeed inserted by subtle manipulations
at the sub-transistor level to modify the parameters of a few transistors.
The same is applicable on FPGA applications by changing the routing
of particular signals, leading to null resource utilization overhead. The
underlying concept is based on a secure masked hardware implementation
which does not exhibit any detectable leakage. However, by running the
device at a particular clock frequency one of the requirements of the
underlying masking scheme is not fulfilled anymore, i.e., the Trojan is
triggered, and the device’s side-channel leakage can be exploited.
Although as a case study we show an application of our designed Trojan
on an FPGA-based threshold implementation of the PRESENT cipher,
our methodology is a general approach and can be applied on any similar
circuit.

1 Introduction

Cryptographic devices are those pieces of (usually) hardware that implement
cryptographic algorithm(s) providing different aspects of security. Since such
devices often deal with secret information and/or privacy of the users, hardware
Trojans have gained high attention in academia and industry as well as government
agencies, and can leak the secrets in a particular fashion without the notice of
the end users. Indeed, both bodies of research concerning the Trojan design
and Trojan detection are large and active. Nevertheless, these two topics are

closely related. The effective detection mechanisms and countermeasures are only
possible when there is an understanding of how hardware Trojans can be built.

Amongst several different ways to insert a Trojan into an IC, we can refer to
those conducted ¢) by an untrusted semiconductor foundry during manufacturing,
i1) by the original hardware designer who is pressured by the government bodies,
and #i7) in the third-party IP cores. Most of the hardware Trojans are inserted
by modifying a few gates (can be done at different abstraction levels). In short,
one of the main goals of the Trojans is to be designed/implemented in such a
way that the chance of detection becomes very low. Our focus in this article
is those Trojans which leak out the secrets through a side channel. The first
such a Trojan has been introduced in [35] and [36] which stealthily leaks out the
cryptographic key using leakages through power consumption side channel. The
underlying scheme is independent of the cryptographic algorithm and deals only
with the secret key. This Trojan, made by a moderately large circuit including an
LFSR and leaking circuit, is inserted at the netlist or HDL level. Therefore, it is
likely detected by a Trojan inspector. Further, the designs in these works [35, 36)
are not parametric Trojans, i.e., they always leak through a side channel, which
might be exploited by anybody not only the Trojan attacker.

On the other hand, the cryptographic devices — if pervasive and/or ubiquitous
— are in danger of side-channel analysis (SCA) attacks. After around two decades
since introduction of such physical attacks [32,33], integration of dedicated SCA
countermeasures is a must for devices which deal with security. Therefore, if the
design is not protected against SCA threats, any SCA adversary would be able
to reveal the secrets independent of the existence of such a Trojan [36].

In a follow-up work [30], the authors expressed a relatively similar concept
on an SCA-protected implementation. Their technique is based on inserting a
logical circuit forming an LFRS-based Trojan leaking the internal state of the
PRNG. As a side note, random number generators are necessary modules for
those SCA-protected implementations which are based on masking [38]. Hence,
the Trojan adversary would detect the internal state of the PRNG by means of
SCA leakages and can conduct DPA attacks knowing the masks. It should be
noted that those products which need to be protected against physical attacks
are usually evaluated by a third-party certification body, e.g., through a common
criteria evaluation lab. Therefore, due to its relatively large circuit, such a Trojan
is very likely detected by an inspector.

As another work in this domain, we should refer to [2], where the Trojan is
inserted by changing the dopant polarity of a few transistors in a circuit realized
by the DPA-resistant logic style iMDPL [47]. However, none of such logic styles
can perfectly provide security, and the leakage of an iMDPL circuit can still be
exploited by ordinary SCA adversaries [40].

Our contribution. In short, integrating an SCA Trojan into an SCA-protected
design is challenging, if the device is supposed to be evaluated by a third-party
certification body. It is because the device should provide the desired SCA
protection under a white-box scenario, i.e., all design details including the netlist
are known to the evaluation lab. In this work, we present a mechanism to design

a provably- and practically-secure SCA-protected implementation which can be
turned into an unprotected implementation by a Trojan adversary. Our Trojan
does not add any logic (even a single gate) to the design, making it very hard to
detect. In case of ASIC platforms, it is done by slightly changing the characteristic
of a few transistors, and for FPGA platforms by changing the routing of particular
signals. Most notably, our technique is not based on the leakage of the PRNG, and
it does not affect the provable-security feature of the underlying design unless the
Trojan is triggered. More precisely, our technique leads to inserting a parametric
Trojan, i.e., under normal condition the device does not exhibit any SCA leakage
to be detected by an evaluation lab. By increasing the clock frequency of the
malicious device (or by decreasing its supply voltage) the Trojan is triggered and
exhibits exploitable leakage. Note that such a high clock frequency is beyond
the maximum frequency that the device can correctly operate. Hence, the device
is not expected to be evaluated under such a condition by evaluation labs. As
we show in the following sections, there is a gap between the maximum clock
frequency of the device and the clock frequency where the Trojan is triggered.
In other words, by increasing the clock frequency (violating its critical path
delay) the device starts to operate faulty; by even more increasing the clock
frequency the device operates again correctly while exhibiting SCA leakage (i.e.,
our inserted Trojan becomes active).

Outline. Section 2 deals with necessary background and definitions in the areas
of hardware Trojan and threshold implementation as an SCA countermeasure.
Afterwards, in Section 3 we express our core idea how to insert our Trojan into a
secure threshold implementation. In Section 4 we give details on how to apply
such a technique on a threshold implementation of the PRESENT cipher, and in
Section 5 the corresponding result of FPGA-based SCA evaluations are exhibited.

2 Background

2.1 Hardware Trojan

Malicious and intentional modification of integrated circuit (IC) during manufac-
turing in untrusted foundry is an emerging security concern. This problem exists
because the majority of ICs are fabricated abroad, and a government agency can
force a foundry to manipulate the design maliciously. Also, an IC designer can
be pressured by her own country government to modify the ICs maliciously, e.g.,
those ICs that are used in overseas products. Another possible insertion point
are 3rd party IP cores. In general, a hardware Trojan is a back-door that can be
inserted into an integrated circuit as an undesired and malicious modification,
which makes the behavior of the IC incorrect.

There are many ways to categorize Trojans such as categorizing based on
physical characteristics, design phase, abstraction level, location, triggering mech-
anism, and functionality. But a common Trojan categorization is based on the
activation mechanism (Trojan trigger) and the effect on the circuit functionality
(Trojan payload). A set of conditions that cause a Trojan to be activated is

called trigger. Trojans can combinationally or sequentially be triggered. An at-
tacker chooses a rare trigger condition so that the Trojan would not be triggered
during conventional design-time verification and manufacturing test. Sequentially-
triggered Trojans (time bombs) are activated by the occurrence of a sequence of
rare events, or after a period of continuous operation [18].

The goal of the Trojan can be achieved by payload which can change the
circuit functionally or leak its secret information. In [27] a categorization method
according to how the payload of a Trojan works has been defined; some Trojans
after triggering, propagate internal signals to output ports which can reveal
secret information to the attackers (explicit payload). Other Trojans may make
the circuit malfunction or destroy the whole chip (implicit payload). Another
categorization for actions of hardware Trojans has been presented in [59], in
which the actions can be categorized into classes of modify functionality, modify
specification, leak information, and denial of service.

The work in [29] introduced a manipulation which makes an error detection
module to work incorrectly and accept inputs that should be rejected. They
showed how a Trojan could be used to change the instruction order in which
CPU executes them, leak data by side-channel analysis, and change the content
of programmable read only memory. The work in [31] presented how a hardware
Trojan, which is inserted into a CPU by adding extra logic into its HDL code,
can give an attacker unlimited access to the CPU.

Threats posed by hardware Trojans and the methods of deterring them have
been analyzed in [18]. For example a bridging fault by insertion of a resistor and
by increasing a net delay by enlarging its capacitance load has been introduced
in this work. The works in [19] and [53] discussed about efficient generation of
test patterns for hardware Trojans triggered by rare input signals. Hardware
Trojans in wireless cryptographic ICs have been discussed in [28]. The goal is to
design Trojans to leak secret information through the wireless channel. Detection
challenges of such Trojans were discussed in this work and some improvements
were proposed based on side-channel signals analysis. The work in [36] proposed
a hardware Trojan that leaks the cryptographic key through side channel analysis
attack. Similar to the hardware Trojans that were designed as part of a student
hardware Trojan challenge at [51], this hardware Trojan was inserted at the
netlist or HDL level. The work in [2] presented building stealthy Trojans at the
layout-level. A hardware Trojan was inserted into a cryptographically-secure
PRNG and into a side-channel resistant Sbox by manipulating the dopant polarity
of a few registers. Building hardware Trojans that are triggered by aging was
presented in [57]. These Trojans only become active after the IC has been working
for a long time.

A class of hardware Trojans — Malicious Off-chip Leakage Enabled by Side-
channels (MOLES) — has been presented in [35], which can retrieve secret infor-
mation through side channels. They formulated the mechanism and detection
methods of MOLES in theory and provided a verification process for multi-bit
key extractions. A parametric Trojan has been introduced in [34] which triggers
with a probability increasing under reduced supply voltage. In [21] a design

methodology for building stealthy parametric hardware Trojans and its applica-
tion to Bug Attacks [4,5] has been proposed. The Trojans are based on increasing
delay of gates of a very rare-sensitized path in a combinatorial circuit, such as
an arithmetic multiplier circuit. The Trojans are stealthy and have rare trigger
conditions, so that the faulty behavior of the circuit under attack only occurs for
very few combinations of the input vectors. Also an attack on the ECDH key
agreement protocol by this Trojan has been presented in this work.

2.2 Threshold Implementation

It can be definitely said that masking is the most-studied countermeasure against
SCA attacks. It is based on the concept of secret sharing, where a secret x
(e.g., intermediate values of a cipher execution) is represented by a couple of
shares (z!,...,z"). In case of an (n, n)-threshold secret sharing scheme, having
access to t < n does not reveal any information about . Amongst those is
Boolean secret sharing, known as Boolean masking in the context of SCA, where
n .
x = @ x'. Hence, if the entire computation of a cipher is conduced on such
i=1
a shared representation, its SCA leakage will be (in average) independent of
the secrets as long as no function (e.g., combinatorial circuit) operates on all n
shares.

Due to the underlying Boolean construction, application of a linear function
n

L(.) over the shares is straightforward since L(x) = € L(x"). All the difficulties
i=1

belong to implementing non-linear functions over such a shared representation.
This concept has been applied in hardware implementation of AES (mainly with
n = 2) with no success [16,39,41,46] until the Threshold Implementation (TT) —
based on sound mathematical foundations — has been introduced in [45], which
defines minimum number shares n > t + 1 with ¢ the algebraic degree of the
underlying non-linear function. For simplicity (and as our case study is based on)
we focus on quadratic Boolean functions, i.e., t = 2, and minimum number of
shares n = 3. Suppose that the TT of the non-linear function y = F(x) is desired,
ie., (¥ y? y3) = F*(x!, % x3), where

y169y269y3:]—'(:c1€9:c269m3).

Indeed, each output share y*€{1:23} is provided by a component function F*(.,)

which receives only two input shares. In other words, one input share is definitely

missing in every component function. This, which is a requirement defined by TI

as non-completeness, supports the aforementioned concept that “no function (e.g.,

combinatorial circuit) operates on all n shares”, and implies the given formula n >

t+1. Therefore, three component functions (]—'1 (332, :c3) ,F? (w3, wl) , F3 (1:1, 332))
form the shared output (y!, 42, y?).

Uniformity In order to fulfill the above-given statement that “having access
to t < n does not reveal any information about «”, the shares need to follow a

uniform distribution. For simplicity suppose that n = 2, and the shares (z!, z?)
represent secret x. If the distribution of #! has a bias (i.e., not uniform) which is
known to the adversary, he can observe the distribution of 2 = = @ ' and guess
x. Hence, the security of the entire masking schemes?® relies on the uniformity of
the masks. More precisely, when ! = m, 2 = x & m, and m is taken from a
randomness source (e.g., a PRNG), the distribution of m should be uniform (or
let say with full entropy).

The same holds for higher-order masking, i.e., n > 2. However, not only the
distribution of every share but also the joint distribution of every ¢ < n shares is
important. In case of F*(.,.,.) as a TT of a bijective function F(.), the uniformity
property of TT is fulfilled if F*(.,.,.) forms a bijection. Otherwise, the security of
such an implementation cannot be guaranteed. Note that fulfilling the uniformity
property of TI constructions is amongst its most difficult challenges, and it has
been the core topic of several articles like [3,9,12,45,48]. Alternatively, the shares
can be remasked at the end of every non-uniform shared non-linear function
(see [8,42]), which requires a source to provide fresh randomness at every clock
cycle. Along the same line, another type of masking in hardware (which reduces
the number of shares) has been developed in [23,52], which (almost always) needs
fresh randomness to fulfill the uniformity.

We should emphasize that the above given expressions illustrate only the
first-order TT of bijective quadratic functions. For the other cases including
higher-order TT we refer the interested reader to the original articles [9,12,45].

3 Technique

As explained in former section — by means of TI — it is possible to realize hardware
cryptographic devices secure against certain SCA attacks. Our goal is to provide
a certain situation that an SCA-secure device becomes insecure while it still
operates correctly. Such a dynamic transition from secure to insecure should
be available and known only to the Trojan attacker. To this end, we target
the uniformity property of a secure TT construction. More precisely, we plan to
construct a secure and uniform TT design which becomes non-uniform (and hence
insecure) at particular environmental conditions. In order to trigger the Trojan
(or let say to provide such a particular environmental conditions) for example
we select higher clock frequency than the device maximum operation frequency,
or lower power supply than the device nominal supply voltage. It should not be
forgotten that under such conditions the underlying device should still maintain
its correct functionality.

To realize such a scenario — inspired from the stealthy parametric Trojan
introduced in [21] — we intentionally lengthen certain paths of a combinatorial
circuit. This is done in such a way that — by increasing the device clock frequency
or lowering its supply voltage — such paths become faulty earlier than the other
paths. We would achieve our goal if 4) the faults cancel each others’ effect, i.e.,

3Except those which are based on low-entropy masking [17,37].

the functionality of the design is not altered, and i) the design does not fulfill
the uniformity property anymore.

In order to explain our technique — for simplicity without loss of generality —
we focus on a 3-share TI construction. As explained in Section 2.2 — ignoring
the uniformity — achieving a non-complete shared function F*(.,.,.) of a given
quadratic function F(.) is straightforward. Focusing on one output bit of F(x),
and representing x by s input bits (z,, ..., 1), we can write

fi(<xsv cee >$1>) :ko Dkix1 Dkoxa D ... D ksxs®D

k127122 @ k132123 D ... D ks_1 sTs—1%s.

The coefficients ko, ..., ks—1,s € {0,1} form the Algebraic Normal Form (ANF)
of the quadratic function F; : {0,1}* — {0, 1}. By replacing every input bit x;
by the sum of three corresponding shares x} @ z? @ 23, the remaining task is
just to split the terms in the ANF to three categories in such a way that each
category is independent of one share. This can be done by a method denoted by
direct sharing [12] as

— F}(.,.) contains the linear terms x? and the quadratic terms xfx? and x?m?
— F7(.,.) contains the linear terms 7 and the quadratic terms z7z% and z3z;.
— F2(.,.) contains the linear terms =} and the quadratic terms x%x; and lemf

The same is independently applied on each output bit of F(.) and all three

component functions F! (:c2, :1:3), F? (:c3, ml), F3 (a:l, mz) are constructed that

fulfill the non-completeness, but nothing about its uniformity can be said.
There are indeed two different ways to obtain a uniform TT construction:

— If s (the underlying function size) is small, i.e., s < 5, it can be found that F(.)
is affine equivalent to which s-bit class. More precisely, there is a quadratic
class Q which can represent F as A’ o Qo A (see [13] for an algorithm to
find A and A’ given F and Q). A classification of such classes for s = 3 and
s = 4 are shown in [12] and for s = 5 in [15]. Since the number of existing
quadratic classes are restricted, it can exhaustively be searched to find their
uniform TI. Note that while for many quadratic classes the direct sharing
(explained above) can reach to a uniform TI, for some quadratic classes no
uniform TT exists unless the class is represented by a composition of two
other quadratic classes [12]. Supposing that Q*(.,.,.) is a uniform TT of Q(.),
applying the affine functions A’ and A accordingly on each input and output
of the component function @* would give a uniform TT of F(.):

Flz? z*) =A' 0 Q' (A(z?),A(z?)),
Fa® a') =A' 0 Q* (A(a”), A(x")
Fia' @®) =A' 0 Q° (A(z'), A(a?)

)
).
)-
6

This scenario has been followed in several works, e.g., [6,11,43,44,54].

Figure 1: Exemplary TI construction with a correction term C.

— Having a non-uniform TIT construction, e.g., obtained by direct sharing, we
can add correction terms to the component functions in such a way that
the correctness and non-completeness properties are not altered, but the
uniformity may be achieved. For example, the linear terms z? and/or the
quadratic terms xfx? as correction terms can be added to the same output bit
of both component functions F! (wQ, 333) and F3 (:cl, 332). Addition of any
correction term changes the uniformity of the design. Hence, by repeating this
process — up to examining all possible correction terms and their combination,
which is not feasible for large functions — a uniform construction might be
obtained. Such a process has been conducted in [7,48] to construct uniform
TI of PRESENT and Keccak non-linear functions.

We should here refer to a similar approach called remasking [12,42] where
— instead of correction terms — fresh randomness is added to the output
of the component functions to make the outputs uniform. In this case,
obviously a certain number of fresh mask bits are required at every clock

cycle (see [10,42]).

Our technique is based on the second scheme explained above. If we make the
paths related to the correction terms the longest path, by increasing the clock
frequency such paths are the first whose delay are violated. As illustrated, each
correction term must be added to two component functions (see Figure 1). The
paths must be very carefully altered in such a way that the path delay of both
instances of the targeted correction term are the longest in the entire design and
relatively the same. Hence, at a particular clock frequency both instances of the
correction terms are not correctly calculated while all other parts of the design
are fault free. This enables the design to still work properly, i.e., it generates
correct ciphertext assuming that the underlying design realizes an encryption
function. It means that the design operates like an alternative design where
no correction terms exists. Hence, the uniformity of the TT construction is not
fulfilled and SCA leakage can be exploited. To this end, we should keep a margin
between 4) the path delay of the correction terms and i) the critical path delay
of the rest of the circuit, i.e., that of the circuit without correction terms. This

margin guarantees that at a certain high clock frequency the correction terms are
canceled out but the critical path delay of the remaining circuit is not violated.
We would like to emphasize that in an implementation of a cipher once one
of the TI functions generates non-uniform output (by violating the delay of
correction terms), the uniformity is not maintained in the next TT functions and
it leads to first-order leakage in all further rounds. If the uniformity is achieved
by remasking (e.g., in [24]), the above-expressed technique can have the same
effect by making the XOR with fresh mask the longest path. Hence, violating
its delay in one TI function would make its output non-uniform, but the fresh
randomness may make the further rounds of the cipher again uniform.

eleel @
|

. fault-free, uniform
(2) unstable
(@) fault-free, non-uniform

. faulty

Figure 2: Status of the design with Trojan at different clock frequencies.

Clock period "

Based on Figure 2, which shows a corresponding timing diagram, the device
status can be categorized into four states:

— at a low clock frequency (denoted by .) the device operates fault free and
maintains the uniformity,

— by increasing the clock frequency (in the @ period), the circuit first starts
to become unstable, when indeed the correction terms do not fully cancel
each others’ effect, and the hold time and/or setup time of the registers are
violated,

— by more increasing the clock frequency (in the ©) period), the delay of both
instances of the correction term are violated and the circuit operates fault
free, but does not maintain the uniformity, and

— by even more increasing the clock frequency (marked by .) , the clock
period becomes smaller than the critical path delay of the rest of the circuit,
and the device does not operate correctly.

The aforementioned margin defines the length of the @ period, which is of
crucial importance. If it is very wide, the maximum operation frequency of the
resulting circuit is obviously reduced, and the likelihood of the inserted Trojan
to be detected by an evaluator is increased.

Correct functionality of the circuit is requited to enable the device being
operated in the field. Otherwise, the faulty outputs might be detected (e.g.,

in a communication protocol) and the device may stop operating and prevent
collecting SCA traces.

4 Application

In order to show an application of our technique, we focus on a first-order T1I
design of PRESENT cipher [14] as a case study. The PRESENT Sbox is 4-bit cubic
bijection S : C56B90AD3EF84712. Hence, its first-order TT needs at least n = 4
shares. Alternatively, it can be decomposed to two quadratic bijections S : F o G
enabling the minimum number of shares n = 3 at the cost of having extra register
between F* and G* (i.e., TT of F and G). As shown in [12], S is affine equivalent to
class Cogg : 0123468A5BCFED97, which can be decomposed to quadratic bijections
with uniform TI. The works reported in [44,54, 55] have followed this scenario
and represented the PRESENT Sbox as S : A” 0 Q' 0 A’ 0 Q 0 A, with many
possibilities for the affine functions A”, A’, A and the quadratic classes Q' and
Q whose uniform TT can be obtained by direct sharing (see Section 3).

However, the first TT of PRESENT has been introduced in [48], where
the authors have decomposed the Sbox by G : 7E92B04D5CA1836F and F :
08B7A31C46F9ED52. They have accordingly provided uniform TI of each of such
4-bit quadratic bijections. We focus on this decomposition, and select G as the
target where our Trojan is implemented. Compared to all other related works, we
first try to find a non-uniform TT of G(.), and we later make it uniform by means
of correction terms. We start with the ANF of G({d, ¢, b, a)) = (g3, 92,91, go):

go=1®a®dcddb® ch, go=1P®cdb,
g=1Bd®b®dca P ba, g3 =cdbda.
One possible sharing of y = G(x) can be represented by (yl, Y2, y3) =
(G (x2,2%) , G2 (m3’$1> ,G3 (2!, 2?)) as
yo = 1@ a* @ d* @ d*c? @ d?V* © &b © *b® © AV © d*c? © d*b* @ b3,
y% =1t ad®aldd®dd ®b®d®®bda® e Pa® @ b2,
v =1®c @b, y3 =c’ &b @a’,

yg —_ a3 EBd3CS @d1C3 EBd3Cl @d3b3 @dlbs @d?)bl @031)3 @Clbg @CSbl,
y% _ bg@dl @cla3 @03a1 @bla?)@b?)al @CSQS@I)BGB,
ys = b’ ys = @b’ @a’,

y[3) :al @dlcl@dlcz@dzcl@dlbl @d1b2@d2b1 @Clbl@cle@Cle,
yif:bl@d2@01a2@02a1®b1a2@b2a1 @clal @blal,

Y3 =c' @b, y3 =c' @b ®a',

10

with &'€{123} = (@’ ¢, b%, a’). This is not a uniform sharing of G(.), and by
searching through possible correction terms we found three correction terms c'b!,
c2b?, and ¢*b3 to be added to the second bit of the above-expressed component
functions, that lead us to a uniform TT construction. More precisely, by defining

Cl(x? x®) = v @ A3v?,
CZ(IE37$E1) — Clbl 6903b37

C3(w17w2) — clbl @C2b2,

and adding them respectively to y1, y7, and y3, the resulting TT construction
becomes uniform. If any of such correction terms is omitted, the uniformity is
not maintained. In the following we focus on a single correction term ¢?b? which
should be added to G'(.,.) and G3(.,.). Note that for the sake of completeness a
uniform sharing of F is given in Appendix A.

4.1 Inserting the Trojan

We realize the Trojan functionality by path delay fault model [58], without
modifying the logic circuit. The Trojan is triggered by violating the delay of the
combinatorial logic paths that pass through the targeted correction terms c?b?.
It is indeed a parametric Trojan, which does not require any additional logic.
The Trojan is inserted by modifying a few gates during manufacturing, so that
their delay increase and add up to the path delay faults.

Given in [21], the underlying method to create a triggerable and stealthy delay-
based Trojan consists of two phases: path selection and delay distribution. In the
first phase, a set of uniquely-sensitized paths are found that passes through a
combinatorial circuit from primary inputs to the primary outputs. Controllability
and observability metrics are used to guide the selection of which gates to include
in the path to make sure that the path(s) are uniquely sensitized*. Furthermore,
a SAT-based check is performed to make sure that the path remains sensitizable
each time a gate is selected to be added to the path. After a set of uniquely-
sensitized paths is selected, the overall delay of the path(s) must be increased so
that a delay fault occurs when the path is sensitized. However, any delay added
to the gates of the selected path may also cause delay faults on intersecting paths,
which would cause undesirable errors and affect the functionality of the circuit.
The delay distribution phase addresses this problem by smartly choosing delays
for each gate of the selected path to minimize the number of faults caused by
intersecting paths. At the same time, the approach ensures that the overall path
delay is sufficient for the selected paths to make it faulty.

ASIC Platforms. In an ASIC platform, such Trojans are introduce by slightly
modifications on the sub-transistor level so that the parameters of a few transistors

41t means that the selected paths are the only ones in the circuit whose critical
delay can be violated.

11

of the design are changed. To increase the delays of transistors in stealthy ways,
there are many possible ways in practice. However, such Trojan is very difficult
to be detected by e.g., functional testing, visual inspection, and side-channel
profiling, because not a single transistor is removed or added to the design and
the changes to the individual gates are minor. Also, full reverse-engineering of the
IC would unlikely reveal the presence of the malicious manipulation in the design.
Furthermore, this Trojan would not present at higher abstraction levels and
hence cannot be detected at those levels, because the actual Trojan is inserted at
the sub-transistor level.

A path delay fault in a design is sensitized by a sequence of (at least two)
consecutive input vectors on consecutive clock cycles. Its reason is charging/dis-
charging of output capacitances of gates of the path. The delay of each gate is
determined by its speed in charging or discharging of its output capacitance.
Therefore, if the state of the capacitances of gates (belonging to the targeted
path) is not changed (i.e., the capacitances do not charge or discharge), the effect
of the path delay fault cannot be propagated along the path. Therefore, to trigger
the path delay fault, the consecutive input vectors should change the state of the
capacitances of the targeted path.

There are several stealthy ways to change slightly the parameters of transistors
of a gate and make it slower in charging/discharging its output capacitance (load
capacitance). Exemplary, we list three methods below.

Decrease the Width. Usually a standard cell library has different drive strengths
for each logic gate type, which correspond to various transistor widths. Current of
a transistor is linearly proportional to the transistor width, therefore a transistor
with smaller width is slower to charge its load capacitance. One way to increase
the delay of a gate is to substitute it with its weaker version in the library
which has smaller width, or to create a custom version of the gate with a narrow
width, if the lower level information of the gate is available in the library (e.g.,
SPICE model). The problem here is that an inspector who test the IC optically,
may detect the gate downsizing depending on how much the geometry has been
changed.

Raise the Threshold. A common way of increasing delay of a gate is to increase
the threshold voltage of its transistors by body biasing or doping manipulation.
Using high and low threshold voltages at the same time in a design (i.e., Dual-Vt
design) is very common approach and provides for designer to have more options
to satisfy the speed goals of the design. Devices with low threshold voltage are
fast and used where delay is critical; devices with high threshold voltage are slow
and used where power consumption is important. Body biasing can change the
threshold voltage and hence the delay of a gate through changing the voltage
between body and source of the transistor [29]. A reverse body bias in which
body is at lower voltage than the source, increases the threshold voltage and
makes the device slow. In general, transistors with high threshold voltage will
response later when an input switches, and conduct less current. Therefore, the

12

load capacitances of the transistors will be charged or discharged more slowly.
Dopant manipulation and body biasing, are both very difficult to detect.

Increase the Gate Length. Gate length biasing can increase delay of a gate by
reducing the current of its transistors [26]. The likelihood of detection of this
kind of manipulation depends on the degree of the modification.

FPGA Platforms. In case of the FPGAs, the combinatorial circuits are realized
by Look-Up Tables (LUT), in currently-available Xilinx FPGAs, by 6-to-1 or
5-to-2 LUTs and in former generations by 4-to-1 LUTs. The delay of the LUTs
cannot be changed by the end users; alternatively we offer the following techniques
to make certain paths longer.

Through Switch Bozes. The routings in FPGA devices are made by configuring
the switch boxes. Since the switch boxes are made by active components realizing
logical switches, a signal which passes through many switch boxes has a longer
delay compared to a short signal. Therefore, given a fully placed-and-routed
design we can modify the routings by lengthening the selected signals. This
is for example feasible by means of Vivado Design Suite as a standard tool
provided by Xilinx for recent FPGA families and FPGA Editor for the older
generations. It is in fact needs a high level of expertise, and cannot be done
at HDL level. Interestingly, the resulting circuit would not have any additional
resource consumption, i.e., the number of utilized LUTs, FFs and Slices, hence
hard to detect particularly if the utilization reports are compared.

Through route-thrus LUTs. Alternatively, the LUTSs can be configured as logical
buffer. This, which is called route-thrus, is a usual technique applied by Xilinx
tools to enable routing of non-straightforward routes. Inserting a route-thrus
LUT into any path, makes its delay longer. Hence, another feasible way to insert
Trojans by delay path fault is to introduce as many as required route-thrus LUTs
into the targeted path. It should be noted that the malicious design would have
more LUT utilization compared to the original design, and it may increase the
chance of being detected by a Trojan inspector. However, none of such extra
LUTs realizes a logic, and all of them are seen as route-thrus LUTs which are
very often (almost in any design) inserted by the FPGA vendor’s place-and-route
tools. Compared to the previous method, this can be done at HDL level (by hard
instantiating route-thrus LUTS).

Focusing on our target, i.e., correction term ¢?b* in G*(.,.) and G3(.,.), by
applying the above-explained procedure, we found the situation which enables
introducing delay path fault into such routes:

— Considering Figure 1, the XOR gate which receives the F! and C output
should be the last gate in the combinatorial circuit generating yi, i.e., the
second bit of G!(.,.). The same holds for y3, i.e., the second bit of G3(.,.).

13

— The only paths which should be lengthened are both instances of ¢?b?. There-
fore, in case of the FPGA platform we followed both above-explained methods
to lengthen such paths, i.e., between i) the output of the LUT generating
¢?b? and i) the input of the aforementioned final XOR gate.

We have easily applied the second method (through route-thrus LUTSs) at the
HDL level by instantiating a couple of LUTs as buffer between the selected path.
More detailed results with respect to the number of required route-thrus LUTs
and the achieved frequencies to trigger the Trojan are shown in next Section 5.
For the first method (through switch boxes) — since our target platform is a
Spartan-6 FPGA — we made use of FPGA Editor to manually modify the selected
routes (see Appendix C for two routes of a signal with different length). We
should emphasize that this approach is possible if the correction term c¢?b? is
realized by a unique LUT (can be forced at HDL level by hard instantiating or
placing such a module in a deeper hierarchy). Otherwise, the logic generating ¢?b”
might be merged with other logic into a LUT, which avoids having a separate
path between ¢?b? and a LUT that realizes the final XOR gate.

5 Practical Results

5.1 Design Architecture

We made use of the above-explained malicious PRESENT TI Sbox in a design
with full encryption functionality. The underlying design is similar to the Profile
2 of [48], where only one instance of the Sbox is implemented. The nibbles are
serially shifted through the state register as well as through the Sbox module while
the PLayer is performed in parallel in one clock cycle. Following its underlying
first-order T1, the 64-bit plaintext is provided by three shares, i.e., second-order
Boolean masking, while the 80-bit key is not shared (similar to that of [48]
and [10]). Figure 3 shows an overview of the design architecture, which needs 527
clock cycles for a full encryption after the plaintext and key are serially shifted
into the state (resp. key) registers.

We should here emphasize that the underlying TT construction is a first-order
masking, which can provably provide security against first-order SCA attacks.
However, higher-order attacks are expected to exploit the leakage, but they
are sensitive to noise [50] since accurately estimating higher-order statistical
moments needs huge amount of samples compared to lower-order moments. It is
indeed widely known that such masking schemes should be combined with hiding
techniques (to reduce the SNR) to practically harden (hopefully disable) the
higher-order attacks. As an example we can refer to [44], where a TT construction
is implemented by a power-equalization technique. We instead integrated a
noise generator module into our target FPGA to increase the noise and hence
decrease the SNR. The details of the integrated noise generator module is given
in Appendix B. Note that without such a noise generator module, our design
would be vulnerable to higher-order attacks and no Trojan would be required to

14

ﬁwhs\ key register [3]2]1]0]

¥\
—»\15\14\ state register 1 \3‘2‘1 ‘O}

B
|
1y
(&
3

15[14] state register 2 [3]2[1][o}—— G F

PLayer

ﬁwm state register 3 \3\2‘1 ‘0}—’

)

Figure 3: Design architecture of the PRESENT TTI as the case study.

reveal the secret. Therefore, the existence of such a hiding countermeasure to
make higher-order attacks practically hard is essential.

The design is implemented on a Spartan-6 FPGA board SAKURA-G, as a
platform for SCA evaluations [1]. In order to supply the PRESENT core with a
high clock frequency, a Digital Clock Manager (DCM) has been instantiated in the
target FPGA to multiply the incoming clock by a factor of 8. The external clock
was provided by a laboratory adjustable signal generator to enable evaluating
the design under different high clock frequencies.

Table 1 shows the resource utilization (excluding the noise generator) as well
as the achieved margins for the clock frequency considering) the original design,
i1) malicious design made by through switch boxes method and #ii) malicious
design made by through route-thrus LUTs technique. It is noticeable that the first
malicious design does not change the utilization figures at all since lengthening
the routes are done only through the switch boxes (see Appendix C). Using the
second method — in order to achieve the same frequency margins — we added 4
route-thru LUTs (at the HDL level) to each path of the targeted correction term.
This led to 8 extra LUT utilization and 4 more Slices; we would like to mention
that the combinatorial circuit of the entire TI Sbox (both G* F*) would fit into
29 LUTs (excluding the route-thru ones).

Regarding the frequency ranges, shown in Table 1, it can be seen that the
maximum clock frequency of the malicious design is decreased from 219.2 MHz
to 196 MHz, i.e., around 10% reduction. However, both @ and @ periods are
very narrow, that makes it hard to be detected either by a Trojan inspector or
by an SCA evaluator.

5.2 SCA Evaluations

Measurement Setup. For SCA evaluations we collected power consumption
traces (at the Vdd path) of the target FPGA by means of a digital oscilloscope
at sampling rate of 1GS/s. It might be thought that when the target design

15

Table 1: Performance figure of our PRESENT-80 encryption designs.

Utilization
Design Method FF LuUT Slice Frequency
logic route-thrus [MHz]
-)
Original - 299 291 35 226
219.2
212.8
, %
Malicious switch box 299 291 35 226
tcl 6
Malicious route-thru LUT 299 291 43 230 4\
219.2 196

runs at a high frequency > 150 MHz, such a sampling rate does not suffice to
capture all leaking information. However, power consumption traces are already
filtered due to the PCB, shunt resistor, measurement setup, etc. Hence, higher
sampling rate for such a setting does not improve the attack efficiency®, and often
the bandwidth of the oscilloscope is even manually limited for noise reduction
purposes (see [49]).

Methodology. In order to examine the SCA resistance of our design(s) in both
settings, i.e., whether the inserted Trojan is triggered or not, we conducted
two evaluation schemes. We first performed non-specific t-test (fixed versus
random) [22,56] to examine the existence of detectable leakage. Later in case
where the Trojan is triggered, we also conduct key-recovery attacks.

It should be mentioned that both of our malicious designs (see Table 1)
operate similarly. It means that when the Trojan is triggered, the evaluation of
both designs led to the same results. Therefore, below we exemplary show the
result of the one formed by through route-thrus LUTs.

To validate the setup, we start with a non-specific t-test when the PRNG of
the target design (used to share the plaintext for the TI PRESENT encryption)
is turned off, i.e., generating always zero instead of random numbers. To this
end, we collected 100,000 traces when the design is operated at 168 MHz, i.e., the
Trojan is not triggered. We followed the concept given in [56] for the collection
of traces belonging to fixed and random inputs. The result of the t-test (up to
third-order) is shown in Figure 4, confirming the validity of the setup and the
developed evaluation tools.

5Tt is not the case for EM-based analyses.

16

Power

0 1 2 3

Time [us]
. 800 500/
£ 600 8
2 2
5] 400 = 0
£ 200 o
1st-order “500 t1st-order
0 20 40 60 80 100 0 1 2 3
No. of Traces x 10° Time [ps]
150
8 8
% 100 3
g g
% 50 1L
2nd-order | 0y 2nd-order
0 20 40 60 80 100 0 1 2 3
No. of Traces x 10° Time [us]
8%/ 8
@20 B
3 ©
f 10 &
ot 3rd-order 1 -30[13rd-order
0 20 40 60 80 100 0 1 2 3
No. of Traces x 10° Time [ps]

Figure 4: PRNG off, clock 168 MHz (Trojan not triggered), (top) a sample power trace,
t-test results (right) with 100,000 traces, (left) absolute maximum over the number of

traces.

To repeat the same process when the PRNG is turned on, i.e., the masks for
initial sharing of the plaintext are uniformly distributed, we collected 100,000,000
traces for non-specific t-test evaluations. In this case, the device still operates at
168 MHz, i.e., the Trojan is not triggered. The corresponding results are shown in
Figure 5. Although the underlying design is a realization of a first-order secure T1,
it can be seen from the presented results that second- and third-order leakages
are also not detectable. As stated before, this is due to the integration of the
noise generator module which affects the detectability of higher-order leakages
(see Appendix B).

17

AN A

1st-order

t-statistics
o
t-statistics
o

1st-order

5 s : : : :
0 20 40 60 80 100 0 1 2 3

No. of Traces x 10° Time [uS]

t-statistics
o
t-statistics
o

2nd-order 2nd-order

‘ ‘ ‘ 5 ‘ ‘
0 20 40 60 80 100 0 1 2 3

No. of Traces x 10° Time [us]

3rd-order 3rd-order
0 20 40 60 80 100 0 1 2 3
No. of Traces x 10° Time [us]

t-statistics
o
t-statistics
o

-5

Figure 5: PRNG on, clock 168 MHz (Trojan not triggered), t-test results (right) with
100,000,000 traces, (left) absolute maximum over the number of traces.

As the last step, the same scenario is repeated when the clock frequency is
increased to 216 MHz, where the design is in the @ period, i.e., with correct
functionality and without uniformity. Similar to the previous experiment, we
collected 100,000,000 traces for a non-specific t-test, whose results are shown
in Figure 6. As shown by the graphics, there is detectable leakage through
all statistical moments but with lower t-statistics compared to the case with
PRNG off. Therefore, we have also examine the feasibility of key recovery attacks.
To this end, we made use of those collected traces which are associated with
random inputs, i.e., around 50,000,000 traces of the last non-specific t-test. We
conducted several different CPA and DPA attacks considering intermediate values
of the underlying PRESENT encryption function. The most successful attack
was recognized as classical DPA attacks [33] targeting a key nibble by predicting
an Sbox output bit at the first round of the encryption. As an example, Figure 7
presents an exemplary corresponding result.

18

Power

Time [us]
10f ‘ ‘ | | y 10
= = 0
g I
9 0r 19
1st-order 1st-order
-5 L L L L _10 L L L
0 20 40 60 80 100 0 1 2 3
No. of Traces x 10° Time [us]
5 5
i o
50 s °
? 2
2nd-order 2nd-order
-5 5 i i .
0 20 40 60 80 100 0 1 2 3
No. of Traces x 10° Time [us]
5 15
8 8
@ ki
80 8 0}
Q Q
3rd-order 3rd-order
-5 N N n n -5 n . :
0 20 40 60 80 100 0 1 2 3
No. of Traces x 10° Time [us]

Figure 6: PRNG on, clock 216 MHz (Trojan triggered), (top) a sample power trace,
t-test results (right) with 100,000,000 traces, (left) absolute maximum over the number
of traces.

6 Conclusions

In this work it is shown how to insert a parametric hardware Trojan with very
low overhead into SCA-resistance designs. The presented Trojan is capable of
being integrated into both ASIC and FPGA platforms. Since it does not add
any logic into the design (particularly its resource utilization in FPGAs can be
null), the chance of being detected is expected to be very low. Compared to the

19

t-statistics
P N W A~ O
t-statistics

o

10 20 30 40 50 0.8 09 1 11 12 13
No. of Traces x 10° Time [us]

Figure 7: PRNG on, clock 216 MHz (Trojan triggered), 50,000,000 traces, DPA attack
result targeting a key nibble based on an Sbox output bit at the first round.

original design, its only footprint is around 10% decrease in the maximum clock
frequency.

We have shown that by increasing the clock frequency, the malicious thresh-
old implementation design starts leaking exploitable information through side
channels. Hence, the Trojan adversary can trigger the Trojan and make use of the
exploitable leakage, while the design can pass SCA evaluations when the Trojan
is not triggered. More precisely, suppose that the maximum clock frequency of
the malicious device is 196 MHz. Hence, in an evaluation lab its SCA leakage
will not be examined at 200 MHz because the device does not operate correctly.
However, the Trojan adversary runs the device at 216 MHz and the SCA leakage
becomes exploitable. To the best of our knowledge, compared to the previous
works in the areas of side-channel hardware Trojans, our construction is the only
one which is applied on a provably-secure SCA countermeasure, and is parametric
with very low overhead.

A raising question is whether a control over the clock frequency by the Trojan
adversary is a practical assumption. Such a control is usually available in FPGA
designs since they are mainly externally clocked, and internally multiplied by
PLL or DCM. In ASIC or embedded designs, the clock is more often generated
internally, hence no control. Nevertheless, by decreasing the supply voltage the
same effect can be seen. It can also be criticized that when the attacker has
control over the clock, fault-injection attacks by clock glitch can also be a threat.
As a message of this paper, overclocking and — at the same time — power supply
reduction should be internally monitored to avoid such an SCA-based Trojan
being activated. Related to this topic we should refer to [20], where the difficulties
of embedding a “clock frequency monitor” in presence of supply voltage changes
are shown.

Acknowledgments

The work was partially funded through grants ERC Advanced 695022 and
NSF CNS-1421352.

20

A Uniform TI of F

Considering y = F(x) and '€{12:3} = (d% ¢! b’ a’) — derived by direct sharing —
we present one of its uniform sharing (yl, Y2, y3) = (.7-'1 (:c2, (BS) , F? (:c37w1) , F3 (wl, a:2))
as

vl =02 @ 2a? @ 2a® @ Ba?,

y% _ CQ @bQ @d2Q2 @d2a3 EBdBaQ,

y% _ d2 @62(12 @b2a3 691730127

yé — 62 @bQ ®a2 @d2(12 @dQ(IS @dSZIZ,

yg =3l @ cla® ®Pal,

i =cobdodadodaddodd,

y: =d> @ bda® @ bla® @ bdal,

s =cobodedadodaddedd,

w2 =bl @ clal @ cla? @ 2al,
yzl)’ =ctab eda ®da® e d?dt,

3 =d @ blal @ bla? @ bRal,
yp=clob od oda odad® e d.

21

B Noise Generator

We have built a noise generator as an independent module, i.e., it does not have
any connection to the target PRESENT design and operates independently. We
followed one the concepts introduced in [25]. As shown by Figure 8, it is made
as a combination of a ring oscillator, an LFSR, and several shift registers. The
actual power is consumed by the shift registers. Every shift register instantiates
a SRLC32E primitive, which is a 32-bit shift register within a single LUT inside a
SLICEM. The shift registers are initialized with the consecutive values of 01. Every
shift register’s output is feedback to its input and shifted by one at every clock
cycle when enabled. Thus, every shift operation toggles the entire bits inside the
registers, which maximizes the power consumption of the shift register.

The ring oscillator, made of 31 inverter LUTs, acts as the clock source inside
the noise module for both the LFSR and the shift registers. The LFSR realizes
the irreducible polynomial z'? + 28 + 217 + 2% 41 to generate a pseudo-random
clock enable signal for the shift registers.

We instantiated 4 x 8 instances of the shift register LUTs, fitting into 8 Slices.
The ring oscillator required 17 Slices (as stated, made of 31 inverters), and the
LFSR fits into 2 Slices, made by 1 LUT for the feedback function, 2 FFs and
2 shift register LUTs. Overall, the entire independent noise generator module
required 27 Slices.

L\ LIFSRI 1\ U1010-:~~10M

I en'L

L

A 1010 - - ~~10M
R

Figure 8: Block diagram of the noise generator.

22

C Different Routings in FPGA

!

— 5

Figure 9: Two routes of the same signal in a Spartan-6 FPGA, manually perfromed
by FPGA Editor. 23

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

: Side-channel AttacK User Reference Architecture. http://satoh.cs.uec.ac.jp/
SAKURA/index.html

Becker, G.T., Regazzoni, F., Paar, C., Burleson, W.P.: Stealthy Dopant-Level
Hardware Trojans. In: CHES 2013. Volume 8086 of Lecture Notes in Computer
Science., Springer (2013) 197-214

Beyne, T., Bilgin, B.: Uniform First-Order Threshold Implementations. In: SAC
2016. Lecture Notes in Computer Science, Springer (2017) to appear, eprint.iacr.
org/2016/715.pdf.

Biham, E., Carmeli, Y., Shamir, A.: Bug Attacks. In: CRYPTO 2008. Volume 5157
of Lecture Notes in Computer Science., Springer (2008) 221-240

Biham, E., Carmeli, Y., Shamir, A.: Bug attacks. Journal of Cryptology 29(4)
(2016) 775-805

Bilgin, B., Bogdanov, A., Knezevic, M., Mendel, F., Wang, Q.: Fides: Lightweight
Authenticated Cipher with Side-Channel Resistance for Constrained Hardware. In:
CHES 2013. Volume 8086 of Lecture Notes in Computer Science., Springer (2013)
142-158

Bilgin, B., Daemen, J., Nikov, V., Nikova, S., Rijmen, V., Assche, G.V.: Efficient
and First-Order DPA Resistant Implementations of Keccak. In: CARDIS 2013.
Volume 8419 of Lecture Notes in Computer Science., Springer (2014) 187-199
Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: A More Efficient AES
Threshold Implementation. In: AFRICACRYPT 2014. Volume 8469 of Lecture
Notes in Computer Science., Springer (2014) 267284

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Higher-Order Threshold
Implementations. In: ASTACRYPT 2014. Volume 8874 of Lecture Notes in Computer
Science., Springer (2014) 326-343

Bilgin, B., Gierlichs, B., Nikova, S., Nikov, V., Rijmen, V.: Trade-Offs for Threshold
Implementations Illustrated on AES. IEEE Trans. on CAD of Integrated Circuits
and Systems 34(7) (2015) 1188-1200

Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Stiitz, G.: Threshold Implementations
of All 3 x 3 and 4 x 4 S-Boxes. In: CHES 2012. Volume 7428 of Lecture Notes in
Computer Science., Springer (2012) 76-91

Bilgin, B., Nikova, S., Nikov, V., Rijmen, V., Tokareva, N., Vitkup, V.: Threshold
Implementations of Small S-boxes. Cryptography and Communications 7(1) (2015)
3-33

Biryukov, A., Canniere, C.D., Braecken, A., Preneel, B.: A Toolbox for Cryptanalysis:
Linear and Affine Equivalence Algorithms. In: EUROCRYPT 2003. Volume 2656
of Lecture Notes in Computer Science., Springer (2003) 33-50

Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw,
M.J.B., Seurin, Y., Vikkelsoe, C.: PRESENT: An Ultra-Lightweight Block Cipher.
In: CHES 2007. Volume 4727 of Lecture Notes in Computer Science., Springer
(2007) 450-466

Bozilov, D., Bilgin, B., Sahin, H.A.: A Note on 5-bit Quadratic Permutations’
Classification. IACR Trans. Symmetric Cryptol. 2017(1) (2017) 398-404
Canright, D., Batina, L.: A Very Compact ”Perfectly Masked” S-Box for AES. In:
ACNS 2008. Volume 5037 of Lecture Notes in Computer Science. (2008) 446—459
Carlet, C., Danger, J., Guilley, S., Maghrebi, H.: Leakage Squeezing of Order
Two. In: INDOCRYPT 2012. Volume 7668 of Lecture Notes in Computer Science.,
Springer (2012) 120-139

24

http://satoh.cs.uec.ac.jp/SAKURA/index.html
http://satoh.cs.uec.ac.jp/SAKURA/index.html
eprint.iacr.org/2016/715.pdf
eprint.iacr.org/2016/715.pdf

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

Chakraborty, R.S., Narasimhan, S., Bhunia, S.: Hardware Trojan: Threats and
emerging solutions. In: HLDVT 2009, IEEE Computer Society (2009) 166-171
Chakraborty, R.S., Wolff, F.G., Paul, S., Papachristou, C.A., Bhunia, S.: MERO:
A Statistical Approach for Hardware Trojan Detection. In: CHES 2009. Volume
5747 of Lecture Notes in Computer Science., Springer (2009) 396-410

Endo, S., Li, Y., Homma, N., Sakiyama, K., Ohta, K., Fujimoto, D., Nagata, M.,
Katashita, T., Danger, J., Aoki, T.: A Silicon-Level Countermeasure Against Fault
Sensitivity Analysis and Its Evaluation. IEEE Trans. VLSI Syst. 23(8) (2015)
1429-1438

Ghandali, S., Becker, G.T., Holcomb, D., Paar, C.: A Design Methodology for
Stealthy Parametric Trojans and Its Application to Bug Attacks. In: CHES 2016.
Volume 9813 of Lecture Notes in Computer Science., Springer (2016) 625—647
Goodwill, G., Jun, B., Jaffe, J., Rohatgi, P.: A testing methodol-
ogy for side channel resistance validation. In: NIST non-invasive at-
tack testing workshop. (2011) http://csrc.nist.gov/news_events/
non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf.

Gross, H., Mangard, S., Korak, T.: An Efficient Side-Channel Protected AES
Implementation with Arbitrary Protection Order. In: CT-RSA 2017. Volume 10159
of Lecture Notes in Computer Science., Springer (2017) 95-112

Grof3, H., Wenger, E., Dobraunig, C., Ehrenhéfer, C.: Suit up! - Made-to-Measure
Hardware Implementations of ASCON. In: DSD 2015, IEEE Computer Society
(2015) 645-652

Giineysu, T., Moradi, A.: Generic Side-Channel Countermeasures for Reconfigurable
Devices. In: CHES 2011. Volume 6917 of Lecture Notes in Computer Science.,
Springer (2011) 33-48

Gupta, P., Kahng, A.B., Sharma, P.; Sylvester, D.: Gate-length biasing for runtime-
leakage control. IEEE Trans. on CAD of Integrated Circuits and Systems 25(8)
(2006) 1475-1485

Jin, Y., Makris, Y.: Hardware Trojan Detection Using Path Delay Fingerprint. In:
HOST 2008, IEEE Computer Society (2008) 51-57

Jin, Y., Makris, Y.: Hardware Trojans in Wireless Cryptographic ICs. IEEE Design
& Test of Computers 27(1) (2010) 26-35

Karri, R., Rajendran, J., Rosenfeld, K., Tehranipoor, M.: Trustworthy Hardware:
Identifying and Classifying Hardware Trojans. IEEE Computer 43(10) (2010) 39-46
Kasper, M., Moradi, A., Becker, G.T., Mischke, O., Giineysu, T., Paar, C., Burleson,
W.: Side channels as building blocks. J. Cryptographic Engineering 2(3) (2012)
143-159

King, S.T., Tucek, J., Cozzie, A., Grier, C., Jiang, W., Zhou, Y.: Designing and
Implementing Malicious Hardware. In: USENIX Workshop on Large-Scale Exploits
and Emergent Threats, LEET 2008, USENIX Association (2008)

Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS,
and Other Systems. In: CRYPTO 1996. Volume 1109 of Lecture Notes in Computer
Science., Springer (1996) 104-113

Kocher, P.C., Jaffe, J., Jun, B.: Differential Power Analysis. In: CRYPTO 1999.
Volume 1666 of Lecture Notes in Computer Science., Springer (1999) 388-397
Kumar, R., Jovanovic, P., Burleson, W.P., Polian, I.: Parametric Trojans for Fault-
Injection Attacks on Cryptographic Hardware. In: FDTC 2014, IEEE Computer
Society (2014) 18-28

Lin, L., Burleson, W., Paar, C.: MOLES: Malicious off-chip leakage enabled by
side-channels. In: ICCAD 2009, ACM (2009) 117-122

25

http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf
http://csrc.nist.gov/news_events/non-invasive-attack-testing-workshop/papers/08_Goodwill.pdf

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

Lin, L., Kasper, M., Giineysu, T., Paar, C., Burleson, W.: Trojan Side-Channels:
Lightweight Hardware Trojans through Side-Channel Engineering. In: CHES 2009.
Volume 5747 of Lecture Notes in Computer Science., Springer (2009) 382-395
Maghrebi, H., Guilley, S., Danger, J.: Leakage Squeezing Countermeasure against
High-Order Attacks. In: WISTP 2011. Volume 6633 of Lecture Notes in Computer
Science., Springer (2011) 208-223

Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks: Revealing the Secrets
of Smart Cards. Springer (2007)

Mangard, S., Pramstaller, N., Oswald, E.: Successfully Attacking Masked AES
Hardware Implementations. In: CHES 2005. Volume 3659 of Lecture Notes in
Computer Science., Springer (2005) 157-171

Moradi, A., Kirschbaum, M., Eisenbarth, T., Paar, C.: Masked Dual-Rail Precharge
Logic Encounters State-of-the-Art Power Analysis Methods. IEEE Trans. VLSI
Syst. 20(9)

Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-Enhanced Power Analysis
Collision Attack. In: CHES 2010. Volume 6225 of Lecture Notes in Computer
Science., Springer (2010) 125-139

Moradi, A., Poschmann, A., Ling, S., Paar, C., Wang, H.: Pushing the Limits: A
Very Compact and a Threshold Implementation of AES. In: EUROCRYPT 2011.
Volume 6632., Springer (2011) 69-838

Moradi, A., Schneider, T.: Side-Channel Analysis Protection and Low-Latency in
Action - - Case Study of PRINCE and Midori. In: ASTACRYPT 2016. Volume
10031 of Lecture Notes in Computer Science. (2016) 517-547

Moradi, A., Wild, A.: Assessment of Hiding the Higher-Order Leakages in Hardware
- What Are the Achievements Versus Overheads? In: CHES 2015. Volume 9293 of
Lecture Notes in Computer Science., Springer (2015) 453-474

Nikova, S., Rijmen, V., Schléffer, M.: Secure Hardware Implementation of Nonlinear
Functions in the Presence of Glitches. J. Cryptology 24(2) (2011) 292-321
Oswald, E., Mangard, S., Pramstaller, N., Rijmen, V.: A Side-Channel Analysis
Resistant Description of the AES S-Box. In: FSE 2005. Volume 3557 of Lecture
Notes in Computer Science., Springer (2005) 413423

Popp, T., Kirschbaum, M., Zefferer, T., Mangard, S.: Evaluation of the Masked
Logic Style MDPL on a Prototype Chip. In: CHES 2007. Volume 4727 of Lecture
Notes in Computer Science., Springer (2007) 81-94

Poschmann, A., Moradi, A., Khoo, K., Lim, C., Wang, H., Ling, S.: Side-Channel
Resistant Crypto for Less than 2, 300 GE. J. Cryptology 24(2) (2011) 322-345
Pozo, S.M.D., Standaert, F.: Getting the Most Out of Leakage Detection - Statistical
tools and Measurement Setups Hand in Hand. In: COSADE 2017. Lecture Notes
in Computer Science, Springer (2017) to appear.

Prouff, E., Rivain, M., Bevan, R.: Statistical Analysis of Second Order Differential
Power Analysis. IEEE Trans. Computers 58(6) (2009) 799-811

Rajendran, J., Jyothi, V., Karri, R.: Blue team red team approach to hardware
trust assessment. In: ICCD 2011, IEEE Computer Society (2011) 285-288
Reparaz, O., Bilgin, B., Nikova, S., Gierlichs, B., Verbauwhede, I.: Consolidating
Masking Schemes. In: CRYPTO 2015. Volume 9215 of Lecture Notes in Computer
Science., Springer (2015) 764-783

Saha, S., Chakraborty, R.S., Nuthakki, S.S., Anshul, Mukhopadhyay, D.: Improved
Test Pattern Generation for Hardware Trojan Detection Using Genetic Algorithm
and Boolean Satisfiability. In: CHES 2015. Volume 9293 of Lecture Notes in
Computer Science., Springer (2015) 577-596

26

54.

55.

56.

57.

58.

59.

Sasdrich, P., Moradi, A., Glineysu, T.: Affine Equivalence and Its Application to
Tightening Threshold Implementations. In: SAC 2015. Volume 9566 of Lecture
Notes in Computer Science., Springer (2015) 263276

Sasdrich, P., Moradi, A., Glineysu, T.: Hiding Higher-Order Side-Channel Leakage
- Randomizing Cryptographic Implementations in Reconfigurable Hardware. In:
CT-RSA 2017. Volume 10159 of Lecture Notes in Computer Science., Springer
(2017) 131-146

Schneider, T., Moradi, A.: Leakage Assessment Methodology - A Clear Roadmap
for Side-Channel Evaluations. In: CHES 2015. Volume 9293 of Lecture Notes in
Computer Science., Springer (2015) 495-513

Shiyanovskii, Y., Wolff, F.G., Rajendran, A., Papachristou, C.A., Weyer, D.J., Clay,
W.: Process reliability based trojans through NBTT and HCI effects. In: Adaptive
Hardware and Systems AHS 2010, IEEE (2010) 215-222

Smith, G.L.: Model for Delay Faults Based upon Paths. In: International Test
Conference 1985, IEEE Computer Society (1985) 342-351

Wang, X., Salmani, H., Tehranipoor, M., Plusquellic, J.F.: Hardware Trojan
Detection and Isolation Using Current Integration and Localized Current Analysis.
In: DFT 2008, IEEE Computer Society (2008) 87-95

27

	Introduction
	Background
	Hardware Trojan
	Threshold Implementation

	Technique
	Application
	Inserting the Trojan

	Practical Results
	Design Architecture
	SCA Evaluations

	Conclusions
	Uniform TI of F
	Noise Generator
	Different Routings in FPGA

