
The Minimum Number of Cards in
Practical Card-based Protocols?

Julia Kastner1, Alexander Koch1, Stefan Walzer2,
Daiki Miyahara3, Yu-ichi Hayashi4, Takaaki Mizuki3, and Hideaki Sone3

1 Karlsruhe Institute of Technology (KIT)
2 Technische Universität Ilmenau

3 Tohoku University
4 Nara Institute of Science and Technology

julia.kastner@student.kit.edu, alexander.koch@kit.edu,
stefan.walzer@tu-ilmenau.de, daiki.miyahara.q4@dc.tohoku.ac.jp,

tm-paper+cardcopy@g-mail.tohoku-university.jp

Abstract. The elegant “five-card trick” of den Boer (EUROCRYPT 1989)
allows two players to securely compute a logical AND of two private bits,
using five playing cards of symbols ♥ and ♣. Since then, card-based
protocols have been successfully put to use in classroom environments,
vividly illustrating secure multiparty computation – and evoked research
on the minimum number of cards needed for several functionalities.
Securely computing arbitrary circuits needs protocols for negation, AND
and bit copy in committed-format, where outputs are commitments again.
Negation just swaps the bit’s cards, computing AND and copying a bit
n times can be done with six and 2n + 2 cards, respectively, using the
simple protocols of Mizuki and Sone (FAW 2009).
Koch, Walzer, and Härtel (ASIACRYPT 2015) showed that five cards
suffice for computing AND in finite runtime, albeit using relatively complex
and unpractical shuffle operations. In this paper, we show that if we restrict
shuffling to closed permutation sets, the six-card protocol is optimal in the
finite-runtime setting. If we additionally assume a uniform distribution
on the permutations in a shuffle, we show that restart-free four-card AND
protocols are impossible. These shuffles are easy to perform even in an
actively secure manner (Koch and Walzer, ePrint 2017).
For copying bit commitments, the protocol of Nishimura et al. (ePrint
2017) needs only 2n+1 cards, but performs a number of complex shuffling
steps that is only finite in expectation. We show that it is impossible to
go with less cards. If we require an a priori bound on the runtime, we
show that the (2n+ 2)-card protocol is card-minimal.

Keywords: Card-based protocols · Committed format · Boolean AND ·
COPY · Secure computation · Cryptography without computers

? This article is the result of a merge. The main contribution by the first three authors
is in Sections 3 to 7, the one of the last four authors is in Sections 8 and 9.
c© IACR 2017. This article is a minor revision of the version published by Springer-
Verlag available at <DOI>.

1 Introduction

Card-based cryptography is best illustrated by example. Let us begin by giving
a concise and graphical description of the six-card AND protocol of Mizuki and
Sone [MS09]. This protocol enables two players, Alice and Bob, to compute the
AND of their private bits. For instance, they may wish to determine whether
they both like to watch a particular movie, without giving away their (possibly
embarrassing) preference if there is no match. Using card-based cryptography,
this is possible without computers – making the security tangible and eliminating
the danger of malware.5

For this, we use a deck of six cards with indistinguishable backs and either ♥
or ♣ on the front. Each player is handed one card of each symbol and is asked to
enter his or her bit by arranging the cards in one of two ways.

♣ ♥

♥ ♣♥♣
YES

NO

YES

NO

Bob (on the left) inputs “yes”, by placing his ♥-card in the first position, and
“no” by placing it in the second position; he places his ♣-card in the unused
position. Alice encodes her input bit in a similar manner in the first row. We
employ two additional cards, encoding “no” (♣♥) in the lower right part of the
arrangement. Of course, as the players want their input bit to be secret, their
cards are put face-down on the table, hence, making it impossible for the other
party to observe the bit at this point. (The extra cards encoding “no” can be
put publicly on the table and are turned face-down at the start of the protocol.)

This puts the protocol in one of the following (hidden) configurations:

Yes/Yes Yes/No No/Yes No/No

♥ ♣

♥ ♣ ♣ ♥

♥ ♣
♣ ♥ ♣ ♥

♣ ♥

♥ ♣ ♣ ♥

♣ ♥

♣ ♥ ♣ ♥

Observe that the correct result in the above encoding, (♣♥ = “no”, and ♥♣ =
“yes”), is on the side of the heart in the upper row. This stays invariant, if we
split the cards in the middle of the arrangement and exchange both sides. This
property is crucial for the protocol, as in the following we want to randomly
5 Imagine a setting where Alice asks Bob to enter his bit into an app on a smartphone,
which might well raise concerns, even if Bob has the app’s source code.

2

exchange the two halves of the arrangement to obscure the input order of Alice’s
cards (they will be inverted with probability one half). For this, it is suggested to
split the cards as discussed and put them into two indistinguishable envelopes:

Next, we shuffle the envelopes, such that they changed places with probability
one half and no player was able to keep track.

?

We extract the cards again and put them back into the geometric arrangement
as before. (This assumes that they have been carefully put into the envelope so
that it is still clear which card to place where.)

As discussed before, the upper two cards do not give away Alice’s bit any longer,
so they can be safely turned over. The invariant ensures that the result is still on
the side with the heart:

♥ ♣ or ♣ ♥

In total, we have performed an AND protocol in committed format, as the output
are two face-down cards encoding the result. From observing the protocol (as an
outsider) we did not learn anything about the order of these cards in the process.

Protocols, which are not in committed format, are already well-understood
in terms of the minimum number of cards, cf. [MKS12; MWS15; Miz16], and
they have the important disadvantage, that they do not allow to use the output
directly in subsequent calculations, such as in a three-player AND. Hence, the
quest for card-minimal committed format protocols has emerged as a central
research task in card-based cryptography.

Besides committed-format AND and negation (inverting the cards), there is one
more ingredient necessary for computing arbitrary boolean circuits: commitment
copy. A circuit may contain forking wires which enter two or more gates. To see
this, consider the three-input majority function as an example:

maj(x1, x2, x3) = (x1 ∧ x2) ∨ (x2 ∧ x3) ∨ (x3 ∧ x1).

3

Here, before computing x1 ∧ x2 using an AND protocol, we need to duplicate the
input commitment of x1 and x2, as they are used in the other clauses as well.
(Trusting a user to just input the same bit again is not an option as he or she
might deviate and cause wrong outputs, but also because the inputs might not
be known to any user if they are the output of some previously run protocol.)

Current Protocols and their Practicality. Using the very general computa-
tional model of Mizuki and Shizuya [MS14; MS17], it was shown in [KWH15] that
there are four-card AND protocols in committed format, albeit with a running
time that is finite only in expectation (a Las Vegas protocol). Moreover, they
showed that if a finite runtime is required, five cards are necessary and sufficient
for computing AND. While on the first glance the task of finding card-minimal
protocols seems to be settled, a closer look reveals that there is much more
to be hoped for. The most pressing point here is not the protocols’ increased
complexity, but a certain type of card shuffling which is much more difficult to
perform than in previous protocols. The authors identified two properties whose
violation seems to be a cause of the difficulty in their implementation, namely:

Closedness. The set of possible permutations in a card shuffle is invariant under
repetition, i.e., a subgroup of the respective permutation group.

Uniform Probability. Every possible permutation in a shuffle action has the
same probability.

These uniform closed shuffles can be easily implemented in the honest-but-curious
setting by two parties taking turns in performing a random permutation from the
specified permutation set, while the other party is not looking. More importantly,
there is a recent actively secure implementation of uniform closed shuffles [KW17],
removing the assumption that players do only permutations from the allowed set,
even when not under surveillance of the other party. (The non-uniform shuffle
and/or non-closed shuffles in [KWH15] have been implemented in [NHMS16] using
sliding cover boxes, but such an approach requires extra tools and security is not
achieved against attackers that reorder the boxes in a illicit way.)

The most extreme example for the power of non-closed shuffles seems to be
the 2k-card Las Vegas protocol of [KWH15, Sect. 7] which computes an arbitrary
k-ary boolean function in three steps: we shuffle, turn and either output a result
or restart. Here, all the work in computing the function is done by the complex
and (in general) non-closed shuffle – suggesting that non-closed shuffles in general
are too broad a shuffle class to consider. Besides these shuffle restrictions, there
is one additional central parameter for practical card-based protocols, namely
runtime behavior. We consider the following practical:

Finite Runtime. This guarantees an a priori bound on the runtime and allow to
precisely predict how long the protocol will run. All tree diagrams (introduced
in Section 3) will be finite. We regard this as the most practical.

Restart-Free Las Vegas (LV). While the runtime of the protocol is finite
only in expectation, it is usually just a small constant. When running these

4

Table 1: Minimum number of cards required by committed format AND and
n-COPY protocols, subject to the requirements specified in the first two columns.
The second column specifies shuffle restrictions. See also Fig. 6.

Runtime Shuffle Restr. #Cards Reference

AND Protocols:

restarting LV uniform 4 [KWH15, Sect. 7]
restart-free LV closed 4 [KWH15, Sect. 4]
restart-free LV uniform closed ≥ 5 Theorem 2
finite runtime – 5 [KWH15, Sects. 5 and 6]
finite runtime closed }

6 Theorem 1, [MS09]finite runtime uniform closed

COPY Protocols:

restarting LV – }
2n+ 1 Theorem 3, [NNH+17]restart-free LV uniform

finite runtime – }
2n + 2 Theorem 4, [MS09]finite runtime uniform closed

protocols we may run in cycles but exit these cycles at least with some
constant probability in every run. More importantly we do not end in a
failure state where we have to restart the whole protocol and query players
for their inputs again.

Protocols which fall not under this class are called restarting LV protocols. Note
that running a COPY protocol on the input bits before the protocol itself requires
already at least five cards for the copy process of a single input bit, as shown
in Section 8. In total this strategy likely needs more cards than just going for
restart-free protocols instead.

The aim of this paper is to derive tight lower bounds on the number of
cards for protocols using practical – namely (uniform) closed – shuffles and/or a
practical runtime, namely finite runtime or restart-free LV, for the two central
ingredients of boolean circuits: AND protocols and COPY protocols. Our results
are given Table 1, which includes a survey on current bounds relative to certain
restrictions on the operations.

Contribution. Regarding committed-format AND protocols, we

– show that five-card finite-runtime protocols are impossible if restricted to
closed shuffle operations. This identifies the six-card protocol of [MS09] as
card-minimal w.r.t. finite-runtime closed-shuffle protocols using two colors.

– introduce an analysis tool, namely orbit partitions of shuffles, which might
be of independent interest for finding protocols using only closed shuffles.

– show that four-card Las Vegas protocols are impossible, if they are restricted
to uniform closed shuffle operations and may not use restart operations.

5

Regarding n-COPY protocols, which produce n copies of a commitment, we
– show that at least 2n+ 1 cards are necessary, even for protocols that may

restart. This identifies the (2n+1)-card protocol of [NNH+17] as card-minimal.
– show that finite-runtime protocols need at least 2n+ 2 cards. This identifies

the (2n+2)-card protocol of [MS09] as a card-minimal finite-runtime protocol.
These proofs are simple enough to additionally serve as impossibility results
that may be presented in didactic contexts, e.g., to high-school students.

– give simple state trees of the protocols from the literature, cf. Figs. 2 and 3.
Moreover, we show that public randomness does not help in secure protocols. This
simplifies future attempts at inventing protocols or showing their impossibility.

Outline. We give necessary preliminaries for card-based protocols in Section 2.
We introduce [KWH15]’s tree-based protocol notation, argue formally for its
usefulness and collect interesting properties in Sections 3 to 5. Section 6 gives
the main result, namely that six cards are necessary for computing AND when
restricted to closed shuffle operations. A lower bound of 5 for the number of cards
in restart-free Las Vegas protocols using only uniform closed shuffles is given in
Section 7. Moreover, tight lower bounds for the number of cards in Las Vegas
and finite-runtime COPY protocols are proven in Sections 8 and 9, respectively.

Related Work. Except [FAN+16], which extends the work of [KWH15] to two-
bit output functionalities, no other (tight) lower bounds on the number of cards
have been obtained so far. Researchers seem to have concentrated on how to
implement non-uniform or non-closed shuffles, which are usually more complex
or require other tools, such as sliding cover boxes, cf. [NHMS16].

Notation. In the paper we use the following notation.
– Cycle Decomposition. For elements x1, . . . , xk the cycle (x1 x2 . . . xk) denotes

the cyclic permutation π with π(xi) = xi+1 for 1 ≤ i < k, π(xk) = x1
and π(x) = x for all x not occurring in the cycle. If several cycles act on
pairwise disjoint sets, we write them next to one another to denote their
composition. For instance (1 2)(3 4 5) denotes a permutation with mappings
{1 7→ 2, 2 7→ 1, 3 7→ 4, 4 7→ 5, 5 7→ 3}. Every permutation can be written in
such a cycle decomposition. Sn denotes the symmetric group on {1, . . . , n}.

– Entries in Sequences. Given a sequence x = (α1, . . . , αl) and i ∈ {1, . . . , l},
x[i] denotes the i-th entry of the sequence, namely αi.

– Cyclic Group. Let Π be a group (usually a subgrup of Sn) and π ∈ Π. Then
〈π〉 := {πk | k ∈ Z} is the cyclic subgroup of Π generated by π.

2 Card-based protocols

We introduce a restricted version of the computational model for card-based
protocols as introduced in [MS14; MS17]. We later argue that the liberties we
take are essentially cosmetic in Section 4.

6

A deck D is a finite multiset of symbols – in this paper only the symbols ♥,
♣ and (rarely) ♦ are used. For a symbol c ∈ D, c? denotes a face-up card and ?

c
a face-down card, respectively. Here, ‘?’ is a back symbol, which is not in D. The
deck is lying on the table in a sequence of cards that contains each symbol of
the deck either as a face-up or face-down card. For a face-up or face-down card
α, top(α) and symb(α) denote the symbol in the “numerator” and the symbol
which is not ‘?’, respectively. These definitions are canonically extended to map
card sequences to symbol sequences. We call top(Γ) the visible sequence of a card
sequence Γ and denote by VisD the set of visible sequences on a deck D.

A protocol P is a quadruple (D, U,Q,A), where D is a deck, U is a set of
input sequences over D, Q is a set of states with two distinguished states q0 and
qf, being the initial and the final state. Moreover, we have a (partial) action
function A : (Q \ {qf})× VisD → Q× Action, depending on the current state and
visible sequence, which specifies the next state and an operation on the sequence.
The following actions exist:

– (turn, T) for T ⊆ {1, . . . , |D|}. This turns the cards at all positions in T , i.e.,
it transforms Γ = (α1, . . . , α|D|) into

turnT (Γ) := (β1, . . . , β|D|), where βj =
{

swap(αj), if j ∈ T,
αj , otherwise.

Here, swap(c?) := ?
c and swap(?

c) := c
? , for c ∈ D.

– (perm, π) for a permutation π ∈ S|D| from the symmetric group S|D|. This
applies π to the sequence, i.e., if Γ = (α1, . . . , α|D|), the resulting sequence is

permπ(Γ) := (απ−1(1), . . . , απ−1(|D|)).

– (shuffle, Π,F) for a probability distribution F on S|D| with support Π. This
transforms a sequence Γ into

shuffleΠ,F (Γ) := permπ(Γ), for π drawn from F ,

i.e., π ∈ Π is drawn according to F and then applied to Γ . This is done in
such a way that no player/bystander can observe anything about π in the
process. If F is the uniform distribution on Π, we just write (shuffle, Π).

– (restart). This transforms a sequence into the start sequence. In that case the
first component of A’s output must be q0. This allows for Las Vegas protocols
to start over and cannot be used in finite-runtime protocols.

– (result, p1, . . . , pr) declares the ordered sequence of cards in distinct positions
p1, . . . , pr ∈ {1, . . . , |D|} as the output of the protocol and halts. This special
operation occurs if and only if the first component of A’s output is qf.

A sequence trace of a finite protocol run is a tuple (Γ0, Γ1, . . . , Γt) of sequences
such that Γ0 ∈ U and Γi+1 arises from Γi by an operation as specified by
the action function. Moreover, (top(Γ0), top(Γ1), . . . , top(Γt)) is a corresponding
visible sequence trace.

7

Security of card-based protocols intuitively means that input and output are
perfectly hidden, i.e., from the outside the execution of a protocol looks the same
(has the same distribution), regardless of what input and output are.

Definition 1 (Security, cf. [KWH15; KW17]). Let P = (D, U,Q,A) be a
protocol. It is (input- and output-)secure if for any random variable I with values
in the set of input sequences U , the following holds. A random protocol run
starting with Γ0 = I, terminates almost surely. Moreover, if V and O are random
variables denoting the visible sequence trace and the output of the run, then the
pair (I,O) is stochastically independent of V .

3 State Trees and their Properties

The authors of [KWH15] introduce a representation of secure protocols as a
tree-like diagram, we call it a state tree. In it, all protocol runs are captured
simultaneously in a way that makes output behavior and security of the protocol
directly recognizable.

An assumption that significantly reduces notational complexity is that cards
are essentially always face-down. This relates to all input and output sequences6,
but moreover, turn actions occur in pairs, such that cards that are turned face-up
by the first turn are directly turned face-down again afterwards. After revealing
the symbols, there is no reason to keep the cards face-up any longer. Corollary 2
of Section 4 is a formal version of this argument.

3.1 Constructing State Trees from Protocols

We describe how to construct state trees from protocol descriptions. See Fig. 1
for a reference. In the following v is always the visible sequence trace of the prefix
of a protocol run.7 For each such v, the state tree contains a state µv. In our
model, each state is associated with a unique action that the protocol prescribes
for this situation. We annotate the state (essentially its outgoing edge) with this
action. If the action may extend v to v′ by appending a visible sequence v+, then
µv′ is a child of its parent µv. A turn action may result in several children which
are siblings of each other and the edge to each child is additionally annotated
with v+. If the action is a result action, then µv is a leaf.

From the perspective of an observer of the protocol who does not know the
input I or the permutations chosen during shuffle actions, the actual sequence Sv
lying on the table in a particular run when the state µv is reached, is unknown. We
annotate µv with the corresponding probabilities, i.e. with µv(s) := Pr[Sv = s | v]

6 For positions in the input and output sequence that are not constant, security requires
cards to be face-down anyway.

7 By our assumption that cards are usually face-down, many visible sequences are
trivial, i.e., are (? . . . ?), with the sole exception of turn actions themselves.

8

♥♣♥♣♣♥ X11

♥♣♣♥♣♥ X10

♣♥♥♣♣♥ X01

♣♥♣♥♣♥ X00

♥♣♥♣♣♥ 1/2X11

♣♥♣♥♥♣ 1/2X11

♥♣♣♥♣♥ 1/2X10 + 1/2X00

♣♥♣♥♣♥ 1/2X10 + 1/2X00

♣♥♥♣♣♥ 1/2X01

♥♣♣♥♥♣ 1/2X01

(shuffle, {id, (1 2)(3 5)(4 6)})

♥♣♥♣♣♥ X11

♥♣♣♥♣♥ X10 +X00

♥♣♣♥♥♣ X01

♣♥♣♥♥♣ X11

♣♥♣♥♣♥ X10 +X00

♣♥♥♣♣♥ X01

(turn, {1, 2})
♥♣???? ♣♥????

(result, 3, 4)

X
(result, 5, 6)

X

Fig. 1: The six-card AND protocol of [MS09].

where s is any sequence of symbols and v stands for the event that v is a prefix
of the visible sequence trace of the complete protocol run. We can rewrite this as:

µv(s) =
∑
Γ∈U

Pr[Sv = s, I = Γ | v] =
∑
Γ∈U

Pr[Sv = s | I = Γ, v] · Pr[I = Γ | v]

=
∑
Γ∈U

Pr[Sv = s | I = Γ, v]︸ ︷︷ ︸
=:pv,Γ,s

·Pr[I = Γ]︸ ︷︷ ︸
=:XΓ

=
∑
Γ∈U

pv,Γ,sXΓ .

At the line-break, we exploited the independence of visible sequence trace and
input in secure protocols and introduced two abbreviations. Note that pv,Γ,s
is constant, but XΓ is a variable since we have not actually defined a specific
probability distribution on the inputs (nor will we). We treat the result as a
formal sum, making µv a map from sequences of symbols to polynomials.

We say a state µv contains a sequence of symbols s (or s is in µv for short)
if µv(s) is not the zero polynomial, and write supp(µv) (as in support) for the
set of all such sequences. Let |µ| := | supp(µv)|. We now describe how the tree of
all states can be computed for a given secure protocol inductively starting from
the root.

9

Start state. First note that the start state is unique: Regardless of the (face-down)
input sequence, the visible sequence trace is v0 = ((?, . . . , ?)) only containing one
trivial visible sequence. The distribution of Sv0 is the input distribution, i.e.,

µv0(s) =
{
XΓ , if s = symb(Γ) for Γ ∈ U,
0, otherwise.

Shuffle action. Assume for a state µv the action (shuffle, Π,F) is prescribed. No
non-trivial information is revealed when shuffling, so obtaining v′ by appending
a trivial visible sequence to v, µv′ is the unique child of µv, fulfilling

µv′(s′) = Pr[Sv′ = s′ | v′]
=

∑
π∈Π
F(π) · Pr[Sv = π−1(s′) | v] =

∑
π∈Π
F(π) · µv(π−1(s′)).

This just takes into account all sequences π−1(s′) in µ from which s′ may have
originated from via some π as well as corresponding probabilities.

Note that perm actions are a special case and need not be described separately.

Restart action. States in which a restart action happens have a single child. The
subtree at this child is equal to the entire tree.

Turn action. Let µv be a state with a turn action that possibly results in the
visible sequence v+, which appended to v yields v′. The child µv′ of µv contains
those sequences from µv that are compatible with v+, i.e., equal to v+ in the
positions i with v+[i] 6= ?. Moreover, the probability to reach µv′ from µv is:

Pr[v′ | v] = Pr[Sv ∈ supp(µv′) | v] =
∑

s∈supp(µv′)

Pr[Sv = s | v] =
∑

s∈supp(µv′)

µv(s).

Recall that the right hand side is a polynomial of the form
∑
Γ∈U aΓXΓ where

XΓ is a placeholder for the input probability Pr[I = Γ]. By security, input and
visible sequence trace are independent, in particular no matter how the variables
(XΓ)Γ∈U are initialized, the polynomial Pr[v′ | v] evaluates to the same real
number. Thus, all aΓ are equal to a constant λv′ ∈ [0, 1] and using

∑
Γ∈U XΓ = 1

we have: ∑
s∈supp(µv′)

µv(s) = λv′
∑
Γ∈U

XΓ = λv′ .

Moreover, for s ∈ supp(µv′) we have:

µv′(s) = Pr[Sv′ = s | v′] = Pr[Sv′ = s | v]
Pr[v′ | v] = Pr[Sv = s | v]

λv′
= µv(s)

λv′
.

Hence, µv′ is a restriction of µv to sequences compatible with v′, scaled by 1
λv′

.
Capturing the observation we made for secure protocols, we define

i is turnable in µ :⇔ ∀c ∈ D : ∃λ ∈ [0, 1] :
∑

s with s[i]=c

µ(s) = λ
∑
Γ∈U

XΓ . (1)

10

Output behavior. Consider any leaf state µv with action (result, p1, p2, . . . , pr).
The output O = (Sv)p1,...,pr is the projection of Sv to the components p1, . . . , pr.
We can easily obtain from µv the probabilities Pr[O = o | v] for any sequence of
symbols o. By security, the visible sequence trace v is irrelevant, which implies
that we obtain the same polynomial Pr[O = o] for a fixed o, regardless of which
leaf state we examine. If the protocol computes a deterministic function (see
below), this polynomial is the sum of all XΓ for which Γ evaluates to o.

3.2 The Utility of State Trees

In the following proposition we argue that state trees are a superior way to
represent secure protocols, as security and correctness are more tangible.

Proposition 1. Every secure protocol P has a unique state tree that can be
obtained as described above. Moreover, local checks suffice to verify that a tree of
states describes a secure protocol with a desired output behavior.

Proof. We already discussed how state trees are obtained from protocols, however,
a few simplifying assumptions were made. We postpone the discussion that those
happened without loss of generality until Section 4. The second claim is more
interesting.

Assume we are given a rooted tree of states such that each state has an action
associated with it, and shuffle, perm, restart and result actions occur where a
state has 1, 1, 1 and 0 children, respectively. A turn actions leads to one or more
children. Obtaining a unique candidate for a secure protocol P belonging to the
tree is straightforward, as the state tree is essentially a tree-shaped state machine
where states are enriched with additional information. The set of input sequences
is implicit in the start state which must have the required form.

For each state µ we check whether its children are equal to what we expect
given µ and the action that is taken in µ. In case of a turn action, this includes
checking that for each visible sequence v+, the probabilities of all s in µ compatible
with v+ add up to a constant (a multiple of

∑
Γ∈U XΓ) as is the case in secure

protocols, see also (1). Lastly, we check whether the output probabilities coincide
in each leaf state, as outlined above (and reflect the desired output behavior).

The checks for the turn actions ensure that the probability to take a certain
path in the protocol is independent of the input to the protocol, effectively proving
(cf. Definition 1) that the random variables V and I are independent. The checks
in the leaf states ensure that, even when conditioned on I, the variables V and
O are independent. Together this proves that (I,O) and V are independent, so
P is secure. ut

State trees can be infinite while state machines are typically required to have a
finite number of states. This is mostly beside the point for our purposes, but the
claim should be understood with the following qualification. Either a countably
infinite number of states is permitted for protocols or only certain self-similar
state trees can be transformed into protocols (see Fig. 3 for such a state tree).

11

Runtime of a Protocol. A secure protocol terminates when entering the final
state qf. It has finite-runtime, if there is an a priori upper bound on the number
of steps. It is Las Vegas if it terminates almost surely in a number of steps that
is finite in expectation, but unbounded.

We restate these definitions with respect to state trees. A path in a state
tree p starts at the root and descends according to a visible sequence trace v.
If v is finite, p ends in a leaf. The probability of p is Pr[v], which is a constant
(independent of the distribution of inputs) by our discussion of security before.
We say that a protocol is finite-runtime if there is no infinite path in its state
tree. If a protocol is not finite-runtime but the expected length of any path in its
state tree is finite, we call it a Las Vegas protocol.

3.3 Protocols Computing a Boolean Function

The way we defined it, a protocol takes an unstructured input and computes
an unstructured output that is in general a randomized function of the input.
While randomization (as in privately computing a fixed-point-free permutation
[CK93]) and unstructured (non-committed) outputs (as in the “five card trick”
[dBoe89]) appear in the literature, the most important use case is arguably the
computation of a deterministic Boolean function in committed format. In this
section we provide useful terminology and some simple insights for this setting.

The Setting. A commitment to a bit value b ∈ {0, 1} is represented by two cards,
with their symbols arranged as ♥♣ if b = 1 and as ♣♥ otherwise. Extend this
in the natural way, we say a sequence of symbols (or cards) (α1, . . . , α2k) encodes
a sequence b ∈ {0, 1}k of bits, if α2i−1α2i (or top(α2i−1) top(α2i)) represents b[i]
for 1 ≤ i ≤ k. We say that a protocol P = (D, U,Q,A) computes a function
f : {0, 1}k → {0, 1}`, if the following holds:

– The deck D contains at least max(k, `) cards of each symbol,
– There is an input sequence Γb for each b ∈ {0, 1}k, the first 2k cards of which

encode b. The remaining |D| − 2k cards are independent of b.
Favoring light notation, we use b instead of Γb as index to refer to variables
from the family (Xb)b∈{0,1}k = (XΓ)Γ∈U from now on.

– Correctness: A protocol run starting with Γb almost surely terminates with
an output encoding f(b).

We call a protocol computing f∧ : {0, 1}2 → {0, 1}, with (a, b) 7→ a ∧ b an AND
protocol. A protocols computing fcopy : {0, 1} → {0, 1}n, with a 7→ an = (a, . . . , a)
and n ≥ 2 is called an n-COPY or just COPY protocol.

Examples. Figures 1 to 3 depict state trees of current AND and COPY protocols,
which are identified as card-minimal with respect to certain restrictions, in this
paper. For illustration let us check that the state tree in Fig. 1 describes a correct
and secure AND protocol.

12

♣♥(♣♥)n X0

♥♣(♣♥)n X1

♣♥(♣♥)n 1/2X0

♥♣(♥♣)n 1/2X0

♥♣(♣♥)n 1/2X1

♣♥(♥♣)n 1/2X1

(shuffle, {id, (1 2)(3 4) · · · (2n+ 1 2n+ 2)})

♥♣(♥♣)n X0

♥♣(♣♥)n X1

♣♥(♣♥)n X0

♣♥(♥♣)n X1

(turn, {1, 2})
♥♣(??)n ♣♥(??)n

(result, 4, 3, . . . , 2n+ 2, 2n+ 1)

X
(result, 3, 4, . . . , 2n+ 2)

X

Fig. 2: The state tree of the (2n+2)-card COPY protocol [MS09]. As in the six-card
AND protocol, the shuffle consists only of the identity and a permutation that is
a cycle decomposition into (disjoint) 2-cycles. Hence, it can be implemented by a
random bisection cut. See [CHL13, Sect. 6] for a more elaborate explanation.

– The input state contains four sequences encoding the four bit strings from
{0, 1}2 as required. Note that we use the light notation X11 = X♥♣♥♣♣♥,
X01 = X♣♥♥♣♣♥, etc.

– The second state accurately reflects the shuffle step on the start state. It can
be interpreted as the weighted sum of one half times the start state and one
half times the start state permuted with (1 2)(3 5)(4 6).

– The sequences before the turn compatible with ♥♣ ? ? ? ? have probabilities
summing to 1/2X11 + (1/2X10 + 1/2X00) + 1/2X01 = 1/2. This is, crucially,
a constant and establishes the independence of visible sequence trace and
input.

– In both leaf states, the probability for the output to encode 1 (i.e. the
probability for the output to be ♥♣) is X11 and the probability for the
output to encode 0 is (X10 +X00) +X01 which establishes correctness.

3.4 Reduced State Trees and Possibilistic Security

When trying to prove that no secure protocol with certain properties exists,
the space of possible states can seem vast. We therefore opt to show stronger
results, namely the non-existence of protocols with the weakened requirement
of possibilistic security, defined next. This allows to consider a projection of the
state space which is finite in size.

13

♣♥(♣♥)n−1♣ X0

♥♣(♣♥)n−1♣ X1

♣♥(♣♥)n−1♣ 1/2X0

♥♣(♥♣)n−1♣ 1/2X0

♥♣(♣♥)n−1♣ 1/2X1

♣♣(♥♣)n−1♥ 1/2X1

(shuffle, {id, (2n+ 1 . . . 1)})

♥♣(♥♣)n−1♣ X0

♥♣(♣♥)n−1♣ X1

♣(♥♣)n X0

♣(♣♥)n X1

(turn, {1})
♥(??)n ♣(??)n

(result, 2n+ 1, 2, . . . , 2n)

X
♣♥(♣♥)1(♣♥)n−2♣ X0

♥♣(♣♥)1(♥♣)n−2♣ X1

(perm, (1 4)(2 3)(5 . . . 2n))

♣♥(♣♥)1(♣♥)n−2♣ 1/2X0

♥♣(♥♣)1(♣♥)n−2♣ 1/2X0

♥♣(♣♥)1(♥♣)n−2♣ 1/2X1

♣♣(♥♣)1(♥♣)n−2♥ 1/2X1

(shuffle, {id, (2n+ 1 4 3 2 1)})

♥♣(♥♣)1(♣♥)n−2♣ X0

♥♣(♣♥)1(♥♣)n−2♣ X1

♣(♥♣)n X0

♣(♣♥)n X1

(turn, {1})
♥(??)n ♣(??)n

(result, 2n+ 1, 2, . . . , 2n)

X

(perm, (1 4)(2 3))

Fig. 3: A variant of the (2n+1)-card COPY protocol of Nishimura et al. [NNH+17,
Sect. 5], with less permuting. After the permutation in the first ♥-branch, the
protocol resembles a 2-COPY protocol [NNH+15] on the first four and the last
card. The parenthesis (·)1 are to emphasize this symmetry. The shuffle steps
in this protocol are uniform, but non-closed. As they consist of the identity
and exactly one odd-length cycle, they can be performed using an “unequal
division shuffle”. A proposed implementation of these shuffles using sliding cover
boxes or envelopes can be found in [NNH+17, Sect. 6]. Although this diagram
includes a backwards edge, this is for presentation only. We regard it as an infinite
(self-similar) tree.

14

Definition 2. A protocol P = (D, U,Q,A) computing a function f : {0, 1}k →
{0, 1}` has possibilistic input security (possibilistic output security) if it is correct,
i.e., O = f(I) almost surely and for uniformly8 random input I ∈ U and any
visible sequence trace v with Pr[v] > 0 as well as any input i ∈ {0, 1}k (any
output o ∈ {0, 1}`) we have Pr[v | I = i] > 0 (Pr[v | f(I) = o]).

In other words, from observing a visible sequence trace it is never possible to
exclude an input (or output) with certainty. Clearly, security implies possibilistic
input and output security. To decide whether a protocol has possibilistic output
security, it suffices to consider projections of states in the following sense.

Definition 3 (adapted from [KWH15]). Let P = (D, U,Q,A) be a protocol
computing a function f : {0, 1}k → {0, 1}`. If µ is a state in the state tree, then the
reduced state µ̂ has the same sequences as µ with simpler annotations. Assume
µ(s) is a polynomial with positive coefficients for the variables Xb1 , . . . , Xbi

(i ≥ 1). Then we set µ̂(s) = o ∈ {0, 1}` if o = f(b1) = f(b2) = . . . = f(bi). If not
all bi evaluate to the same output under f , set µ̂(s) = ⊥. Accordingly, sequences
in µ̂ are called o-sequences or ⊥-sequences. We also say they are of type o or of
type ⊥, respectively. For COPY protocols, we call 1`- and 0`-sequences just 1-
and 0-sequences, respectively.

Note that if a state µ has children µ1, . . . , µi in the state tree, then the reduced
states µ̂1, . . . , µ̂i can be computed from the reduced state µ̂. In particular, it
makes sense to define reduced state trees as projections of state trees and aim to
prove the non-existence of certain state trees by proving the non-existence of the
corresponding reduced state trees.

3.5 Important Properties of (Reduced) States

For most of our arguments, reduced states offer a sufficient granularity of detail
and the following observations and definitions for reduced states will prove useful.
Clearly, they also apply to the richer, non-reduced states which we will briefly
require for a more subtle argument in Section 7.

Protocols computing a function f that have a ⊥-sequence in a reduced state
cannot be restart-free, and hence also not finite-runtime: once the ⊥-sequence
is actually on the table, it does not contain sufficient information to deduce
the unique correct output, making a restart necessary. The protocol might then
repeat the unfortunate path of execution an arbitrary number of times.

We call two reduced states similar, if one is just a permuted version of the
other, i.e. interpreting a state as a matrix of symbols with annotated rows, there
is a permutation on the columns mapping one state to the other.

In restart-free protocols with two outputs (say 1 and 0) any reduced state µ̂
is composed of some number i of 0-sequences and some number j of 1-sequences
with |µ̂| = i + j. We call µ and µ̂ an i/j-state. They are final if they admit
a correct output action (result,m1, n1 . . . ,m`, n`), i.e. they does not contain a
8 Actually, the distribution does not matter, as long as Pr[I = i] > 0 for all i ∈ {0, 1}k.

15

⊥-sequence and for all outputs r ∈ {0, 1}` there is at least one r-sequence and
r-sequences have a ♥ at position mi if r[i] = 1, or a ♣ otherwise, for all 1 ≤ i ≤ `,
and the respective other symbol at position ni.

Turnable Positions. Recall the definition of a turnable position for a state µ
from (1). For a reduced state µ̂ this simplifies to: For each symbol c occurring in
column i, among the sequences with s[i] = c, there is either a ⊥-sequence or an
r-sequence for each r ∈ {0, 1}`. If some position in a (reduced) state is turnable,
we call the state turnable, otherwise unturnable.

4 Simplifications to the Computational Model

In the following, we argue that public randomness does not provide any benefit
in secure protocols and hence can be safely excluded from the computational
model. For this assume there was an additional class of actions in protocols,
that produces public randomness: The action rand(p1, . . . , pi) for real numbers
p1, . . . , pi ∈ (0, 1) summing to 1 appends a value x ∈ {0, 1, . . . , i} to the visible
sequence trace with Pr[x = j] = pj . This extends the computational model9. An
example would be a protocol that receives a bit in committed format, and outputs
either this bit unchanged with probability 1/3 or its negation with probability 2/3.
This can be implemented by a rand(1/3, 2/3) action and, depending on the outcome
a permutation or not, followed by a result action. This is also possible with a
shuffle, but requires a non-uniform probability distribution on the permutations,
something we are inclined to prohibit later. However, this protocol is not secure
since the result of the random experiment is part of the visible sequence trace (it
is public) which introduces a non-trivial relationship between output and visible
sequence trace precluding independence. Indeed we show:
Proposition 2 (Public randomness is unnecessary). Any rand(p1, . . . , pi)
action can be removed from a secure protocol P without affecting security or the
output distribution and without increasing (worst-case or expected) runtime.

Proof. Consider i copies P1, . . . ,Pi of P, where in Pj , if the rand action is
encountered, execution continues deterministically as if j had been chosen. The
distribution of input output and visible sequence trace (Ij , Oj , Vj) for Pj equals
the distribution of (I,O, V) for P, except conditioned under a certain event Ej
regarding V . In particular, independence of (I,O) and V implies independences
of (Ij , Oj) and Vj and (Ij , Oj) is distributed like (I,O) (security and output
behavior are unaffected). Thus, choosing j such that Vj has least (worst-case or
expected) length gives the desired modification Pj of P. ut
Mizuki and Shizuya [MS14] introduced a randomized action called rflip that works
just like a turn-action, except the set of cards T that is turned is chosen randomly
according to some distribution. We call it randomized flip. As the random choice
is clearly public we can directly derive the following:
9 Consider a protocol that receives a single card Γ = ?

♥ as input and outputs ?
♥ with

probability 1/2 and ♥
? with probability 1/2, which was not possible before.

16

Corollary 1. The randomized flip can be removed from a secure protocol without
negative effects as in Proposition 2.

When introducing state trees, we assumed that cards are always face-down, in
particular during shuffle operations. This hides a complication: Shuffling with
face-up cards, i.e., with the current visible sequence v being non-trivial, may
result in several visible sequences v′, depending on how the face-up cards are
permuted. But similar to rflip, such a branching shuffle can be simulated with
a rand action, determining which v′ is obtained, followed by a shuffle action
restricted to those permutations that transform v into v′. From the discussion
above, we can derive the following corollary.

Corollary 2 (We can assume all cards are face down). It suffices to look
at protocols which start with face-down cards and which, after turning any card,
directly turns them down again.

In Lemma 4 we argue that this still works for uniform and/or closed shuffles, i.e.
if the original branching shuffle was closed (uniform), the restricted shuffles can
be implemented using closed (uniform) shuffles as well.

5 Properties of Restricted-Shuffle Protocols

As discussed before, it is natural to restrict card-based protocols to closed shuffles.
The fact that a closed permutation set Π is a subgroup of the symmetric group
S|D| implies strong structural properties for the corresponding shuffle action on
states. This structure is captured by the orbits associated with the group action
of Π on sequences on symbols, introduced in the following.

Definition 4 (Group action, e.g. [DM96]). Let X be a nonempty set, G a
group, and ϕ : G×X → X a function written as g(x) := ϕ(g, x) for g ∈ G, x ∈ X.
We say that G acts on X if

– e(x) = x for all x ∈ X, where e denotes the identity element in G,
– (g ◦ h)(x) = g(h(x)) for all x ∈ X and all g, h ∈ G.

In card-based protocols, the permutation group S|D| acts on a set of sequences
of a deck D in the natural way, by reordering the cards in a sequence according
to the permutation.

For a group G acting on a set X the orbit of an element x ∈ X is G(x) =
{g(x) : g ∈ G}. Any subgroup of S|D| also acts on X in the same way. This
is interesting for closed shuffle operations. The orbit of an element x under a
subgroup Π is Π(x) = {π(x) : π ∈ Π}. It is easy to see that the orbits of two
elements are either the same or disjoint. Therefore, Π induces a partition of
the set of possible sequences into disjoint orbits. We call this partition the orbit
partition of the sequences through Π. For a shuffle with permutation set Π we
also say that the orbit partition of Π is the orbit partition of the shuffle.

17

♥ ♥ ♥ ♣ ♣ 1
♥ ♥ ♣ ♥ ♣ 2
♥ ♥ ♣ ♣ ♥ 3
♣ ♣ ♥ ♥ ♥ 4
♥ ♣ ♣ ♥ ♥ 5♣ ♥ ♣ ♥ ♥
♥ ♣ ♥ ♣ ♥ 6♣ ♥ ♥ ♣ ♥
♥ ♣ ♥ ♥ ♣ 7♣ ♥ ♥ ♥ ♣
(a) orbits of 〈(1 2)〉

♥ ♥ ♣ ♣ ♥ 1
♥ ♥ ♣ ♥ ♣ 2♥ ♥ ♥ ♣ ♣
♣ ♣ ♥ ♥ ♥ 3
♥ ♣ ♥ ♣ ♥ 4♣ ♥ ♣ ♥ ♥
♥ ♣ ♣ ♥ ♥ 5♣ ♥ ♥ ♣ ♥
♥ ♣ ♥ ♥ ♣ 6♣ ♥ ♥ ♥ ♣

(b) orbits of 〈(1 2)(3 4)〉

♣ ♣ ♥ ♥ ♥

1
♥ ♣ ♣ ♥ ♥
♥ ♥ ♣ ♣ ♥
♥ ♥ ♥ ♣ ♣
♣ ♥ ♥ ♥ ♣
♣ ♥ ♣ ♥ ♥

2
♥ ♣ ♥ ♣ ♥
♥ ♥ ♣ ♥ ♣
♣ ♥ ♥ ♣ ♥
♥ ♣ ♥ ♥ ♣

(c) orbits of 〈(1 2 3 4 5)〉

♥ ♥ ♥ ♣ ♣ 1
♣ ♥ ♥ ♣ ♥

2♥ ♣ ♥ ♣ ♥
♥ ♥ ♣ ♣ ♥
♣ ♥ ♥ ♥ ♣

3♥ ♣ ♥ ♥ ♣
♥ ♥ ♣ ♥ ♣
♣ ♣ ♥ ♥ ♥

4♣ ♥ ♣ ♥ ♥
♥ ♣ ♣ ♥ ♥
(d) orbits of 〈(1 2 3)〉

♣ ♥ ♥ ♥ ♣
1♥ ♣ ♥ ♥ ♣

♥ ♥ ♣ ♥ ♣
♥ ♥ ♥ ♣ ♣
♣ ♣ ♥ ♥ ♥

2♥ ♣ ♣ ♥ ♥
♥ ♥ ♣ ♣ ♥
♣ ♥ ♥ ♣ ♥
♣ ♥ ♣ ♥ ♥ 3♥ ♣ ♥ ♣ ♥
(e) orbits of 〈(1 2 3 4)〉

♥ ♥ ♥ ♣ ♣ 1
♣ ♣ ♥ ♥ ♥ 2♥ ♣ ♣ ♥ ♥
♣ ♥ ♣ ♥ ♥
♥ ♥ ♣ ♣ ♥

3

♣ ♥ ♥ ♥ ♣
♥ ♣ ♥ ♣ ♥
♥ ♥ ♣ ♥ ♣
♣ ♥ ♥ ♣ ♥
♥ ♣ ♥ ♥ ♣

(f) orbits of 〈(1 2 3)(4 5)〉

Fig. 4: Orbits of different closed (cyclic) shuffle operations on the card sequences.

5.1 Properties of (Uniform) Closed Shuffles

For our proof we will need the orbit partitions of closed shuffles on sequences of
five cards with three ♥ and two ♣. A display of all relevant orbit partitions can
be seen in Fig. 4. Before we proceed with the main theorem in Section 7, it is
beneficial to state some observations about orbit partitions and closed shuffles.

Lemma 1. Assume we shuffle a state µ into a state µ′ using a closed permutation
set Π. If there is π ∈ Π with π(i) = j, then in µ′ the columns i and j contain
the same multiset of symbols.

Proof. Assume column i has k ♣ in µ′. Because Π is closed, shuffling again with
Π yields µ′ again. In particular if s′ is contained in µ′, then so is π(s′). Since
π is a bijection on the set of all sequences, the sequences with ♣ in position i
are mapped to distinct sequences with ♣ in position j. In particular column j

18

contains at least as many ♣ as column i in µ′. Since the same argument works
for all other symbols and the total number of sequences did not increase, the
numbers of ♣ (and other symbols) in column i and j coincides. Since ♣ was
arbitrary, the claim follows. ut
Observe that Lemma 1 is false, if Π is not closed. Take for instance an action
(perm, π) for π 6= id. It is a non-closed shuffle clearly lacking this property.
Lemma 2 (Shuffling and Orbit Partitions). Let µ be transformed into µ′
via some shuffle with closed permutation set Π. Let O be an orbit of Π.
1. If µ ∩O = ∅, then10 µ′ ∩O = ∅
2. If µ ∩O contains a sequence of type r and no other sequences of type r′ 6= r,

then µ′ ∩O = O contains only r-sequences.
3. Otherwise, µ′ ∩O = O contains only ⊥-sequences.
Proof. Note that for any pair s1, s2 of sequences, there is some π ∈ Π with
π(s1) = s2 precisely if they are in the same orbit of Π. Thus when shuffling
with Π, the type µ(s1) directly “infects” precisely the entire orbit of s1. With ⊥
indicating several types jumbled together, the three cases are easily checked. ut
For the more restricted case of uniform closed shuffles, let us state the following
simple but interesting observation: all sequences in an orbit have the same
symbolic probability after the shuffle.
Lemma 3. Let act = (shuffle, Π) be a uniform closed shuffle and µ a state.
Let µ′ be the state arising from µ through act and s′1 and s′2 two sequences of
symbols in µ′. If s′1 = π(s′2) for π ∈ Π, then µ′(s′1) = µ′(s′2), i.e., the sequences
have the same probability.
Finally, let us note that it is not possible to perform shuffles that are more
powerful than closed shuffles indirectly by using a closed shuffle while cards are
face-up (branching shuffles). This re-vindicates an assumption made in Section 4.
Taking into account Corollary 2, we need only prove the following:
Lemma 4. Let Π be any closed permutation set and v and v′ visible sequences.
Assume Πv→v′ := {π ∈ Π : π(v) = v′} is non-empty. Then for any πv→v′ ∈
Πv→v′ , the set Πv := Πv→v′ ◦ π−1

v→v′ is closed.
In particular, we can implement (shuffle, Πv→v′) using (perm, πv→v′) followed by
the closed shuffle (shuffle, Πv).
Proof. Let x = ϕ1◦π−1

v→v′ and y = ϕ2◦π−1
v→v′ be two elements of Πv, in particular

ϕ1, ϕ2 ∈ Πv→v′ . We have (ϕ1 ◦ π−1
v→v′ ◦ ϕ2)(v) = v′, so ϕ1 ◦ π−1

v→v′ ◦ ϕ2 ∈ Πv→v′ .
This implies:

x ◦ y = ϕ1 ◦ π−1
v→v′ ◦ ϕ2 ◦ π−1

v→v′ ∈ Πv→v′ ◦ π−1
v→v′ = Πv. ut

For uniform shuffles, the analogous claim is even easier, as a uniformly random
variable conditioned to be contained in some subset is still uniform on that subset.
For uniform and closed shuffles these arguments can be combined.
10 We slightly abuse notation here, using µ for the set of sequences contained in µ.

19

6 Impossibility of Five-Card Finite-Runtime AND
Protocols with Closed Shuffles

In this section, we prove that AND protocols which are restricted to closed shuffle
operations, require six cards. The proof uses a similar technique as in [KWH15,
Sect. 6]. While in the latter there was a set of good states including the final states
which you never enter with all branches of a branching point in the protocol, here
we found that it was easier to start the other way round, namely to define a set of
bad states, about which we prove that starting from these there is always a path
in the tree which will enter a bad state again and this path does not contain any
final states. Here the situation is more complex as there are many more possible
states and we needed to derive new tools (orbit partitions) to make use of the
structure of the restricted permutation sets. For this we will make heavy use of
Lemmas 1 and 2, because they enable us to exploit the rich structure of closed
shuffles. Let us begin by stating our theorem.

Theorem 1. Let P be a (possibilistically) secure protocol computing AND in
committed format using only closed shuffles with five cards of two symbols.11 Then
P is not finite-runtime.

Proof Outline. We define a set of bad states, such that the start state is one of
them. We then show that in any protocol from each bad state there is a path into
another bad state. In particular, none of the bad states and none of the states
on the paths between them are final. This implies that there is an infinite path
starting from the start state precluding finite runtime.

Without loss of generality, the protocols we consider have the following
properties, since each protocol that does not have some of these properties can
be transformed into an equivalent protocol that does.

– P does not use operations that transform a (reduced) state into any simi-
lar state. These operations are clearly not necessary, when arguing about
possibilistic security, which is sufficient in our case.

– P does not use shuffle operations while cards are lying face up. These are
unnecessary by Corollary 2 and Lemma 4.

– each shuffle set Π is a cyclic subgroup of S5. This is because each subgroup
Π of S5 can be written as the product Π =

∏
π∈Π〈π〉, implying that doing

the cyclic shuffles 〈π〉 one after the other gives the same set of permutations
that can happen in total as in Π itself.

– The deck is D = [♥,♥,♥,♣,♣]. We need two ♣ and two ♥ for the inputs.
Our arguments work regardless of whether the fifth card is ♣ or ♥.

Definition of Bad States. Any state µ with one of the following properties is bad:

B4∗: µ has four sequences of the same type. In particular, this includes all states
with seven or more sequences,

11 Whether a five-card protocol is possible using a deck of three colors, i.e. D =
[♥,♥,♣,♣,♦], is an interesting open question.

20

B3♣: µ has a constant ♣-column and three or more sequences,
B5♥: µ has a constant ♥-column and five or more sequences,
B3♥♥: µ has two constant ♥-columns and three sequences,
B♥3/1: µ has a constant ♥-column and is of type 3/1 or 1/3.

To see that states of these types are all non-final, first note that any final state
is, up to reordering, a (not necessarily proper) subset of the sequences of the
following state including at least one 0-sequence and at least one 1-sequence.
Hence, we will call it the maximal final state:

♥ ♣ ♣ ♥ ♥ 1
♥ ♣ ♥ ♣ ♥ 1
♥ ♣ ♥ ♥ ♣ 1
♣ ♥ ♣ ♥ ♥ 0
♣ ♥ ♥ ♣ ♥ 0
♣ ♥ ♥ ♥ ♣ 0

The bad states do not “fit” into this state, since

B4∗: the maximal final state has only three sequences of each type.
B3♣: the only two columns in the maximal final state with three ♣ are the first

two. But a restriction to the sequences with ♣ in the first (or second) position
contains 0-sequences (1-sequences) only.

B5♥: all columns of the maximal final state contain at most four ♥.
B3♥♥: no two columns in the maximal final state have three ♥ in the same positions.
B♥3/1: any admissible restriction of the maximal final state with four sequences and

a constant ♥-column is of type 2/2.

The start state is bad as required as it falls into category B♥3/1. We begin by
making a few observations that greatly simplify the proof.

Claim (Restriction to Simple Shuffles). We need to only consider the three shuffle
sets 〈(1 2)〉, 〈(1 2 3)〉 and 〈(1 2)(3 4)〉 in the main proof.

Proof. As discussed before, we only consider cyclic shuffles, i.e. shuffles of the
form Π = 〈π〉 for π ∈ S|D|. Unless π = id, the cycle decomposition of π can have
either one cycle of length 2, 3, 4 or 5 or two cycles of length 2 or one cycle of
length 2 and one cycle of length 3. We treat states that are equal up to similarity
(reordering) as equivalent; it therefore suffices to consider one shuffle of each type.
Among them, 〈(1 2)(3 4 5)〉 can be decomposed12 as 〈(1 2)〉 ◦ 〈(3 4 5)〉 and we
handle those factors anyway. In the cases 〈(1 2 3 4 5)〉 and 〈(1 2 3 4)〉 there is
no choice of two orbits such that both contain less than four sequences, so any
shuffle that does not produce ⊥-sequences will produce at least four sequences of
the same type, yielding a bad state of type B4∗. ut
12 The cycles have co-prime length, as opposed to the case 〈(1 2)(3 4)〉, which we handle

explicitly in the proof of the theorem.

21

Claim (Criteria for Dead Columns). The following criteria for columns ensure
that if the next turn in the protocol occurs in this column, then we are either
already bad or this turn entails a bad successor state. We say the column is
dead.13 In particular, if all columns are dead, we know that after the next turn,
we get a bad state.

D3♣: The column contains 3 ♣.
D5♥: The column contains 5 ♥.
D2∗♣: The column contains 2 ♣ belonging to sequences of the same type.
D3∗♥: The column contains 3 ♥ belonging to sequences of the same type.

Proof. – If a column contains three or more ♣, turning this column yields a
bad state with a constant ♣-column and three or more sequences.

– If a column contains five or more ♥, turning this column yields a bad state
with a constant ♥-column and five or more sequences.

– if a column contains two ♣ belonging to sequences of the same type, an
additional sequence of the other type with ♣ must be added in this position
to make it turnable. This leads to a column with three ♣, and turning there
yields a B3♣.

– If three sequences of the same type all have ♥ in a column, there needs to be
an additional sequence of this type with ♣ in this column to make it turnable.
Adding such a sequence yields a bad state of type B4∗. ut

Claim (Death is Contagious). Consider a dead column with index i in a state µ
and a closed shuffle act with permutation set Π such that π(i) = j for a π ∈ Π.
Then the column with index j is dead as well after applying act to µ.

Proof. – By Lemma 1, the number of ♣ must be the same in columns i and j
after the shuffle. Therefore D3♣ spreads.

– This case is completely analogous to the previous, with D5♥ instead of D3♣.
– By Lemma 1 column j must have at least two ♣ in the same type of sequences

after the shuffle.
– For any shuffle that does not create ⊥-sequences, by Lemma 1 there must

be three sequences of the same type that have ♥ in column j. Therefore j is
dead after the shuffle. ut

Proof (of Theorem 1). We show that from each bad state there is a path into
another bad state by case analysis.

States with four sequences of the same type. Any non-trivial shuffle not
producing ⊥-sequences retains the four sequences of the same type.
Assume w.l.o.g. that there are four 0-sequences and consider turn operations.
This requires at least two 1-sequences. If there are two sequences of type 1,
we have six sequences in total. Turning either yields two states of at least

13 If the column is unturnable then any method (not involving a turn) to make it
turnable first before turning it in this column, will retain/ensure this deadness
property.

22

three sequences, in particular one with constant ♣, a B3♣, or a 3/1 state with
constant ♥, a B♥3/1. If there are more that two 1-sequences, there are at
least seven sequences in total. A turn yields two successor states – one with
a constant ♥-column and k sequences, and one with a constant ♣-column
with ` sequences and k + ` ≥ 7. So we have k ≥ 5 (B5♥) or ` ≥ 3 (B3♣).

States with a constant ♣-column and four sequences. Up to reordering,
the state looks like

♣ ♣ ♥ ♥ ♥
♣ ♥ ♣ ♥ ♥
♣ ♥ ♥ ♣ ♥
♣ ♥ ♥ ♥ ♣

This state admits no non-trivial turn operation. Any shuffle operation that
does not involve the first column produces a similar state. Since any col-
umn other than the first contains three ♥, any other shuffle produces three
additional ♥ in the first column by Lemma 1, resulting in a state of type B4∗.

States with a constant ♣-column and three sequences. Without loss of
generality, these states are of type 2/1. They are non-turnable. Shuffles that
do not involve the constant column will retain the property of being constant
♣ in that column and three or more sequences. Hence, in the following we
consider shuffles involving the constant column.
To keep the proof simple, an important tool are the orbit partitions of each
of the three equivalence classes of shuffles, as in Fig. 4. We try to place the
sequences into the orbits, s.t. completing these does not yield a bad state.
W.l.o.g. we choose sequences, s.t. the constant ♣-column is the first column.
Case 1: (1 2). The orbit partition looks as in Fig. 4a. The first three orbits

contain no ♣ there and are out. No orbits contain two ♣ in the first
column, so both 0-sequences must be placed in distinct orbits. If both
orbits are of size 2, shuffling yields four 0-sequences giving a B4∗-state.
Otherwise, one of the 0-sequences is ♣♣♥♥♥. The other 0-sequence and
the 1-sequence must be placed into orbits of size 2. All of them have ♣
only in one column out of the columns 3, 4, 5, and ♣♣♥♥♥ has ♣ in
none of them, so for all choices we end up in a B5♥-state.

Case 2: (1 2)(3 4). Similarly to before, we need to choose one 0-sequence as
♣♣♥♥♥ and need to place the remaining two sequences into the last
three orbits of Fig. 4b. Choosing orbit 4 and 5 yields a B5♥-state.
If we choose orbits 4 (or 5) and 6 then the first two columns are dead
(D3♣) and the fifth column is dead as well (D2∗♣). If we choose the the
second 0-sequence within orbit 6, then columns 3 and 4 are dead (D3∗♥).
If we choose the 0-sequence within orbit 4 (or 5) and the 1-sequence
within orbit 6, there are two living non-turnable columns. Any shuffle
that contains only columns 3 and 4 in one cycle does not produce a
1-sequence with ♣ in those columns, so they remain non-turnable. Any
shuffle that makes column 3 or 4 turnable by shuffling them with at least
one of the dead columns kills the column in the process.

Case 3: (1 2 3). If we place the three sequences in the pairwise distinct orbits
of Fig. 4d, we end up with nine sequences after the shuffle. Otherwise,

23

the two 0-sequences share the bottommost orbit and the 1-sequence must
be in the second or third orbit, and we get a B5♥-state.

States with a constant ♥-column and five or more sequences. W.l.o.g.
the first column is constant ♥. Consider a turn operation on column i 6= 1.
Column i has either three ♥ and turning therefore leads to a B3♥♥-state, or
column i has three ♣ and turning leads to a B3♣-state.
Any shuffle not involving the first column keeps it constant ♥, and therefore
bad. Consider any shuffle involving the first column, say π is a possible
permutation in the permutation set of the shuffle with π(i) = 1. Column i
contains at least two ♣ and by Lemma 1 shuffling yields two new sequences
with ♣ in position 1, giving seven or more sequences – a B4∗-state.

States with two constant ♥-columns and three sequences. No turn op-
eration is possible as the state is of type 1/2 or 2/1. Shuffles involving none
of the constant columns keep them constant. Shuffles involving only one of
them, produce a state with two ♣ in that column, so five sequences in total,
where the other ♥-column stays constant. This is a B5♥-state.
For the interesting case of shuffles involving both constant ♥-columns, we
again try to place the sequences into the orbits of the different types of shuffles
such that completing these orbits does not yield two or more additional 0-
sequences, as this would lead to a 4/2 state or to seven or more sequences.
Case 1: (1 2). As both constant columns have to be involved in the shuffle,

they have to be in positions 1 and 2. This leaves the state constant.
Case 2: (1 2)(3 4). If the constant ♥-columns are both in the same cycle, we

do not get additional sequences. Otherwise, say they are in positions 2
and 3, the only three sequences are ♥♥♥♣♣ from orbit 2, ♣♥♥♣♥ from
orbit 5, and ♣♥♥♥♣ from orbit 6, and shuffling results in a B4∗-state.

Case 3: (1 2 3). W.l.o.g. the constant columns are 1 and 2. The sequences
with ♥ in those positions are all in distinct orbits with a combined size
of 7, which is a B4∗-state.

3/1-states with a constant ♥-column. This state is not turnable as it has
only one 1-sequence. A non-trivial shuffle not involving the constant column
yields a state with five or more sequences and a constant ♥-column. For
shuffles involving the constant column we try to place the sequences into the
orbits of the different classes of shuffles such that completing these orbits
does not yield any additional 0-sequences.
Case 1: (1 2). We have to involve the constant ♥-column, which is w.l.o.g.

in position 1. The only orbits with constant ♥ are 1, 2 and 3. To not
produce additional 0-sequences, those need to be the ones occupied by
the 0-sequences. We need to place the 1-sequence in orbits 5, 6 or 7, and
choose w.l.o.g. 5. Then, the first two columns are dead via D3∗♥. The
third column is dead via D3♣. Columns 4 and 5 are dead via D2∗♣.

Case 2: (1 2)(3 4). Regardless, the first two columns are dead via D3∗♥ and
the other columns are dead via D2∗♣

Case 3: (1 2 3). The constant ♥-column is w.l.o.g. the first. No orbit contains
three ♥ in column 1, so the 0-sequences are spread over at least two

24

orbits. Any choice of two orbits contains four or more sequences, so we
have four sequences of the same type after the shuffle.

This concludes the proof. ut

7 Impossibility of Four-Card Restart-Free AND
Protocols with Uniform Closed Shuffles

As discussed on Section 1, if we are willing to discard the finite-runtime require-
ment, there is an intermediate property, namely restart-freeness. This section
focuses on restart-free AND protocols. Our proof is similar to the setting of
[KWH15] in that we start from a (slightly enlarged) set of good states, but
instead of showing that there is an infinite path of non-good states, we show the
stronger property that no path contains a good state.

Note that for protocols with only closed, but possibly non-uniform shuffles, the
four-card AND protocol of [KWH15] provides an already card-minimal solution.
For protocols which are additionally restricted to uniform and closed shuffles, we
show in the following that five cards are necessary to compute AND in committed
format without restarts.

The following argument speaks about non-reduced states. We still use the
terminology for reduced states, but the precise notion of turnability from Eq. (1).

Theorem 2. There is no secure restart-free Las Vegas four-card AND protocol
in committed format if shuffling is restricted to uniform closed shuffles.

Proof. The proof is similar to the proof of [KWH15, Theorem 3]. Let P be a
secure protocol computing AND with four cards using only uniform closed shuffles
and no restart actions. We define a set G of good states that contains all final
states but not the start state. We then show that we cannot get into the set of
good states from a non-good state with a turn or a uniform closed shuffle that
does not create ⊥-sequences. A state is good if it is

– a state of type 1/1 or 2/2,
– a state of type 1/2 or 2/1 without a constant column,
– a turnable state of type 2/3 or 3/2.

All other states are bad. The main difference to [KWH15, Theorem 3] is that
we need to consider states where turning yields at least one good state instead
of only the ones that yield only good states. In particular, the additional good
states are the turnable 2/3- and 3/2-states.

Note that as our deck is [♥,♥,♣,♣], we can form at most 6 sequences shown
in Fig. 5a. The start state is bad because it is of type 3/1. The final states are
amongst the good states because they are of type i/j with i, j ≤ 2. If they are of
type 2/1 or 1/2 they do not have a constant column as one can easily see when
looking at the sequence-maximal final state for four cards (Fig. 5b)

25

Fig. 5:

♥ ♥ ♣ ♣
♥ ♣ ♥ ♣
♣ ♥ ♥ ♣
♥ ♣ ♣ ♥
♣ ♥ ♣ ♥
♣ ♣ ♥ ♥

(a) All sequences with four cards.

♥ ♣ ♥ ♣ 1
♥ ♣ ♣ ♥ 1
♣ ♥ ♥ ♣ 0
♣ ♥ ♣ ♥ 0

(b) A sequence-maximal final state
with four cards w.r.t. (result, 1, 2).

Turns. Only states of type i/j with i, j ≥ 2 are turnable. The only bad states
that fit this criterion are of type 3/3 or 4/2 (2/4). The maximum state with a
constant column has three sequences, therefore these states can only be turned
into two states both of which are of types 1/2 or 2/1 with a constant column.

Shuffles. We cannot shuffle a bad state µ into a good state µ′ of type i/j where
both i, j ≤ 2. Assume we could. This would require µ to be a bad 1/2-state, thus
µ has a constant column and three sequences. Any shuffle that adds sequences
involves the constant column. Any other column of µ contains the symbol of the
constant column only once, hence, by Lemma 1 it must contain it at least three
times after the column has been shuffled with the constant column. This adds at
least two sequences, contradicting our assumption on the type of µ′. Therefore
we only need to look at shuffles that yield a turnable 2/3 or 3/2-state.

Assume that an action (shuffle, Π) transforms a bad µ into a turnable 3/2
state µ′. Without loss of generality, we assume position 1 is turnable in µ′ and
the sequence not contained in µ′ is s = ♥♥♣♣.14 By Lemma 2, {s} is an orbit of
Π of size 1, i.e. s is invariant under Π. In particular, Π is a non-trivial subgroup
of {id, (1 2), (3 4), (1 2)(3 4)} ⊆ S4.

If we had (3 4) ∈ Π, then the only two sequences of µ′ with ♥ in position 1,
namely ♥♣♥♣ and ♥♣♣♥, would share an orbit of Π, and therefore have the
same type in µ′, contradicting turnability of the first column of µ′. Thus, either
(1 2) or (1 2)(3 4) is in Π (but not both). Assume (1 2) ∈ Π, the other case is
analogous. By Lemma 3, it holds that

µ′(♥♣♥♣) = µ′(♣♥♥♣) and µ′(♥♣♣♥) = µ′(♣♥♣♥), (∗)
because these each share an orbit. As position 1 of µ′ is turnable, we know that

µ′(♥♣♥♣) + µ′(♥♣♣♥) = p ∈ (0, 1), and
µ′(♣♣♥♥) + µ′(♣♥♥♣) + µ′(♣♥♣♥) = q ∈ (0, 1),

i.e., constant. Using this and (∗), we obtain µ′(♣♣♥♥) = q−p, which is constant.
It is non-zero, so each of the monomials X00, X01, X10, X11 occurs with a positive
coefficient, meaning ♣♣♥♥ is a ⊥-sequence of µ′ – a contradiction. ut
14 If this is not the case we can apply a permutation such that the constant sequence

either is ♥♥♣♣ or ♣♣♥♥ and use the symmetry of exchanging ♥ and ♣.

26

8 Impossibility of n-COPY with 2n Cards

In this section, we prove that any protocol that produces n copies of a commitment
needs at least 2n+ 1 cards, showing that we cannot improve w.r.t. to the number
of cards on the protocol in [NNH+17], cf. Fig. 3. We start with a lemma.

Lemma 5. Let P be a secure protocol computing a function f . Assume that a
reduced state µ of P is transformed to a non-similar state µ′ by an action. Then,

(a) the action cannot be of type perm.
(b) if the action is a turn, µ′ has a sibling state.
(c) if it is a shuffle, either |µ| = |µ′| and µ′ has a ⊥-sequence, or |µ| < |µ′|.

Proof. (a) A permutation can only produce similar states by definition.
(b) As µ′ and µ are not similar, µ′ contains a proper subset of the sequences of

µ. The sequences which were removed from µ′ are not compatible with the
visible sequence annotation to µ′ and hence it needs to have a sibling state.

(c) Clearly, a (shuffle, Π,F) action cannot reduce the number of sequences. As-
sume that |µ| = |µ′| and µ′ contains no ⊥-sequences. Let s1, s2, . . . , si be the
sequences in µ. For any π ∈ Π, µ′ includes all sequences π(s1), π(s2), . . . , π(si).
Because |µ| = |µ′|, µ′ cannot have any other sequences. Thus, µ and µ′ are
similar via π, a contradiction. ut

Our impossibility proof first assumes the existence of a 2n-card COPY protocol
which is minimal in the sense that it admits the shortest run, i.e. there is no
protocol with the same functionality where there is a leaf state that is less deep.15

We call it run-minimal. We then derive a contradiction by showing that the leaf
state of the shortest run cannot be reached by one of the admissible actions.

Theorem 3. There is no (possibilistically) secure 2n-card n-COPY protocol.

Proof. Suppose for a contradiction that there are 2n-card n-COPY protocols,
and let P = (D, U,Q,A) be a run-minimal one. Let µ′ be a leaf state of the state
tree of P of minimum depth. As µ′ is final, it is similar to the state

(♣♥)n 0
(♥♣)n 1,

meaning µ′ contains exactly two sequences and the distance between them is 2n.
Let µ be the parent state of µ′. Note that µ and µ′ are not similar, as otherwise
the shortest run would obviously not be minimal, as we could remove µ′ from
the tree. Hence, by Lemma 5 we only need to consider the following actions:

– (turn, T): Sequences in µ′ coincide at positions in the (non-empty) turn set T .
But then µ′ would not contain two sequences of distance 2n, a contradiction.

15 This is to avoid intricacies with definitions such as: “we cannot delete a leaf while
retaining functionality” (used in Section 9) for infinite trees.

27

– (shuffle, Π,F): The only way for µ to have only one sequence is if it is a
⊥-sequence. Note that from that situation a shuffle cannot produce any 0- or
1-sequences and hence cannot end in µ′. Therefore, assume |µ| ≥ 2. Then, by
Lemma 5 (c) there are two possibilities. If |µ′| = |µ| we would have introduced
a ⊥-sequence, which is not present in µ′. Therefore, we have |µ′| > |µ| ≥ 2,
which is a contradiction to |µ′| = 2.

– (restart): µ′ would be the start state, where there are exactly two sequences
of distance 2, contrary to the distance of 2n, with n > 1. ut

By Theorem 3 and the existing (2n+ 1)-card COPY protocol [NNH+17], 2n+ 1 is
the necessary and sufficient number of cards for making n copied commitments.
In the next section, we restrict our attention to finite-runtime protocols.

9 Impossibility of 2n + 1-Card Finite-Runtime n-COPY

In Section 8, we showed that 2n+ 1 cards are minimal for COPY computations.
Note that the existing (2n+ 1)-card COPY protocol [NNH+17] has a runtime that
is finite only in expectation. In this section, we show that if we are restricted to
a finite runtime, there cannot be a protocol using only 2n+ 1 cards. For this, we
look at the finite state tree of an assumed minimal protocol and consider a leaf
state with a position of largest depth in the tree (i.e. there is no leaf state which
is even deeper). By contradiction, we show that no such leaf state can exist, as it
would have a sibling which is not yet a leaf state.

Theorem 4. There is no (possibilistically) secure (2n+ 1)-card finite-runtime
n-COPY protocol.

Proof. Suppose for a contradiction that there exist (2n+ 1)-card finite-runtime
n-COPY protocols and let P = (D, U,Q,A) be a minimal one, in the sense that
we cannot remove a leaf while retaining functionality. The deck D includes at
least n ♣ s and n ♥ s, and let remaining card be of symbol ♣ or of third color,
say ♦. Because of the finite runtime, the height of the state tree of P is finite,
and hence, there must be a deepest leaf state, i.e. a leaf state with no other leaf
state being on a level below it. We call it µ′. As it is a final state, it needs to
look like this, up to reordering:

♣(♣♥)n 0 ♦(♣♥)n 0
♣(♥♣)n 1, or ♦(♥♣)n 1.

The distance between the two sequences is 2n, and one column is constant. Let
µ be the parent state of µ′. Similarly to the proof of Theorem 3, perm and
shuffle cannot have transformed µ to µ′. Hence, from the form of µ′ the action
must be (turn, {1}). By the minimality of P , µ and µ′ are not similar. Therefore,
Lemma 5 (b) implies that there is a sibling state µ′′ of µ′. This sibling state has a
constant ♥-column (or possibly a ♣-column, if we have a ♦) in the first position,
as it is the only way for the visible sequences of the turn to differ. In this case,

28

we cannot construct two sequences whose distance is 2n with the remaining n− 1
♥ s and n+ 1 ♣ s (or n ♣ s and a ♦) in µ′′. Therefore, µ′′ cannot be a leaf state
of P, and there would be a deeper leaf than µ′, contrary to our assumption. ut

10 Conclusion
We extended the analysis on the necessary and sufficient number of cards in
card-based protocols computing an AND in committed format to certain plausible
restrictions on the operations that can be performed during a protocol run. These
are restrictions to certain forms of shuffling, namely closed and/or uniform shuffles
and whether running in loops or restarting is allowed. This focus allows to get
a clearer view on how many cards are necessary in protocols with favorable
properties, such as finite-runtime or easy-to-do/actively secure shuffling. It is
for example useful to now be aware that a search for five-card finite-runtime
protocols using only closed shuffles will be fruitless – and thereby identifying
the six-card protocol by [MS09] as optimal w.r.t. closed-shuffle protocols. In the
process, we highlight interesting properties from which the orbit partitions are
the most useful. Furthermore, we extended the four-card impossibility result of
[KWH15] to the case of uniform closed shuffles for restart-free Las Vegas protocol.

For bit copy, we proved that the (2n+ 1)-card COPY protocol of [NNH+17] is
card-minimal, and the (2n+ 2)-card COPY protocol of [MS09] is card-minimal
w.r.t. finite-runtime protocols. Figure 6 summarizes our results and surveys
current bounds on the number of cards for all combinations of restrictions.

Open Problems. We find it interesting whether our impossibility result con-
cerning closed-shuffle finite-runtime five-card AND protocols carries over to the
setting where we use a helping card of a third color, say ♦. This is not clear, as
the number of possible sequences in a state (and hence the number of possible
states) grows immensely with an additional color, but we are also more restricted
in turning as we learn more information by observing a symbol.

A second open problem is related to the analysis of restart-free Las Vegas
protocols from Section 7: As we show that a lower bound is five cards, we are keen
to find out whether this bound is tight, i.e. whether there really is a (restart-free)
five-card protocol which uses only uniform closed shuffles. In addition to that
it would be very interesting to extend the analysis with respect to restricted
shuffling to COPY protocols. For example, does there exist a (2n+ 1)-card COPY
protocol using only (uniform) closed shuffles?

Acknowledgments.We would like to thank our reviewers for their valuable com-
ments. This work was supported by JSPS KAKENHI Grant Number 17K00001.

References
[CHL13] E. Cheung, C. Hawthorne, and P. Lee. “CS 758 Project: Secure

Computation with Playing Cards”. 2013. url: https://csclub.uwaterloo.
ca/~cdchawth/files/papers/secure playing cards.pdf.

29

https://csclub.uwaterloo.ca/~cdchawth/files/papers/secure_playing_cards.pdf
https://csclub.uwaterloo.ca/~cdchawth/files/papers/secure_playing_cards.pdf

f, u, c:
x = 6

f, c:
x = 6

f, u:
5 ≤ x ≤ 6

u, c:
4 ≤ x ≤ 6f: x = 5

c: x = 4 u: x = 4

∅: x = 4

r: x = 4

r, c:
x = 4

r, u:
4 ≤ x ≤ 6

r, u, c:
5 ≤ x ≤ 6

(a) AND protocols

f, u, c:
x = 2n + 2

f, c f, u

u, c:
2n + 1 ≤
x ≤ 2n + 2

f:
x = 2n + 2

c: 2n + 1 ≤
x ≤ 2n + 2 u

∅:
x = 2n + 1

r

r, c:
2n + 1 ≤
x ≤ 2n + 2

r, u:
x = 2n + 1

r, u, c:
2n + 1 ≤
x ≤ 2n + 2

(b) COPY protocols

Fig. 6: Currently known bounds on the numbers of cards needed for committed
format protocols in form of a Hasse diagram. A line between two settings in the
lattice describes that the configuration above the other has more restrictions and
hence needs as least as many cards as the dominated configuration. The new
results are in bold. Here, f means finite-runtime (which includes restart-freeness),
r is restart-freeness, c is a restriction to closed shuffles, and u for uniform shuffles.
The values of corners which only have a label are completely determined by the
surrounding nodes and hence ommitted for brevity.

[CK93] C. Crépeau and J. Kilian. “Discreet Solitary Games”. In: CRYPTO
’93. Ed. by D. R. Stinson. LNCS 773. Springer, 1993, pp. 319–330.
doi: 10.1007/3-540-48329-2 27.

[dBoe89] B. den Boer. “More Efficient Match-Making and Satisfiability: The
Five Card Trick”. In: EUROCRYPT ’89. Ed. by J. Quisquater and
J. Vandewalle. LNCS 434. Springer, 1989, pp. 208–217. doi: 10.1007/
3-540-46885-4 23.

[DM96] J. D. Dixon and B. Mortimer. Permutation groups. Graduate texts
in mathematics; 163. New York: Springer, 1996.

[FAN+16] D. Francis, S. R. Aljunid, T. Nishida, Y. Hayashi, T. Mizuki, and
H. Sone. “Necessary and Sufficient Numbers of Cards for Securely
Computing Two-Bit Output Functions”. In: Mycrypt 2016. Ed. by
R. C. Phan and M. Yung. LNCS 10311. Springer, 2016, pp. 193–211.
doi: 10.1007/978-3-319-61273-7 10.

[KW17] A. Koch and S. Walzer. Foundations for Actively Secure Card-based
Cryptography. 2017. Cryptology ePrint Archive, Report 2017/423.

[KWH15] A. Koch, S. Walzer, and K. Härtel. “Card-based Cryptographic
Protocols Using a Minimal Number of Cards”. In: ASIACRYPT 2015,
Part I. Ed. by T. Iwata and J. H. Cheon. LNCS 9452. Springer, 2015,
pp. 783–807. doi: 10.1007/978-3-662-48797-6 32.

30

http://dx.doi.org/10.1007/3-540-48329-2_27
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/3-540-46885-4_23
http://dx.doi.org/10.1007/978-3-319-61273-7_10
https://eprint.iacr.org/2017/423
http://dx.doi.org/10.1007/978-3-662-48797-6_32

[Miz16] T. Mizuki. “Card-based protocols for securely computing the con-
junction of multiple variables”. In: Theoretical Computer Science 622
(2016), pp. 34–44. doi: 10.1016/j.tcs.2016.01.039.

[MKS12] T. Mizuki, M. Kumamoto, and H. Sone. “The Five-Card Trick Can
Be Done with Four Cards”. In: ASIACRYPT 2012. Ed. by X. Wang
and K. Sako. LNCS 7658. Springer, 2012, pp. 598–606. doi: 10.1007/
978-3-642-34961-4 36.

[MS09] T. Mizuki and H. Sone. “Six-Card Secure AND and Four-Card Secure
XOR”. In: FAW 2009. Ed. by X. Deng, J. E. Hopcroft, and J. Xue.
LNCS 5598. Springer, 2009, pp. 358–369. doi: 10.1007/978-3-642-
02270-8 36.

[MS14] T. Mizuki and H. Shizuya. “A formalization of card-based crypto-
graphic protocols via abstract machine”. In: International Journal
of Information Security 13.1 (2014), pp. 15–23. doi: 10.1007/s10207-
013-0219-4.

[MS17] T. Mizuki and H. Shizuya. “Computational Model of Card-Based
Cryptographic Protocols and Its Applications”. In: IEICE Trans-
actions 100-A.1 (2017), pp. 3–11. url: http://search.ieice.org/bin/
summary.php?id=e100-a 1 3.

[MWS15] A. Marcedone, Z. Wen, and E. Shi. Secure Dating with Four or Fewer
Cards. 2015. Cryptology ePrint Archive, Report 2015/1031.

[NHMS16] A. Nishimura, Y.-i. Hayashi, T. Mizuki, and H. Sone. “An Imple-
mentation of Non-Uniform Shuffle for Secure Multi-Party Computa-
tion”. In: Workshop on ASIA Public-Key Cryptography, Proceedings.
AsiaPKC ’16. New York, NY, USA: ACM, 2016, pp. 49–55. doi:
10.1145/2898420.2898425.

[NNH+15] A. Nishimura, T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone.
“Five-Card Secure Computations Using Unequal Division Shuffle”. In:
TPNC 2015. Ed. by A. H. Dediu, L. Magdalena, and C. Martín-Vide.
LNCS 9477. Springer, 2015, pp. 109–120. doi: 10.1007/978-3-319-
26841-5 9.

[NNH+17] A. Nishimura, T. Nishida, Y. Hayashi, T. Mizuki, and H. Sone. Card-
Based Protocols Using Unequal Division Shuffle. 2017. Cryptology
ePrint Archive, Report 2017/425.

31

http://dx.doi.org/10.1016/j.tcs.2016.01.039
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/978-3-642-34961-4_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/978-3-642-02270-8_36
http://dx.doi.org/10.1007/s10207-013-0219-4
http://dx.doi.org/10.1007/s10207-013-0219-4
http://search.ieice.org/bin/summary.php?id=e100-a_1_3
http://search.ieice.org/bin/summary.php?id=e100-a_1_3
https://eprint.iacr.org/2015/1031
http://dx.doi.org/10.1145/2898420.2898425
http://dx.doi.org/10.1007/978-3-319-26841-5_9
http://dx.doi.org/10.1007/978-3-319-26841-5_9
https://eprint.iacr.org/2017/425

	 The Minimum Number of Cards in Practical Card-based Protocols

