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Abstract

Oblivious Parallel RAM (OPRAM), first proposed by Boyle, Chung, and Pass, is the natural
parallel extension of Oblivious RAM (ORAM). OPRAM provides a powerful cryptographic
building block for hiding the access patterns of programs to sensitive data, while preserving the
paralellism inherent in the original program. All prior OPRAM schemes adopt a single metric of
“simulation overhead” that characterizes the blowup in parallel runtime, assuming that oblivious
simulation is constrained to using the same number of CPUs as the original PRAM.

In this paper, we ask whether oblivious simulation of PRAM programs can be further sped
up if the OPRAM is allowed to have more CPUs than the original PRAM. We thus initiate
a study to understand the true depth of OPRAM schemes (i.e., when the OPRAM may have
access to unbounded number of CPUs). On the upper bound front, we construct a new OPRAM
scheme that gains a logarithmic factor in depth and without incurring extra blowup in total
work in comparison with the state-of-the-art OPRAM scheme. On the lower bound side, we
demonstrate fundamental limits on the depth any OPRAM scheme — even when the OPRAM is
allowed to have an unbounded number of CPUs and blow up total work arbitrarily. We further
show that our upper bound result is optimal in depth for a reasonably large parameter regime
that is of particular interest in practice.
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1 Introduction
Oblivious RAM (ORAM), originally proposed in the seminal works of Goldreich and Ostrovsky [13,
14], is a powerful cryptographic building block that allows a program to hide access patterns to
sensitive data. Since Goldreich and Ostrovsky’s ground-breaking results, numerous subsequent
works showed improved ORAM constructions [16, 19, 26, 28, 29] with better asymptotics and/or
practical performance. ORAM has also been used in various practical and theoretical applications
such as multi-party computation [17, 30], secure processor design [11, 12, 20, 21, 24], and secure
storage outsourcing [27,31].

Since most modern computing architectures inherently support parallelism (e.g., cloud compute
clusters and modern CPU designs), a natural problem is how to hide sensitive access patterns in
such a parallel computing environment. In a recent seminal work, Boyle, Chung, and Pass [2] first
propose the notion of Oblivious Parallel RAM (OPRAM), which is a natural extension of ORAM
to the parallel setting. Since then, several subsequent works have constructed efficient OPRAM
schemes [5, 6, 22]. One central question in this line of research is whether there is an OPRAM
scheme whose simulation overhead matches that of the best known ORAM scheme. Specifically, an
OPRAM scheme with simulation overhead X means that if the original PRAM consumes m CPUs
and runs in parallel time T , then we can obliviously simulate this PRAM also with m CPUs, and
in parallel runtime X · T . In a recent companion paper called Circuit OPRAM [5], we answered
this question in the affirmative. In particular, if N is the number of distinct blocks that the CPUs
can request, then Circuit OPRAM proposed a unifying framework where we can obtain statistically
secure OPRAMs with O(log2N) simulation overhead, and computationally secure OPRAMs with
(log2N/ log logN) simulation overhead — thus matching the best known ORAM schemes in both
settings [19,29].

All previous OPRAM schemes consider a single performance metric referred to as simulation
overhead as mentioned above. It is immediate that an OPRAM scheme with X simulation overhead
also immediately implies an ORAM construction with X simulation overhead. Thus, the recent
Circuit OPRAM [5] also suggests that we have hit some road-block for constructing more efficient
OPRAM schemes — unless we knew how to asymptotically improve the efficiency of sequential
ORAM. Note also that in the regime of sufficiently large block sizes, Circuit OPRAM achieves
O(α logN) simulation overhead for any super-constant function α, and this is (almost) tight in
light of Goldreich and Ostrovsky’s logarithmic ORAM lower bound [13,14].

1.1 Our Results and Contributions

In this paper, we rethink the performance metrics for an OPRAM scheme. We argue that while
adopting a single simulation overhead metric is intuitive, this single metric fails to capture the true
“work-depth” of the oblivious simulation. In particular, we ask the questions:

1. If the OPRAM is allowed to access more CPUs than the original PRAM, can we have oblivious
simulations with smaller parallel runtime blowup than existing OPRAM schemes?

2. Are there any fundamental limits to an OPRAM’s work-depth, assuming that the OPRAM can
have access to an unbounded number of CPUs?

To answer the above questions, we turn to the parallel algorithms literature, and adopt two
classical metrics, that is, total work and parallel runtime in the study of OPRAMs. Like the parallel
algorithms literature, we also refer to a(n) PRAM/OPRAM’s parallel runtime as its work-depth
(or depth). The depth metric represents the runtime of a PRAM when given ample CPUs — thus
the depth is the inherently sequential part of a PRAM that cannot be further parallelized even
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with an arbitrarily large number of CPUs. The depth metric is commonly used in conjunction
with total work — since we would like to design low-depth parallel algorithms that do not blow up
total work by too much in comparison with the sequential setting (e.g., by repeating computations
too many times). Using these classical metrics from the parallel algorithms literature, we can re-
interpret the single “simulation overhead” metric adopted by previous OPRAM works as follows:
an OPRAM with simulation overhead X has both total work blowup and parallel runtime blowup
X in comparison with the original PRAM.

Note that when the OPRAM is constrained to using the same number of CPUs as the original
PRAM, its parallel runtime blowup must be at least as large as the total work blowup. In this
paper, however, we show that this need not be the case when the OPRAM can access more CPUs
than the original PRAM. We design a new OPRAM scheme that gains a logarithmic factor in
speed (i.e., depth) in comparison with the state-of-the-art [5] when given logarithmically many
more CPUs than the original PRAM. In some sense, our new OPRAM scheme shows that the
blowup in total work incurred due to obliviousness can be parallelized further (albeit through non-
trivial techniques). Additionally, we prove new lower bounds that shed light on the inherent limits
on any OPRAM scheme’s depth. In light of our lower bounds, our new OPRAM scheme is optimal
in depth for a wide range of parameters. We now present an informal overview of our results and
contributions.

1.1.1 Upper Bounds

First, we show that for any PRAM running in time T and consuming W amount of total work,
there exists a statistically secure oblivious simulation that consumes logarithmically many more
CPUs than the original PRAM, and runs in parallel runtime O(T logN log logN) and total work
O(W log2N).

In comparison, the best known (statistically secure) OPRAM scheme incurs both O(log2N)
blowup in both total work and parallel runtime (i.e., O(log2N) simulation overhead). In this sense,
while preserving the total work blowup, we improve existing OPRAMs’ depth by a logarithmic
factor.

We then extend our construction to the computationally secure setting by adapting an elegant
trick originally proposed by Fletcher et al. [10], and show how to shave another log logN factor off
both the total work and parallel runtime, assuming that one-way functions exist. Our results are
summarized in the following informal theorem.

Theorem 1 (Small-depth OPRAMs: Informal). The following results are possible for small-depth
OPRAMs where N denotes the original PRAM’s total memory size, m denotes the original PRAM’s
number of CPUs, and the security failure must be negligible in N .
• Statistically secure, general block size. There exists a statistically secure OPRAM that

achieves O(log2N) blowup in total work and O(logN log logN) blowup in parallel runtime for
general block sizes of Ω(logN) bits.

• Computationally secure, general block size. Assume the existence of one-way functions,
then there exists a computationally secure OPRAM that achieves O( log2 N

log logN ) total work blowup
and O(logN) parallel runtime blowup for general block sizes of Ω(logN) bits.

• Statistically secure, large block size. For any super-constant function α(N) = ω(1), for
any constant ε > 0, there exists a statistically secure OPRAM that achieves O(α logN log logN)
total work blowup and O(logm + log logN) parallel runtime blowup for blocks of N ε bits or
larger.

4



1.1.2 Lower Bounds

Next, we consider if there are any fundamental limits to an OPRAM scheme’s work-depth. We
prove a non-trivial lower bound showing that any online OPRAM scheme (i.e., with no a-priori
knowledge of future requests) that does not perform encoding of data blocks and does not duplicate
data blocks too extensively must suffer from at least Ω(logm) depth blowup where m is the number
of CPUs — and this lower bound holds even when the OPRAM scheme may access arbitrarily
many CPUs and have arbitrarily large total work blowup. We stress that our lower bound employs
techniques that are different in nature from those of Goldreich and Ostrovsky’s classical ORAM
lower bound [13, 14] — in particular, theirs bounds total work rather than depth. Furthermore,
our lower bound holds even for computational security.

Theorem 2 (Lower bound for an OPRAM’s depth). Any computationally or statistically secure
online OPRAM scheme must incur at least Ω(logm) blowup in parallel runtime, as long as the
OPRAM 1) does not perform encoding of data blocks (i.e., in the “balls-and-bins” model); and 2)
does not make more than m0.1 copies of each data block.

We note that the conditions our lower bound assumes (online, balls-and-bins, and bounded
duplication) hold for all ORAM and OPRAM constructions.

1.1.3 On the Tightness of Our Upper and Lower Bounds

In light of our lower bound, our OPRAM constructions are optimal in depth in a reasonably large
parameter regime. Specifically, our (computationally secure) OPRAM scheme is depth-optimal
when m = N ε for any constant ε > 0 for general block sizes. For larger block sizes, our OPRAM
scheme is depth-optimal for a larger range of m — in particular, when the block size is sufficiently
large, our (statistically secure) OPRAM scheme is tight for m as small as m = poly logN .

1.1.4 Technical Highlights

Both our lower bounds and upper bounds introduce non-trivial new techniques. Since our lower
bound studies the depth of parallel algorithms, it is of a very different nature than Goldreich
and Ostrovsky’s ORAM lower bounds for total work [13, 14]. To prove the depth lower bound,
we also depart significantly in technique from Goldreich and Ostrovsky [13, 14]. In particular,
our lower bound is of an online nature and considers the possible batches of requests that a low-
depth access pattern can support in a single PRAM step; whereas in comparison, Goldreich and
Ostrovksy’s lower bound applies even to offline ORAM/OPRAM algorithms, and they perform a
counting argument over many steps of the ORAM/OPRAM. The most difficult challenge in proving
our lower bound is how to offset the large number of possibilities introduced by “preprocessing”,
i.e., the number of possible memory configurations before the PRAM step of concern starts. To
deal with this challenge, our core idea is to devise a new method of counting that is agnostic to
preprocessing.

For our new small-depth OPRAM, the main challenge we cope with is of a very different nature
from known ORAM and OPRAM works. In particular, all previous ORAMs and OPRAMs that
follow the tree-based paradigm [26] adopt a standard recursion technique such that the CPU need
not store a large amount of metadata (referred to as the position map). Known schemes treat this
recursion as a blackbox technique. Unfortunately, in our work, it turns out that this recursion
becomes the main limiting factor to an OPRAM’s depth. Thus, we open up the recursion, and
our core technique for achieving small-depth OPRAM is to devise a novel offline/online paradigm,
such that the online phase that is inherently sequential across recursion levels has small (i.e.,
O(log logN)) depth per recursion level; whereas all work that incurs logarithmic depth is performed
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in an offline phase in parallel across all recursion levels. Designing such an offline/online algorithm
incurs several challenges which we explain in Section 5.2. We hope that these new techniques can
also lend to the design of oblivious parallel algorithms in general.

Another way to view our small-depth OPRAM’s contributions is the following. In our setting,
we must address two challenges: 1) concurrency, i.e., how to coordinate a batch of m requests such
that they can be served simultaneously without causing write conflicts; and 2) parallelism, i.e., how
to make each request parallel by using more CPUs. Note that the concurrency aspect is appli-
cable only to OPRAMs where multiple concurrent requests are involved, whereas the parallelism
aspect is applicable even for parallelizing the operations of a sequential ORAM. Previous OPRAM
constructions [2, 6] are concerned only about the former concurrency aspect, but we need to take
both into account — in this sense, we are in fact the first to investigate the “parallelism” aspect of
ORAMs/OPRAMs.1. In particular, in our fetch phase algorithm, the two aspects are intertwined
for the case of general m, in the sense that we cannot separate our techniques into two phases
involving one “concurrent compilation” and one “parallel compilation” — such intertwining allows
us to construct more efficient algorithms. In the maintain phase, our divide-and-conquer strategy
for eviction indeed can be used to parallelize a sequential ORAM.

1.2 Related Work

Oblivious RAM (ORAM) was initially proposed in a ground-breaking work by Goldreich and Os-
trovsky [13,14], who showed that assuming the existence of one-way functions, any RAM-program
can be obliviously simulated with O(α log3N) overhead where α is any super constant function.
Subsequently, numerous works constructed asymptotically better ORAM schemes [16, 26, 28, 29]
and as well as ORAM schemes with statistical or perfect security [7, 9, 26, 28, 29]. As far as (se-
quential) ORAM is concerned, state-of-the-art results show how to construct 1) computationally
secure ORAMs with O(log2N/ log logN) simulation overhead [16,19]; 2) statistically secure ORAM
schemes with O(log2N) simulation overhead [29]; and 3) perfectly secure ORAM schemes with
O(log3N) simulation overhead. All of the aforementioned results work for any block size (as long
as the block is large enough to store its own memory address), as well as O(1) blocks of CPU private
cache. For sufficiently large block sizes, we know that ORAM schemes with O(α logN) overhead
can be constructed for an arbitrarily small super-constant function α — this is almost optimal in
light of Goldreich and Ostrovsky’s logarithmic ORAM lower bound [13,14].

Boyle, Chung, and Pass recently initiated the study of Oblivious Parallel RAM (OPRAM) [2].
They were also the first to phrase the simulation overhead metric for OPRAMs, i.e., the parallel
runtime blowup of the OPRAM in comparison with the original PRAM, assuming that the OPRAM
consumes the same number of CPUs as the original PRAM. Several subsequent works [2, 5, 6, 22]
have improved Boyle et al. [2]’s OPRAM construction. Most recently, Chan and Shi [5] show that
we can construct statistically secure and computationally secure OPRAMs whose asymptotical
performance match the best known sequential ORAM; and their approach is based on the tree-
based paradigm [26]. A similar asymptotical result (but for the computationally secure setting
only) was also shown by Chan et al. [4] using the hierarchical framework originally proposed by
Goldreich and Ostrovsky [13, 14]. In the OPRAM context, Goldreich and Ostrovsky’s logarithmic
lower bound [13, 14] immediately implies that any OPRAM with constant blocks of CPU cache
must suffer from at least logarithmic total work blowup. Thus far there is no other known OPRAM
lower bound (and our depth lower bound departs significantly in techniques from Goldreich and
Ostrovksy’s lower bound).

Besides the more standard notion of OPRAM, several other works have considered the parallel
oblivious simulation of restricted forms of parallel programs [23]. Dachman-Soled [8] also consider

1We gratefully acknowledge the Asiacrypt reviewers for pointing out this aspect of our contribution.
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the parallel oblivious simulation in a special RAM model where addresses within a memory bank are
not observable by the adversary, but the adversary can observe which CPUs access which memory
banks.

While our upper bound results build on top of the OPRAM frameworks proposed in prior
work [2, 5, 6], we show that several fundamentally new techniques are necessary to asymptotically
improve the depth of OPRAMs.

2 Definitions

2.1 Parallel Random-Access Machines

A parallel random-access machine (PRAM) consists of a set of CPUs and a shared memory denoted
mem indexed by the address space [N ] := {1, 2, . . . , N}. In this paper, we refer to each memory
word also as a block, and we use B to denote the bit-length of each block.

We use m to denote the number of CPUs. In each step t, each CPU executes a next instruction
circuit denoted Π, updates its CPU state; and further, CPUs interact with memory through request
instructions ~I(t) := (I(t)

i : i ∈ [m]). Specifically, at time step t, CPU i’s instruction is of the form
I

(t)
i := (op, addr, data), where the operation is op ∈ {read, write} performed on the virtual memory

block with address addr and block value data ∈ {0, 1}B ∪{⊥}. If op = read, then we have data = ⊥
and the CPU issuing the instruction should receive the content of block mem[addr] at the initial
state of step t. If op = write, then we have data 6= ⊥; in this case, the CPU still receives the initial
state of mem[addr] in this step, and at the end of step t, the content of virtual memory mem[addr]
should be updated to data.

Write conflict resolution. By definition, multiple read operations can be executed concurrently
with other operations even if they visit the same address. However, if multiple concurrent write
operations visit the same address, a conflict resolution rule will be necessary for our PRAM be
well-defined. In this paper, we assume the following:
• The original PRAM supports concurrent reads and concurrent writes (CRCW) with an arbitary,

parametrizable rule for write conflict resolution. In other words, there exists some priority rule
to determine which write operation takes effect if there are multiple concurrent writes in some
time step t.

• The compiled, oblivious PRAM (defined below) is a “concurrent read, exclusive write” PRAM
(CREW). In other words, the design of our OPRAM construction must ensure that there are
no concurrent writes at any time.
We note that a CRCW-PRAM with a parametrizable conflict resolution rule is among the most

powerful CRCW-PRAM model, whereas CREW is a much weaker model. Our results are stronger
if we allow the underlying PRAM to be more powerful but the compiled OPRAM uses a weaker
PRAM model. For a detailed explanation on how stronger PRAM models can emulate weaker ones,
we refer the reader to the work by Hagerup [18].

CPU-to-CPU communication. In the remainder of the paper, we sometimes describe our
algorithms using CPU-to-CPU communication. For our OPRAM algorithm to be oblivious, the
inter-CPU communication pattern must be oblivious too. We stress that such inter-CPU commu-
nication can be emulated using shared memory reads and writes. Therefore, when we express our
performance metrics, we assume that all inter-CPU communication is implemented with shared
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memory reads and writes. In this sense, our performance metrics already account for any inter-
CPU communication, and there is no need to have separate metrics that characterize inter-CPU
communication. In contrast, Chen et al. [6] defines separate metrics for inter-CPU communication.

Additional assumptions and notations. Henceforth, we assume that each CPU can only store
O(1) memory blocks. Further, we assume for simplicity that the runtime of the PRAM is fixed
a priori and publicly known. Therefore, we can consider a PRAM to be a tuple

PRAM := (Π, N,m, T ),

where Π denotes the next instruction circuit, N denotes the total memory size (in terms of number
of blocks), m denotes the number of CPUs, and T denotes the PRAM’s parallel time steps. Without
loss of generality, we assume that N ≥ m. We stress that henceforth in the paper, the notations
N and m denote the number of memory blocks and the number of CPUs for the original PRAM
— our OPRAM construction will consume O(1) factor more memory and possibly more than m
CPUs.

2.2 Oblivious Parallel Random-Access Machines

Randomized PRAM. A randomized PRAM is a special PRAM where the CPUs are allowed
to generate private, random numbers. For simplicity, we assume that a randomized PRAM has
a priori known, deterministic runtime.

Oblivious PRAM (OPRAM). A randomized PRAM parametrized with total memory size N
is said to be statistically oblivious, iff there exists a negligible function ε(·) such that for any inputs
x0, x1 ∈ {0, 1}∗,

Addresses(PRAM, x0)
ε(N)
≡ Addresses(PRAM, x1),

where Addresses(PRAM, x) denotes the joint distribution of memory accesses made by PRAM upon

input x and the notation
ε(N)
≡ means the statistical distance is bounded by ε(N). More specifically, for

each time step t ∈ [T ], Addresses(PRAM, x) includes the memory addresses requested by the CPUs
in time step t, as well as whether each memory request is a read or write operation. Henceforth we
often use the notation OPRAM to denote a PRAM that satisfies statistical obliviousness.

Similarly, a randomized PRAM parametrized with total memory size N is said to be computa-
tionally oblivious, iff there exists a negligible function ε(·) such that for any inputs x0, x1 ∈ {0, 1}∗,

Addresses(PRAM, x0)
ε(N)
≡c Addresses(PRAM, x1)

Note the only difference from statistical security is that here the access patterns only need to be
indistinguishable to computationally bounded adversaries, denoted by the notaiton

ε(N)
≡c .

Following the convention of most existing ORAM and OPRAM works [13, 14, 19, 28, 29], we
will require that the security failure probability to be negligible in the N , i.e., the PRAM’s total
memory size.

Oblivious simulation. We say that a given OPRAM simulates a PRAM if for every input x ∈
{0, 1}∗, Pr[OPRAM(x) = PRAM(x)] = 1 − µ(N) where the completeness error µ is a negligible
function and the probability is taken over the randomness consumed by the OPRAM — in other
words, we require that the OPRAM and PRAM output the same outcome on any input x.
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Online OPRAM. In this paper we focus on online OPRAM that simulates a PRAM by processing
memory request of each PRAM step in an online fashion. Namely, each PRAM memory request is
processed by the OPRAM without knowing the future requests. Note that all known ORAM and
OPRAM constructions satisfy the online property.

Performance measures. For an online OPRAM simulates a certain PRAM, we measure its
performance by its work-depth and total work overhead. The work-depth overhead is defined to
be the number of time steps d for OPRAM to simulate each PRAM step. Let W denote the total
number of blocks accessed by OPRAM to simulate a PRAM step. The total work overhead is defined
to be W/m, which captures the overhead to simulate a batch of memory request in a PRAM step.
Note that both d and W are random variables.

Remark 1 (Static vs. adaptive security). Our above OPRAM definition works in the static security
setting where the input is chosen upfront without having observed the earlier accesses. Later we
shall prove our lower bound for static security since this makes our lower bound stronger. However,
we point out that our upper bound in fact satisfies a stronger, adaptive and composable notion of
security which we provide in the appendices.

3 Lower Bound on Work-Depth
We show a lower bound on the work-depth in terms of the number m of CPUs. We establish a
Ω(logm) depth lower bound for OPRAMs satisfying the following properties. We remark that our
construction in Section 5 as well as all existing ORAM and OPRAM constructions satisfy these
properties.

1. Balls-and-bins storage. As coined in the ORAM lower bound of Goldreich and Ostro-
vsky [3], data blocks are modeled as “balls,” while shared memory locations and CPU reg-
isters are modeled as “bins”. In particular, this means that every memory location stores at
most one data block and the content of the data block can be retrieved from that location
independent of other storage.

2. Online OPRAM. As defined in Section 2.2, we consider online OPRAM that only learns
the logic memory request at the beginning of a PRAM step.

3. s-bounded duplication. We also need a technical condition on the bound of data duplica-
tion. Namely, there is a bound s such that every data block has at most s copies stored on
the memory. All known ORAM and OPRAM constructions do not store duplications on the
memory2, i.e., s = 1.

It is worth comparing our depth lower bound for OPRAM with the ORAM lower bound of [3].
Both lower bounds assume the balls-and-bins model, but establish lower bound for different metrics
and rely on very different arguments (in particular, as we discussed below, counting arguments do
not work in our setting). We additionally require online and bounded duplication properties,
which are not needed in [3]. On the other hand, our lower bound holds even for OPRAM with
computational security. In contrast, the lower bound of [3] only holds for statistical security.

The setting for the lower bound. For simplicity, we consider the following setting for estab-
lishing the lower bound. First, we consider OPRAM with initialization, where n logical data blocks
of the original PRAM are initialized with certain distinct content. This is not essential as we can

2In some hierarchical ORAMs [16,19], there might be several copies of the same block on the server, but only one
copy is regarded as fresh, while other copies are stale and may contain old contents.
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view the initialization as the first n steps of the PRAM program. We also assume that the logical
data size n is sufficiently larger than the total CPUs register size. Specifically, let α be a constant
in (0, 1/3) and r be the register size of a CPU. We assume n ≥ Ω(r ·m1+(α/4)). For any OPRAM
satisfying the above three properties with s ≤ m(1/3)−α, we show that the work-depth is at least
(α/3) · logm with probability at least 1−m−α/4 for every PRAM step. In particular, the expected
work-depth per step is at least Ω(logm) as long as s ≤ m1/3−Ω(1).

Theorem 3 (Lower Bound on Work-Depth). Let Π be a computationally-secure online OPRAM
that satisfies the balls-and-bins model with s-bounded duplication for s < m(1/3)−α for constant
α ∈ (0, 1/3), where the number N of blocks is at least m. Let r be the register size of each CPU.
Assume that n ≥ 4r ·m1+(α/4) and Π has correctness error µ ≤ m−α/4/4. Then for each PRAM
step t, let depth(Π, t) denote the work-depth of Π for PRAM step t,

Pr[depth(Π, t) ≤ (α/3) · logm] ≤ m−α/4,

where the probability is over the randomness of the OPRAM compiler Π.

Before proving Theorem 3, we first discuss the intuition behind the lower bound proof in Sec-
tion 3.1, where under simplifying assumptions, we reduce the OPRAM lower bound to solving a
“user-movie problem” that captures the main argument of our lower bound proof. We discuss how
to remove the simplifying assumptions in the end of the section. We then present the formal proof
of Theorem 3 in Section 3.2

3.1 Intuition: A User-Movie Problem

As a warmup, we first present an intuitive proof making a few simplifying assumptions: 1) the
OPRAM compiler must be perfectly correct and perfectly secure; and 2) there is no data block
duplication in memory. Later in our formal proofs in Section 3.2, these assumptions will be relaxed.

Let us consider how to prove the depth lower bound for a PRAM step t for an OPRAM. Recall
that we consider online OPRAM that learn the logical memory requests at the beginning of the
step. We can view what happened before the step t as a preprocessing phase that stores the logical
memory blocks in different memory locations, and the step t corresponds to an online phase where
the CPUs fetch the requested memory blocks with certain observed access pattern. Since the access
pattern should hide the logical memory request, any fixed access pattern should allow the CPUs
to complete any possible batch of m requests (assuming perfect correctness and perfect security).
We say that an access pattern can support a batch of m requests, if there exists a pre-processing
(i.e., packing of data blocks into memory), such that each CPU can “reach” its desired data block
through this access pattern. Our goal is to show that if the access pattern is low depth, then
it is impossible to satisfy every batch of m requests — even when one is allowed to enumerate
all possible pre-processings to identify one that best matches the requests (given the fixed access
pattern). To show this, our argument involves two main steps.
1. First, we show that for any access pattern of low depth, say, d, each CPU can reach at most 2d

memory locations.

2. Second, we show that if an access pattern can satisfy all possible batches of m requests (with
possibly different pre-processing), then it must be that some CPU can reach many physical
locations in memory.

The former is relatively easy to show. Informally speaking, consider the balls-and-bins model
as mentioned earlier: in every PRAM step, each CPU can only access a single memory location
(although each memory location can be accessed by many CPUs). This means that at the end of
the PRAM step, the block held by each CPU can only be one of two choices: 1) the block previously
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held by the CPU; or 2) the block in the memory location the CPU just accessed. This means that
the access pattern graph must have a small fan-in of 2 (although the fan-out may be unbounded).
It is not difficult to formalize this intuition, and show that given any depth-d access pattern, only
2d memory locations can “flow into” any given CPU. Henceforth, we focus on arguing why the
latter is also true — and this requires a much more involved argument.

For ease of understanding, henceforth we shall refer to CPUs as users, and refer to data blocks
in physical memory as movies. There are n distinct movies stored in a database of size N (without
duplications) and m users. Each user wants to watch a movie and can access to certain 2d locations
in the database, but the locations the users access to cannot depend on the movies they want to
watch. On the other hand, we can decide which location to store each movie to help the users
to fetch their movies from the locations they access to. In other words, we first decide which 2d
locations each user access to, then learn which movie each user wants to watch. Then we decide
the location to store each movie to help the users to fetch their movies. Is it possible to find a
strategy to satisfy all possible movie requests?

We now discuss how to prove the impossibility for the user-movie problem. We first note that
a simple counting argument does not work, since there are nm possible movie requests but roughly
Nn � nm possible ways to store the movies in physical memory. To prove the impossibility, we
first observe that since we do not allow duplications, when two users request the same movie,
they must have access to the same location that stores the movie. Thus, any pair of users must
be able to reach a common movie location — henceforth we say that the two users “share” a
movie location. This observation alone is not enough, since the users may all share some (dummy)
location. If, however, two sets of users request two different movies, then not only must each set
share a movie location, the two sets must share two distinct locations. More generally, the m users’
movie requests induce a partition among users where all users requesting the same movie are in the
same part (i.e., equivalence class), and users in two different parts request different movies. This
observation together with carefully chosen partitions allow us to show the existence of a user that
needs to access to a large number of locations, which implies an impossibility for the user-movie
problem for sufficiently small depth d. We stress that this idea of “partitioning” captures the
essence of what pre-processing cannot help with, and this explains why our proof works even when
there are a large number of possible pre-processings.

Specifically, let k = m/2 and label the m users with the set M := [2] × [k]. We consider the
following k partitions that partition the users into k pairs. For each i ∈ [k], we define partition
Pi = {{(1, a), (2, a + i)} : a ∈ [k]}, where the addition is performed modulo k. Note that all k2

pairs in the k partitions are distinct. By the above observation, for each partition Pi, there are k
distinct locations `i,1, . . . , `i,k ∈ [N ] such that for each pair {(1, a), (2, a+ i)} for a ∈ [k], both users
(1, a), (2, a+ i) access to the location `i,a. Now, for each location ` ∈ [N ], let w` denote the number
of `i,a = ` and d` denote the number of users access to the location `. Note that w` ≤ k since user
pairs in a partition access to distinct locations (i.e., `i,a 6= `i,a′ for every i ∈ [k] and a 6= a′ ∈ [k]).
Also note that d` ≥

√
2w` since there are only

(d`
2
)

distinct pairs of users access to the location `.
To summarize, we have (i)

∑
`w` = k2, (ii) w` ≤ k for all ` ∈ [N ], and (iii) d` ≥

√
2w` for

all ` ∈ [N ], which implies
∑
` d` ≥ k ·

√
2k =

√
k/2 · m. Recall that d` denote the number of

users access to the location ` and there are m users. By averaging, there must exist a user who
needs to access to at least

√
k/2 locations. Therefore, the user-movie problem is impossible for

d ≤ 0.5 · logm− 2. Note that the distinctness of the `i,a’s induced by the partitions plays a crucial
role to drive a non-trivial lower bound on the summation

∑
` d`.

Removing the simplifying assumptions. In above intuitive proof we make several simplyfing
assumptions such as perfect security and perfect correctness. We now briefly discuss how to remove
these assumptions. The main non-trivial step is to handle computational security, which requires
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two additional observations. Following the above argument, let us say that an access pattern is
compatible with a CPU/user partition if it can support a logic memory request with corresponding
induces CPU/user partition.

• First, the above impossibility argument for the user-movie problem can be refined to show
that if an access pattern has depth d, then it can be compatible with at most 22(d+1) partitions
in P1, . . . , Pk defined above.

• Second, whether an access pattern is compatible with a partition can be verified in polynomial
time.

Based on these two observations, we show that if d ≤ 0.5 · logm− 4 (with noticeable probability),
then we can identify two efficiently distinguishable CPU partitions, which implies a depth lower
bound for computationally-secure OPRAM. First, we consider the access pattern of partition P1.
Since d ≤ 0.5 · logm − 4, it can only be compatible with at most k/2 partitions. By an averaging
argument, there exists some partition Pi such that Pi is not compatible with the access pattern of P1
with probability at least 1/2. On the other hand, by perfect correctness, the access pattern of Pi is
always compatible with Pi. Therefore, the access patterns of P1 and Pi are efficiently distinguishable
by an efficient distinguisher D that simply verifies if the access pattern is compatible with Pi.

We now briefly discuss how to remove the remaining assumptions. First, it is not hard to see
that the above argument does not require perfect correctness and can tolerate a small correctness
error. Second, we make an implicit assumption that the requested data blocks are not stored in the
CPU registers so that the CPUs must fetch the requested data blocks from physical locations on
the server. This can be handled by considering logic access requests with random logical address
and assuming that the logic memory size n is sufficiently larger than the total CPU register size
(as in the theorem statement).

We also implicitly assume that we can observe the beginning and end of the access pattern of
a PRAM step t. For this, we note that by the online property, we can without loss of generality
consider t as the last step so that we know the end of the access pattern for free. Furthermore, we
observe that we do not need to know the beginning of the access pattern since the compatibility
property is monotone in the following sense. If a partition Pi is compatible with the access pattern
of the last d accesses, it is also compatible with the access pattern of the last d+ 1 accesses. Thus,
we can consider the the access pattern of the last d accesses for certain appropriately chosen d.

Finally, to handle s-bounded duplication with s > 1, we consider CPU partitions where each
part is a set of size s+ 1, instead of a pair. By the pigeonhole principle, each part can still certify
a pair of CPUs with a shared memory location. However, some extra care is needed for defining
the partitions to make sure that different partitions do not certify the same pair of CPUs, and the
depth lower bound degrades when s increases. Nevertheless, the lower bound remains Ω(logm) for
s ≤ m1/3−Ω(1).

3.2 Proof of Theorem 3

We now proceed with a formal proof. We first note that for proving lower bound of the PRAM
step t, we can consider PRAM programs where t is the last step, since the behavior of an online
OPRAM does not depend on the future PRAM steps. Thus, we can focus on proving lower bound
of the last PRAM step. We prove the theorem by contradiction. Suppose that

Pr[depth(Π, t) ≤ (α/3) · logm] > m−α/4, (1)

we show two PRAM programs P1,P2 with identical first t−1 steps and different logic access request
at step t such that the access pattern of Π(P1) and Π(P2), which denote the OPRAM simulation
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of P1,P2 respectively, are efficiently distinguishable. Towards this, we define the CPU partition of
a memory request.

Definition 1 (CPU Partition). Let addr = (addr1, . . . , addrm) ∈ [n]m be a memory request. addr
induces a partition P on the CPUs, where two CPUs c1, c2 are in the same part iff they request
for the same logical address addrc1 = addrc2 . In other words, P partitions the CPUs according to
the requested logical addresses.

Recall that s is the bound on the number of duplication. We assume m = (s + 1) · k for some
prime k. This is without loss of generality, because any integer has a prime number that is within
a multiplicative factor of 2. We label the m CPUs with the set M := [s+ 1]× [k]. We consider the
following set of partitions P1, . . . , Pk: For i ∈ [k], the partition Pi := {Si(a) : a ∈ [k]} is defined
such that each part has the form Si(a) := {(b, a + bi) : b ∈ [s + 1]}, where addition is performed
modulo k. In other words, the parts in the partitions can be viewed as all possible distinct line
segments in the Z2

k plane.
We will show two programs where their last memory requests have induced partitions P1 and

Pi for some i ∈ [k] such that their compiled access patterns are efficiently distinguishable. To show
this, we model the view of the adversary with an access pattern graph and consider a compatiability
property between an access pattern graph and a CPU partition, defined as follows.

Access pattern graphs and compatibility. Given the access pattern of Π(P) for a PRAM
program P and a depth parameter d ∈ N, we define an access pattern graph G as follows.

(a) Nodes. The nodes are partitioned into d + 1 layers. In layer 0, each node represents a
physical location in the memory at the beginning of the last d-th time step of Π(P).
For 1 ≤ i ≤ d, each node in layer i represents a physical location in the memory or a CPU at
the end of the last (d− i+ 1)-st time step.
Hence, we represent each node with (i, u), where i is the layer number and u is either a CPU
or a memory location.

(b) Edges. Each edge is directed and points from a node in layer i− 1 to one in layer i for some
i ≥ 1. For each CPU or a memory location, there is a directed edge from its copy in layer i−1
to one in layer i.
If a CPU c reads from some physical location ` in the last (d− i)-th time step, then there is
a directed edge from (i − 1, `) to (i, c). Since we allow concurrent read, the out-degree of a
node corresponding to a physical location can be unbounded.
If a CPU c writes to some physical location ` in the last (d− i)-th time step, then there is a
directed edge from (i− 1, c) to (i, `).
Observe that since we consider OPRAM with exclusive write, the in-degree of a node (either
corresponding to a CPU or a memory location) is at most 2. In fact, the degree 2 bound holds
even with concurrent write models as long as the write conflict resolution can be determined
only by the access pattern.

The access pattern graph G captures the potential data flow of the last d time steps of the data
access. Specifically, a path from (0, `) to (d, c) means CPU c may learn the content of the memory
location ` at the last d time step. If there is no such path, then CPU c cannot learn the content.
This motivates the definition of compatible partitions.
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Definition 2 (Compatible Partition). Let G be an access pattern graph and P1, . . . , Pk be the
partitions defined above. We say Pi = {Si(a) : a ∈ [k]} is compatible with G if there exist k
distinct physical locations `i,1, . . . , `i,k on the server such that for each a ∈ [k], there are at least
two CPUs c1 and c2 in Si(a) such that both nodes (d, c1) and (d, c2) are reachable from (0, `i,a)
in G.

Intuitively, compatibility is a necessary condition for the last d time steps of data access to
“serve” an access request with induced partition Pi, assuming the requested data blocks are not
stored in the CPU registers at the last d-th time step. Recall that each data block has at most s
copies in the server, and each part Si(a) has size s+ 1. By the Pigeonhole principle, for each part
Si(a) in the induced partition, there must be at least two CPUs c1, c2 ∈ Si(a) obtaining the logical
block from the same physical location `a on the server, which means the nodes (d, c1) and (d, c2)
are reachable from (0, `a) in G. We note that verifying compatibility can be done in polynomial
time.

Lemma 1 (Verifying Compatibility Takes Polynomial Time). Given a CPU partition P and an
access pattern graph G, it takes polynomial time to verity whether P is compatible with G.

Proof. Given P and G as in the hypothesis of the lemma, we construct a bipartite graph H as
follows. Each vertex in L is labeled with a memory location `, and each vertex in R is labeled with
a part S in P . There is an edge connecting a vertex ` in L to a vertex S in R iff there are at least
two CPUs c1 and c2 in S such that both (d, c1) and (d, c2) are reachable from (0, `) in G. This
bipartite graph can be constructed in polynomial time.

Observe that P is compatible with G iff there is a matching in H such that all vertices’s in
R are matched. Hence, a maximum matching algorithm can be applied to H to decide if P is
compatible with G.

Now, the following key lemma states that an access pattern graph G with small depth d cannot
be compatible with too many partitions. We will use the lemma to show two programs with
efficiently distinguishable access patterns.

Lemma 2. Let G be an access pattern graph with the depth parameter d, and P1, . . . , Pk be the
partitions defined above. Among P1, . . . , Pk, there are at most ((s + 1) · 2d)2 partitions that are
compatible with G.

Proof. Recall that the in-degree of each node is at most 2. Thus, for each node (d, c) in layer d, there
are at most 2d nodes (0, `) in layer 0 that can reach the node (d, c). For the sake of contradiction,
we show that if G is compatible with u > ((s + 1) · 2d)2 partitions, then there exists a node (d, c)
that is reachable by more that 2d nodes in layer 0.

For convenience, we define a bipartite graph H = (L,R,E) from G as follows. Each vertex in L
is labeled with a CPU c, and each vertex in R is labeled with a physical location ` of the memory.
There is an edge (c, `) in H iff (0, `) reaches (d, c) in G. Our goal can be restated as showing that if
G is compatible with u > ((s+ 1) · 2d)2 partitions, then there exists c ∈ L with degree deg(c) > 2d.
We do so by lower bounding the number of edges |E| > m · 2d.

By definition, if Pi is compatible withG, then there exist k distinct physical locations `i,1, . . . , `i,k
on the server such that for each a ∈ [k], there are at least two CPUs ci,a, c′i,a ∈ Si(a) such that (d, ci,a)
and (d, c′i,a) are reachable from (0, `i,a) in G, which means there are edges (ci,a, `i,a) and (c′i,a, `i,a)
in H. Thus, a compatible partition certifies 2k edges in H, although two different partitions may
certify the same edges.

Let Pi1 , . . . , Piu be the set of compatible partitions. While they may certify the same edges, the
set of CPU pairs {(cij ,a, c′ij ,a) : j ∈ [u], a ∈ [k]} are distinct for the following reason: Recall that
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the parts in partitions correspond to different line segments in Z2
k. Since two points define a line,

the fact that the parts correspond to different lines implies that all CPU pairs are distinct.
For each memory location `, let w` denote the number of `ij ,a = `. It means that ` is connected

to w` distinct pairs of CPUs in H, which implies that deg(`) ≥
√

2w` since there must be at least√
2w` distinct CPUs. Also, note that

∑
`w` = u · k and w` ≤ u for every ` since ` can appear in

each partition at most once. It is not hard to see that the above conditions imply a lower bound
on |E| =

∑
` deg(`) ≥ k ·

√
2u > m · 2d. This in turn implies the existence of c ∈ L with degree

deg(c) > 2d, a contradiction.

Let us now consider a PRAM program P1 that performs dummy access in the first t− 1 steps
and a random access request at the t step with induced partition P1. Specifically, in the first t− 1
steps, all CPUs read the first logic data block. For the t-th step, let (b1, . . . , bk) be uniformly
random k distinct logic data blocks. For a ∈ [k], the CPUs in part S1(a) of P1 read the block ba at
the t-th step. Let d = (α/3) · logm and G(Π(P1), d) denote the access pattern graph of Π(P1) with
depth parameter d. The following lemma follows directly by Lemma 2 and an averaging argument.

Lemma 3. There exists i∗ ∈ [k] such that

Pr[Pi∗ is compatible with G(Π(P1), d)] ≤ ((s+ 1) · 2d)2/k ≤ m−α/3,

where the randomness is over Π and P1.

Now, consider a PRAM program P2 that is identical to P1, except that the access request at
the t-th step has induced partition Pi∗ instead of P1. Namely, for a ∈ [k], the CPUs in part Si∗(a)
of Pi∗ read the block ba at the t-th step, where (b1, . . . , bk) are uniformly random k distinct logic
data blocks.

Lemma 4. Suppose that Π satisfies Eq. (1), then

Pr[Pi∗ is compatible with G(Π(P2), d)] > m−α/4/4,

where the randomness is over Π and P2.

Proof. First note that since each CPU request a random data block at the t-th PRAM step, the
probability that the requested data block is stored in the CPU register is at most r/n. By a union
bound, with probability at least 1−m · (r/m) ≥ 1−m−α/4/4, all data blocks requested at the t-th
PRAM step are not in the corresponding CPU registers. In this case, the CPUs need to obtain the
data blocks from the server. Furthermore, if the work-depth of the t-th PRAM step is ≤ d, then
the CPUs need to obtain the data blocks in the last d time steps of data access, which as argued
above, implies compatibility. Therefore,

Pr[Pi∗ is compatible with G(Π(P2), d)] > m−α/4 −m−α/4/4− εc > m−α/4/4.

Recall by Lemma 1 that compatibility can be checked in polynomial time. The above two
lemmas imply that assuming Eq. (1), Π(P1) and Π(P2) are efficiently distinguishable by a distin-
guisher D who checks the compatibility of Pi∗ and the access pattern graph with depth parameter
d = (α/3) · logm. This is a contradiction and completes the proof of Theorem 3.
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4 Background on Circuit OPRAM and Building Blocks

4.1 Preliminaries: Circuit OPRAM

As a warmup, we first briefly review the recent Circuit OPRAM algorithm [5] that we build on top
of. For clarity, we make a few simplifying assumptions in this overview:
• We explain the non-recursive version of the algorithm where we assume that the CPU can store

a position map for free that tracks the rough physical location of every block: this CPU-side
position map is later removed using a standard recursion technique in Circuit OPRAM [5] —
however, as we point out later, to obtain a small depth OPRAM in our paper, we must implement
the recursion differently and thus in our paper we can no longer treat the recursion as blackbox
technique.

• We assume that m is not too small and is at least polylogarithmic in N ; and

• A standard conflict resolution procedure proposed by Boyle et al. [2] has been executed such
that the incoming batch of m requests are for distinct real blocks (or dummy requests).

Core data structure: a pool and 2m subtrees. Circuit ORAM partitions the ORAM data
structure in memory into 2m disjoint subtrees. Given a batch of m memory requests (from m
CPUs), each request will be served from a random subtree. On average, each subtree must serve
O(1) requests in a batch; and due to a simple balls and bins argument, except with negligible
probability, even the worst-case subtree serves only O(α logN) incoming requests for any super-
constant function α.

In addition to the 2m subtree, Circuit OPRAM also maintains an overflow pool that stores
overflowing data blocks that fail to be evicted back into the 2m subtrees at the end of each batch
of m requests.

It will help the reader to equivalently think of the 2m subtrees and the pool in the following man-
ner: First, think of a single big Circuit ORAM [29] tree (similar to other tree-based ORAMs [26]).
Next, identify a height with 2m buckets, which naturally gives us 2m disjoint subtrees. All buckets
from smaller heights as well as the Circuit ORAM’s stash form the pool. As proven in the earlier
work [5], at any time, the pool contains at most O(m+ α logN) blocks.

Fetch. Given a batch of m memory requests, henceforth without loss of generality, we assume
that the m requests are for distinct addresses. This is because we can adopt the conflict resolution
algorithm by Boyle et al. [2] to suppress duplicates, and after data has been fetched, rely on
oblivious routing to send fetched data to all request CPUs. Now, look up the requested blocks in
two places, both the pool and the subtrees:
• Subtree lookup: For a batch of m requests, each request comes with a position label — and all m

position labels define m random paths in the 2m subtrees. We can now fetch from the m path
in parallel. Since each path is O(logN) in length, each fetch can be completed in O(log logN)
parallel steps with the help of logN CPUs.
All fetched blocks are merged into the pool. Notice that at this moment, the pool size has grown
by a constant factor, but later in a cleanup step, we will compress the pool back to its original
size. Also, at this moment, we have not removed the requested blocks from the subtrees yet, and
we will remove them later in the maintain phase.

• Pool lookup: At this moment, all requested blocks must be in the pool. Assuming that m is not
too small, we can now rely on oblivious routing to route blocks back to each requesting CPU —
and this can be completed in O(logm) parallel steps with m CPUs.

16



Maintain. In the maintain phase, perform the following: 1) remove all blocks fetched from the
paths read; and 2) perform eviction on each subtree.

• Efficient simultaneous removals. After reading each subtree, we need to remove up to µ :=
O(α logN) blocks that are fetched. Such removal operations can lead to write contention when
done in parallel: since the paths read by different CPUs overlap, up to µ := O(α logN) CPUs
may try to write to the same location in the subtree. Circuit OPRAM employs a novel simulta-
neous removal algorithm to perform such removal in O(logN) parallel time with m CPUs. We
refer the reader to the Circuit OPRAM paper for an exposition of the simultaneous removal
algorithm. As noted in the Circuit OPRAM paper [5], simulatenous removal from m fetch paths
can be accomplished in O(logm+ log logN) parallel steps with O(m · logN) total work.

• Selection of eviction candidates and pool-to-subtree routing. At this moment, we will select
exactly one eviction candidate from the pool for each subtree. If there exists one or more
blocks in the pool to be evicted to a certain subtree, then the deepest block (where deepest is
precisely defined in Circuit ORAM [29]) with respect to the current eviction path will be chosen.
Otherwise, a dummy block will be chosen for this subtree. Roughly speaking, using the above
criterion as a preference rule, we can rely on oblivious routing to route the selected eviction
candidate from the pool to each subtree. This can be accomplished in O(logm) parallel steps
with m CPUs assuming that m is not too small.

• Eviction. Now, each subtree performs exactly 1 eviction. This can be accomplished in O(logN)
runtime using the sequential procedure described in the original Circuit ORAM paper [29]. At
the end of this step, each subtree will output an eviction leftover block: the leftover block
is dummy if the chosen eviction candidate was successfully evicted into the subtree (or if the
eviction candidate was dummy to start with); otherwise the leftover block is the orginal eviction
candidate. All these eviction leftovers will be merged back into the central pool.

• Pool cleanup. Notice that in the process of serving a batch of requests, the pool size has grown
— however, blocks that have entered the pool may be dummy. In particular, we shall prove
that the pool’s occupancy will never exceed c ·m+α logN for an appropriate constant c except
with negl(N) probability. Therefore, at the end of the maintain phase, we must compress the
pool back to c ·m+α logN . Such compression can easily be achieved through oblivious sorting
in O(logm) parallel steps with m CPUs, assuming that m is not too small.

Recursion. Thus far, we have assumed that the position map is stored on the CPU-side, such that
the CPU knows where every block is in physical memory. To get rid of the position map, Circuit
OPRAM employs a standard recursion technique that comes with the tree-based ORAM/OPRAM
framework [26]. At a high level, the idea of the recursion framework is very simple: instead of
storing the position map on the CPU side, we recurse and store the position map in a smaller
OPRAM in physical memory; and then we recurse again and store the position map of this smaller
OPRAM in a yet smaller OPRAM in physical memory, and so on. If each block can store γ > 1
number of position labels, then every time we recurse, the OPRAM’s size reduces by a factor of γ.
Thus in at most logN recursion levels, the metadata size becomes at most O(1) blocks — and at
this moment, the CPU can store all the metadata locally in cache.

Although most prior tree-based ORAM/OPRAM papers typically treat this recursion as a
standard, blackbox technique, in this paper we cannot — on the contrary, it turns out that the
recursion becomes the most non-trivial part of our low-depth OPRAM algorithm. Thus, henceforth
the reader will need to think of the recursion in an expanded form — we now explain what exactly
happens in the recursion in an expanded form. Imagine that one of the memory requests among
the batch of m requests asks for the logical address (0101100)2 in binary format, and suppose that
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each block can store 2 position labels. Henceforth we focus on what happens for fetching this
logical address (0101100)2 — but please keep in mind that there are m such addresses and thus
the following process is repeated m times in parallel.

• First, the 0th recursion level (of constant size) will tell the 1st recursion level the position label
for the address (0∗)2.

• Next, the 1st recursion level fetch the metadata block at level-1 address (0∗)2 and this fetched
block contains the position labels for (00∗)2 and (01∗)2.

• Now, level-1 informs level-2 of the position label for (01∗)2; at this moment, level-2 fetches the
metadata block for the level-2 address (01∗)2 and this fetched block contains the position labels
for the addresses (010∗)2 and (011∗)2; and so on.

• This continues until the D-th recursion level (i.e., the final recursion level) — this final recursion
level stores actual data blocks rather than metadata, and thus the desired data block will be
fetched at the end.

As mentioned, the above steps are in fact replicated m times in parallel since there are m
requests in a batch. This introduces a couple additional subtleties:

• First, notice that for obliviousness, conflict resolution must be performed upfront for each recur-
sion level before the above procedure starts — this step can be parallelized across all recursion
levels.

• Second, how do the m fetch CPUs at one recursion level obliviously route the fetched position
labels to the m fetch CPUs waiting in the next recursion level? Circuit OPRAM relies on a
standard oblivious routing procedure (initially described by Boyle et al. [2]) for this purpose,
thus completely hiding which CPUs route to which.

Important observation. At this moment, we make an important observation. In the Circuit
OPRAM algorithm, the fetch phase operations are inherently sequential across all recursion levels,
and the maintain phase operations can be parallelized across all recursion levels. In particular,
during the fetch phase, the m fetch CPUs at recursion level d must block waiting for recursion
level d − 1 to pass down the fetched position labels before its own operations can begin. Due to
the sequential nature of the fetch phase, Circuit OPRAM incurs at least (logm+ log logN) logN
depth, where the logm stems from level-to-level oblivious routing, log logN stems the depth needed
to parallel-fetch from a path of length logN (and other operations), and the logN factor is due to
the number of recursion levels. In comparison, the depth of the maintain phase is not the limiting
factor due to the ability to perform the operations in parallel across recursion levels.

4.2 Other Important Building Blocks

Permutation-related building blocks. We will rely on the following building blocks related
to generating and applying permutations.

To describe our ideas, we need a few basic building blocks as depicted in Figures 1, 2, and 3.

1. Apply a pre-determined permutation to an array. Figure 1 shows how to in parallel
apply a pre-determined permutation to an array in a single parallel step.

2. Permute an array by a secret random permutation. Figure 2 shows how to generate a
secret random permutation and apply it to an array obliviously, without revealing any informa-
tion about the permutation. The formal abstraction for an oblivious random permutation and
formal proofs for Figure 2 are deferred to the appendices.
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Apply Permutation to Array

Inputs:
• An initial array A[0..k) of size k.
• A permutation π : [k]→ [k] written down as an array.
Outputs: A new array Â[0..k), where for each i ∈ [k], Â[i] = A[π−1(i)]; in other words, each
element A[i] is copied to Â[π(i)].

Algorithm: Parallel runtime O(1), total work O(k)

• Each CPU with index i reads A[i] and π(i), and then set Â[π(i)] := A[i].

Figure 1: Applying a pre-determined permutation to an array

3. Obliviously construct a routing permutation that permutes a source to a destination
array. Figure 3 shows how to accomplish the following task: given a source array snd of length
k containing distinct real elements and dummies (where each dummy element contains unique
identifying information as well), and a destination array rcv also of length k containing distinct
real elements and dummies, with the guarantee that the set of real elements in snd are the same
as the set of real elements in rcv. Now, construct a routing permutation π : [k] → [k] (in an
oblivious manner) such that for all i ∈ [k], if snd[i] contains a real element, then rcv[π[i]] = snd[i].

Oblivious bin-packing. Oblivious bin-packing is the following primitive.
• Inputs: Let B denote the number of bins, and let Z denote the target bin capacity. We are given

an input array denoted In, where each element is either a dummy denoted ⊥ or a real element
that is tagged with a bin number g ∈ [B]. It is guaranteed that there are at most Z elements
destined for each bin.

• Outputs: An array Out[1 : BZ] of length B · Z containing real and dummy elements, such that
Out[(g − 1)B + 1 : gB] denotes contents of the g-th bin for g ∈ [B]. The output array Out must
guarantee that the g-th bin contains all elements in the input array In tagged with the bin number
g; and that all real elements in bin g must appear in the input array In and are tagged with g.

There is an oblivious parallel algorithm that accomplishes oblivious bin packing in total work
O(ñ log ñ) and parallel runtime O(log ñ) where ñ = max(|In|, B ·Z). The algorithm works as follows:

1. For each group g ∈ [B], append Z filler elements of the form (filler, g) to the resulting array
— these filler elements ensure that every group will receive at least Z elements after the next
step.

2. Obliviously sort the resulting array by the group number, placing all dummies at the end. When
elements have the same group number, place filler elements after real elements.

3. By invoking an instance of the oblivious aggregation algorithm [2, 23] (see Section A.4 for the
definition of oblivious aggretation), each element in the array finds the leftmost element in its
own group. Now for each element in the array, if its offset within its own group is greater than
Z, replace the element with a dummy ⊥.

4. Oblivious sort the resulting array placing all dummies at the end. Truncate the resulting array
and preserve only first B · Z blocks.

5. For every filler element in the resulting array, replace it with a dummy.
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Oblivious Random Permutation

Input: An array A of size k. We assume that log0.5N ≤ k ≤ N , since if k ≤ log0.5N , we can
simply run a näıve quadratic oblivious random permutation algorithm (see Appendix A.3).
Outputs: An array Â which is obtained by applying a uniformly random permutation on array
A in an oblivious manner.

Algorithm: Except with negligible in N probability, the parallel runtime is O(log k) and the
total work is O(k log k).

1. Each CPU with index i ∈ [k] copies A[i] and samples 3 log2N bits which form a key ki in
[3N3].

2. The k CPUs perform deterministic oblivious sort (e.g., Zigzag sort [15]) on the data tuple
(ki, A[i]) using ki’s to determine the total order — henceforth this array is referred to as Y .

3. Each CPU contacts its neighbors to check if the element it holds has a key colliding with
neighboring elements.

4. Perform parallel prefix sum (which can easily be achieved in O(log k) depth and O(k) total
work) such that each CPU learns how many CPUs before it have a collided element — this
determines the position at which the CPU is going to write out its collided element.
If a CPU holds a collided element, write it out to a small colliding array at the position that
was computed in the above step.

5. Now, perform näıve quadratic random permutation (see Appendix A.3) to permute the collid-
ing array. At the end, the CPU that wrote the i-th element of the colliding array grabs back
the i-the element of the permuted array and writes it back into the result array Y . Finally,
output Y .

Figure 2: Randomly permuting an array obliviously, without revealing the secret permutation.

5 A Small-Depth OPRAM: Level-to-Level Routing Algorithm

5.1 Overview of Our OPRAM

We now show how we can improve the depth of OPRAM schemes [2] by a logarithmic factor,
through employing the help of more CPUs; and importantly, we achieve this without incurring
extra total work in comparison with the best known OPRAM scheme [5].

Challenges. As argued earlier in Section 4.1, for the case of general block sizes, the most sequen-
tial part of the Circuit OPRAM algorithm stems from the (up to) logN recursion levels. More
specifically, (apart from the final data level), each recursion level’s job is to fetch the metadata
(referred to as position labels) necessary, and route this information to the next recursion level. In
this way, the next recursion level will know where in physical memory to look for the metadata
needed by its next recursion level, and so on (we refer the reader to Section 4.1 for a more detailed
exposition of the recursion).

Thus, the fetch phase operations of Circuit OPRAM are inherently sequential among the D
recursion levels, incurring (D(logm + log logN)) in depth, where the logm term stems from the
level-to-level oblivious routing of fetched metadata, and the log logN term stems from fetching
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Construct a Permutation that Maps a Source to a Destination
Inputs:
• A source array snd of length k containing distinct real elements and dummies;
• A destination array rcv also of length k containing distinct real elements and dummies;
Assume:
• The real elements in snd are guaranteed to be the same as the real elements in rcv.
• The dummy elements in snd each has a unique label that decides their relative order; similarly,

the dummies in rcv each has a unique label too.

Outputs: The routing permutation π such that rcv[π(i)] = snd[i] for all i ∈ [k].

Algorithm: Parallel runtime O(log k), total work O(k log k)

1. Tag each element in both arrays with an index within the array. More specifically, in parallel,
write down the following two arrays:[

(1, snd[1]), (2, snd[2]), . . . , (k, snd[k])
]
,
[
(1, rcv[1]), (2, rcv[2]), . . . , (k, rcv[k])

]
2. Obliviously sort each of the above two arrays by the second value. Suppose the two output

arrays are the following where “ ” denotes a wildcard value that we do not care about.[
(s1, ), (s2, ), . . . (sk, )

]
,
[
(t1, ), (t2, ), . . . (tk, )

]
Now in parallel write down

[
(s1 → t1), (s2 → t2), . . . (sk → tk)

]
3. Now sort the above output by the si values, and let the output be[

(1→ t′1), (2→ t′2), . . . , (k → t′k)
]

The output routing permutation is defined as π(i) := t′i.

Figure 3: Obliviously construct a routing permutation that maps a source to a destination.

metadata blocks from a path of length logN . Igoring the log logN term, our goal therefore is to
get rid of the logm depth that stems from level-to-level oblivious routing.

Our result. Our main contribution is to devise a low-depth algorithm to perform level-to-level
routing of metadata. At first sight, this task seems unlikely to be successful — since each recursion
level must obliviously route its metadata to the next level, it would seem like we are inherently
subject to the depth necessary for an oblivious routing algorithm [2]. Since oblivious routing in
some sense implies oblivious sorting, it would seem like we have to devise an oblivious sorting
algorithm of less than logarthmic depth to succeed in our goal.

Perhaps somewhat surprisingly, we show that this need not be the case. In particular, we show
that by 1) allowing a negligible statistical failure probability; 2) exploiting special structures of
our routing problem; and 3) introducing an offline/online paradigm for designing parallel oblivious
algorithms, we can devise a special-purpose level-to-level oblivious routing algorithm such that

1. all work that is inherently logm in depth is pushed to an offline phase that can be parallelized
across all recursion levels; and
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2. during the online phase that is inherently sequential among all logN recursion levels, we can
limit the work-depth of each recursion level to only log logN rather than logm — note that for
most interesting parameter regimes that we care about, logm� log logN .

The details of this algorithm are rather involved and entail the novel usage of algorithmic
building blocks such as oblivious random permutation in an offline/online paradigm. We defer the
detailed introduction of this algorithm and its proofs to later in this section.

As a result, we obtain a new, statistically secure OPRAM algorithm (for general block sizes)
that achieves O(logN log logN) depth blowup and O(log2N) total work blowup. In comparison,
under our new performance metrics, the best known OPRAM algorithm [5] achieves O(log2N) total
work blowup and O(log2N) depth blowup. Thus we achieve a logarithmic factor improvement in
terms of depth.

Extensions. We consider several extensions. First, using a standard technique described by
Fletcher et al. [10] and extended to the OPRAM setting by Chan et al. [5], we show how to
obtain a computationally secure OPRAM scheme with O(log2N/ log logN) total work blowup and
O(logN) depth blowup, and supporting general block sizes. In light of our aforementioned OPRAM
depth lower bound (which also applies to computationally secure OPRAMs), our OPRAM scheme
is optimal for m = N ε where ε > 0 is an arbitrarily small constant.

Finally, we consider a setting with sufficiently large blocks, say, the block size is N ε for any
constant ε > 0 — in this case, the recursion depth becomes O(1). In this case, the limiting factor
to an OPRAM’s work depth now is the eviction algorithm (rather than the level-to-level routing).
We show how to leverage a non-trivial devise and conquer technique to devise a new, small-depth
eviction algorithm, allowing us to perform eviction along a path of length logN in log logN depth
rather than logN — however, this is achieved at the cost of a small log logN blowup in total work.
As a result, we show that for sufficiently large blocks, there is an OPRAM scheme with depth as
small as O(log logN + logm) where the log logN part arises from our low-depth eviction algorithm
(and other operations), and the logm part arises from the conflict resolution and oblivious routing
of fetched data back to requesting CPUs — thus tightly matching our depth lower bound as long
as m is at least logarithmic in N .

5.2 Small-Depth Routing of Position Identifiers: Intuition

Problem statement. As we explained earlier, in each recursion level, m fetch CPUs fetch the
metadata (i.e., position labels) required for the next recursion level. The next recursion level
contains m fetch CPUs waiting to receive these position labels, before its own operations can
begin. Circuit OPRAM performs such level-to-level routing using a standard oblivious routing
building block, thus incurring at least D logm depth where D is the number of recursion levels
which can be as large as logN , and logm is the depth of standard oblivious routing. How can we
reduce the depth necessary for level-to-level routing?

We will first clarify some details of the problem setup. Recall that in each PRAM step, we
receive a batch of m memory requests, i.e., m logical addresses. Given these m logical addresses,
we immediately know which level-d addresses to fetch for each recursion level d (see Section 4.1 for
details). We assume that conflict resolution has been performed for each recursion level d on all
of the m level-d addresses, and thus, every real (i.e., non-dummy) level-d address is distinct. Now,
note that from all these level-d addresses (and even without fetching the actual metadata in each
recursion level), we can already determine the routing topology from level to level: as an example,
a level-2 CPU that needs to fetch the level-2 address (010∗) would like to receive position labels
from the level-1 fetch CPU with the address (01∗).
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Our goal here is to improve the OPRAM’s depth to O(logN log logN) for general (worst-case)
block sizes. We use the parameter Γ to denote the number of position labels that a block can store;
we let γ := min{Γ,m} be an upper bound on the number of position labels in a block that is “useful”
for the next recursion level. To achieve this, in the part of the algorithm that is sequential among
all recursion levels (henceforth also referred to as the online part), we can only afford O(log logN)
depth rather than the logm necessary for oblivious routing. Indeed, for a general oblivious routing
problem consisting of m senders and m receivers, it appears the best one can do is to rely on an
oblivious routing network [2,6] that has logm depth — so how can we do better here? We rely on
two crucial insights:

1. First, we observe that our routing problem has small fan-in and fan-out: each sender has at
most γ recipients; and each recipient wants to receive from at most 1 sender. This is because
that each fetched metadata block contains at most γ position labels, and obviously each fetch
CPU in the next level only needs one position label to proceed.

2. Second, we will rely on an offline-online paradigm — in the offline phase, we are allowed to
perform preparation work that indeed costs logm depth; however, in the online phase, the
depth is kept to be small. Later when we employ this offline/online oblivious routing building
block in our full OPRAM algorithm, we will show that the offline phase does not depend on any
fetched data, and thus can be paralellized across all recursion levels, whereas the online phase
must still be sequential — but recall that the online phase has much smaller depth.

First insight: localized routing. Our first idea is to rely on this observation to restrict oblivious
routing to happen only within small groups — as we shall explain later, for this idea to work, it is
essential that our routing problem has small fan-in and fan-out. More specifically, we would like
that each small group of senders talk to a corresponding small group of receivers, say, sender group
Si talks only to receiver group Ri, where both Si and Ri are µ := αγ2 logN in size, where the
choice of µ is due to Lemma 5. If we do this, then oblivious routing within each small group costs
only logµ depth.

How can we arrange senders and receivers into such small groups? For correctness we must
guarantee that for every i, each receiver in Ri will be able to obtain its desired item from some
sender in Si.

To achieve this, we rely on a randomized load balancing approach. The idea is very simple.
First, we pad the sender array with dummy senders to a size of 2m — recall that there are at most
m real senders. Similarly, we pad the receiver array to a size of 2m as well. Henceforth if a receiver
wants an item from a sender, we say that the sender and receiver are connected. Every dummy
sender is obviously connected to 0 receivers.

Now, if we pick a random sender from the sender array, in expectation this sender will be
connected to 0.5 receivers. Thus a random subset of µ senders will in expectation is connected to
0.5µ receivers — using measure concentration techniques, it is not difficult to show that a random
subset of µ senders is connected to µ receivers except with negligible probability — note that this
measure concentration result holds only when our routing problem has small fan-in and fan-out
(see Lemma 5 for details).

Our idea is to randomly permute the source array, and have the first µ sender be group 1, the
second µ senders be group 2, and so on. By relying on O(1) number of oblivious sorts, we can now
arrange the receiver array to be “loosely aligned” with the sender array, i.e., all receivers connected
to sender group 1 are in the first size-µ bucket of the receiver array, all receivers connected to sender
group 2 are in the second size-µ bucket of the receiver array, and so on.

Using the above idea, the good news is that oblivious routing is now constrained to µ-sized
groups (each containing γ addresses), thus costing only logµ depth. However, our above algorithm
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still involves randomly permuting the sender array and oblivious routing to loosely align the receiver
array with the sender array — these steps cost logm depth. Thus our idea is to perform these steps
in an offline phase that can be parallelized across all recursion levels, and thus the depth does not
blow up by the number of recursion levels. Nonetheless how to instantiate this offline/online idea
is non-trivial as we explain below.

Second insight: online/offline paradigm. One challenge that arises is how to coordinate
among all recursion levels. To help the reader understand the problem, let us first describe what
would have happened if everything were performed online, sequentially level by level:

Imagine that each recursion has 2m fetch CPUs (among which at most m are real) first acting
as receivers. Once these receivers have received the position labels, they will fetch data from the
OPRAM’s tree data structure. At this point, they hold the position labels desired by the next
recursion level, and thus the receivers now switch roles and become senders with resepct to the
next recursion level. Before the receivers become senders, it is important that they be randomly
permuted for our earlier load balancing technique to work. Now, we can go ahead and prepare the
next recursion level’s receivers to be loosely aligned with the permuted senders, and proceed with
the localized oblivious routing.

Now let us consider how to divide this algorithm into a parallel offline phase and a subsequent
low-depth online phase. Clearly, the oblivious routing necessary for loosely aligning each recursion
level’s receivers with the last level’s senders must be performed in the offline phase — and we must
paralellize this step among all recursion levels. Thus, our idea is the following:

• First, for each recursion level d in parallel, we randomly permutate level d’s fetch CPUs in an
oblivious fashion (using a building block called oblivious random permutation), at the end of
which we have specified the configuration of level d’s sender array (that is, after level d’s fetch
CPUs switch roles and become senders).

• At this point, each recursion level d can prepare its receiver array based on the configuration of
level (d− 1)’s sender array. This can be done in parallel too.

• During the online phase, after fetching metadata from the OPRAM tree, the receivers must
permute themselves to switch role to senders — since the offline stage has already dictated the
sender array’s configuration, this permutation step must respect the offline stage’s decision.
To achieve this in small online depth, our idea is that during the offline phase, each recursion
level relies on an instance of oblivious routing to figure out exactly what permutation to apply
(henceforth called the “routing permutation”) to switch the receiver array to the sender array’s
configuration — and this can be done in parallel among all recursion levels once a level’s receiver
and sender arrays have both been determined. Once the offline stage has written down this
routing permutation, in the online stage, the receivers can simply apply the permutation, i.e.,
each receiver writes itself to some array location as specified by the permutation that offline
stage has written down. Applying the permutation online takes a single parallel step.

One observation is that during the online stage, the routing permutation is revealed in the
clear. To see why this does not leak information, it suffices to see that the result of this routing
permutation, i.e., the sender array, was obliviously randomly permuted to start with (using a
building block called oblivious random permutation). Thus, even conditioned on having observed
the oblivious random permutation’s access patterns, each permutation is still equally likely — and
thus the routing permutation that is revealed is indistinguishable from a random permutation (even
when conditioned on having observed the oblivious random permutation’s access patterns).
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5.3 Core Subroutine: Localized Routing

Notations and informal explanation. In the OPRAM’s execution, the instructions waiting
to receive position labels at a recursion level d is denoted Instr〈d〉. Instr〈d〉 has been obliviously and
randomly permuted in the offline phase. When these incomplete instructions have received position
labels, they become complete and are now called CInstr〈d〉 where CInstr〈d〉 and Instr〈d〉 are arranged
in the same order. When data blocks are fetched in recursion level d, they are called Fetched〈d〉,
and Fetched〈d〉 has the same order as CInstr〈d〉. In the offline phase, Instr〈d〉 is obliviously sorted
to be loosely aligned with Fetched〈d−1〉 resulting in Instr〈d〉, such that Instr〈d〉 can receive position
labels from Fetched〈d−1〉 through localized oblivious routing. The offline phase also prepares a
routing permutation πd→d+1, that will permute Instr〈d〉 (after having received position labels) back
to CInstr〈d〉 — and the online phase will apply this routing permutation πd→d+1 in a single parallel
step. We now describe our algorithms more formally.

We consider the following problem where there is a source array and a destination array, and
the destination array wants to receive position identifiers from the source. Specifically, the source
array is a set of fetched blocks in randomly permuted order, where each block may contain up to
γ position labels corresponding to γ addresses in the next recursion level. The destination array is
an incomplete instruction array where each element contains the address of the block to be read
at the next recursion level — and each address must receive its corresponding position label before
the fetch operations at the next recursion level can be invoked.
• Inputs: The inputs contain a randomly permuted source array Fetched〈d〉 that represent the

fetched position identifier blocks at recursion level d, and a randomly permuted destination
array Instr〈d+1〉 which represents the incomplete instruction array at recursion level d+ 1.

– The source array Fetched〈d〉 contains 2m blocks, each of which contains up to γ (logical) pairs
of the form (addr, pos) that are needed in the next recursion level. All the γ addresses in
the same block comes from Γ contiguous addresses, and thus in reality the address storage is
actually compressed — however, we think of each block in Fetched〈d〉 as logically containing
pairs of the form (addr, pos).

– The destination array Instr〈d+1〉 contains m elements each of which is of the form (addr, ),
where “ ” denotes a placeholder for receiving the position identifier for addr later. This array
Instr〈d+1〉 is also referred to as the incomplete instruction array.

– We assume that
(1) all addresses in the destination array must occur in the source array;
(2) the γ addresses contained in the same block come from Γ contiguous addresses; and
(3) both the source array Fetched〈d〉 and the destination array Instr〈d+1〉 have been randomly

permuted.

• Outputs: A complete instruction array denoted CInstr of length 2m where CInstr〈d+1〉[i] is of the
form (addri, posi) such that

– Instr〈d+1〉[i] = (addri, ), i.e., the sequence of addresses contained in the output CInstr〈d+1〉

agree with those contained in the input Instr〈d+1〉; and
– The tuple (addri, posi) exists in some block in Fetched〈d〉, i.e., the position identifier addri

receives is correct (as defined by Fetched〈d〉).

Offline phase. The inputs are the same as the above. In the offline phase, we aim to output the
following arrays:
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a) A permuted destination array Instr〈d+1〉 that is a permutation of Instr〈d+1〉 such that it is some-
what aligned with the source Fetched〈d〉, where somewhat aligned means the following:

[Somewhat aligned:] Fix α := ω(1) to be any super-constant function. For each consecutive
µ := αγ2 logN contiguous source blocks denoted Fetched〈d〉[kµ+1 : (k+1)µ], there is a segment
of µ contiguous destination blocks Instr〈d+1〉[kµ+1 : (k+1)µ] such that all addresses in Instr〈d+1〉

that are contained in Fetched〈d〉[kµ+1 : (k+1)µ] appear in the range Instr〈d+1〉[kµ+1 : (k+1)µ].

b) A routing permutation πd→d+1 : [2m]→ [2m].
In other words, the goal of the offline phase is to prepare the source and the destination arrays

such that in the online phase, we only perform oblivious routing from every µ := αγ2 logN blocks
(each containing at most γ labels) in the source to every µ tuples in the destination where α = ω(1)
is any super-constant function. This way, the online phase has O(logµ) parallel runtime.

Before explaining how to accomplish the above, we first prove that if the source array, i.e.,
Fetched〈d〉 has been randomly permuted, then every µ contiguous blocks contain at most µ position
identifiers needed by the destination.

Lemma 5. Let arr denote an array of 2m randomly permuted blocks, each of which contains γ items
such that out of the 2m · γ items, at most m are real and the rest are dummy.

Then, for any consecutive n blocks in arr, with probability at least 1 − exp(− n
2γ2 ), the number

of real items contained in them is at most n.

Proof of Lemma 5. We use the Hoeffding Inequality for sampling without replacement [25]. Con-
sider 2m integers a1, a2, . . . , a2m, where the integer ai denotes the number of real items contained
in the ith pair in the array. Hence, we have

∑2m
i=1 ai ≤ m and each ai ∈ [0, γ].

Since the pairs are randomly permuted in the initial array, each group of consecutive n blocks
can be viewed as a sample of size n without replacement from the 2m integers. Let Z be the sum
of the integers in the size-n sample. Then, E[Z] = n

2m
∑2m
i=1 ai ≤ n

2 .
Hence, the Hoeffding inequality for sampling without replacement [25] gives the following as

required:

Pr[Z > n] ≤ Pr[Z − E[Z] > n

2 ] ≤ exp{−
2(n2 )2

n · γ2 } = exp(− n

2γ2 )

We now explain the offline algorithm, i.e., permute the destination array to be somewhat aligned
with the source array such that localized oblivious routing will be sufficient. We describe a parallel
oblivious algorithm that completes in O(m logm) total work and O(logm) parallel runtime.
1. For each block in Fetched〈d〉, write down a tuple (minaddr,maxaddr, i) where minaddr is the

minimum address contained in the block, maxaddr is the maximum address contained in the
block, and i is the offset of the block within the Fetched〈d〉 array.
Henceforth we refer to the resulting array as SrcMeta.

2. Imagine that the resulting array SrcMeta and the destination array Instr〈d+1〉 are concatenated.
Now, oblivious sort this concatenated array such that each metadata tuple (minaddr,maxaddr, i) ∈
SrcMeta is immediately followed by all tuples from Instr〈d+1〉 whose addresses are contained
within the range [minaddr,maxaddr].

3. Relying on a parallel oblivious aggregate operation [2, 23] (see Section A.4 for the definition),
each element in the array (resulting from the above step) learns the first metadata tuple
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(minaddr,maxaddr, i) to its left. In this way, each address will learn which block (i.e., i) within
Fetched〈d〉 it will receive its position identifier from.
The result of this step is an array such that each metadata tuple of the (minaddr,maxaddr, i) is
replaced with a dummy entry ⊥, and each address addr is replaced with (addr, i), denoting that
the address addr will receive its position identifier from the i-th block of Fetched〈d〉.

4. For each non-dummy entry in the above array, tag the entry with a group number b iµc. For each
dummy entry, tag it with ⊥.

5. Invoke an instance of the oblivious bin packing algorithm and pack the resulting array into d2m
µ e

bins of capacity µ each. We refer to the resulting array as Instr〈d+1〉.

6. Obliviously compute the routing permutation πd→d+1 that maps Instr〈d+1〉 to Instr〈d+1〉.

7. Output Instr〈d+1〉 and πd→d+1.

Online phase. The online phase consists of the following steps:

1. For every k, fork an instance of the oblivious routing algorithm such that Instr〈d+1〉[kµ + 1 :
(k + 1)µ] will receive its position identifiers from Fetched〈d〉[kµ+ 1 : (k + 1)µ].
This completes in O(m logµ) total work and O(logµ) parallel runtime.

2. Apply the routing permutation πd→d+1 to Instr〈d+1〉, and output the result as CInstr〈d+1〉.

5.4 Level-to-Level Routing

Given our core localized routing building block, the full level-to-level position identifier routing
algorithm is straightforward to state.

Offline phase. Upon receiving a batch of m memory requests, for each recursion level d in
parallel:
• Truncate the addresses to the first d bits and perform conflict resolution. The result is an array

of length m containing distinct addresses and dummies to read from recursion level d.

• Randomly permute the resulting array, and obtain an incomplete instruction array Instr〈d〉. It
is important for security that the random permutation is performed obliviously such that no
information is leaked to the adversary about the permutation.
For d = 0, additionally fill in the position map identifiers and complete the instruction array to
obtain CInstr〈0〉.

• From the Instr〈d〉 array, construct a corresponding incomplete Fetched〈d〉 array where all position
identifier fields are left blank as “ ”. The blocks in Fetched〈d〉 are ordered in the same way as
Instr〈d〉.

• If d is not the data level, fork an instance of the localized routing algorithm with input arrays
Fetched〈d〉 and Instr〈d+1〉, and output a permuted version of Instr〈d+1〉 denoted Instr〈d+1〉 a routing
permutation πd→d+1.
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Online phase. From each recursion level d = 0, 1, . . . D sequentially where D = O( logN
log Γ ) is the

total number of recursion levels:

• Based on the completed instruction CInstr〈d〉, allocate an appropriate number of processors for
each completed instruction and perform the fetch phase of the OPRAM algorithm. The result
is a fetched array Fetched〈d〉.

• Execute the online phase of the localized routing algorithm for recursion level d with the inputs
Fetched〈d〉, Instr〈d+1〉, and πd→d+1. The result is a completed instruction array CInstr〈d+1〉 for
the next recursion level.

6 Putting it Altogether: Detailed OPRAM Algorithm
We now describe our full OPRAM scheme in detail.

6.1 Our OPRAM’s Data Structure

We use the same data OPRAM structure as in earlier works [2, 6] but with slightly different
parametrizations. We describe the data structures needed below.

Disjoint subtrees. In each of the D recursion levels (recursion will be described later), there
are 2m disjoint subtrees — the subtrees can be viewed as truncating a big Circuit ORAM [29] tree
at a height with 2m buckets, such that only the larger (i.e., closer to leaf) heights are preserved.
(The reason we use 2m subtrees is that each requested block will lead to two path evictions later.)
Just like in Circuit ORAM [29], each node in the subtree is a bucket of O(1) capacity, storing O(1)
number of real or dummy blocks.

Overflowing pool. For the overflowing pool, we distinguish between two cases:

• When m ≥ α log logN : in this case, each recursion level has its own pool. Chan et al. [5] prove
that the pool occupancy is upper bounded by O(m+α logN) except with negligible probability.

• When m < α log logN : in this case, all recursion levels share a single pool (henceforth referred
to as the shared pool). Chan et al. [5] prove that except with negligible probability, this shared
pool contains at most O(mD + α logN) blocks, where D is the number of recursion levels.

Path invariant, position map, and recursion levels. As in all known tree-based ORAMs
and OPRAMs [2, 6, 7, 26, 28, 29], the main invariant is that a block (in a specific recursion level) is
assigned to a random path: this means that the block can reside anywhere along this tree path, or
in the pool — in the case of small m, the block may reside in the shared pool.

If one did not care about CPU cache size, one can use a position map to keep track of the
path identifier of each block. To achieve constant CPU cache, known tree-based ORAMs and
OPRAMs [2,6,7,26,28,29] rely on a standard recursion technique to recursively store the position
map in a smaller and smaller ORAM/OPRAM.

6.2 Complete Description of Our OPRAM Algorithm

We next outline our small-depth OPRAM algorithm based on Circuit OPRAM [29]. At a very high
level, our algorithm largely follows the blueprint established in the Circuit OPRAM paper. But as
explained earlier, several non-trivial modifications are necessary to achieve asymptotically smaller
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depth. Thus our presentation below also roughly follows the Circuit OPRAM framework (with
parameters adjusted to our needs). We highlight the non-trivial steps (i.e., our contributions)
in shaded boxes for clarity. The detailed algorithms for these shaded boxes are presented in
Section 5.2 and Section 7.1 respectively.

Fetch phase. The fetch phase has an array of m addresses as input denoted (addr1, . . . , addrm).
Recall that there are 2m disjoint subtrees.

(i) Preparation: all recursion levels in parallel. For all recursion levels d := 0, 1, . . . , D in parallel,
perform the following:

• Generate level-d prefix addresses. Write down the level-d prefixes of all m requests addresses
(addr1, . . . , addrm). Clearly, this step can be accomplished in O(1) parallel step with m CPUs.
• Conflict resolution. Given a list ofm possibly dummy level-d addresses denoted (addr〈d〉1 , . . . , addr〈d〉m ),

we run an instance of the oblivious conflict resolution algorithm to suppress duplicate requests
(and pad the resulting array with dummies). This step can be accomplished in O(logm) parallel
steps with m CPUs.
• Choose fresh position labels for the next recursion level. Let Addr〈d〉 := {addr〈d〉i }i∈[m] denote the

list of level-d addresses after conflict resolution. By jointly examining Addr〈d〉 and Addr〈d+1〉,
recursion level d learns for each non-dummy addr〈d〉i ∈ Addr〈d〉, which of its children are needed
for the next recursion level. For any child that is needed, recursion level d chooses a new position
label for the next recursion level. For recursion level d, the result of this step is an instruction
array

{addr〈d〉i , (nposj : j ∈ [γ])}i∈[m]

where nposj is a fresh random label in level d+1 if addr〈d〉i ||j is needed in the next recursion level,
otherwise nposj := ⊥. As described by Chan et al. [5], this can be accomplished in O(logm)
parallel steps using m CPUs.
• Pool lookup. We have m CPUs each of which now seeks to fetch the level-d block at address

addr〈d〉. The m CPUs first tries to fetch the desired blocks inside the central pool; and at the
end, the fetched blocks will be marked as dummy in the pool.
– When m ≥ α log logN : we rely on an instance of the oblivious routing algorithm, such

that each of these m CPUs will attempt to receive the desired block from the pool, and
moreover, the received blocks will be removed from the pool. Since the pool size is bounded
by O(m+ α logN) except with negligible probability as shown by Chan et al. [5], this step
can be accomplished in O(logm+ log logN) parallel steps consuming (m logN) total work.

– When m < α log logN : in this case, all recursion levels share a single pool of capacity
O(α logN + Dm) where D is the number of recursion levels. We rely on a single in-
stance of oblivious routing to route answers to all requests over all recursion levels in
O(logm+log logN) = O(log logN) parallel steps andO((Dm+α logN)(logm+log logN)) =
O(mD log logN + α logN log logN) total work.

•
Offline preparation for small-depth routing. Perform additional offline preparation that
is necessary to route position identifiers across recursion levels in small online depth —
this part of the algorithm was not there in the earlier Circuit OPRAM [5] since they
did not aim to achieve small depth. Our new offline preparation completes in O(logm)
parallel steps and O(m logm) total work per recursion level (see Section 5.2 for details).
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(ii) Fetch: one recursion at a time sequentially. Now, for each recursion level, m CPUs will each
look for a block in one of the subtrees. This step must be performed sequentially one recursion
level at a time since each recursion level must receive the position labels from the previous level
before looking for blocks in the subtrees.
For each recursion level d = 0, 1, . . . D in sequential order, we perform the following:

•
Receive position labels from previous recursion level. Unless d = 0 in which case the
position labels can be fetched in O(1) parallel step, each of the m level-d addresses will
receive a pair of position labels from the previous recursion level denoted (pos, npos),
where pos represents the tree path to look for the desired block, and npos denotes a
freshly chosen label to be assigned to the block after the fetch is complete.
In the Circuit OPRAM work [5], this step is accomplished through oblivious routing in
O(logm) parallel steps with m CPUs — however, this approach will be too expensive for
us, since over all levels of recursion, this would cost O(logm logN) parallel steps. There-
fore, in Section 5.2, we describe a new, small-online-depth algorithm for performing this
level-to-level position identifier routing — this also turns out to be the most technically
non-trivial part in terms of achieving a small-depth OPRAM.

• Subtree lookup. We describe a small-depth variant of the subtree lookup algorithm described
in [5]. At this moment, O(m) fetch CPUs each receives an instruction of the form (addr〈d〉, pos)
that could be possibly dummy. Each fetch CPU will now recruit the help fromO(logN) auxiliary
CPUs. In parallel, each auxiliary CPU reads one physical slot on the tree path leading to the leaf
node numbered pos, in search of the block with logical address addr〈d〉 (but without removing
the block). Then, the O(logN) CPUs for each fetch path invoke an instance of the oblivious
select algorithm defined in Section A.4), such that at the end, the fetch CPU learns the block
it is looking for, as well as the physical slot in which the block resides — and this information
will later be used as input to the simultaneous removal algorithm that is part of the maintain
phase. If a fetch CPU receives a dummy instruction, then the fetch CPU and its O(logN)
auxiliary CPUs will simply scan through a random path in a random subtree.
Clearly, the above can be accomplished in O(log logN) parallel steps and O(m logN) total work
over all O(m) tree paths.
• At this moment, each of the m CPUs has fetched the desired block either from the pool or the

tree path (or the CPU has fetched dummy if it received a dummy instruction to start with).
The fetched results (as well as the new position labels chosen for the next recursion level) are
ready to be routed to the next recursion level.

(iii) Oblivious multicast: once per batch of requests. Finally, when the data-OPRAM has fetched all
requested blocks, we rely on a standard oblivious routing algorithm (see Section A.4) to route
the resulting blocks to the request CPUs. This step takes O(logm) parallel time with m CPUs.

Maintain phase. All of the following steps are performed in parallel across all recursion levels
d = 0, 1, . . . , D:

(i) Simultaneous removal of fetched blocks from subtrees. After each of the m CPUs fetches its
desired block from m tree paths, they perform a simultaneous removal procedure to remove the
fetched blocks from the tree paths. Chan et al. [5] describes an algorithm that accomplishes this
task in O(logN) parallel steps with m CPUs. It is not hard to observe that if we may have more
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CPUs, the same algorithm can be completed in O(logm + log logN) parallel steps consuming
O(m logN) total work.

(ii) Passing updated blocks to the pool. Each CPU updates the contents of the fetched block — if
the block belongs to a position map level, the block’s content should now store the new positon
labels (for the next recursion level) chosen earlier in the preparation phase. Further, each block
will be tagged with a new position label that indicates where the block can now reside in the
current recursion level — this position label was received earlier from the previous recursion
level during the fetch phase (recall that each recursion level chooses position labels for the next
recursion level).
The updated blocks are merged into the pool. The pool temporarily increases its capacity to
hold these extra blocks, but the extra memory will be released at the end of the maintain phase
during a cleanup operation.
This step can be accomplished in O(1) parallel steps with m CPUs.

(iii) Selection of eviction candidates. Following the deterministic, reverse-lexicographical order evic-
tion strategy of Circuit ORAM [29], we choose the next 2m eviction paths (pretending that
all subtrees are part of the same big ORAM tree). The 2m eviction paths will go through 2m
subtrees henceforth referred to as evicting subtrees. If m has decreased (by a factor of 2) since
the last PRAM step, then not all subtrees are evicting subtrees.
Our goal here is to output one (possibly dummy) block to evict for each evicting subtree, as well
as the remainder of the pool (with these selected blocks removed). The block selected for each
evicting subtree is based on the deepest criterion with respect to the current eviction path.

• When m ≥ α log logN : we rely on oblivious routing to accomplish this in O(logm+log logN)
parallel steps and O(m logN) total work.
• When m < α log logN : in this case, all recursion levels share a single pool containing at

most O(Dm + α logN) real blocks. We rely on a single instance of oblivious routing to
route eviction candidates for all subtrees in all recursion levels O(log logN) parallel steps and
O(mD log logN + α logN log logN) total work.

(iv)
Eviction into substrees. In parallel, for each evicting subtree, the eviction algorithm of
Circuit ORAM [29] is performed for the candidate block the subtree has received. The
straightforward strategy takes O(logN) parallel steps consuming m CPUs. In Section 7.1,
we propose a new algorithm that accomplishes the eviction in small depth.

(v) Return eviction leftovers to pool. After the eviction algorithm completes, if the candidate block
fails to be evicted into the subtree, it will be returned to the pool; otherwise if the candidate
block successfully evicts into the subtree, a dummy block is returned to the pool.

(vi) Cleanup. Finally, since the pool size has grown in the above process, we perform a compression
procedure to remove dummy blocks and compress the pool back to c ·m + α logN size for an
appropriate constant c. A standard measure concentration argument as used in [5] can be used
to show that the pool occupancy is bounded by c ·m+α logN except with negl(N) probability,
and thus ensures that no real blocks are lost during this reconstruction with all but negligible
probability. Again, we handle the case of large m and small m separately:

• When m ≥ α log logN : in this case, we rely on oblivious sorting to accomplish pool compres-
sion in O(logm+ log logN) parallel steps consuming O(m logN) total work.
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Figure 4: Online phase of the level-to-level routing algorithm

• When m < α log logN : in this case, all recursion levels share a single pool containing
at most O(Dm + α logN) real blocks. We rely on a single instance of oblivious sorting
(over all recursion levels) to perform pool compression in O(log logN) parallel steps and
O(mD log logN + α logN log logN) total work.

Lemma 6 (Performance Analysis of Fetch Phase). Suppose each block can store γ position labels.
The number of recursion levels is D = O( logN

log Γ ), and denote γ := min{Γ,m} and µ := αγ2 logN .
Then, the fetch phase completes in O(Dm·(logm+logµ)) total work and O(D logµ+logm) parallel
runtime.

6.3 Obliviousness

We now argue why our scheme satisfies obliviousness. For simplicity, we may assume that whenever
our OPRAM has any overflow (which happens with negligible probability), rather than aborting,
the block that overflows is simply dropped — later if ever a fetch request did not find the desired
block, the block’s value is treated as ~0. In other words, henceforth we assume that the statistical
failure is suffered in terms of correctness error — in this case, we will reason why the observable
access patterns are identically distributed regardless of the input request sequences.

The security of our OPRAM scheme is based on that for all known tree-based ORAMs [26,28,29]
and tree-based OPRAMs [2,6], because whenever a block is requested, a new random path for the
block is chosen without revealing the position identifier. Thus, in any recursion level, regardless
of what next batch of m blocks are requested, the adversary will always observe m random paths
being accessed. Hence, it suffices to show that the localized routing procedure in the fetch phase is
also secure.

Lemma 7 (Security of Position Identifiers Routing). The level-to-level routing procedure described
in Section 5.4 produces a distribution of physical access pattern that is independent of the requested
addresses.

Proof. It suffices to check that in the core subroutine described in Section 5.3, the physical memory
are accessed using the building blocks described in Section 4.2, which ensure that the access pattern
is independent of the requested addresses. We next inspect each step more carefully.

In the offline phase, both the source array Fetched〈d〉 and the destination array Instr〈d+1〉 have
been randomly permuted in an oblivious manner. Therefore, the routing permutation πd→d+1 (that
can be observed by the adversary later in the online phase) is a uniformly random permutation, even
when conditioned on having observed the access patterns of the oblivious random permutation in the
offline phase — note that this is implied by our formal definition of oblivious random permutation
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(see Definition 4). Other steps in the offline phase invoke oblivious building blocks such as oblivious
aggregation, oblivious sort and oblivious bin packing, all of which produces deterministic access
pattern independent of the requested addresses. The probability statement for the step involving
oblivious bin packing refers to the probability that no real blocks are lost, but in any case, the
access pattern produced is independent of the requested addresses.

In the online phase, (localized) oblivious routing is used and the access pattern produced is
deterministic and independent of the requested addresses. As mentioned earlier, the routing permu-
tation πd→d+1 is revealed, but it has an independent uniform distribution, because the destination
array Instr〈d+1〉 was permuted using a (secret) fresh random permutation.

With Lemma 7 and combining the standard security argument of tree-based ORAM and
OPRAM schemes (where we can argue that for every batch of m requests, each recursion level
accesses m random paths [5]), it is not difficult to see that our earlier small-depth OPRAM con-
struction is indeed a statistically secure OPRAM, i.e., the following Theorem 4 holds.

Theorem 4 (Statistically secure, small-depth OPRAM). There exists a statistically secure OPRAM
scheme (for general block sizes) with O(log2N) total work blowup, and O(logN log logN) parallel
runtime blowup, where the OPRAM consumes only O(1) blocks of CPU private cache.

6.4 Improving a log log N Factor with Computational Security

Fletcher et al. [10] first proposed an elegant idea for transforming any statistically secure, tree-based
ORAM into a computationally secure tree-based ORAM whose simulation overhead is a log logN
factor smaller than the original statistically secure scheme. Subsequently, Chan et al. [5] showed
how to extend and improve their idea to the OPRAM context. Thus, given their statistically secure
O(log2N)-overhead Circuit OPRAM construction, they show how to construct a computationally
secure variant of the scheme with only O(log2N/ log logN) simulation overhead — where simulation
overhead is defined in the traditional way, i.e., the parallel runtime blowup of the OPRAM when
the OPRAM is allowed to access only as many CPUs as the original PRAM.

At a high level, Fletcher et al.’s [10] and Chan et al.’s idea [5] is to compress the position map
blocks using counters, and then generate the position labels on-the-fly pseudorandomly using a
PRF whose secret key is known only to the CPU(s). In this way, when the block size is only
Θ(logN), we can pack Θ( logN

log logN ) counters in each position map block, and therefore this reduces
the depth of recursion by a log logN factor. Although the high-level idea is simple, as Fletcher et
al. and Chan et al. describe, several tricks are necessary to instantiate this idea. In particular, all
counters in the same position map block must share the same outer counter, and each counter then
has its own inner counter. When any inner counter overflows, the outer counter is incremented and
all inner counters reset to 0 — at this moment, all corresponding blocks in the next recursion level
must relocated such that their physical locations are still consistent with the new counter values.
Fletcher et al. and Chan et al. argue that the extra overhead incurred by such relocation (resulting
from outer counter reset) can be amortized over all operations such that the relocation overhead
gets absorbed asymptotically.

We refer the reader to the Circuit OPRAM [5] for a detailed explanation of this PRF+counter
trick in the context of OPRAM. It is not difficult to see that our low-depth level-to-level routing
trick applies nonetheless to the computationally seucre variant of Circuit OPRAM [5]. Thus just
like in the original Circuit OPRAM work, we gain an additional log logN factor in both total work
and depth assuming the existence of one-way functions.

Therefore we conclude with the following corollary which, due to the standard techniques ex-
plained earlier, arises as a straightforward extension to our main theorem earlier.
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Corollary 1 (Computationally secure, small-depth OPRAM). Assume that one-way functions
exist. Then, there exists a computationally secure OPRAM scheme (for general block sizes) with
O(log2N/ log logN) total work blowup and O(logN) parallel runtime blowup, where the OPRAM
consumes only O(1) blocks of CPU private cache.

7 The Depth of OPRAM Schemes for Larger Block Sizes
Thus far, we have focused on the case of general block sizes, and our results so far apply to any
OPRAM whose memory block is at least large enough to store its own memory address. One cause
of overhead for general block sizes is due to the up to logN levels of recursion. As all tree-based
ORAM/OPRAM papers argue [5, 26, 29], when the block size is large, each block can store many
position labels, and thus the depth of the recursion becomes asymptotically smaller.

In this section, we consider the depth of OPRAM schemes for larger block sizes. This question
can be of interest because it can shed light on how optimal the non-recursive part of our OPRAM
algorithm is. In particular, in the extreme case, when the block size is sufficiently large, i.e., N ε

bits per block for an arbitrarily small constant ε > 1, the depth of recursion becomes constant.
Now, the non-recursive part of the OPRAM algorithm becomes the limiting factor both in terms
of total work and depth. In this case, it is not hard to see that our earlier OPRAM scheme would
achieve O(logN) depth and O(α logN) total work for any arbitrarily small super-constant factor
α. In particular, the limiting factor for both the depth and the total work is the eviction algorithm.

In this section, our goal is the following:

a) to obtain an OPRAM with O(logm+log logN) depth blowup and O(α logN) total work blowup
for sufficiently large block sizes (Section 7.1); and

b) to generalize all techniques we have presented so far, and obtain a general theorem that states
the best possible OPRAM depth parametrized by the block size (Section 7.2).

7.1 Small-Depth Path Eviction

As mentioned above, our first goal is to obtain an an OPRAM with O(logm + log logN) depth
blowup and O(α logN) total work blowup for sufficiently large block sizes — in particular, assume
that the block size is N ε for an arbitrarily small constant ε, the depth of recursion becomes constant.
At this moment, the limiting factor to Circuit OPRAM’s depth is the eviction algorithm.

If we used the näıve strategy to perform eviction on a path, each path would take O(logN)
sequential steps (with a single CPU) to evict. For small block sizes, recall that since the evictions
were done in parallel across all recursion levels, eviction was not the depth bottleneck — rather,
the O(logN) recursion was the depth bottleneck. For sufficiently large blocks, the recursion can
become as small as constant in depth, and thus the depth bottleneck is now the eviction. Thus in
this section, we show how to perform eviction on each path in O(log logN) parallel steps consuming
O(logN log logN) total work. Henceforth in this section, let L := O(logN) denote the path length.

Intuition. Our key insight is to adopt a non-trivial divide and conquer strategy. To solve a
problem instance of length n, we divide the problem into two sub-instances each of length n

2 and
solve them in parallel. Then, in O(1) parallel steps and O(n) time, we reconstruct the solution to
the length-n problem from the solutions of the two length-n2 sub-problems.

The non-trivial challenge is that the two smaller instances are not independent. After solv-
ing each smaller instance, some information must be passed from one instance to another, and
some correction must performed on the receiving instance to make sure that the result is correct.
Therefore in our algorithm design, we must consider what is the minimal amount of information
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Algorithm 1 EvictSlow(path) A slow, non-oblivious version of the eviction algorithm, only for
illustration purpose [29]

1: i := L /* start from leaf */
2: while i ≥ 1 do:
3: if path[i] has empty slot then
4: (block, `) := Deepest block in path[0..i − 1] that can legally reside in path[i], and its

corresponding height in path.
/* block := ⊥ if such a block does not exist.*/

5: if block 6= ⊥ then
6: Move block from path[`] to path[i].
7: i := ` // skip to height `
8: else i := i− 1

that must be passed from one completed instance to another, and how to perform the necessary
a-posteriori correction fast, such that we can obtain a low-depth eviction algorithm while incurring
little cost to total work.

Notation. We first revisit the eviction strategy used in Circuit ORAM, which is performed on
a path of buckets path[0..L], where path[0] represents the (group) stash and path[L] is the leaf. In
our case, path[1] corresponds to the root of one of the m̂ subtrees. Recall that each block has a leaf
position, whose lowest common ancestor with path[L] gives the deepest height at which the block
can legally reside on path. We assume there is a total ordering imposed on the blocks determined
by the maximum depths they can legally reside in path, where ties are consistently resolved (for
instance by block addresses). The (non-oblivious) procedure in Algorithm 1 illustrates how the
blocks are supposed to be evicted along the path.

Metadata Scan. As in Circuit ORAM [29], we first scan the metadata to collect the relevant
information for moving the blocks in path. The difference here is that we give a parallel version for
scanning the metadata. Algorithm 3 is supposed to produce an array target[0..L], where the entry
target[i] = dsti means that if dsti 6= ⊥, the deepest block in path[i] will be moved to path[dsti].

Subroutine PrepareDeepest. A sequential version of this procedure was given in the Circuit
ORAM paper [29].

After calling PrepareDeepest(path[0..L]), for 1 ≤ i ≤ L, the array entry deepest[i] stores the
source height of the deepest block in path[0..i− 1] that can legally reside in path[i] .

We will use the following monotone property.

Fact 1 (Monotone property of deepest). Suppose for some 1 ≤ i ≤ L, deepest[i] = j. Then, for
j < k ≤ i, deepest[k] = j.

Subroutine PrepareTarget. A sequential version was given in the Circuit ORAM paper [29] to
process the metadata. We assume PrepareDeepest(path[0..L]) has already been called to have
deepest[0..L] ready. For the parallel version, PrepareTarget(path[i..j], dst) takes a path segment
and a potential destination height dst ≥ j+1. It prepares two arrays target1[i..j] and target2[i..j]
and returns a pair (dst1, dst2) with the following properties.

For i ≤ k ≤ j, target1[k] indicates the destination height that the deepest block in path[k]
should be moved to, assuming that no block will be moved from path[0..j] to path[j + 1..L]; in this
case, if dst1 6= ⊥, then i ≤ dst1 ≤ j, and there should be a block moving from path[0..i − 1] to
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Algorithm 2 PrepareDeepest(path[i..j])
/*Make parallel metadata scan to prepare the deepest array.
After this algorithm, for each i < k ≤ j, deepest[k] stores the source height of the deepest block
in path[i..k − 1] that can legally reside in path[k], and goal[k] stores the deepest height that the
corresponding block can reside. Moreover, the procedure returns a pair (src, dst), where src is the
source height the deepest block in path[i..j] and dst is the deepest height the corresponding block can
reside.
Note: The procedure can be implemented in an oblivious way. For instance, for the case when the
condition of an “If” statement is false, dummy operations can access the corresponding variables
without actually modifying them. */

1: Initialize deepest[i..j] := (⊥,⊥, ...,⊥) and goal[i..j] := (⊥,⊥, ...,⊥).
2: if (i == j) then
3: if path[i] is non-empty then
4: dst := Deepest height that a block in path[i] can legally reside on path.

return (i, dst)
5: else return (⊥,⊥) . Assume ⊥ is smaller than any integer.

. i < j
6: p := b i+j2 c
7: Execute the following two statements in parallel:

• (src1, dst1) := PrepareDeepest(path[i..p])
• (src2, dst2) := PrepareDeepest(path[p+ 1..j])

8: for k = p+ 1 to j in parallel do
9: if dst1 ≥ goal[k] then

10: deepest[k] := src1, goal[k] := dst1

11: if dst1 ≥ dst2 then return (src1, dst1)
12: else return (src2, dst2)

path[dst1]. Similarly, target2[k] indicates the corresponding destination height, assuming that if
dst 6= ⊥, then deepest[j + 1] = deepest[dst] and the deepest block in path[deepest[j + 1]] will be
moved to path[dst]; similarly, in this case dst2 6= ⊥ implies that there should be a block moving
from path[0..i− 1] to path[dst2], where dst2 ≥ i and deepest[dst2] < i.

Hence, calling PrepareTarget(path[0..L],⊥) will give the desired array target[0..L] := target1[0..L]
for moving the actual blocks.

Subroutine EvictFast. After the array target1[0..L] is prepared by running PrepareTarget(path[0..L],⊥),
we can run EvictFast, which moves the blocks in parallel, as opposed to doing a linear scan from
the root to the leaf. In particular, the effect of procedure EvictFast(path[i..j]) is to evict along the
path starting from the ith height down to height j, following target[i..j]; the procedure returns a
pair (B, dst), where (B, dst) is any block that is supposed to be moved from path[i..j] to path[dst],
where dst > j.

Hence, if suffices to call EvictFast(path[0..L]) to complete the eviction along the whole path.

Performance Analysis. All the algorithms are recursive and use a divide and conquer paradigm.
Specifically, for an instance of size L, each algorithm first solves instances with sizes bL2 c and dL2 e
in parallel. Then, the two solutions are combined to produce a solution to the original instance
using O(1) parallel runtime and and O(L) total work.
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Algorithm 3 PrepareTarget(path[i..j], dst)
/* Parallel version to prepare the target arrays. */

1: target1[i..j] := target2[i..j] := (⊥,⊥, . . . ,⊥), dst1 := dst2 := ⊥
2: if (i == j) then
3: if (path[i] has an empty slot) and (deepest[i] 6= ⊥) then
4: dst1 := dst2 := i

5: if (deepest[dst] == i) then target2[i] := dst
6: if deepest[i] 6= ⊥ then dst2 := i

7: else if deepest[dst] < i then dst2 := dst
8: return (dst1, dst2)

. i < j
9: p := b i+j2 c

10: Execute the following two statements in parallel:
• (dst1, dst2) := PrepareTarget(path[p+ 1..j], dst)
• (dst′1, dst′2) := PrepareTarget(path[i..p], p+ 1)

11: if dst2 6= ⊥ then . deepest[dst2] = deepest[p+ 1]
12: for k = i to p in parallel do
13: if deepest[p+ 1] == k then target2[k] := dst2

14: if dst1 6= ⊥ then . deepest[dst1] = deepest[p+ 1]
15: for k = i to p in parallel do
16: if (deepest[p+ 1] == k) then target1[k] := dst1
17: else target1[k] := target2[k]
18: if (dst′2 == p+ 1) then dst′1 := dst1
19: else dst′1 := dst′2
20: if (dst′2 == p+ 1) then dst′2 := dst2

. dst1 = dst2 = ⊥
21: if dst2 = ⊥ then
22: for k = i to p in parallel do target2[k] := target1[k]
23: dst′2 := dst′1
24: return (dst′1, dst′2)
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Algorithm 4 EvictFast(path[i..j])
/* Evicts blocks along path[i..j] according to target[i..j] and return a pair (B, dst) for any block B
to be moved from path[i..j] down to height dst. */

1: if (i == j) then
2: if target[i] 6= ⊥ then
3: B := Deepest block in path[i].
4: Remove B from path[i].

return (B, target[i])
5: else return (⊥,⊥)

. i < j
6: p := b i+j2 c
7: Execute the following two statements in parallel:

• (B1, dst1) := EvictFast(path[i..p])
• (B2, dst2) := EvictFast(path[p+ 1..j])

8: for k = p+ 1 to j in parallel do
9: if (dst1 == k) then put block B1 in path[k].

10: if dst1 > j then return (B1, dst1)
11: else return (B2, dst2)

Hence, the recursion for parallel runtime is T (L) = T (L2 ) +O(1), which gives T (L) = O(logL);
the recursion for total work is W (L) = 2W (L2 ) +O(L), which gives W (L) = O(L logL).

Correctness. We next show that EvictFast (Algorithm 4) achieves the same effect on the locations
of the blocks as EvictSlow (Algorithm 1). The intuition is that the sequential version of the path
eviction consists of three linear scans along the path. Hence, using the divide-and-conquer strategy
in the parallel version, it suffices to keep track of what computation each sub-instance can perform
on its own, and what information needs to be passed from one sub-instance to the other in order
to complete the computation.

Lemma 8 (Correctness of EvictFast). EvictFast has the same effect on the locations of the blocks
in the eviction path as EvictSlow.

Proof. We show that each of the algorithms PrepareDeepest, PrepareTarget and EvictFast achieve
the effects in the above description. In particular, as seen from [29], in the sequential versions of
these algorithms, PrepareDeepest and EvictFast each performs a root-to-leaf scan, and PrepareTar-
get performs a leaf-to-root scan. We explain how the solutions to the two sub-instances in each
algorithm can be combined to give a solution to the larger instance.

1. PrepareDeepest. Since the effect of the algorithm can be achieved by a linear scan from the root
to the leaf in path, after the sub-instances [i..p] and [p+ 1..j] have been handled in parallel, we
just need to consider what information needs to be passed from the first instance to the second
one to get a solution for the larger instance [i..j].
Observe that for each k ∈ [p + 1..j], deepest[k] is supposed to store the source height of the
deepest block from path[i..k − 1] that can legally reside in path[k].
Starting from a solution for the sub-instance [p+1..j], we just need to know if where the deepest
block in path[i..p] can reside in path[p + 1..j], i.e., the source level src1 of the deepest block in
path[i..p] and the deepest height dst1 that it can reside. Equipped this information, the solution
for [p+ 1..j] can be updated accordingly as shown in Algorithm 2.
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2. PrepareTarget. Assuming that PrepareDeepest has already been called to construct the array
deepest, Algorithm 3 performs a leaf-to-root scan. In the sequential version, we can imagine
that when the scan passes from height i + 1 to height i, the algorithm just needs to remember
a destination level dst ≥ i + 1 that has an empty slot and is supposed to take a block from
deepest[dst]. However, the monotone property from Fact 1 implies that deepest[dst] = deepest[i+
1], which means the algorithm only needs to remember dst.
Now, suppose we break the larger instance [i..j] into two smaller sub-instances [i..p] and [p+1..j].
The difficulty is that if we try to solve the sub-instance [i..p], we do not know whether a block is
supposed to go from path[i..p] to path[p+ 1..j], without solving the sub-instance [p+ 1..j] first.
The important observation is that if a block is supposed to go from path[i..p] to some destination
height dst in path[p+ 1..j], even if we do not know what dst is, we know the source level of this
block is given by deepest[p+ 1] = deepest[dst].
This intuition suggest that we need to prepare for two scenarios. The first scenario is that no
block is supposed to go from path[i..p] to path[p + 1 :], and this corresponds to the solution in
target1[i..p]. The second scenario is that a block is supposed to go from path[i..p] to path[p+1 :],
and so we pretend that the destination height is p+ 1 for the time being to produce target1[i..p].
Once the solutions target1 and target2 have been produced for the sub-instance [p + 1..j], we
know whether a block is supposed to go from path[i..p] to path[p + 1 :] in each case, and we
also know the true destination of that block. Hence, we can use this information to correct the
solutions for the sub-instance [i..p] accordingly.

3. EvictFast. After PrepareTarget has been called, the sequential version just needs to perform a
root-to-leaf scan to move the blocks according to target1[0..L− 1].
After the sub-instances [i..p] and [p + 1..j] are solved, we just need to know if any block is
supposed to be moved from path[i..p] to path[p + 1 :]. If yes, the block can either be moved to
path[p+ 1..j] or passed to path[j + 1 :], as shown in Algorithm 4.

7.2 Theorem Statement for Larger Block Sizes

The next lemma summarizes the performance analysis when the small-depth path eviction algorithm
is used. Observe that there is an extra log logN factor in the work for eviction. Hence, this
algorithm is used for moderate block sizes, i.e., when the number of recursion levels is o(logN).
The lemma is parameterized with Γ, which is the number of position labels that a block can store.

Lemma 9. Suppose each block can store Γ position labels. The number of recursion levels is
D = O( logN

log Γ ), and denote γ := min{Γ,m}. Then, each step of the PRAM with m CPUs can
be simulated with O(Dm(logm + logN log logN)) total work and O(D(log γ + log logN) + logm)
parallel runtime.

Proof. By Lemma 6, the fetch phase can be performed with O(Dm · (logm+logµ)) total work and
O(D logµ+ logm) parallel runtime, where µ := αγ2 logN .

With the small-depth eviction algorithm, the maintain phase takes total workO(Dm logN log logN)
and O(logm+ log logN) parallel runtime.

Combining the performance analysis of both phases gives the result.
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Appendix
A Additional Preliminaries

A.1 Notations

Statistical and computational indistinguishability. Given two ensembles of distributions
{XN} and {YN} (parameterized with N), we use the notation {XN}

ε(N)
≡ {YN} to mean that for

any (possibly computationally unbounded) adversary A,∣∣∣∣Pr[A(x) = 1 |x $←XN ]− Pr[A(y) = 1 |y $←YN ]
∣∣∣∣ ≤ ε(N).

We use the notation {XN}
ε(N)
≡c {YN} to mean that for any non-uniform p.p.t. adversary A,∣∣∣∣Pr[A(1N , x) = 1 |x $←XN ]− Pr[A(1N , y) = 1 |y $←YN ]

∣∣∣∣ ≤ ε(N).

A.2 Adaptive, Composable Notion of OPRAM

As mentioned earlier, although using a static notion of security allows us to prove a stronger lower
bound, our upper bound in fact satisfies a stronger, adaptive and composable notion of security as
we formally specify below. This notion of security was also adopted in several recent works [1]. For
convenience, below we first define the computationally secure version and then we remark how to
extend it to the statistically secure notion.

Definition 3 (Adaptively secure OPRAM). We say that a stateful parallel algorithm opram
is a strongly-oblivious OPRAM algorithm with computational security iff there exists a non-
uniform probabilistic polynomial-time simulator Sim, such that for any non-uniform probabilis-
tic polynomial-time adversary A, A’s view in the following two experiments, Exptreal,opram

A and
Exptideal

A,Sim are computationally indistinguishable:

Exptreal,opram
A (N,m):

out0 = addresses0 = ⊥
For t = 1, 2, . . . poly(N):

~I(t) ← A(N,m, outt−1, addressest−1)
outt, addressest ← opram(~I(t))

Exptideal
A,Sim(N,m):

out0 = addresses0 = ⊥
For t = 1, 2, . . . poly(N):

~I(t) ← A(N,m, outt−1, addressest−1)
outt ← Fmem(~I(t)), addressest ← Sim(N,m)

In the above, Fmem is the “ideal logical memory functionality” defined in the most natural way,
and addressest denotes the physical memory locations accessed for the t-th batch of requests, and
outt denotes the outcome of the computation at the end of the t-th batch of requests.

The above definition is for computational security, but we can easily extend it to statistical
security in the usual manner. Specifically, if we replace computational indistinguishability with
statistical indistinguishability and remove the requirement for the adversary to be polynomially
bounded, then we then say that opram is an OPRAM algorithm with statistical security.

We remark that although most existing works on ORAM [13,14,19,26,28,29] and OPRAM [2,6]
often adopt a weaker, statically secure notion that is not composable (equivalent to our earlier
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definition in Section 2.2) it is not difficult to observe that almost all known ORAM and OPRAM
constructions [2,6,13,14,19,26,28,29] also satisfy the stronger notion, i.e., our Definition 3. Similarly,
it is not difficult to see that our small-depth OPRAM construction also satisfies this stronger notion
of security.

A.3 Details on Oblivious Random Permutation

For completeness, we formally define what an oblivious random permutation is. We also prove that
the algorithm in Figure 2 realizes this formal abstraction, and we analyze its performance.
Definition 4 (Oblivious random permutation). We say that a PRAM algorithm Alg realizes a
perfectly secure oblivious random permutation if there exists a simulator Sim such that for any
input array I, where n is the length of I, we have

RealAlg(I) ≡ (Fperm(I), Sim(n)),

where the notation ≡ denotes identially distributed, and the notation RealAlg(I) denotes a pair of
random variables containing: 1) the output of the running Alg on the input I, and 2) the ordered
sequence of addresses observed in all steps of the PRAM algorithm Alg upon input I. Here, Fperm(I)
is the ideal “random permutation functionality” which permutes the input array I at random and
outputs the permuted array.

In the above definition, although not explicitly denoted, we assume that the memory word size
and the number m of CPUs are public knowledge hard-coded in both Alg and Sim.

Realizing a perfectly secure oblivious random permutation. We now prove that the al-
gorithm described in Figure 2 realizes an oblivious random permutation; we also bound its parallel
runtime and total work.

Before we do that, we fill in the missing details regarding the näıve quadratic random permu-
tation algorithm that Figure 2 used as a subroutine. Given a (small) array containing s elements,
a näıve quadratic random permutation algorithm proceeds sequentially as the following. Initially,
every element in the array is unconsumed. For i = 1 to s: 1) sample a random number j between
1 and s − i + 1; and 2) in one linear scan of the array, find the j-th unconsumed element, mark
it as consumed, and write it into the i-th position of the result array. It is straightforward to see
that this näıve quadratic algorithm realizes an oblivious random permutation. Its total work and
runtime are both quadratic in the array length s.

We proceed to bound the parallel runtime and total work of the algorithm described in Figure 2.
Lemma 10. Assume that the length k of the input array satisfies log0.5N ≤ k ≤ N . Except with
probability negligible in N , the algorithm in Figure 2 completes with O(log k) parallel runtime and
O(k log k) total work.
Proof. We first prove that for the super-constant function α(N) := log logN , after one iteration
of the algorithm, except with negligible in N probability, at most α(N) elements receive the same
random key.

Since 3 log2N random bits are assigned to each element of A as the key, we can model the
process as throwing k ≤ N balls into N3 bins. Without loss of generality, henceforth we simply
assume k = N . For any fixed set S of α(N) elements, the probability that every element in S

collides with other elements is upper bounded by
(
N
N3

)α
= 1

N2α . Thus, the probability that there
exist α(N) elements that collide with other elements is upper bounded by:(

N

α

)
· 1
N2α .
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For α(N) = ω(1), the above expression is bounded by a negligible function in N .
Hence, we next assume that at most α(N) elements receive the same key. Recall that we

run the näıve quadratic random permutation for each subset of elements receiving the same key
(in parallel). Observe that in this part, the parallel runtime is O(α(N)2) and the total work is
O(k · α(N)) = O(k log k).

Lemma 11. The algorithm in Figure 2 realizes a perfectly secure oblivious random permutation as
defined in Definition 4.

Proof. We describe a simulator that simulates the access pattern. Since the oblivious sort and the
näıve quadratic permutation parts of the algorithm have deterministic access patterns, without
loss of generality, henceforth we ignore simulating this part of the access patterns. Similarly, some
other parts of the algorithm (e.g., sequential scan to assign random numbers to each coordinate)
are deterministic and we ignore those as well in describing the simulator. The remaining non-
trivial access patterns to simulate include which coordinates have colliding elements — the access
patterns of the oblivious aggregation step and the step of copying out the collided elements are solely
determined by this information and thus we ignore simulating these parts of the access patterns
too.

In summary, we imagine a simulator denoted Sim that choses k random keys of 3 log2N bits
long, and sorts them in increasing order. Now, the simulator outputs which coordinates in the
sorted array have collisions. By definition, we need to show that the following joint distributions
are identical:

1. the joint distribution of the real-world algorithm’s resulting permutation and which elements
collide in the real world henceforth denoted as

(πreal, Creal),

2. the joint distribution containing 1) a completely random permutation, and 2) the simulated
output of which elements collide, henceforth denoted as

(Fperm(k), Sim).

We now show that the above joint distributions are identical. First, it can be shown that the
marginal distributions πreal ≡ Fperm(k) and Creal ≡ Sim, where ≡ denotes identically distributed.
It thus suffices to prove that even when conditioned on observing Creal, the real-world resulting
permutation πreal is still distributed as a completely random permutation. This can be proven
using a simple coupling argument as follows. Consider all sample paths where the collision pattern
is fixed to some pattern, and the random string chosen in the second phase (i.e., the quadratic
permutation phase) is fixed to some π — note that π can be interpreted as a permutation. Given
any two final permutations π0 and π1, if the first-phase random string χ0 results in π0 (conditioned
on collision pattern and π), then observe that χ1 = χ0π

−1
0 π1 would have the same collision pattern

at the end of the first phase, and would result in the final permutation π1. Further, to result
in the final permutations π0 and π1, χ0 and χ1 are obviously unique in the conditional sample
space we consider (by fixing the access pattern and π) and they have equal probability mass in the
conditional sample space we consider. The remainder of the argument follows in a straightforward
manner by summing over all possible choices of collision pattern and π.

A.4 Additional Building Blocks

We define some additional building blocks. All of these building blocks are oblivious in the sense
that they have deterministic access patterns that do not depend on the inputs.
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Oblivious aggregation for a sorted array. Oblivious aggregation is the following primitive
where given a somewhat sorted array of (key, value) pairs, each representative element for a key
will learn some aggregation function computed over all pairs with the same key.

• Input: An array Inp := {ki, vi}i∈[n] of possibly dummy (key, value) pairs, where all pairs with
the same key appear in consecutive locations. Henceforth we refer to all elements with the same
key as the same group. We say that index i ∈ [n] is a representative for its group if i is the
leftmost element of the group.

• Output: Let Aggr be a publicly known, commutative and associative aggregation function and we
assume that its output range can be described by O(1) number of blocks. The goal of oblivious
aggregation is to output the following array:

Outpi :=
{

Aggr ({(k, v)|(k, v) ∈ Inp and k = ki}) if i is a representative
⊥ o.w.

Oblivious routing. Oblivious routing is the following primitive where n source CPUs wish to
route data to n′ destination CPUs based on the key.

• Inputs: The inputs contain two arrays: 1) a source array src := {(ki, vi)}i∈[n] where each element
is a (key, value) pair or a dummy element denoted (⊥,⊥); and 2) a destination array dst :=
{k′i}i∈[n′] containing a list of (possibly dummy) keys.
We assume that each (non-dummy) key appears only once in the src array, however, each (non-
dummy) key can appear multiple times in dst.

• Outputs: We would like to output two arrays: 1) an array Out := {v′i}i∈[n′] such that for each
i ∈ [n′], it holds that either (k′i, v′i) ∈ src, or k′i /∈ src in which case v′i := ⊥, or k′i = v′i = ⊥; and
2) an additional array Remain of length n that holds all remaining elements of src that have not
been routed to the destination array (padded with dummies).

Oblivious select. Parallel oblivious select solves the following problem: given an array containing
n values, v1, v2, . . . , vn, compute the minimum value min(v1, . . . , vn). Parallel oblivious select can
be achieved through an aggregation tree: imagine a binary tree where the leaves represent the
initial values. We assign one CPU to each node in the tree. Now for each height ` going from
the leaves to the root, in parallel, each internal node at height ` computes the minimum of its two
children. Clearly, oblivious select can be attained in O(n) total work and O(logn) parallel steps.

In a straightforward fashion, oblivious select can also be applied to the following variant problem:
suppose that each of n CPUs holds a value, and that only one CPU is holding a real value s (but
which one is not known), and all others hold the dummy value ⊥. At the end of the algorithm, we
would like a designated fetch CPU to obtain the real value s.
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