
How to Use Metaheuristics for
Design of Symmetric-Key Primitives?

Ivica Nikolić

National University of Singapore

Abstract. The ultimate goal of designing a symmetric-key cryptographic
primitive often can be formulated as an optimization problem. So far,
these problems mainly have been solved with trivial algorithms such
as brute force or random search. We show that a more advanced and
equally versatile class of search algorithms, called metaheuristics, can
help to tackle optimization problems related to design of symmetric-
key primitives. We use two nature-inspired metaheuristics, simulated
annealing and genetic algorithm, to optimize in terms of security the
components of two recent cryptographic designs, SKINNY and AES-round
based constructions. The positive outputs of the optimization suggest
that metaheuristics are non-trivial tools, well suited for automatic design
of primitives.

Keywords: Metaheuristic, simulated annealing, genetic algorithm, au-
tomatic tool, cryptographic primitive

1 Introduction

In the past several years we have seen a major development of computer tools
for automatic analysis of symmetric-key primitives. The tools cover a wide range
of analysis techniques: differential [5, 6, 7, 16, 18, 19, 21, 30, 31, 32, 33, 38, 39, 40],
linear [17, 30], impossible differential [12, 15, 26, 29, 36, 43], meet-in-the-middle [8,
14,15], etc. Among other applications, the tools can serve as a proof of security
of new designs because they can provide resistance of new designs against most
(sometimes all) of the known cryptographic attacks.

Advanced computer tools for design of symmetric-key primitives, however,
have not been considered. Instead, most of the design problems have been solved
either analytically or with trivial computer algorithms such as brute force and
random search. Consider, for example, the problem of tweaking AES to make
it more resistant against meet-in-the-middle attacks. With automatic tools for
analysis against meet-in-the-middle attacks we can check the security margin of
each tweaked version of AES. If we tweak only ShiftRows, then we can brute
force the space of all tweaks, check each tweak with the above automatic tools,

? Python implementation of the results is available at https://github.com/

nusnikolic/metaheuristics

https://github.com/nusnikolic/metaheuristics
https://github.com/nusnikolic/metaheuristics

and find the one that provides the highest security. On the other hand, if we
decide to tweak both ShiftRows and MixColumns, then the space of tweaks may
be too large for a brute force, and thus we will use a random search. That is, we
will check only a subset of randomly chosen tweaks and find the best among them.
These two simple algorithms have been basically the only available computer
tools to designers.

Assume the goal is to create a tool for automatic design of symmetric-key
primitives that is: 1) based on more advanced search methods, and is 2) versatile,
can tackle a variety of design problems. Note, brute force and random search do
not satisfy the first point because they are trivial, but do satisfy the second point
because they can be applied to many design problems. In a nutshell, these two
algorithms are the simplest optimization methods. Therefore, to build a better
design tool we need to focus on the next class of known optimization algorithms,
that is also universal, but more sophisticated. That is the class of metaheuristics.

A metaheuristic is a search algorithm used to find a sufficiently good solu-
tion to an optimization problem. It makes almost no assumptions about the
optimized (objective) function and it performs equally well when the function is
not explicitly defined, but it can be queried. The search strategy implemented
in a metaheuristic is often based on some nature-inspired method or technique
– metaheuristics are named according to their nature equivalent, for instance,
particle swarm optimization, simulated annealing, ant colony optimisation, evo-
lutionary computation, etc. In cryptography, metaheuristics have been used
mainly to design Sboxes that satisfy special criteria, such as resistance against
cryptographic attacks [1, 11,34,42,44].

Our Contributions. Arguably, the design decision behind any part of a
symmetric-key cryptographic primitive is driven by the goal of optimization
(in terms of security, size, throughput, etc.). Therefore, we regard the problem of
design purely as an optimization problem. The computer algorithms that solve
the optimization problem we call tools for automatic design.

Our tools are based on metaheuristics. These search algorithms are sufficiently
universal to solve most of the design optimization problems. We use two nature-
inspired metaheuristics: simulated annealing and genetic algorithm. We introduce
the metaheuristics in Section 2; for each of them we point the main idea, provide
a description in pseudo-code, and give a list of the most important parameters. In
Section 3, we apply the metaheuristics to solve two concrete design optimization
problems. To do so, first we identify the optimization problem, then formally
defined it (describe the objective function and its input space), and finally we use
metaheuristics to find good solutions. Our two problems are related to finding
new components in the recently proposed block cipher SKINNY [3] and the
AES-round based constructions [23]. We choose these two primitives because they
best demonstrate the effectiveness of metaheuristics. Both SKINNY and the AES-
round constructions are designed with clear optimization goals and, considering
their excellent performance, achieve these goals. Nonetheless, metaheuristics
allow even further optimization. We show that simulated annealing and genetic

2

algorithm can be used to find specific components in the two primitives that
results in even higher performance according to criteria which was considered
important by the designers. More precisely, we use the metaheuristics to find for
SKINNY a permutation in the tweakey schedule that leads to a higher resistance
against related-tweakey attacks and for the AES-round constructions to find a
round transformation that results in a better security against internal collisions.

To summarize, our main objective and contribution is to provide an empirical
proof that, due to their simplicity and versatility, metaheuristics are perhaps the
most effective tools for automatic design of symmetric-key primitives.

2 Metaheuristics

Consider a simple optimization problem: find optimum (maximum or minimum)
of an objective function f(x) : D → R. If f(x) is given as a blackbox, i.e. it can be
queried but is not explicitly defined, then mathematical and standard computer
science methods for solving optimization problems cannot be applied because
they require full definition of f(x). In addition, if the domain D is discrete and
has a large size, then the optimization problem cannot be solved by a brute force
in practical time.

To cope with these type of problems, we use metaheuristics. They are approx-
imate algorithms – the solution they provide is not guaranteed to be optimal
(although some have a theoretical proof of asymptotic convergence). However,
metaheuristics output the solution by using only limited computational resources,
i.e. they are practical algorithms. Hence, among other applications, metaheuristics
are well suited for search of near optimal solutions to optimization problems
where the (blackbox) objective function is expensive.

There are various classifications of metaheuristics. According to the search
strategy, they are divided into local search (try to find only the local optimum)
and global search (global optimum). For instance, one of the most popular
metaheuristic is the hill climbing method which tries to find only the local
optimum. Another classification is single vs population-based search. A single
metaheuristic works with only one candidate solution at a time, while population-
based works simultaneously with multiple candidates. Hill climbing, simulated
annealing, iterated local search are examples of single search, while genetic
algorithm, ant colony optimization are examples of population-based search.

The efficiency of metaheuristics is tested experimentally by comparing the time
complexities (measured in calls to f(x)) the metaheuristics require to solve some
well-known problems. Depending on the problems, the comparative efficiency of
two metaheuristics can vary, i.e. for some problems the first may be better, while
for others the second. Therefore, the term ”best metaheuristic” is meaningless.
Testing the efficiency of a metaheuristic is not trivial because each is associated
with a set of parameters. A metaheuristic needs a fine tuning of its parameters
for each problem – this can be a very long and tedious process but it can have a
major impact on its efficiency. For each metaheuristic, there are recommended

3

set of values for its parameters, however, they were deduced empirically from its
previous applications and thus provide no guarantee of optimality.

Further we will use two metaheuristics: simulated annealing and genetic
algorithm. The choice is not accidental – both of them have been reported
as one of the best performing on wide variety of problems in the single-based
and population-based categories, respectively. In the sequel we give a minimal
description of the two metaheuristics which we believe is sufficient to understand
our ideas that follow. An interested reader can find more details about the
metaheuristics for instance in [37,41].

2.1 Simulated Annealing

Simulated annealing [9, 27] is a single-based, global search metaheuristic. It is a
nature-inspired algorithm that mimics a physical process occurring in chemical
substances: heating, followed by cooling and crystallizing.

Given an objective function f(x), simulated annealing tries to find its maxi-
mum1 by iteratively improving the potential solution. That is, starting from some
random x0, it builds x1, x2, At iteration i, the value of xi is produced from
the previous value xi−1, with the goal of maximizng further the function f(x), i.e.
f(xi) ≥ f(xi−1). The main idea of simulated annealing is to allow probabilistic
degradation of solutions, i.e. sometimes it accepts xi even if f(xi) < f(xi−1).
However, the probability of acceptance varies: in the early stages (when i is
smaller) it accepts more degrading solutions, while later less. Such a strategy
allows at the beginning to explore more variety of solutions, including degrading,
while later to focus only on local optimization. Note, the degrading solutions
allow the algorithm to escape local optima.

A formal description of simulated annealing is given in Algorithm 1. It takes
as inputs three parameters: initial temperature T , cooling schedule function α(T),
and neighbour function ε(x). In the initialization, it assigns a random value as
a best solution x to the maximization problem of f(x). Then it keeps trying to
build better solution by iterating the same procedure: from x generate a new
candidate x′, and if it complies to a certain criteria, accept it as a new solution x.
The function ε(x) generates x′ from x by slightly changing2 the value of x. If x′

is a better solution than x, then x is updated to x′. However, if x′ is worse, then
it is not immediately rejected. Rather, it can be accepted, but only with some

probability. The probability of acceptance (expressed with r < e
f(x′)−f(x)

T , where
f(x′)− f(x) is negative) is higher when the temperature T is higher and when
the value of the objective function on the new candidate x′ is closer to the value
of the old candidate x. The iterations are stopped once the termination criteria
is met. The criteria can be set differently: through the number of iterations, the
value of the temperature, etc.

1 Finding the minimum can be achieved similarly, with minor changes.
2 For instance, when x is a vector, then ε(x) returns another vector in some predefined
ε environment of x.

4

Algorithm 1 Simulated Annealing

Input: temperature T0, cooling schedule α(T), neighbour function ε(x)

x← $. Generate random initial value
T ← T0

do
x′ ←− ε(x) . Generate random neighbour
if f(x′) > f(x) then . If new maximum then accept it

x← x′

else
r ← U [0, 1] . Generate uniformly random number

if r < e
f(x′)−f(x)

T then
x← x′ . Accept degrading solution

end if
end if
T ← α(T) . Reduce the temperature

while (termination criteria not met)

Output: x

Parameters. As mentioned earlier, the main objective when choosing the values
of the parameters is to optimize the efficiency of the metaheuristic so that it can
produce a solution close to the global maximum in the shortest possible time.
Simulated annealing requires the following parameters:

– Neighbour function: ε(x) should return x′ that is in the neighbourhood
of x, i.e. ‖x − ε(x)‖ should be small. For instance, if x is a vector then we
can define ε(x) as a vector that coincides with x on all coordinates except
one. Note, if ‖x − ε(x)‖ is large (or unlimited), then simulated annealing
turns into a plain random search. Refer to Appendix B for more discussion
on neighbour functions.

– Cooling schedule: α(T) should be monotonic (strictly decreasing) function.
There are several choices for α(T): linear, exponential, inverse, logarithmic
and other cooling schedules. We will use inverse cooling, defined as α(T) =
T

1+βT , where β is small constant, usually of order 0.001. We choose inverse
cooling because it outperformed other cooling schedules in our preliminary
experiments.

– Initial temperature: if T0 is high then simulated annealing will explore
more possibilities, however, it will require more time to converge to a near-
optimal solution. Conversely, lower initial temperature leads to faster finding
some solution that may not be so optimal. The value of T0 should be chosen
depending on the values of ε(x) and α(T) as well as the allowed time com-
plexity, in order to balance the possibility of exploring more solutions with
the maximal allowed time.

5

2.2 Genetic Algorithm

Genetic algorithm [22] is a population-based, global search metaheuristic. It
belongs to the larger family of evolutionary algorithms which simulate natural
selection to solve optimization problems.

Algorithm 2 Genetic Algorithm

Input: population size N , selection function Selection({Fi}), crossover func-
tion Crossover(PA, PB), mutation probability MutationProbability and function
Mutate({Ci})

for i=1 to N do
Pi ← $. Generate random parents

end for
do

for i=1 to N do
Fi ← f(Parenti) . Compute fitness of parents

end for
for i=1 to N

2
do

(PA, PB) = Select({F}) . Select 2 parents
(C2i, C2i+1)← Crossover(PA, PB) . Produce 2 children

end for
for i=1 to N do

r ← U [0, 1] . Generate uniformly random number
if r < MutationProbability then

Ci ←Mutate(Ci) . Mutate child
end if

end for
{Pi} ← {Ci} . Update the generation

while (termination criteria not met)

Output: the best parent among {Pi}

To find maximum of an objective function (called a fitness function), genetic
algorithm works in iterations (called generations). At each iteration it tries to
improve a set of solutions, rather than a single solution. This set is called a
population of individuals. To produce a new population from an old population,
i.e. to change the generation, genetic algorithm uses two operations: mutation
and crossover. A mutation is applied to one individual and it consists of slightly
changing it. On the other hand, crossover is a synonym for reproduction. It
takes two individuals (called parents) and produces two new individuals (called
children)3. The choice of parents is controlled by so-called selection function
which decides how to choose the parents. The selection function is biased towards

3 Variations of crossover operators exist where two parents can produce only a single
child or more than two children.

6

individuals with better fitness (higher value of fitness function). This is done to
mimic the natural selection of parents – those with better qualities (genes) have
higher chance of reproduction. A formal description of genetic algorithm is given
in Algorithm 2.

Parameters. Genetic algorithm uses a wide range of parameters:

– Population size N : the number of individuals. The recommended value of
N is in the range [log |D|, 2 log |D|], where |D| is the size of the search space.

– Selection function: the most popular types of selections are roulette-wheel
(individuals’ probabilities of being selected as parents are proportional to
their fitness functions), tournament (several individuals are first randomly
selected and then in tournament-like fashion the winner is chosen according
to his/her fitness value), rank (the individuals are sorted according to their
fitness value, and their positions – called ranks– are used to determine their
probability of selection), and stochastic (several individuals are simultaneously
selected as parents according to their probability distributions). More detailed
descriptions of the selection functions are given in Appendix B.

– Crossover function: it produces children that share similarities with the
parents. For instance, if the two parents are given as vectors (the coordinates
of these vectors are called genes), then the corresponding coordinates of the
vectors of their children will have values either of the first or of the second
parent4. Crossover function decides how the children inherit parents’ genes.
We will use a uniform crossover function, i.e. each gene of the children (each
coordinate of the vector) has an equal probability to come from any of the
two parents, and this probability is independent of the previous genes.

– Mutation probability and function: within one generation, the muta-
tion is applied only to a small number of individuals defined by mutation
probability. A recommended value for this probability is in the range [0.001,
0.01], i.e. only around 0.1-1% of the individuals are mutated. The mutation
function defines how an individual is changed – it alters slightly the genes of
an individual.

– Elitism: usually the best individuals within each generation are kept, that is,
at the end of a generation, a certain percentage of the best parents progress
to the next generation (are copied to children). This is called elitism (from
elite). A recommended elitism is in the range [0.05-0.2], i.e. 5-20% of the
parents with best fitness progress to the next generation.

3 Applications

Usually the objective of a new cryptographic primitive is to provide at least
one better functionality than all known designs. This functionally can vary and
may include better throughput, smaller footprint, higher security, etc. Regardless

4 In some cases this is not possible, so some of the genes will be random.

7

of the chosen functionality, the goal of designers essentially can be seen as an
optimization problem.

The optimization of cryptographic designs may or may not be solved with the
use of metaheuristics. If the optimization problem is too general or the objective
function is not clearly stated, then metaheuristics cannot solve the problem.
For instance, trying to tweak somehow the round function of AES to maximize
its resistance against impossible differential attacks does not formulate a good
objective function. On the other hand, trying to tweak the MixColumns matrix
by changing its coefficients, provides a clear objective function: the input to the
function is some MixColumns matrix, and the output is the security level against
impossible differential attacks5. Some optimization problems can be solved better
(faster or with higher precision) with methods other than metaheuristics, such
as heuristics or even brute force. For instance, trying to tweak the ShiftRows

constants in AES to maximize its resistance against impossible differential attack
can be solved simply by brute force as the number of all possible variants is
small.

From the above discussion it follows that we can use metaheuristics to design
or improve symmetric-key primitives when:

1. The optimization goal can be quantified (the objective function is clearly
stated and can be computed on arbitrary inputs),

2. The search space is relatively large and cannot be covered by a brute force,

3. The solution not necessarily has to be globally/locally optimal (recall, meta-
heuristics may or may not return optimal solution in feasible time).

Further we give two examples of good optimization goals, that can be tackled with
metaheuristics. They are related to improving the security margin6 of SKINNY [3]
and of the AES-round based constructions from [23]. These two primitives are ideal
candidates for testing the effectiveness of metaheuristics because they are recent
designs, have strong emphasis on optimization of components, and have clear
optimization goals. Note, we have considered as well the use of metaheuristics to a
few other recent designs, however, for various reasons we omit the details of their
applications. For instance, the potential optimization of the functions Simpira
v2 [20] and Haraka [28] can be solved with a brute force, therefore the optimization
does not satisfy the above second requirement, and hence metaheuristics are not
the first choice. On the other hand, optimizing component in the authenticated
encryption scheme Deoxys [25] can be done with metaheuristics, however, the
problem is too similar to the further analyzed problem of SKINNY, and thus we
omit it.

5 Assuming that one can compute the security level against impossible differential
attacks with tweaked MixColumns matrix.

6 However, we remind the reader that this is not necessarily the only use of meta-
heuristics – they can be applied to optimize designs with respect to throughput, size,
etc.

8

3.1 SKINNY

SKINNY [3] is a family of block ciphers proposed at CRYPTO’16. Its goal is to
be on par with NSA cipher SIMON [2] in hardware and software, while providing
higher security. The ciphers are tweakable, i.e. besides a key and a plaintext, they
have a third input called a tweak. The tweaking is based on a framework [24]
that treats the key and the tweak universally, as a single input called tweakey.
SKINNY ciphers have state sizes n = 64 or n = 128 bits, regarded as 4x4 matrices
of nibbles. On the other hand, the tweakey sizes t are multiples of the state size
n, and have three versions: t = n, t = 2n, t = 3n.

SKINNY are iterative substitution-permutation ciphers. In Figure 1 we give
one round of the ciphers when t = 3n. A state round consists of five famil-
iar transformations: SubCells is an Sbox layer, AddConstants xors constants,
AddRoundTweakey xors the two top rows of each tweakey word to the two top rows
of the state, ShiftRows rotates the nibbles of the state rows, and MixColumns

multiplies the state columns by some matrix. In the tweakey schedule, the three
tweakey words TK1, TK2, and TK3 undergo two transformations: state-wise
nibble permutation PT which is the same for all the tweakeys, and nibble-wise
linear transformations li.

P l1

l2

l3

S

TK1

TK2

TK3

S

TK1

TK2

TK3

SubCells AddConstants ShiftRows MixColumns

T

PT

PT

Fig. 1: One round of SKINNY with three tweakeys, t = 3n.

To be competitive in hardware and software, SKINNY ciphers have been
highly optimized. Most of the transformations used in the ciphers have above
average performance according to some design criteria and have been found as a
result of some heuristic or a computer search. According to the extended version
of the submission document [4], the nibble permutation PT used in the tweakey
schedule ”has been chosen to maximize the bounds on the number of active
Sboxes ... in the related-tweakey model”. The search method used to find PT is
not specified.

With the use of metaheuristics, we will further optimize PT . Note, the op-
timization problem has already been well formulated: find PT to maximize the
number of active Sboxes in the best related-tweakey characteristic. To find this
number for a particular choice of PT , as suggested by the designers we use an
automatic tool based on integer linear programming (ILP). Therefore, ILP can
be seen as the objective function f , which takes as input a permutation PT and

9

returns the number of active Sboxes. Hence our problem becomes

max
PT

f(PT),

where PT is a permutation of 16 elements with an additional constraint: the first
eight elements can be send only to the last eight positions, and vice versa. In fact,
besides this constraint, the designers of SKINNY have imposed two additional: 1)
PT must consist of a single cycle, and 2) it sends the first 8 elements to the last
8 positions. In our search, we will relax these two constraints. This increases the
search space from slightly under 8! possible choices of PT to (8!)2. Hence we will
operate in a space that cannot be covered by a brute force and that has candidate
permutations that may lead to ciphers with higher security margins. However, as
we relax constraint 2), our permutations may require higher implementation cost
in certain environments. Hence, our search for PT should be seen in general as
tradeoff between possibly higher security and lower speed.

Before we apply the metaheuristics, let us clarify a few points. First, SKINNY
has several versions and we will focus on SKINNY-64-192 which is the 64-bit
version with three tweakeys (n = 64, t = 3n = 192), i.e on the lightweight version
which gives the most freedom to the attacker. Other versions can be processed
similarly: moving from 64-bit to 128-bit will require more computational power7,
while reducing the number of tweakey words from three to two or one will require
less power8. Second, the best characteristics not necessarily have to be found
for the full cipher. Rather, once in a round-reduced characteristic the number of
active Sboxes reaches some threshold, the cipher is already considered secure. In
SKINNY-64-192 this number9 is 33, and according to [4], for the original choice of
PT it is reached after 18 rounds. We will try to achieve 33 active Sboxes earlier,
in 16 rounds10. Therefore, our objective function f(PT) is defined as the number
of active Sboxes in the best characteristics on 16 rounds.

Let us clarify the above points. First note that the original permutation P oT
of SKINNY is defined as

P oT =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
9 15 8 13 10 14 12 11 0 1 2 3 4 5 6 7

)
(1)

7 The 128-bit version of SKINNY uses 8-bit Sboxes that have the same maximal
differential propagation probability of 2−2 as the 4-bit Sboxes used in the 64-bit
version. Therefore, to achieve 128-bit security (rather than 64-bit security) the number
of active Sboxes in the best characteristic has to be much larger, which in return
results in higher complexity search.

8 For results on these versions refer to Appendix A.
9 The number is defined by the state size and the probability of the best differential

transition of the Sbox. The state of SKINNY is 64 bits, and the highest probability of
a differential transition in the 4-bit Sbox is 2−2, thus if the number of active Sboxes
is 1 + b 64

2
c = 33, the cipher is resistant against related-tweakey differential attacks.

10 The number of rounds cannot be predicted a priori. We focus on 16 rounds, but if
we do not succeed we can always compare either how many active Sboxes we have
reached on 16 rounds, or if we have reached 33 active Sboxes on 17 rounds.

10

According to the designers, and confirmed with our own ILP tool, f(P oT) = 27.
We are looking for another permutation PT

PT =

(
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
a0 a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15

)
,

such that f(PT) is as large as possible. Note, there is an additional condition,
which requires that ai ≥ 8 for i = 0, 1, . . . , 7 and ai < 8 for i = 8, 9, . . . , 15, which
assures that the first 8 elements are sent to the last 8 positions, and vice versa.

Let us focus on simulated annealing. To solve the optimization problem with
this metaheuristic, we first need to specify the three parameters: ε(PT), α(T), T0.
As a neighbour function ε(PT) we use a random transposition. That is, we
randomly choose two indices in PT and switch the value of the elements with
such indices. Note, however, the choice of indices cannot be completely random
because ε(PT) must fulfil the additional condition. Hence, to properly implement
ε(PT), we first choose the half of PT where the transposition will occur, and only
then the two random elements that belong to the same half. For cooling schedule
α(T), as mentioned before, we use inverse cooling α(T) = T

1+βT and experiment

with value of β in the range [0.001, 0.003]. Finally, as an initial temperature T0 we
take values in the range [1, 2]. Our termination criteria is time-based, i.e. we stop
the search and output the best found solution after running the metaheuristics
around a day on an 8-core processor.

Further, let us focus on genetic algorithms and the used parameters. In all
of our implementations, the population size is 50. To test the effectiveness and
impact of different selection functions, we used all four of them. In addition, we
use mutation rate of 0.01 and a mutation function that closely resembles ε(PT)
from simulated annealing (i.e. mutation consists of one random transposition).
Finally, we use elitism with 20% rate. The termination criteria is similar to that
of simulated annealing, but we allow more time.

Table 1: Examples of permutations PT found with simulated annealing (second row)
and genetic algorithm (third row) and the resulting security level against related-
key tweakey attacks when used in SKINNY-64-192. In the second column are the
specifications of the permutations. In the third column is their security, i.e. the number
of active Sboxes in the round-reduced characteristics according to the number of rounds.
Highlighted numbers correspond to the lowest number of active Sboxes that already
match the threshold for related-tweakey security.

Method PT Rounds

14 15 16 17 18

Original 9 15 8 13 10 14 12 11 0 1 2 3 4 5 6 7 19 24 27 31 35

Simulated annealing 11 9 14 8 12 10 15 13 2 0 3 6 7 5 1 4 24 28 33 36 39

Genetic algorithm 14 11 8 9 15 13 10 12 1 2 0 7 5 4 3 6 24 28 33 36 39

11

The results of the optimization with the two metaheuristics are as follows.
Both simulated annealing and genetic algorithm were able to find permutations
PT such that f(PT) = 33. Simulated annealing performed similarly on different
choices of parameters β and T0, i.e. we did not detect any significant difference.
On average, it required around 1000 calls to the objective function f(x) to find
a permutation PT such that f(PT) = 33. On the other hand, genetic algorithm
performed better for some choices of selection functions. To find PT such that
f(PT) = 33 on average over three trials, with stochastic selection it required
950 calls, with rank selection 1380 calls11, with roulette-wheel 2250 calls, and
with tournament selection 5900 calls. Therefore, we can conclude that simulated
annealing and genetic algorithm with stochastic or rank selection performed
similarly.

In Table 1 are shown examples of permutations PSAT , PGAT found with simu-
lated annealing and genetic algorithm such that f(PSAT) = f(PGAT) = 33. For
performance measurements, we give in the table as well the number of active
Sboxes of the best characteristics reduced to not only 16 rounds, but in the range
of 14 to 18 rounds. Evidently, the two new permutations result in higher numbers
of active Sboxes in comparison to the original permutation of SKINNY.

We conclude this subsection with a discussion on further use of metaheuristics
in SKINNY. One potential direction would be to optimize the resistance against
related-tweakey attacks with respect to both PT and AddRoundTweakey, i.e. by
changing the permutation PT and by identifying which 8 nibbles of the tweakey
words should be xored to the state (instead of the 8 nibbles of the first two rows).

3.2 AES-round Based Constructions [23]

Software optimized designs based on the AES round function are presented
in [23]. The main objective of the authors of this paper is to provide symmetric-
key constructions (as building blocks of MACs and authenticated encryption
schemes) that are efficient on the latest Intel processors12. The authors show
seven constructions that run at only a few tenths of a cycle per byte on Intel
processors Ivy Bridge, Haswell and Skylake.

The proposed constructions have a state composed of s words of 128 bits. The
state is transformed by a round function given in Figure 2, where A stands for one
AES round. Besides A, the only remaining operation is the xor (of message words
Mij and state words Xij). Each construction is characterized by a parameter
called a rate ρ which is defined as the number of AES rounds required to process
a 128-bit message word. That is, ρ is the ratio of the number of calls to A to the
number of different message words (in one round). The lower the rate, the faster

11 This number (1380) not necessarily has to be divisible by the population size (50).
The reason is two-fold: 1) we halt the search once a sufficiently good construction is
found, without updating the whole population, and 2) we use elitism, which dictates
that at each generation only 50 · (1− elitism) individuals are updated.

12 These processor have special instructions set called AES-NI, that can execute AES
round function as a single instruction.

12

X1

A

M

X1

X2

M

X2

A

X3

M

X3

Xs-1

M

Xs-1

A

Xs

M

Xs

. . .

. . .

A

i1 i2 i3 i s-1 i s

Fig. 2: The round function of the constructions from [23]. The transformations in red
and dashed are optional.

the design, hence the goal of the authors has been to reduce the rate as much as
possible.

A construction is considered secure if it is free of so-called internal collisions,
which are special type of differential characteristics: they start and end in zero
differences in the state13. A construction should provide 128-bit security, that
is, differential characteristics that lead to internal collisions must not have a
probability higher than 2−128. To find the best characteristic and its probability,
the authors reduce the problem to counting active Sboxes and use the aforemen-
tioned integer linear programming tool to get the lower bound on this number.
The security level of 128 bits corresponds to at least 22 active Sboxes14 in the
best characteristics.

The seven proposed constructions have different number of state words (7
to 12) and different rates (in the range [2, 3]). For a particular choice of state
size and rate, the authors use some heuristic (which has not been explained in
the paper) to search the space of all constructions as defined in Figure 2 and
consider only those which are resistant against internal collisions, i.e. their best
characteristics have at least 22 active Sboxes. Constructions that have the lowest
probability of internal collisions (i.e. the highest number of active Sboxes) are
considered the best.

Further we use metaheuristics to optimize the constructions according to the
design criteria of [23]. The optimization problem is clear: for a particular choice
of state size s and rate ρ, find a round function as in Figure 2 that defines a
construction whose best differential characteristic that leads to internal collisions
has maximal number of active Sboxes. Once again, the role of objective function f
is played by the integer linear program that returns a lower bound on the number
of active Sboxes. To understand what the input to the objective function is, let us
focus on Figure 2. Note, there are three types of red (optional) transformations
in the round function. First, each of the s calls to A are optional. Therefore, we
can use s-bit vector aes masks to describe a particular configuration of the calls
to A, where i-th bit of aes masks is set iff in the round function, A is applied to

13 The difference is introduced and later cancelled through the message words.
14 Because the differential propagation probability of an Sbox in AES is 2−6, thus

128-bit security means b 128
6
c+ 1 = 22 active Sboxes.

13

the Xi. Second, all s feedforwards of words (the red vertical lines) can also be
described with an s-bit vector feed masks. Finally, the xors of message words
Mij can be described with vector messages of s coordinates, each an integer
value in the range [0, w], where w is the total number of message words in a
round. A value of 0 denotes that no message words is xored, while any positive
integer value corresponds to the index of the message word being xored. As
a result, each potential construction can be described with the three vectors:
aes masks, feed masks, and messages. However, note that not all combinations
are possible because the values of aes masks and messages cannot be arbitrary.
Rather, they must agree with the rate ρ. For instance, if ρ = 2 and the Hamming
weight of aes masks is 6, then the vector messages can contain the values 1, 2,
and 3, and it must have each of these values at least once. This assures that
the rate of the constructions is indeed 2. Let us assume further that the tuples
(aes masks, feed masks,messages) agree with the predefined rate ρ. Then our
optimization problem for fixed state size s and rate ρ can be defined as:

max
aes masks,feed masks,messages

f(aes masks, feed masks,messages)

We optimize six of the seven constructions proposed in [23]. We omit one, with
rate ρ = 2 and size s = 12, because it has too expensive objective function – it
took us half a day to compute f on an input.

To solve the optimization problems, we run simulated annealing and genetic
algorithm with the following parameters. In simulated annealing, the neighbour
function ε(x) consists of flipping 1-2 bits in some (or all) of the three vectors
aes masks, feed masks,messages (with an additional check on the rate ρ).
Furthermore, we use inverse cooling α(T) with β = 0.003, and initial temperature
T0 = 1.5. In genetic algorithm, the population size is 30, combined with stochastic
selection function, uniform crossover, mutation rate of 0.01, a mutation function
based on random flip of bits, and 20% elitism. The termination criteria for both
of the metaheuristics is based on number of calls to the objective function, and
it is either 500 calls (for smaller search spaces) or 700 calls (for larger).

The outputs of the metaheuristics are given in Table 4. For all six construc-
tions, both of the metaheuristics were able to find better candidates with an in
crease of 13%-44% to the number of active Sboxes in comparison to the original
proposals from [23]. Simulated annealing performed slightly better than genetic
algorithm – in limited number of calls to the objective function, it managed to
find constructions with higher security margin. We suspect this is due to the
termination criteria as genetic algorithm requires more generations to find better
solutions.

Finally, we note that we have also run metaheuristics to find competing
constructions to the published ones [23] not only in terms of higher security, but
in terms of efficiency too. We refer the reader to Appendix C for more details.

14

Table 2: AES-round based constructions. SA and GA stand for simulated annealing
and genetic algorithm.

Method State
size

Rate aes mask feed mask messages Active
Sboxes

[23] 6 3 111111 100100 011022 22

GA 6 3 111111 100100 122020 26

SA 6 3 111111 011100 102110 27

[23] 7 3 1111110 1101101 1012020 25

GA 7 3 0111111 0100110 0101201 35

SA 7 3 1110111 1111100 0100211 36

[23] 7 2.5 1101110 0100001 1111222 22

GA 7 2.5 1111001 0010110 1201102 25

SA 7 2.5 1011110 0110100 1021102 26

[23] 8 3 11101110 11011101 10102020 34

GA 8 3 11110011 00110000 10102022 42

SA 8 3 00111111 01001000 20221220 45

[23] 8 2.5 11011100 01000011 11112222 23

SA 8 2.5 10011011 10000110 02012021 30

GA 8 2.5 11111000 01100100 11022102 30

[23] 9 3 111111111 100100100 011022033 25

GA 9 3 111111111 111101111 012133031 34

SA 9 3 111111111 100100111 010321121 34

4 Conclusion

Metaheuristics are widely used algorithms for search of solutions to optimization
problems. The design of symmetric-key primitives can be seen as one such problem,
thus metaheuristics can be used to find better designs. Therefore, metaheuristics
can serve as tools for automatic designs of symmetric-key primitives. Unlike
brute force and random search, metaheuristics are non-trivial tools which should
be scrutinized in absence of better heuristics or of other more advanced search
methods.

We used two metaheuristics, simulated annealing and genetic algorithm, to
optimize designs with respect to security. Our choice of metaheuristics was guided
by their popularity and reported success – both of them are considered among the
best performing on well known problems. On the other hand, as an optimization
parameter we chose security because that led to well defined and computable

15

objective functions15. We wrote the implementations of the two metaheuristics
on C – they were straightforward to code. It took us several thousand CPU
hours to test for good set of parameters and to find approximate solutions for the
design optimization problems in SKINNY and the AES-round constructions. The
outputs were positive – the metaheuristics were able to find better components
for both of the primitives, sometimes improving the optimized component by
more than 40%. Thus we can conclude that metaheuristics can serve as effective
tools for automatic design of symmetric-key primitives.

Future research may focus on expanding the area of application and variety of
metaheuristics. This includes formulating other design problems as optimization
problems and subsequently using the proposed metaheuristics for their solution.
We stress out that the optimization problems not necessarily have to be related
to an increase in security, but may target better throughput, smaller size, etc.
Furthermore, using metaheuristics other than simulated annealing and genetic
algorithms may also improve design methods of crypto primitives. Some more
advanced metaheuristics, such as the multi-objective genetic algorithm NSGA-
II [13], may well excel in solving design problems related to multidimensional
optimization, i.e. optimization by several criteria.

Acknowledgments

The author would like to thank the anonymous reviewers of ASIACRYPT’17
for their constructive comments and Yu Sasaki for helping to finalize the paper.
This work is supported by the Ministry of Education, Singapore under Grant No.
R-252-000-560-112.

References

1. M. Ahmad, D. Bhatia, and Y. Hassan. A novel ant colony optimization based
scheme for substitution box design. Procedia Computer Science, 57:572–580, 2015.

2. R. Beaulieu, D. Shors, J. Smith, S. Treatman-Clark, B. Weeks, and L. Wingers.
The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint
Archive, Report 2013/404, 2013. http://eprint.iacr.org/2013/404.

3. C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich,
and S. M. Sim. The SKINNY family of block ciphers and its low-latency variant
MANTIS. In Robshaw and Katz [35], pages 123–153.

4. C. Beierle, J. Jean, S. Kölbl, G. Leander, A. Moradi, T. Peyrin, Y. Sasaki, P. Sasdrich,
and S. M. Sim. The SKINNY family of block ciphers and its low-latency variant
MANTIS. Cryptology ePrint Archive, Report 2016/660, 2016. http://eprint.

iacr.org/2016/660.
5. A. Biryukov and I. Nikolić. Automatic search for related-key differential character-

istics in byte-oriented block ciphers: Application to AES, Camellia, Khazad and

15 The objective function is well defined because the security criteria is characterized by
a single parameter. On the other hand, it is computable, because there are various
tools such as those based on ILP that can produce the output for an arbitrary input.

16

http://eprint.iacr.org/2013/404
http://eprint.iacr.org/2016/660
http://eprint.iacr.org/2016/660

others. In H. Gilbert, editor, Advances in Cryptology - EUROCRYPT 2010, 29th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, French Riviera, May 30 - June 3, 2010. Proceedings, volume 6110 of
Lecture Notes in Computer Science, pages 322–344. Springer, 2010.

6. A. Biryukov and I. Nikolić. Search for related-key differential characteristics in
DES-like ciphers. In A. Joux, editor, Fast Software Encryption - 18th International
Workshop, FSE 2011, Lyngby, Denmark, February 13-16, 2011, Revised Selected
Papers, volume 6733 of Lecture Notes in Computer Science, pages 18–34. Springer,
2011.

7. A. Biryukov and V. Velichkov. Automatic search for differential trails in ARX
ciphers. In J. Benaloh, editor, Topics in Cryptology - CT-RSA 2014 - The Cryptog-
rapher’s Track at the RSA Conference 2014, San Francisco, CA, USA, February
25-28, 2014. Proceedings, volume 8366 of Lecture Notes in Computer Science, pages
227–250. Springer, 2014.

8. C. Bouillaguet, P. Derbez, and P. Fouque. Automatic search of attacks on round-
reduced AES and applications. IACR Cryptology ePrint Archive, 2012:69, 2012.

9. V. Černỳ. Thermodynamical approach to the traveling salesman problem: An
efficient simulation algorithm. Journal of optimization theory and applications,
45(1):41–51, 1985.

10. J. H. Cheon and T. Takagi, editors. Advances in Cryptology - ASIACRYPT 2016 -
22nd International Conference on the Theory and Application of Cryptology and
Information Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I,
volume 10031 of Lecture Notes in Computer Science, 2016.

11. J. A. Clark, J. L. Jacob, and S. Stepney. The design of S-boxes by simulated
annealing. In Evolutionary Computation, 2004. CEC2004. Congress on, volume 2,
pages 1533–1537. IEEE, 2004.

12. T. Cui, K. Jia, K. Fu, S. Chen, and M. Wang. New automatic search tool for
impossible differentials and zero-correlation linear approximations. IACR Cryptology
ePrint Archive, 2016:689, 2016.

13. K. Deb, S. Agrawal, A. Pratap, and T. Meyarivan. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Trans. Evolutionary Computation, 6(2):182–197,
2002.

14. P. Derbez and P. Fouque. Exhausting Demirci-Selçuk meet-in-the-middle attacks
against reduced-round AES. In S. Moriai, editor, Fast Software Encryption - 20th
International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Selected
Papers, volume 8424 of Lecture Notes in Computer Science, pages 541–560. Springer,
2013.

15. P. Derbez and P. Fouque. Automatic search of meet-in-the-middle and impossible
differential attacks. In Robshaw and Katz [35], pages 157–184.

16. D. Dinu, L. Perrin, A. Udovenko, V. Velichkov, J. Großschädl, and A. Biryukov.
Design strategies for ARX with provable bounds: Sparx and LAX. In Cheon and
Takagi [10], pages 484–513.

17. C. Dobraunig, M. Eichlseder, and F. Mendel. Heuristic tool for linear cryptanalysis
with applications to CAESAR candidates. In T. Iwata and J. H. Cheon, editors,
Advances in Cryptology - ASIACRYPT 2015 - 21st International Conference on the
Theory and Application of Cryptology and Information Security, Auckland, New
Zealand, November 29 - December 3, 2015, Proceedings, Part II, volume 9453 of
Lecture Notes in Computer Science, pages 490–509. Springer, 2015.

18. S. Emami, S. Ling, I. Nikolić, J. Pieprzyk, and H. Wang. The resistance of
PRESENT-80 against related-key differential attacks. Cryptography and Communi-
cations, 6(3):171–187, 2014.

17

19. P. Fouque, J. Jean, and T. Peyrin. Structural evaluation of AES and chosen-key
distinguisher of 9-round AES-128. In R. Canetti and J. A. Garay, editors, Advances
in Cryptology - CRYPTO 2013 - 33rd Annual Cryptology Conference, Santa Barbara,
CA, USA, August 18-22, 2013. Proceedings, Part I, volume 8042 of Lecture Notes
in Computer Science, pages 183–203. Springer, 2013.

20. S. Gueron and N. Mouha. Simpira v2: A family of efficient permutations using the
AES round function. In Cheon and Takagi [10], pages 95–125.

21. D. Grault, P. Lafourcade, M. Minier, and C. Solnon. Revisiting AES related-
key differential attacks with constraint programming. Cryptology ePrint Archive,
Report 2017/139, 2017. http://eprint.iacr.org/2017/139.

22. J. H. Holland. Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence. MIT press, 1992.

23. J. Jean and I. Nikolić. Efficient design strategies based on the AES round function.
In T. Peyrin, editor, Fast Software Encryption - 23rd International Conference,
FSE 2016, Bochum, Germany, March 20-23, 2016, Revised Selected Papers, volume
9783 of Lecture Notes in Computer Science, pages 334–353. Springer, 2016.

24. J. Jean, I. Nikolić, and T. Peyrin. Tweaks and keys for block ciphers: The
TWEAKEY framework. In P. Sarkar and T. Iwata, editors, Advances in Cryptology
- ASIACRYPT 2014 - 20th International Conference on the Theory and Application
of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C., December
7-11, 2014, Proceedings, Part II, volume 8874 of Lecture Notes in Computer Science,
pages 274–288. Springer, 2014.

25. J. Jean, I. Nikolić, T. Peyrin, and Y. Seurin. Deoxys v1.4. Submitted to CAESAR,
2016.

26. J. Kim, S. Hong, J. Sung, C. Lee, and S. Lee. Impossible differential cryptanalysis
for block cipher structures. In T. Johansson and S. Maitra, editors, Progress in
Cryptology - INDOCRYPT 2003, 4th International Conference on Cryptology in
India, New Delhi, India, December 8-10, 2003, Proceedings, volume 2904 of Lecture
Notes in Computer Science, pages 82–96. Springer, 2003.

27. S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated annealing.
Science, 220(4598):671–680, 1983.

28. S. Kölbl, M. M. Lauridsen, F. Mendel, and C. Rechberger. Haraka v2 - efficient short-
input hashing for post-quantum applications. IACR Trans. Symmetric Cryptol.,
2016(2):1–29, 2016.

29. Y. Luo, X. Lai, Z. Wu, and G. Gong. A unified method for finding impossible
differentials of block cipher structures. Information Sciences, 263:211–220, 2014.

30. M. Matsui. On correlation between the order of S-boxes and the strength of DES.
In A. D. Santis, editor, Advances in Cryptology - EUROCRYPT ’94, Workshop
on the Theory and Application of Cryptographic Techniques, Perugia, Italy, May
9-12, 1994, Proceedings, volume 950 of Lecture Notes in Computer Science, pages
366–375. Springer, 1994.

31. S. Moriai, M. Sugita, K. Aoki, and M. Kanda. Security of E2 against truncated
differential cryptanalysis. In H. M. Heys and C. M. Adams, editors, Selected Areas
in Cryptography, 6th Annual International Workshop, SAC’99, Kingston, Ontario,
Canada, August 9-10, 1999, Proceedings, volume 1758 of Lecture Notes in Computer
Science, pages 106–117. Springer, 1999.

32. N. Mouha, Q. Wang, D. Gu, and B. Preneel. Differential and linear cryptanalysis us-
ing mixed-integer linear programming. In International Conference on Information
Security and Cryptology, pages 57–76. Springer, 2011.

18

http://eprint.iacr.org/2017/139

33. I. Nikolić. Tweaking AES. In A. Biryukov, G. Gong, and D. R. Stinson, editors,
Selected Areas in Cryptography - 17th International Workshop, SAC 2010, Waterloo,
Ontario, Canada, August 12-13, 2010, Revised Selected Papers, volume 6544 of
Lecture Notes in Computer Science, pages 198–210. Springer, 2010.

34. S. Picek, B. Yang, V. Rozic, and N. Mentens. On the construction of hardware-
friendly 4x4 and 5x5 S-boxes. Lecture Notes in Computer Science, 2016.

35. M. Robshaw and J. Katz, editors. Advances in Cryptology - CRYPTO 2016 - 36th
Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-
18, 2016, Proceedings, Part II, volume 9815 of Lecture Notes in Computer Science.
Springer, 2016.

36. Y. Sasaki and Y. Todo. New impossible differential search tool from design and
cryptanalysis aspects - revealing structural properties of several ciphers. In J. Coron
and J. B. Nielsen, editors, Advances in Cryptology - EUROCRYPT 2017 - 36th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Paris, France, April 30 - May 4, 2017, Proceedings, Part III, volume
10212 of Lecture Notes in Computer Science, pages 185–215, 2017.

37. D. Simon. Evolutionary optimization algorithms. John Wiley & Sons, 2013.

38. S. Sun, D. Gerault, P. Lafourcade, Q. Yang, Y. Todo, K. Qiao, and L. Hu. Analysis of
AES, SKINNY, and others with constraint programming. IACR Trans. Symmetric
Cryptol., 2017(1):281–306, 2017.

39. S. Sun, L. Hu, K. Qiao, X. Ma, J. Shan, and L. Song. Improvement on the method
for automatic differential analysis and its application to two lightweight block
ciphers DESL and LBlock-s. In K. Tanaka and Y. Suga, editors, Advances in
Information and Computer Security - 10th International Workshop on Security,
IWSEC 2015, Nara, Japan, August 26-28, 2015, Proceedings, volume 9241 of Lecture
Notes in Computer Science, pages 97–111. Springer, 2015.

40. S. Sun, L. Hu, P. Wang, K. Qiao, X. Ma, and L. Song. Automatic security
evaluation and (related-key) differential characteristic search: Application to SIMON,
PRESENT, LBlock, DES(L) and other bit-oriented block ciphers. In P. Sarkar and
T. Iwata, editors, Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, volume
8873 of Lecture Notes in Computer Science, pages 158–178. Springer, 2014.

41. E.-G. Talbi. Metaheuristics: from design to implementation, volume 74. John Wiley
& Sons, 2009.

42. P. Tesar. A new method for generating high non-linearity S-boxes. Radioengineering,
2010.

43. S. Wu and M. Wang. Automatic search of truncated impossible differentials for
word-oriented block ciphers. In S. D. Galbraith and M. Nandi, editors, Progress in
Cryptology - INDOCRYPT 2012, 13th International Conference on Cryptology in
India, Kolkata, India, December 9-12, 2012. Proceedings, volume 7668 of Lecture
Notes in Computer Science, pages 283–302. Springer, 2012.

44. M. Yang, Z. Wang, Q. Meng, and L. Han. Evolutionary design of S-box with
cryptographic properties. In Parallel and Distributed Processing with Applications
Workshops (ISPAW), 2011 Ninth IEEE International Symposium on, pages 12–15.
IEEE, 2011.

19

A Applications to SKINNY-64-64 and SKINNY-64-128

In addition to the full search given in Section 3.1 on SKINNY-64-192 (i.e. in
TK3), we have also run search for PT in SKINNY-64-64 and SKINNY-64-128, i.e.
in TK1 and in TK2. The search criterion for PT was identical as in Section 3.1.
With the use of simulated annealing only, we have looked for PT in three different
related-tweakey differential models:

1. Find PT for SKINNY-64-64 secure in TK1. The search returned several
permutations, each resulting in a cipher that has at least 33 active Sboxes in
any 11-round related-tweakey differential characteristics.

2. Find PT for SKINNY-64-128 secure in TK2. Similarly, we found several
permutations with at least 34 active Sboxes in any 14-round characteristic.

3. Find PT simultaneously for SKINNY-64-64 secure in TK1 and for
for SKINNY-64-128 secure in TK2. We found a few permutations PT that
simultaneously provide security in both TK1 and TK2. Interestingly, the
corresponding characteristics have 33 active Sboxes on 11 rounds in TK1

and 34 active Sboxes on 14 rounds in TK2. In other words, any of these
permutations can be used as an optimal candidate in scenarios 1) and 2).

Examples of permutations found with the search are given in Table 3.

Table 3: Examples of SKINNY permutations PT found with simulated annealing that
result in TK1 and TK2 secure ciphers.

Source Permutation Target Sboxes Rounds

Original [3] 9 15 8 13 10 14 12 11 0 1 2 3 4 5 6 7 TK1 32 11

TK2 31 14

Model 1) 11 10 15 14 8 9 13 12 6 0 5 1 7 3 2 4 TK1 33 11

Model 2) 9 8 11 13 14 12 10 15 7 6 4 2 0 5 3 1 TK2 34 14

Model 3) 12 11 9 8 14 10 13 15 6 2 3 0 7 4 1 5 TK1 33 11

TK2 34 14

B Specification and Implementation Details of the
Metaheuristics

Selection functions. We work with four types of selection functions:

– Roulette-wheel selection is also called furness-proportionate selection.
The selection probability of each individual is proportional to its fitness value.
In Figure 3, we assume the population is composed of four individuals with

20

40

20
10

30

Individual 1

Individual 2

Individual 3

Individual 4

Fig. 3: Roulette-wheel selection with 4 individuals.

fitness measures of 40,30,20,10. Then, the roulette-wheel selection dictates
that the first individual has 40

100 probability of being selected as a parent, the
second 30

100 , etc. To select a single parent, we ”run the roulette”, i.e. uniformly
at random choose a number in the range [0, 100), and accordingly choose
that individual on which slice the ”ball” has landed, e.g. if the number is
anywhere in the range [0, 10) then it is the individual 1, if in the range [10, 30)
then it is individual 2, etc.

– Stochastic selection is similar to roulette-wheel, but it increases the chance
of high fitness individuals becoming parents. In stochastic selection the parents
are selected in bulk. For example, in Figure 4 we show how to use the wheel
to select four parents at once. We run the roulette once, i.e. select a random

40 10
20

Individual 1

Individual 2

Individual 3

Individual 4

30

Fig. 4: Stochastic selection with 4 individuals. A spinner (in gray) with for evenly-spaced
pointers is spun once to obtain the four parents.

number in range [0, 100] and, as in roulette-wheel, choose the corresponding
individual as a first parent. Then, the remaining three parents are the ones
the correspond to the other three uniformly-spaced numbers. That is, if the
ball has landed on 23, then we assume that it has also landed on 23+ 100

4 = 48,
23 + 2 · 1004 = 73, and 23 + 3 · 1004 = 98.

– Rank selection is as well similar to roulette-wheel. However, instead of
using the fitness to determine the portion of the wheel, individuals’ rank is
used. That is, all individuals within a population are sorted according to their
fitness in ascending order, and their position is taken as a fitness measure

21

in roulette-wheel fashion. For instance, individuals with fitnesses of 1,5,20,8,
after sorting will be at positions 1,2,4,3, thus have 1

10 ,
2
10 ,

4
10 ,

3
10 probabilities

to be selected as parents.
– Tournament selection depends on the tournament size and we use the

most common size of 2. That is, to select a parent, we uniformly at random
choose two individuals, compare their fitness, and choose the one that has
higher fitness.

Pseudo code of a full selection procedure (based on roulette-wheel) used by
the genetic algorithm for search of PT in SKINNY is given below.

Algorithm 3 Roulette-wheel selection of parents used in the search for SKINNY

Input: Population of N individuals given as pairs (Pi, Fi), where Pi is an individual
(permutation), and Fi is its corresponding fitness

total fitness←
∑N

1 Fi . Sum up all fitnesses
left range← 0 . Create the roulette-wheel
for i=1 to N do . Compute the slices for each ind.

range[i] left = left range . Left range
range[i] right = left range+ Fi

total fitness
. Right range

left range = range[i] right
end for

Parents← ∅
for i=1 to N/2 do . Select N

2
pairs of parents

C1 ← rand() . Spin the ball for the first parent
C2 ← rand() . Spin the ball for the second parent
for j=1 to N do . Find the corresponding individuals

if range[j] left ≤ C1 < range[j] right then
parent1 ← j

end if
if range[j] left ≤ C2 < range[j] right then

parent2 ← j
end if

end for
Parents = Parents ∪ (Pparent1 , Pparent2)

end for

Output: Parents

Neighbour functions ε(x). Intuitively, the task of a neighbour function is to
produce a value in the neighbourhood of x. Thus they output values (or vectors)
that are very similar to the input.

In SKINNY we define ε(PT) as a swap of two elements. That is, we randomly
choose two positions, and then exchange the elements in these two positions.

22

Since there is an additional requirement on the form of PT , the swap can occur
only between two elements that belong both to the same half. Further we give a
simple pseudo-code that accomplishes this.

Algorithm 4 Neighbour function ε for the search in SKINNY

Input: Permutation PT

half ← randInt()%2 . Randomly choose a half
i← randInt()%8 . Randomly choose the first index
j ← randInt()%8 . Randomly choose the second index
P ′T ← PT . Assign the permutation
P ′T [8 · half + i] = PT [8 · half + j] . Swap
P ′T [8 · half + j] = PT [8 · half + i] . Swap

Output: P ′T

In the AES-round based construction search, the solution is composed of three
vectors, thus ε(x) can be defined as a composition of three separate neighbour
functions, one for each of the vectors. A pseudo-code of such function for the
vector aes masks is given below.

Algorithm 5 Neighbour function for aes masks

Input: Binary array aes masks of s elements

i← randInt() % s . Randomly choose an index
aes masks′ ← aes masks . Assign the vector
aes masks′[i] = aes masks′[i]⊕ 1 . Flip the bit

Output: aes masks′

23

C Efficient AES-Based Constructions

The only goal in the search for AES-based constructions presented in Section 3.2
was to improve the security in comparison to the already published constructions
in [23], without affecting their efficiency. Further we focus on the latter goal, i.e.
our imperative below is to improve the efficiency of the constructions, while still
maintaining sufficient security level of at least 22 active Sboxes.

A construction has better efficiency if it has smaller state size, better rate, or
both. Constructions that have smaller state size but worse rate, or vice versa,
are not considered to be more efficient. To search for efficient constructions,
once again we use the two metaheuristics. The formulations of the optimization
problems are identical to the formulations given in Section 3.2, i.e. we still
optimize with respect to the security and with fixed state size and rate. However,
once a metaheuristic identifies a construction as optimal, we compare its efficiency
to all of the constructions given in [23]. We report in Table 4 the constructions
we found to be more efficient than some of the previously known constructions.

Table 4: More efficient AES-round based constructions found with metaheuristics. The
numbers in bold denote better efficiency.

Source State
size

Rate Active
Sboxes

aes mask feed mask messages

[23] 6 3 22 111111 100100 011022

new 5 3 30 11001 10100 01101

[23] 7 3 25 1111110 1101101 1012020

new 6 3 27 111111 011100 102110

new 6 2.5 22 101111 110010 102120

[23] 8 3 34 11101110 11011101 10102020

new 8 2.66 26 11111111 11000010 10313032

new 7 2.5 26 1011110 0110100 1021102

[23] 9 3 25 111111111 100100100 011022033

new 9 2.33 25 111110011 001010000 201223033

[23] 12 2 28 110110110000 001001001000 111222333123

new 10 2 24 1110000100 0100100000 2122102110

new 8 2 22 00011011 01000100 12012122

new 8 2 26 11000000 01100000 11100010

24

	Introduction
	Metaheuristics
	Simulated Annealing
	Genetic Algorithm

	Applications
	SKINNY
	AES-round Based Constructions DBLP:conf/fse/JeanN16

	Conclusion
	Applications to SKINNY-64-64 and SKINNY-64-128
	Specification and Implementation Details of the Metaheuristics
	Efficient AES-Based Constructions

