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Abstract—Computing similarity between data is a fundamen-
tal problem in information retrieval and data mining. To
address the relevant performance and scalability challenges,
approximation methods are employed for large-scale similarity
computation. A common characteristic among all privacy-
preserving approximation protocols based on sketching is that
the sketching is performed locally and is based on common
randomness.

In the semi-honest model the input to the sketching algo-
rithm is independent of the common randomness. We, however,
consider a new threat model where a party is allowed to
use the common randomness to perturb her input 1) offline,
and 2) before the execution of any secure protocol so as to
steer the approximation result to a maliciously chosen output.
We formally define perturbation attacks under this adversarial
model and propose two attacks on the well-studied techniques
of minhash and cosine sketching. We demonstrate the power of
perturbation attacks by measuring their success on synthetic
and real data.

To mitigate such perturbation attacks we propose a server-
aided architecture, where an additional party, the server, assists
in the secure similarity approximation by handling the common
randomness as private data. We revise and introduce the
necessary secure protocols so as to apply minhash and cosine
sketching techniques in the server-aided architecture. Our
implementation demonstrates that this new design can mitigate
offline perturbation attacks without sacrificing the efficiency
and scalability of the reconstruction protocol.

1. Introduction

Analyzing data to extract important insights particular
system has become a tool of central importance to most
lines of business and science. Many of the tasks data analysis
aims to achieve can be reduced to the problem of detecting
similarity between data points in sets. In scenarios such
as legal discovery, forensics, and genomic analytics, it is
important to detect similarity between high dimensional data
even in the presence of strict privacy requirements. As
computing exact similarity metrics on very large datasets
is prohibitively expensive, state-of-the-art methods approx-
imate the similarity function that needs to be computed by

working with a succinct representation of the data that is
called a sketch.

Sketching is the mainstream approach for efficiently
approximating a plethora of functions [11], [12], [16], [18],
[25], [36], [42], [47], [57], [58]. The seminal work by
Feigenbaum et al. [27] set the foundation for secure multi-
party computation of approximation functions. Since then,
researchers proposed a variety of secure approximations
based on sketching for several application areas. Melis et
al. [45] propose scalable and secure protocols to approx-
imate statistics on large data streams. Blundo et al. [9]
propose secure approximation algorithms for iris matching,
multimedia content similarity, and document similarity. The
community has made several important steps towards private
computation on genomic data in a time-efficient and scalable
manner [3], [17], [22], [50]. Wang et al. [62] demonstrate
the power of carefully-engineered secure approximation by
running a privacy-preserving similarity query for a human
genome on 1 million records distributed across the U.S., in
a couple of minutes. In their CCS’15 work they point out:

“Generally a streaming algorithm consists of phases to
locally compute the sketches and those to jointly combine
the sketches. Feigenbaum et al. [27] pointed out that it is
unclear how to prove it secure if a secure computation
protocol is not used to compute the sketches, (although no
actual attacks are identified).”

In this work we capture the capabilities of the adversary
in a new threat model, and design the first attack of this
kind. The sketching protocol in [27] has two phases: 1)
the sketching function is applied locally by each party,
and 2) the reconstruction function is performed via secure
multiparty computation. Our offline attack is mounted on
the first phase by a data owner and exploits the fact that 1)
the randomness of the sketching algorithm is known to all
the participants, and 2) the sketch algorithm is performed
locally. In this threat model, the only action the attacker is
allowed to take is to change the input data to the sketching
algorithm; that is, the computation of the sketch. The com-
putation of the reconstruction, the communication, as well
as the input to the reconstruction, remain untouched. As a
result, the correctness of the approximation is violated since
the adversary can steer any future approximation between



the perturbed data and any other data point to an incorrect
output, regardless of the secure computation protocols of the
second phase.

There are several scenarios where a data owner has the
incentive to mount a perturbation attack. In the case of legal
forensic discovery, which is a $ 9.9 billion market [23], the
plaintiff company is interested in correctly approximating
similarity between documents so as to discover important
evidence that can strengthen their case, while the defending
company might prefer to masquerade evidence by causing
mis-approximation. In the case of customized medical treat-
ment a patient uses her genomic data to discover patients
with similar gene-expression that are already treated for the
same disease; thus discovering similarities is to the benefit of
the user. In a case, however, where a DNA sample is found
in a crime scene, a suspect benefits from mis-approximating
the similarities with the found sample. Thus the intention of
the participant depends on the stakes of the outcome of the
approximation function.

To mitigate perturbation attacks we propose a new
server-aided secure approximation architecture that requires
the participation of three parties, as opposed to two of
the previous designs. A new honest-but-curious entity—the
server—stores the common randomness which is treated
as private information. A user runs a protocol with the
server to build an encrypted sketch, as opposed to the local
computation of the previous model’s first phase. During
this protocol the user doesn’t learn any information about
the common randomness and the server doesn’t learn any
information about the user’s data. We emphasize that the
sketch-generation takes place only once for each data point,
and the sketch can be reused for any future pairwise approx-
imation. Under this new server-aided framework the users
do not have direct access to the common random input (only
via communication with the server) and thus they can not
mount an offline perturbation attack. In this paper, we devise
and implement new secure protocols in order to securely
generate minhash and cosine sketches in our proposed ar-
chitecture. Given a pair of sketches1 our implementation
achieves throughput of 30-600 approximations per second
for data points with hundreds of dimensions.

Related Work. Aside from the secure sketching proto-
cols mentioned earlier, there is a rich body of protocol that
devise a combination of semi-homomorphic cryptosystems
and garbled circuits to operate on encrypted data [4], [10],
[40], [63].

The work by Mironov et al. [46] introduces the model
of sketching in adversarial environments which is different
in certain ways from what we consider in our work. Specif-
ically, the work in [46] studies a model where a single party
adversarially chooses the input for all other parties while
they approximate joint functions on the adversarially chosen
input. In their model, the adversarial inputs are provided to
the parties in an on-line manner and thus the users update the
sketch incrementally without being able to store the original

1. The parameterization, and consequently the efficiency, of the sketching
instantiation depends on the approximation guarantees.

information, much like in one-pass streaming algorithms. In
our work, each party uses her own data which is stored
locally. Our model is different from the data stream model,
and follows more closely the published work on privacy-
preserving sketches discussed above.

The work by Naor et al. [49] introduces a new ad-
versarial model for Bloom filters. A Bloom filter is used
for set-membership testing; it might output a false-positive
response due to the probabilistic design that prioritizes space
and time efficiency over accuracy. The adversary in this
threat model issues a series of adaptively chosen queries and
his goal is to predict which non-queried element will result
into a false-positive. The threat model of [49] is somewhat
similar to our model, in the sense that both adversaries
exploit the used randomness so as to violate the correctness
of the computation. In terms of differences, our adversary
has direct access to the randomness used, whereas for the
case of [49] the adversary has only oracle access via the
responses of the Bloom filter. Furthermore in our work
sketching is just the first phase of the computation and the
second phase consists of a secure computation protocol; on
the contrary the work of [49] does not involve any form of
encryption or secure computation.

There’s a significant body of research focusing on the
attack vectors that lay in the intersection of machine learning
and privacy-preserving mechanisms [5], [15], [19], [28],
[29], [44]. The line of research closer to our proposed
attack is the work on Deep Learning in adversarial settings.
Some papers [53], [59] show how an adversary can craft
her input so as to maximize the prediction error of a deep
neural network (DNN), while others propose mitigation
techniques [54]. In a realistic scenario of a DNN under
attack the adversary can only observe the output of a chosen
input, since the proprietary DNN is stored at the company
that provides the classification service. On the contrary,
our attacks are based on a more realistic assumption (the
attacker has local access to the common randomness by
design [27]), can be mounted offline (impossible to mitigate
with rate-limiting techniques), and can be generalized to a
broader family of approximation functions than the attacks
on DNNs.

Our Contributions. Our work makes the following
contributions:

• We identify and formalize the notion of pertur-
bation attacks for secure multiparty approximation
protocols. We demonstrate their power by propos-
ing two such perturbation attacks. The first attack
uses probabilistic arguments, and is mounted on the
minhash sketching technique, which is deployed to
measure the Jaccard similarity between two sets.
The second attack formulates a non-convex high-
dimensional constrained optimization problem, and
is mounted on the cosine sketching technique, which
is deployed to measure the cosine similarity between
two vectors. We apply the proposed attacks on both
real and synthetic data.

• We propose a new server-aided approach that miti-



gates offline perturbation attacks. In our new setup,
a server has exclusive access to the common ran-
domness, and is assisting the clients in the sketch
computation. In the new design, a user does not learn
any information about the common random input.
Additionally, the server doesn’t learn any informa-
tion about the user’s data.

• We devise new secure protocols for the server-aided
design for the case of minhash sketching and cosine
sketching. Furthermore, we implement the protocols
and evaluate their performance.

2. Preliminaries and Background

2.1. k-Independent Hashing

Space and time-efficient hash functions provide rigorous
guarantees about the distribution of their values, such a
family is the family of k-independent hash functions. A well
studied construction of a k-independent family is based on
polynomials of degree k − 1. Let p > |U | be a prime and
a0, a1, . . . , ak−1 ∈ Zp be independent and uniformly chosen
values over the prime field, then we have:

h(x) = (αk−1x
k−1 + . . .+ α1x+ α0) mod p.

For p > m, the above family of hash functions is statistically
close to the k-independence property.

2.2. Secure Sketching

Exact similarity computation between two data points
takes at least linear time with respect to the size of the data,
since we need to parse the data item for every comparison
regardless of the similarity function. A way to overcome this
overhead is to settle with an approximation of similarity as
opposed to exact computation.

Definition 2.1. (Def. 10.1 in [48]) A randomized algorithm
gives an (ε, δ)-approximation for the value ν if the output
ν′ of the algorithm satisfies, Pr(|ν′ − ν| ≤ εν) ≥ 1− δ.

We are interested in sketching techniques that are well-
studied and widely applied in the area of data-mining and
information retrieval [11], [12], [16], [18], [25], [36], [42],
[47], [57], [58]. A benefit of sketching is that the succinct
summary of the data, i.e., the sketch, is built once and
can be reused in future pairwise approximations. Thus the
super-linear overhead occurs only during the construction
of the sketch which significantly speeds up the total time
performance over a series of similarity approximations. The
notion of a sketching protocol is defined as:

Definition 2.2. (Def. 8 in [27]) A sketching protocol for
a 2-argument function f : {0, 1}∗ × {0, 1}∗ → N is defined
by:

• A sketching function, S : {0, 1}∗ × {0, 1}∗ →
{0, 1}∗ mapping one input and a random string to
a sketch consisting of a (typically) short string.

• A (deterministic) reconstruction function G :
{0, 1}∗ × {0, 1}∗ → R, mapping a pair of sketches
to an approximate output.

On inputs α, β ∈ {0, 1}n, the protocol proceeds as fol-
lows. First, Alice and Bob locally compute a sketch σA =
S(α, rcmn) and σB = S(β, rcmn) respectively, where rcmn
is a common random input. Then, the parties exchange
sketches, and both output locally f̂ = G(σA, σB). We denote
by f̂(α, β) the randomized function defined as the output of
the protocol on inputs α, β. A sketching protocol as above
is said to (ε, δ)-approximate f if f̂ (ε, δ)-approximates f .

Following the terminology of Goldreich for multiparty
computation (Section 7.2 [32]) we capture the above process
with the following functionality:

FApprox

(
(α, rcmn), (β, rcmn)

)
→ (f̂(α, β), f̂(α, β)) (1)

, where the first (resp. second) pair is the input of client CA
(resp. client CB) and the output to both parties is the (ε, δ)-
approximation f̂(α, β). We note here that if the clients ex-
ecute the sketching computation with different randomness
then the output of the reconstruction is meaningless 2, thus
the randomness must be the same. We emphasize that α, β
are user-provided inputs and their legitimacy relies on the
honesty and intention of the user.

A metric space is a set X accompanied with a distance
function d : X ×X → R, or simply distance, that measures
the distance between points x, y ∈ X . We are interested in
the approximation of distance functions from which we can
derive the similarity. The terms “distance” and “similarity”
are used interchangeably in the rest of the work, in the next
subsection we show how the two concepts relate for the
distance measures that we studying.

2.3. Similarity Approximation

Approximating Jaccard Similarity. The Jaccard simi-
larity coefficient (or Jaccard index) measures the similarity
between two sets. Formally, given a pair of sets S1, S2 ⊆ U
the Jaccard similarity coefficient and the Jaccard distance
dJac are defined as:

J(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

, dJac(S1, S2) = 1− J(S1, S2).

Minwise hashing [11], [12], or minhashing, is a technique
for approximating the Jaccard index that has been suc-
cessfully applied to numerous problems (e.g., [12], [42],
[47], [57], [60]). Even though the analysis of the approx-
imation is based on random permutations [11], in practice
we use minhash functions that are defined as hmini (S) =
minx∈S(hi(x)), where hi is a k-independent hash function.
Using κ distinct minhash functions one can build a minhash
sketch, also called minhash signature, σ(S) for input set S.

2. This is equivalent to using different hash functions for the approx-
imation of Jaccard similarity, or using different random vectors for the
approximation of the cosine similarity.



Given two minhash sketches we approximate the Jaccard
distance d̂Jacc as follows:

d̂Jacc(S1, S2) =
1

κ
dH(σ(S1), σ(S2)),

σ(S) = (hmin1 (S), . . . , hminκ (S)),
(2)

where dH denotes the hamming distance between the two
input arguments. The common random input rcmn from
Definition 2.2 is used to initialize minhash functions.

Mitzenmacher et al. [47] introduced an approximation
technique using odd sketches. An odd sketch of set S,
denoted as odd(S), consists of (A) a bit array T of size
u and (B) a hash function hodd : U → [0, u − 1]. In order
to approximate the Jaccard similarity via odd sketches one
uses the values of the minhash sketch σ(S) = (x1,. . . ,xκ)
as the input set for the odd sketch. Whenever an item
xi = hmini (S), where i ∈ [1, κ], is hashed to the odd sketch
T using function hodd, the bit in position hodd(xi) of T is
flipped. We approximate the Jaccard index as follows [47]:

Ĵodd(S1, S2) = 1+
u

4κ
ln
(

1−2|odd(σ(S1))∆odd(σ(S2))|
u

)
(3)

, where |odd(σ(S1))∆odd(σ(S2))| denotes the number of
1s in the sketch resulted after the exclusive-or operation
over the odd sketches, κ denotes the number of indepen-
dent minhash values, and u denotes the size of the odd
sketch. Jaccard distance is approximated using eq. (3), as
d̂Jacc(S1, S2) = 1− Ĵodd(S1, S2). The common random in-
put rcmn is used to initialize hodd and hmin1 , . . . , hminκ . Thus
all the parties of the sketching protocol (see Definition 2.2)
generate the same hash functions.

Approximating Cosine Similarity. The work of
Charikar [16] introduced the notion of cosine sketching
commonly used [25] to estimate the similarity between two
vectors. Formally, let ~v1, ~v2 ∈ Rn the cosine similarity as

C(~v1, ~v2) =
~v1 · ~v2

‖~v1‖2‖~v2‖2
, dcos(~v1, ~v2) = 1− C(~v1, ~v2)/2,

(4)
where ‖ · ‖2 is the Euclidean norm of the vector. The
resulting similarity C(~v1, ~v2) ranges from −1 to 1 which
is interpreted as completely opposite and as exactly the
same, respectively. The cosine sketching technique is based
on sign random projections. Let ~v ∈ Rn be a unit vec-
tor3, then the cosine sketch is a κ-dimensional bit vector
σ(~v) = (σ1, . . . , σκ). The components σi for i ∈ [1, κ] and
the symmetric cosine sketch distance [43] are defined as:

σi =

{
1, if ~wi

T · ~v ≥ 0

0, if ~wi
T · ~v < 0,

, d̂cos(~v1, ~v2) =
dH(σ(~v1), σ(~v2))

κ
,

(5)
where ~wi ∈ Rn is sampled uniformly at random from the
n-dimensional unit hypersphere. The common random input
rcmn is used to initialize the vectors ~wi, for i ∈ [1, κ].

3. In case the input vector is not unit we convert it by normalizing.

2.4. Semi-Homomorphic Cryptosystems

We use the described notation to highlight that messages
are encrypted under different cryptosystems.

Paillier Cryptosystem. The Paillier cryptosystem [52]
is semantically secure. With the term [m] we denote the
encryption of message m under the key pair KP =
(PKP , SKP ); from the additive homomorphism we have
that [m1] · [m2] = [m1 +m2].

Goldwasser-Micali Cryptosystem. The Goldwasser -
Micali (GM) cryptosystem [33] is semantically secure. With
the term |m| we denote the encryption of the bit m under
the key pair KGM = (PKGM , SKGM ); from the GM
homomorphism we have that |m1| · |m2| = |m1 ⊕ m2|,
where ⊕ is the XOR operation.

Damgård-Geisler-Krøigaard Cryptosystem. The
Damgård-Geisler-Krøigaard (DGK) cryptosystem [20], [21]
is semantically secure. The DGK cryptosystem is consid-
ered to be much more efficient [8], [26], [41] than Paillier
due to its small plain-text space. With the term 〈m〉 we
denote the encryption of message m ∈ Zu under the key
pair KDGK = (PKDGK , SKDGK). Similarly to Paillier,
DGK is additively homomorphic; moreover, it embeds re-
ductions modulo u to its homomorphic operations, therefore
〈m1〉 · 〈m2〉 = 〈(m1 +m2) mod u〉.

3. Threat Model

In this work we consider a new threat model where
the adversary can maliciously perturb only her input to the
sketching algorithm which is executed offline and locally.
This new adversary does not interfere with the computation
of the sketching, the computation of the reconstruction, and
the communication, i.e., she acts in a semi-honest fashion af-
ter the perturbation of the input data. Thus, our threat model
is not the honest-but-curious, it is a very restricted version of
the malicious model where the proposed adversary can only
alter her data offline, by using the already distributed com-
mon randomness. As we show in later sections, even though
our threat model does not differ much from the semi-honest,
it allows for devastating attacks on the correctness of the
approximation. This adversarial behavior is challenging to
detect since the perturbation takes place offline, on her own
data. Other works in the area of MPC consider adversaries
that attempt to learn to input of another party, this is not the
case here, the goal of the adversary is to masquerade her
own data with respect to the approximation mechanism.

Consider the following class of protocols that compute
the functionality FApprox as it is described in Section 2.2.

Class of Protocols for FApprox

• Step 1: Generate and distribute the common ran-
dom input rcmn to all the parties.

• Step 2: Each party inputs her data and rcmn so
as to locally compute the sketching function S.

• Step 3: Parties run an MPC protocol that outputs
the result of the reconstruction function G.



Attack Surface of FApprox. We assume that the ad-
versary participates in the above protocol. We distinguish
two possible offline attacks on this class of protocols, the
attacker can: 1) deviate from the correct execution of the
locally computed sketching, and/or 2) execute the sketching
correctly, but corrupt its output—and therefore the input to
the reconstruction function G. Both attacks can be detected
using verifiable computation [30], [55], i.e., provide proof
of correctness for the computation and the output of S.
Addressing such mitigations is outside the scope of our work
and is left as future work. We focus on the remaining attack
surface: since cryptographic techniques exist to detect the
above attacks, the last resort for the adversary is to perturb
the input to the sketching function.

Perturbing the input to S. To capture the remaining
attack surface, in the new threat model we extend the above
class of protocols by allowing the adversary to locally exe-
cute a function right before Step 2. Specifically, the adver-
sary executes a randomized function Perturb that takes as an
input the data point α and the common random input rcmn
outputted by Step 1. Function Perturb runs locally, without
any interaction, and outputs a value α+ that will serve as the
new input to the sketching function S. We emphasize that
after the execution of Perturb the adversary behaves in a
semi-honest fashion, i.e., she honestly follows the sketching
function and honestly executes the MPC protocol. Thus,
in our new threat model the only malicious activity of the
adversary is the local execution of Perturb.

Other work has considered a similar adversarial behav-
ior. Raghunathan et al. [56] consider adversaries that adap-
tively choose the plaintext distribution after seeing the pub-
lic key of a Deterministic Public-Key Encryption scheme.
Abadi et al. [2] propose adversaries that adaptively choose
the distribution of plaintexts after seeing the parameters of
a Message Locked Encryption scheme.

4. Perturbation Attack

In this Section we define perturbation attacks on the
class of protocols defined in Section 3. A successful attack
on secure sketching protocols for a two-argument distance
function yields a perturbed input such that althought the pair
(original input, perturbed input) is really close with respect
to the corresponding distance function, the approximation
instantiation of the above pair appears vastly distant. Thus,
if one compares the sketch of any data point that is close
to the original input, to the sketch of the perturbed input
the approximation algorithm will return a completely false
distance.

To the best of our knowledge this work is the first
that concretely demonstrates the pitfalls of using common
random input rcmn for secure sketching protocols. In this
work we focus on distance functions, analogous definitions
can be formed for other functions. Note that Definition 2.2
deals with two inputs α and β from distinct users, whereas
the following definition deals with the input of a single user
and it perturbed version, i.e., α and α+.

Definition 4.1. Let FApprox be the functionality described
in Equation (1) for a sketching approach of a distance
function d. Let Perturb(·) be the function that adversary
A can apply according to the threat model of Section 3.
Let α ∈ X be a point of the metric space (X, d) with
distance function d. Let rcmn be the common random input
to the sketching function S. Then we say that Perturb(·) is a
successful (ν, ν′)-perturbation attack for sketching function
S if for any α and rcmn, Perturb(α, rcmn) outputs a point
α+ such that:

1) The true distance between α, α+ is ν, d(α, α+) = ν,
2) The approximate distance between α, α+ is ν′ ac-

cording to (S,G) with input rcmn, d̂(S,G)(α, α
+) =

ν′,
3) The inequality |ν′ − ν| > εν holds.

where ε is the parameter of the (ε, δ) approximation guar-
antees of d̂(S,G).

One might suggest that it is trivial to mount a successful
perturbation attack by generating random data and call it
α+. This naive approach would successfully increase the
approximate distance ν′ (condition 2), but it would heavily
distort the original input and as a result the true distance ν
would increase as well (i.e., doesn’t satisfy their pairwise re-
lation captured in condition 3). Intuitively, for the case where
ν′ > (1 + ε)ν, condition 3 guarantees that the perturbed
data “appears” more distant from the original than it truly
is even when we consider the valid approximation error. For
the case where ν′ < (1 − ε)ν, condition 3 guarantees that
the perturbed data “appears” more similar from the original
than it truly is. In this work we focus on the first case, i.e.,
ν′ > (1 + ε)ν, thus the adversary wants to hide the high
similarity, i.e., small ν, by minimally perturbing the input,
i.e. large ν′. Note that due to the triangle inequality, any
data point β that is close to α will also appear distant to α+.

On using Commitment Schemes. It appears that the
perturbation attack can be avoided if we force the parties
to commit to their data before they receive rcmn. Using a
commitment scheme [31] the parties commit to their data,
thus any perturbation will be caught due to the binding
property of the construction. This mitigation indeed works
only if all data from all the users is available during
the initialization of the system and no sketch is created
thereafter. In all practical scenarios, however, the system
is more dynamic—users join and leave at arbitrary times.
One may think that we can accommodate new users by
defining epochs where new users can join. This implies that
every party must re-compute the sketches from scratch in
the beginning of every epoch. This goes against the very
reason we used sketching techniques in the first place—to
avoid processing the high dimensional data points multiple
times.

On using general purpose MPC. Another way of
mitigating a perturbation attack would be to use general
purpose Multi-Party Computation for both the sketching
and the reconstruction steps. This, however, would introduce
scalability issues: a party would have to transfer her high-
dimensional data between all the parties in order to compute



by d̂Jac ≥ 0.9 d̂Jac = 1
s = 500 s = 1, 000 s = 10, 000 s = 500 s = 1, 000 s = 10, 000

κ dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time dJac fSuccess Time
10 0.01 1.00 0.01 0.008 1.00 0.03 0.0008 1.00 0.37 0.01 0.98 0.10 0.009 0.99 0.22 0.0009 0.99 2.52
50 0.08 1.00 0.07 0.043 1.00 0.15 0.004 1.00 1.47 0.09 0.95 1.32 0.047 0.96 3.04 0.005 0.98 38.9
100 0.15 1.00 0.14 0.082 1.00 0.30 0.008 1.00 3.00 0.16 0.89 4.07 0.090 0.92 9.23 0.009 0.96 120.1
200 0.27 1.00 0.34 0.159 1.00 0.59 0.018 1.00 5.25 0.28 0.82 12.60 0.166 0.86 27.6 0.019 0.94 380.1

TABLE 1. EVALUATION OF THE PERTURBATION ATTACK ON MINHASH SKETCHES OVER SYNTHETIC DATA. THE TERM κ DENOTES THE SIZE OF THE
SKETCH, s IS THE SIZE OF THE SET UNDER ATTACK, fSUCCESS IS THE FREQUENCY OF SUCCESS OF THE PROBABILISTIC ALGORITHM 1. THE DATA

POINTS SHOWN ARE THE AVERAGE OVER 5,000 INSTANTIATIONS. TIME IS MEASURED IN SECONDS.

the sketch, therefore making this approach impractical due
to its bandwidth requirements. Additionally there is a silent
assumption that the rest of the participants are going to
be online and have available resources to assist the entire
group in sketching, which is unrealistic. Finally, similar to
the argument about commitment schemes, when a new user
joins the group we have to re-run the MPC protocol for
sketching from scratch.

On the level of distortion. Many of the occasions
where secure similarity approximation protocols are applied
typically employ multiple layers of forensic investigation
mechanisms. Therefore in order to minimize the likelihood
of getting detected (e.g. audit process) the attacker wants to
minimize the amount of changes to the input data, i.e. min-
imize the value of ν in condition 1 of the above definition.
Similar to the long line of research on adversarially crafted
input for Deep Neural Networks [53], [54], [59], we make
the realistic assumption that safety mechanisms are in place
to detect radical changes.

Objectives of perturbation attacks. Note that dJac(·)
and dcos(·) as defined in Section 2.3 take values from the
range [0, 1]. Ideally, a successful (ν, ν′)-perturbation attack
1) maximizes the approximate distance d̂ so as α and α+

appear as distant as possible, e.g., d̂Jac(α, α+) ≈ 1, while
2) minimizes the true distance between α and α+, e.g.,
dJac(α, α

+) ≈ 0. We present two such attacks in this section
that utilize different tools, namely a randomized algorithm
and a non-convex constrained optimization formulation, and
provide different guarantees. We slightly abuse notation and
indicate by d̂Jac(·) and d̂cos(·) the approximate distance that
is returned by a sketching protocol (S,G).

Incentive to Attack. Users may be inclined to perform
such a perturbation attack on several situations. In the
case of investigations involving intellectual property theft,
industrial espionage, or insider trading, the plaintiff party
may want to discover evidence of wrongdoing by matching
a set of documents or keywords against a corpus of the
defendants data (e.g., emails). In the same spirit, if some
form of genetic information is found in a crime-scene the
suspect might attempt to masquerade genetic measurements
to avoid similarity detection.

4.1. Attacking Minhash Sketches

Minhash sketches are used for approximating the Jaccard
distance between sets. We propose a perturbation attack
on minhash sketches guaranteed to perform the minimum

number of changes to the original input set, thus minimizing
d(α, α+). The perturbation that we apply is in the form of
adding new elements to the set.

Intuition. The adversary takes as input a set S and the
common random input rcmn. The goal is to augment S
with the smallest number of new elements in order to create
S+, such that d̂Jac(S, S+) = 1. Recall that the approximate
Jaccard distance between two sets is maximized when their
κ-dimensional sketches σ() differ in all dimensions, i.e.,
quantity d̂Jac(·) in equation (2) is equal to 1. Thus, the
adversary is looking for at most4 κ new elements such that
every dimension of sketch σ(S+) is different from σ(S).
We denote by t′ the number of samples drawn from the
metric space. The following algorithm describes the attack,
the corresponding proof can be found in the Appendix of
this work.

Algorithm 1: Attack Perturb on Minhash Sketches
Input: S, rcmn, κ
Output: S+ s.t. d̂Jac(S, S+) = 1, dJac(S, S+) = κ

s+κ

1 Use rcmn to sample κ hash functions (h1, . . . , hκ);
2 σ(S)←

(
minx∈S(h1(x)), . . . ,minx∈S(hκ(x))

)
;

3 S+ ← S;
4 for i = 1 to t′ do
5 Sample an element zi /∈ S uniformly at random;
6 for j = 1 to κ do
7 if hj(zi) < minx∈S(hj(x)) then
8 S+ ← S+ ∪ {zi};
9 end

10 end
11 end

Theorem 4.1. Let S ⊂ [m] be the set that is given as an
input to Algorithm 1, where |S| = s. Let κ be the number
of dimensions of the minhash sketch according to equation
(2). Then a quasilinear number t′ of samples are enough
for Algorithm 1 to mount a successful (1, κ

s+κ )-perturbation
attack for minhash sketching with probability at least

Pr
(
{Succesful Attack}|(t′ ≥ 2c(s+1) ln3(s))

)
≥ 1−6κc1/2

sc

, where c is a positive integer.

Attacking Synthetic Data. We demonstrate the fre-
quency of success and the efficiency of the perturbation

4. There is a case where the same new element of S+ can contribute to
more than one locations of the sketch σ(S+).



attack on synthetic data. We thoroughly tested setups that
range across all different variables of the problem: 1) di-
mension of the sketch κ ∈ {10, 50, 100, 200}, 2) size of the
set under attack s ∈ {500, 1000, 10000}, 3) desired mis-
approximation d̂Jac() = 1 or d̂Jac() ≥ 0.9. Works such
as [43] deploy a sketch of 64 bits to capture similarity of
a collection of 8 billion webpages. Therefore, we think that
the range of sketches’ size 10-200, is indicative of what
might be used in practice. The attack is implemented in
C++ where the elements of the original set are randomly
generated numbers. We used 4-wise independent hash func-
tions. We run 5,000 instantiations for each of the above
setups. As observed in Table 1, for the case where the
desired approximation is d̂Jac() ≥ 0.9, the attack succeeds
in all instantiations, and its execution time is less than one
second in most of the parameterizations. In this scenario it is
enough for the adversary to discover smaller minhashes for
90% of the κ entries of the minhash sketch. Thus, if there
are some small minhash values in the original sketch, the
adversary can ignore those and “break” the rest of the sketch,
whereas in the case of d̂Jac = 1 the adversary is forced
to continue searching so as to “break” all κ minhashes.
Overall, the frequency of success is extremely high but there
are a couple of cases for which the probabilistic guaran-
tees of Theorem 4.1 are not met. One explanation is that
the analysis was performed assuming that hash functions
are truly random, whereas in the experiment we use 4-
wise independent hashing. Table 1 clearly demonstrates that
the probabilistic perturbation attack on minhash sketches
succeeds in the vast majority of the instantiations and the
total time ranges from less than a second to a couple of
minutes even when dealing with sets that contain thousands
of elements.

Figure 1. Illustration of the perturbation attack on the email with id 549
from the Enron dataset. The adversary can add the 5 red-colored words in
the original email and the approximate distance of our instantiation will be
1 even though the exact distance is 0.004.

Attacking Real Data. To further verify the effectiveness
of the attack we tested in real data using the bag of words
dataset of Enron emails5. We highlight that the findings of
the attack on the synthetic data are expected to be similar to
those on any real data. This is because the distribution of the
hash values used in the attack is not affected significantly
by the values of the input set S 6, (as long as there are
enough distinct items in the set). In this real dataset every
email is transformed into a multiset of words where the

5. https://archive.ics.uci.edu/ml/datasets/Bag+of+Words
6. S can consist of randomly generated elements (i.e., synthetic data),

or words from a real text (e.g., email).

stop-words are removed. In this context Jaccard distance
captures the similarity between any pair of emails. In our
experiment we use the standard Rabin-Karp rolling hash
function modulo n = 105, 943. For simplicity we choose
the size of the minhash sketch to be κ = 5 and the value
of c to be 2 (see Theorem 4.1). Without loss of generality,
for the purposes of this evaluation we focus on email with
id-549 (denoted as set S549), with size s = 1181 words,
492 of which are unique. The average time to mount 100
instantiations of the attack was 2.2 seconds. Specifically, 83
out of 100 instantiations mounted successfully a (1, 0.004)-
perturbation attack and terminated in less than 1 second. The
remaining 17 instantiations took between 3 to 22 seconds
due to the fact that at least one of the minhash values of
the original sketch was already too small (< 10). Figure 1
illustrates one of the successful attacks where by adding
the 5 words {pursued, glide, ralston, alluring, sensor} in
the current email, i.e. create S+

549, the approximate distance
becomes 1, while the real distance is 0.004. Thus, any future
comparison between S+

549 and a similar email will result in
mis-approximation.

Parametrizing the Minhash Attack. In the current
description of Algorithm 1 the attacker’s goal is to achieve
d̂Jac(S, S

+) = 1, but one can trivially parametrize our
algorithm so as to achieve any maliciously chosen output.
Specifically, if the goal is to d̂Jac(S, S

+) = γ then this
translates to finding X/κ = γ ⇒ X = κ · γ elements
that substitute the original minhash values in X out of κ
dimensions. As an example in our attack on synthetic data
we demonstrate the attack for γ = 0.9.

4.2. Attacking Cosine Sketches

Cosine sketching is used for approximating the cosine
distance between vectors. We propose a perturbation attack
on cosine sketching guaranteed to output d̂cos(·) = 1, while
the exact distance between the perturbed and the original
vectors depends on the solution of the formulated con-
strained non-convex optimization problem. The perturbation
that we apply is in the form of adding a new vector ~x to
the original vector ~v.

Algorithm 2: Attack Perturb on Cosine Sketch
Input: ~v ∈ Rn, rcmn, κ
Output: ν, ~v+ ∈ Rn s.t. d̂cos(~v, ~v+) = 1, dcos(~v, ~v+) = ν

1 Use rcmn to sample vectors ( ~w1, . . . , ~wκ) from the unit
n-sphere

2 Solve the following optimization problem

~x = argmax
~x∈Rn

~v · (~v + ~x)

||~v||2||~v + ~x||2
subject to sgn( ~wiT~v) · ( ~wiT (~v + ~x)) ≤ 0, i = 1, . . . , κ.

ν = dcos(~v,~v + ~x)
3 return ν, ~v+ = ~v + ~x

Intuition. The adversary takes as input the original
vector ~v ∈ Rn and rcmn. The goal is to add a new



vector ~x to the original ~v in order to create ~v+ such that
d̂cos(~v, ~v+) = 1. Recall that the approximate cosine distance
between two vectors is maximized when their κ-dimensional
sketches σ() differ in all dimensions. Thus the addition
of vector ~x to ~v must change the sign of the κ inner
products with respect to Equation (5) and consequently flip
the bits of the sketch σ(~v+). Overall, the adversary wants to
maximize the approximate cosine distance, handled by the
constraints of the optimization problem, and minimize the
exact cosine distance, handled by the objective function of
the optimization.

In Algorithm 2 the function sgn(x) has output −1 in
case x < 0 and output +1 in case x ≥ 0. The unit n-sphere
is defined as the set of points {u ∈ Rn+1 : ||u|| = 1}.
Notice that minimizing the exact cosine distance is equiva-
lent to maximizing the cosine similarity as it is described in
Equation (4), so our problem is formed as a maximization
of the cosine similarity C(~v,~v + ~x). Algorithm 2 requires
to solve a non-convex, non-linear, high-dimensional con-
strained optimization problem. Furthermore the objective
function presents discontinuity at point ~x = −~v, see Fig-
ure 2. Since closed form solutions are generally challenging
for this setup, we approximate the solution of the above
problem using iterative algorithms from standard optimiza-
tion toolboxes. Figure 2 visualizes the objective function for
the case where v ∈ R2.

Theorem 4.2. Let ~v ∈ Rn be the vector that is given as an
input to Algorithm 2. Let also ~wi ∈ Rn be a vector sampled
from the unit n-sphere using rcmn according to Algorithm 2,
where i = [1, κ]. Then, Algorithm 2 is a successful (1, ν)-
perturbation attack for cosine sketching.
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Figure 2. An illustration of the objective function of the maximization
problem of Algorithm 2 where n = 2 and ~v = (20, 10). The X-,Y -axis
denote the x1 and x2 dimension of vector to be added, ~x.

Attacking Synthetic Data. We evaluated the perfor-
mance of the attack on synthetic data using the interior
point algorithm of MATLAB [1] where the input vector ~v
is a randomly generated vector from Rn. We thoroughly
tested setups that range across the different variables of
the problem: 1) the number of dimensions of the vector
under attack that takes values n ∈ {500, 1000, 5000}, and
2) the size of the sketch under attack that takes values
κ ∈ {10, 50, 100, 200}. To generate vectors ~wi ∈ Rn we
sampled vectors from the n-sphere of unit radius centered
at the origin. We run the above setups with 10 different com-

mon randomness inputs rcmn and present the mean. As one
may observe in Table 2, the approximate distance is always
d̂cos() = 1 which implies that all the returned solutions were
part of the feasible region of the optimization problem. The
value of the exact cosine distance dcos between the original
and the perturbed data depends on the returned solution
of the optimization problem. Note that different solution
methods can potentially result in even lower dcos values.
Depending on the optimization toolbox and the number of
dimensions the time performance may vary, in our case all
the executions terminated within a couple of minutes.

n = 500 n = 1, 000 n = 5, 000

κ dcos d̂cos dcos d̂cos dcos d̂cos

10 0.005 1 0.002 1 0.0005 1
50 0.02 1 0.01 1 0.002 1
100 0.05 1 0.02 1 0.005 1
200 0.11 1 0.06 1 0.01 1

TABLE 2. EVALUATION OF THE PERTURBATION ATTACK ON COSINE
SKETCHES OVER SYNTHETIC DATA. THE DATA POINTS SHOW THE

AVERAGE VALUE OVER 10 INSTANTIATIONS.

Figure 3. Illustration of the perturbation attack on a gene-expression of an
adenoma patient. If the adversary perturbs the vector ~v of 7086 dimensions
to create ~v+ then the approximate cosine distance will be 1 even though
the exact distance is 0.0036.

Attacking Real Data. We demonstrate the perturbation
attack of Algorithm 2 on a real dataset7 of human gene-
expression levels that can be found in the work of Notteramn
et al. [51]. The authors perform a clustering analysis on the
vectors of gene-expression levels so as to capture similarity
patterns between healthy patients, patients with adenoma
and patients with adenocarcinoma. It is rather common
to perform similarity-based analysis on genomic data with
the goal of understanding and diagnosing diseases at the
molecular level. We highlight that the findings of the attack
on the synthetic are expected to be similar to those on any
real data. This is because the generative model of the input
vector ~v does not affect the sign of the inner product with
a random vector ~w.

We approximate the solution of the optimization prob-
lem using the interior point algorithm from MATLAB [1].

7. http://genomics-pubs.princeton.edu/oncology/



We use a cosine sketch of κ = 100 dimensions and we
repeat the experiment for 10 different initializations of the
vectors ( ~w1, . . . , ~wκ). The input vector is denoted as ~v and
it has n = 7, 086 dimensions each of which is a gene-
expression measured with a DNA microarray. We report
that all of the instantiations successfully satisfied the op-
timization constraints and thus resulted in d̂cos(~v, ~v+) = 1.
The average ν value was 0.0033 with a maximum value
of 0.0039. Therefore, on average we mounted a successful
(1, 0.0033)-perturbation attack. One of the recorded instan-
tiations is illustrated in Figure 3 where it shows that if the
adversary perturbs ~v to form ~v+ then according to the cosine
sketching initialization we have d̂cos(~v, ~v+) = 1, even though
their exact cosine distance is dcos(~v, ~v+) = 0.0036.

Parametrizing the Cosine Attack. In Algorithm 2
the attacker’s goal is to achieve d̂cos(~v, ~v+) = 1, but one
can trivially parametrize our algorithm so as to achieve any
maliciously chosen output. In case the goal of the attacker is
to achieve d̂cos(~v, ~v+) = γ then this is equivalent to reducing
the number of constraints of the optimization problem from
κ to X/κ = γ ⇒ X = κ · γ. The attacker can choose
either deterministically or randomly which X out of the κ
constraints to keep.

Future Directions. There are several interesting future
directions in regard to the area of perturbation attacks. From
the adversary’s perspective, it is interesting to attack more
sketching techniques as well as investigate context-aware
perturbation attacks. Under this more focused type of attacks
the adversary perturbs the data in a way that is relevant to the
semantics of the data. For instance, if the first dimension of
the vector under attack represents “age” then it is better for
the adversary not to change it to a negative value. Similarly
if the email under attack comes from a bank then adding
sentences from a cooking recipe as part of the perturbation
might reveal that something is wrong. This family of attacks
can be captured by additional constraints so as to form
perturbed data that look more realistic in the particular
context.

In our work we focused on perturbation mechanisms that
add information. In a different setup the adversary might
choose to remove existing information or transform small
pieces of data to something equivalent, e.g., in the case of
emails, phrases that have the same meaning.

From the defender’s perspective a new framework should
be devised in order to mitigate perturbation attacks. The
attacks proposed in this paper exploit the fact that the
common random input rcmn of Definition 2.2 is known to all
the parties before the protocol begins. The goal of the next
Section is to propose a new architecture that allows secure
sketching without revealing the common random input to
the participating users.

5. Server-Aided Approximation

In this Section we reframe the architecture of secure
sketching protocols so that we can 1) still use the well-
studied sketching techniques based on the common random

input rcmn, and 2) eliminate the possibility of an offline
perturbation attack. In our proposed server-aided design we
introduce a new semi-honest entity, i.e., the server S, that
has exclusive access to the common random input rcmn and
assists in the sketching protocols. Compared to previous
approaches, the main difference of our design is that a
client does not have direct access to the common random
input. The sketching function that was previously a local
computation (as described in Section 3), is replaced by a
two-party protocol denoted as Sketching between the server
and the client. We capture the new functionality as follows:

Functionality FS-approx

• Input: Party CA provides vA, party CB provides
vB , party S provides rcmn.

• Output: All three parties receive d̂(vA, vB).

Notice that in case client CA (similarly for client CB)
observes the values of σA, then it is possible for the CA to
infer rcmn, which is an attack that defeats the purpose of the
server-aided model. For example, consider the case where
rcmn is used to sample k-independent hash functions and the
values of σA consists of the evaluations of the above hash
functions. An adversary that observes the hash values can
easily infer the coefficients of the hash function by solving a
system of equations [35]. In our design, protocol Sketching
is executed between a client and the server and it returns the
encrypted sketch σA to CA so as to avoid the above type
of attacks.

The real model. Let Π be a three-party protocol comput-
ing the functionality FS-approx. For ease of exposition we con-
sider the execution of Π in the presence of an adversary A as
being coordinated by a nonuniform environment Z = {Zλ},
much like [14], [37]. In the beginning Z gives input (1λ, vA)
to CA, input (1λ, vB) to CB , and gives z and X to A ,
where z denotes an auxiliary input and X ∈ {CA, CB , S}
is the corrupted party. At this point the parties interact with
each honest party behaving as instructed by Π. At the end
of the protocol, adversary A gives to Z an output which is
an arbitrary function of A ’s view. Additionally, Z gets the
output of the honest parties. Finally, environment Z outputs
a bit. We denote as REALΠ,A,Z(λ) the random variable that
represents the value of this bit.

The ideal model. In this model there is a trusted party
that computes FS-approx on behalf of the parties. Similar to
the real model, environment Z gives inputs (1λ, vA) and
(1λ, vB) to parties CA and CB , respectively; it also gives
gives z and X to A′ where X ∈ {CA, CB , S} indicates
the corrupted party. All the parties send their input to the
trusted party. The trusted party computes FS-approx and sends
d̂(vA, vB) to all the parties. In the next step A′ outputs to Z
an arbitrary function of the view of A′. The honest parties
also give their output to Z . As a final step Z outputs a
bit. We denote as IDEALΠ,A′,Z(λ) the random variable that
represents the value of this bit.

Definition 5.1. Let Π be a three-party protocol for comput-



Protocol C-Input S-Input C-Output S-Output Summary
PrvComparison∗ a b - [t] [t=1] if a < b, [0] otherwise
EncComparison∗ SK

(C)
P , SK

(C)
GM , l [a], [b], l t - t=1 if a < b, 0 otherwise

EncComparison2∗ SK
(C)
P , SK

(C)
GM , l [a], [b], l - |t| |t = 1| if a < b, |0| otherwise

ChangePartyEnc∗ SK
(C)
GM SK

(S)
GM , |b| |b| - Encrypts |b| under SK(S)

GM

kIndHashing SK
(C)
P , x, k, p {ai}k−1

i=0 , p - [h] [(
∑k−1
i=0 aix

i) mod p]

EncHashing∗ SK
(C)
P , k, p [x], {ai}k−1

i=0 , p - [h] [(
∑k−1
i=0 aix

i) mod p]

FindMin SK
(C)
GM , SK

(C)
P , l {[yi]}ni=1, l - [min] [mini yi]

UpdateOddSketch SK
(C)
GM , SK

(C)
P , SK

(C)
DGK , u, k [x], {ai}k−1

i=0 , u, (|skt0|, . . . , |sktu−1|) - (|skt′0|, . . . , |skt′u−1|) Update odd sketch with x

Sketching-Cosine ~v, SK
(C)
P , SK

(C)
GM {~wi}κi=1, SK

(S)
GM (|σ1|, . . . , |σκ|) - Encr. cosine signature

Sketching-Odd S, k, u, SK
(C)
GM , SK

(C)
P , SK

(C)
DGK {hmini }κi=1, hodd, p, SK

(S)
P , SK

(S)
GM (|σ1|, . . . , |σκ|) - Encr. odd-minhash signature

TABLE 3. AN OVERVIEW OF THE PROTOCOLS. FOR BREVITY WE ASSUME THAT THE PUBLIC KEYS OF THE SERVER PK
(S)
P , PK

(S)
GM AND THE

CLIENT PK
(C)
P , PK

(C)
GM , PK

(C)
DGK ARE PUBLICLY AVAILABLE AND THUS NOT PASSED AS AN INPUT TO THE PROTOCOLS.

ing FS-approx functionality. We say that Π securely computes
FS-approx in the presence of semi-honest adversaries corrupt-
ing one party if for any PPT semi-honest adversary A there
exists a PPT semi-honest adversary A′ such that, for every
polynomial size circuit family Z = {Zλ} corrupting at most
one party, the following is negligible:

|Pr[REALΠ,A,Z(λ) = 1]− Pr[IDEALΠ,A′,Z(λ) = 1]|.

Notice that if the adversary were to corrupt both a client
and the server then she would have access to the common
random input, and thus become capable of mounting a per-
turbation attack. We note here that the server-aided approach
has been successfully deployed [38], [39] in various other
problems. The proposed perturbation attacks of the previous
Section are based on the fact that all clients have offline
and direct access to the common random input rcmn. Under
our server-aided design an adversary can only attempt an
online attack, hoping to infer the rcmn from the value of
d̂(·), by performing a series of Sketching and Reconstruct
executions. Using rate-limiting techniques (e.g., [39]) one
can mitigate such an online attack. This scenario, however,
is beyond the scope of this paper.

Composition of Building Blocks. We define separate
building blocks that can be combined and the proof of
security for the overall construction can be derived us-
ing modular composition [13]. The model is called hybrid
model with ideal access to functions f1, . . . , fm or simply
(f1, . . . , fm)-hybrid model . In the real life experiment we
assume the existence of an incorruptible trusted party T
for evaluating f1, . . . , fm; all parties hand their input to T
and they receive the corresponding output. As a next step,
the ideal evaluation of f at each step is replaced with the
invocation of a protocol—we refer the reader to [13] for a
detailed exposition. In case the function returns an encrypted
output, a party passes a public key as an input and we
assume that the necessary encryption algorithm is hardwired
to the corresponding function. Table 3 summarizes all the
two-party protocols, which in our case are executed between
the server and the client. Using the above building blocks we
construct a secure two-party analogue for minhashing (via
odd sketches) and cosine skething. Due to lack of space,
protocols that are marked with ∗ (simple modification of
already proposed protocols [4], [10], [61] or new protocols)
can be found in the Appendix of this work.

5.1. Building Blocks

k-Independent Hashing over Encrypted Data. The
functionality of FkIndHash is as follows. The input of the
server is the set of parameters of a k-independent hash
function—i.e., the coefficients {ai}k−1

i=0 and the prime p of
a (k − 1) degree polynomial on Zp. The client has the
input x which is used to evaluate the polynomial on Zp.
The degree of the polynomial as well as the modulo p are
considered to be known to both parties. At the end of the
protocol the server receives the evaluation of the polynomial
a0 + a1x + . . . + ak−1x

k−1 mod p that is encrypted with
the client’s public key. We do not use a private polynomial
evaluation technique due to the fact that we require the
output to be encrypted. The server should not learn any
information about the client’s input x and the client should
not learn any information about the coefficients {ai}k−1

i=0 of
the polynomial. A more thorough exposition of the protocol
is provided in the Appendix of this work.

Lemma 5.1. Protocol kIndHash correctly and securely
computes FkIndHash in the (FPrvComp)-hybrid model.

Update Encrypted Odd Sketch. The functionality of
FUpdateOddSketch is as follows. The input of the server consists
of i) the bits of an odd sketch (skt0, . . . , sktu−1) encrypted
with the client’s public key, ii) the parameters of the (k−1)-
degree polynomial that is used as the hash function hodd,
and iii) the input x of the polynomial encrypted with client’s
public key. The input of the client is the set of secret keys.
At the end of the protocol the server receives an updated
odd sketch where the bit in location hodd(x) of the sketch
is flipped, while the client receives no output. The server
and the client should not learn which bit of the odd sketch
is flipped or the input x of the polynomial. One novel idea
of our design is the use of DGK with message space Zu,
where u is also the length of the sketch, so as to securely
translate the hash value into a bit-mask, and eventually apply
the mask to the original sketch. A thorough overview of the
protocol is provided in the Appendix of this work.

Lemma 5.2. Protocol UpdateOddSketch correctly and
securely computes FUpdateOddSketch in the (FEncHashing,
FChangeEnc)-hybrid model.

Find Minimum over Encrypted Values The function-



Protocol kIndHash:
Client: SK(C)

P , x, k, p Server: {ai}k−1
i=0 , p

(1) ∀i = 1, . . . , k − 1, [xi] := E(PK
(C)
P , xi)

[x],...,[xk−1]−−−−−−−−→ (2) Pick random r ∈ (0, 2l+λ) ∩ Z, [r] := E(PK
(C)
P , r)

(4) h′ = D(SK
(C)
P , [h′])

[h′]←−− (3) [h′] := [r] · [a0] ·
∏k−1
i=1 [xi]ai mod N2

(5) d = h′ mod p (6) c = r mod p

PrvComp
(
d,c
)

←−−−−−−−→ (7) Receive [t] such that t = 1 if d < c

(8) [d] := E(PK
(C)
P , d)

[d]−→ (9) Output [h] = [d] · ([c])−1 · [t]p mod N2

Protocol UpdateOddSketch:
Client: SK(C)

GM , SK
(C)
P , SK

(C)
DGK , u, k Server: [x], {ai}k−1

i=0 , u, (|skt0|, . . . , |sktu−1|)
EncHashing

(
(SK

(C)
P ,k),([x],{ai}k−1

i=0 ,u)
)

←−−−−−−−−−−−−−−−−−−−−−−−−→ (1) Receive [h]

ChangeEnc
(

(SK
(C)
P ,SK

(C)
DGK ,k),([h])

)
←−−−−−−−−−−−−−−−−−−−−−−→ (2) Receive 〈h〉

(4) h′ = D(SK
(C)
DGK , 〈h′〉)

〈h′〉←−− (3) Pick random r ∈ Zu , 〈r〉 := E(PK
(C)
DGK , r) , 〈h′〉 := 〈r〉 · 〈h〉 mod N2

(5) ∀i = 0, . . . , u− 1, |mski| :=

{
E(PK

(C)
GM , 0), i 6= h′

E(PK
(C)
GM , 1), i = h′

|msk0|,...,|msku−1|−−−−−−−−−−−−→ (6) ∀i = 0, . . . , u− 1, |skt′i| :=

{
|skti| · |mskr+i|, i < u− r
|skti| · |mski−u+r|, i ≥ u− r

(7) Output (|skt′0|, . . . , |skt′u−1|)

Protocol FindMin:
Client: SK(C)

GM , SK
(C)
P , l Server: {[yi]}ni=1, l

(1) Pick a rand. permutation π over {1, . . . , n}
(2) [min] := [yπ(1)]

for i = 2 to n do

(3) Receive bit ti s.t. ti = 1 if min < yπ(i)

EncComp
(
(SKP , SKGM , l), ([min], [yπ(i)], l)

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(4) Pick random ri, si ∈ (0, 2l+λ) ∩ Z
[bi],[ci]←−−−− (5) [bi] := [min] · [ri] mod N2 , [ci] := [yπ(i)] · [si] mod N2

if ti is 1 then
(6a) [ci] := Refresh([bi])

else
(6b) [ci] := Refresh([ci])

end if
[ci],[ti]−−−−→ (7) [min] := [ci] · ([ti] · [−1])si · [ti]−ri mod N2

end for
(8) Output [min]

Figure 4. Two-party protocols between a client and the server that are used as building blocks for Sketching.

ality of FFindMin is as follows. The input of the server is
values y1, . . . , yn that are encrypted with the public key of
the client. The client’s input is its secret key. At the end
of the protocol the server’s output is the minimum value
of the set {y1, . . . , yn} which is encrypted with the client’s
public key. The server should learn neither which of the orig-
inal ciphertexts correspond to the minimum value, nor any
information about the underlying values of the plaintexts.
The client should not learn the values of the underlying
plaintexts. Our protocol is following the footsteps of the
argmax protocol presented in [10].

Lemma 5.3. Protocol FindMin correctly and securely com-
putes FFindMin in the (FEncComp)-hybrid model.

5.2. Protocols for the Server-Aided Model

Approximating Jaccard Distance via Odd Sketches
We employ the protocols of the previous subsection as
building blocks to securely approximate Jaccard distance
using the construction by Mitzenmacher et al. [47]. As
denoted in Figure 6, the input of the server consists of the
set of κ minhash functions {hmini }κi=1, the hash function

for the creation of the odd sketch hodd, as well as the
corresponding secret keys. Recall that {hmini }κi=1 and hodd
are generated using the common randomness rcmn that can
only be accessed by the server. The input of the client
consists of her data (represented by the set of elements
{ej}nj=1), as well as the publicly known moduli p, u, and
the secret keys. At the end of the protocol the client receives
the odd sketch encrypted with the server’s public key.

Lemma 5.4. Protocol SketchingOdd correctly and se-
curely computes FSketchingOdd in the (FkIndHashing, FFindMin,
FUpdateOddSketch, FChangePartyEnc)-hybrid model.

Approximating Cosine Distance via Cosine Sketching
We approximate cosine distance as follows. The input of the
server consists of the vectors ~wi, that are sampled uniformly
at random from the n-dimensional unit hypersphere. The
input of the client consists of her data which is represented
by the vector ~v. Note that vectors ~wi are generated using
the common randomness rcmn that can only be accessed by
the server. At the end of the protocol the client receives the
cosine sketch encrypted with the server’s public key.

Lemma 5.5. Protocol SketchingCosine correctly and
securely computes FSketchingCosine in the (FEncComparison2,



Protocol SketchingOdd:
Client: {ej}nj=1, k, u, SK

(C)
GM , SK

(C)
P , SK

(C)
DGK Server: {hmini = (a0, . . . , ak)}κi=1, hodd, p, SK

(S)
P , SK

(S)
GM

(1) ∀y = 0, . . . , u− 1, |skty| := E(PK
(C)
GM , 0)

for i = 1 to κ do
for j = 1 to n do

kIndHash
(

(SK
(C)
P ,ej ,k),(hmini ,p)

)
←−−−−−−−−−−−−−−−−−−−−→ (2) Receive [h′ij ]

end for
FindMin

(
(SK

(C)
GM ,SK

(C)
P ,l),({[h′ij ]}

n
j=1,l)

)
←−−−−−−−−−−−−−−−−−−−−−−−−−→ (3) Receive [mini]

UpdateOddSketch
(

(SK
(C)
GM ,SK

(C)
P ,SK

(C)
DGK ,u,k),([mini],hodd,(|skt0|,...,|sktu−1|))

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (4) (|skt0|, . . . , |sktu−1|)

end for

(5) Output encrypted sketch (|σ1|, . . . , |σκ|)
ChangePartyEnc

(
(SK

(C)
GM ),(SK

(S)
GM ,(|skt0|,...,|sktu−1|))

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Protocol SketchingCosine:
Client: ~v = (v1, . . . , vn), SK

(C)
P , SK

(C)
GM Server: {~wi}κi=1, SK

(S)
GM

(1) ∀j = 1, . . . , n, [vi] := E(PK
(C)
P , vj)

[v1],...,[vn]−−−−−−−→
for i = 1 to κ

(2) [d1] := Πn
j=1[vj ]

wij mod N2

(3) [d0] := E(PK
(C)
P , 0)

EncComparison2
(

(SK
(C)
P ,SK

(C)
QR ,l),([d1],[d0],l)

)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ (4) Receive |ti| s.t. ti = 1 if d1 < d0

(5) Receive |σi| := |ti| encrypted under PK(S)
GM

ChangePartyEnc
(

(SK
(C)
GM ),(SK

(S)
GM ,|ti|)

)
←−−−−−−−−−−−−−−−−−−−−−−−−→

end for
(6) Output encrypted sketch (|σ1|, . . . , |σκ|)

Figure 5. The sketching protocols between the server and the client for the server-aided model.

FChangePartyEnc)-hybrid model.

Protocol Reconstruct:
ClientA: | ~σA| ClientB : | ~σB | Server: SK(S)

GM
| ~σa|−−→ (1) Receive sketch | ~σA|

(2) ∀i ∈ {0, . . . , κ− 1}, |σ′i| = |σAi | · |σBi |
(3) Pick a rand. perm.
π over {0, . . . , κ− 1}

(4) Permute |~σ′| w.r.t. π
|~σ′|−−→ (5) Decrypt all | ~σ′π(i)|

(6) c←Count 1s in σ′

(9) Output c/κ c←− (8) Output c/κ c←− (7) Output c/κ

Figure 6. The reconstruction of SketchingCosine between the server and
the clients. The reconstruction for SketchingOdd is the same for steps
(1)-(6); steps (7), (8) follow the reconstruction of Equation (3).

Reconstruct Protocol The power of the sketching tech-
niques that we chose for approximating Jaccard distance
and cosine distance lies in the fact that their reconstruction
function is simple and efficient. Both techniques follow
the same reconstruction process which essentially performs
an exclusive-or operation between the two sketches, and
then counts the number of 1 values (see Equations (3) and
(5)). Taking advantage of the homomorphic properties of
the Goldwasser-Micali cryptosystem we build very efficient
Reconstruct protocols.

Lemma 5.6. Protocol Reconstruct is correct and secure
in the semi-honest model.

On the Choice of Building Blocks. Since our protocols
follow a modular design, one can substitute the proposed
building blocks with protocols that follow other MPC tech-
niques so as to further optimize the performance of our
constructions. The work presented in this paper is meant to
present to principles of this modular design and is not repre-
sentative of a highly-optimized implementation. According

to the work of Bost et al. [10], comparison protocols that
utilize specialized homomorphic cryptosystems [26], [61]
are more efficient when the input is encrypted. Thus, our
implementation invokes variations of the above protocols,
namely EncComp and EncComp2. For the comparison
protocol on unencrypted inputs, Bost et al. [10] denote that
a garbled circuit approach [6] results in a more efficient im-
plementation. In our implementation we followed the work
of Veugen [61], and therefore one can further speedup our
implementation by invoking a garbled circuit design instead.
We note that well-known protocols that are purely based on
garbled circuits for functionality such as FindMin can not
be deployed because the input of the FindMin is a set of
encrypted inputs (see Table 3). A similar argument holds
for the output of kIndHashing which is encrypted. Thus,
to the best of our knowledge, the most promising speedup
opportunity would be opting for garbled circuit designs for
the simplest building blocks, such as comparison.

6. Evaluation

Implementation Setup We implemented the proposed
protocols in C++ using existing libraries as well as newly
implemented building blocks. For serializing the commu-
nication between the server and client we use Protocol
Buffers [34]. All the arithmetic operations are performed
with the gmp multiple precision library [24]. We use the
Advanced Crypto Software Collection [7] implementation
of the Paillier cryptosystem, and an open-source implemen-
tation of the GM cryptosystem. We implemented the DGK
cryptosystem in C++ following the design principles of [7]
and the directions of the original work [20], [21].
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Figure 7. Subfigure (a): Time performance for varied set size of the SketchingOdd protocol. Time averaged for a single minhash over five runs. Subfigure
(b): Time performance for varied number of vector dimensions of the SketchingCosine protocol. Time averaged for a single random projection over five
runs.

For the minhashing via odd sketching protocols we
choose the security parameter λ = 100. Given the scale
of our experiments the k-independent hashing setup is the
following: we choose k = 4 and a prime p that is at least
an order of magnitude larger than the size of the set—
i.e., p ≥ 10n. As explained in the description of protocol
UpdateOddSketch, prime u of the DGK cryptosystem is
set to have the same value as the length of the odd sketch.
As it is also noted in [10] the parameterization of Paillier
has to be such that the homomorphic operations do not
overflow the message space. To accomplish this instantiation
we analyze the two phases of the protocol. The first phase is
the kIndHashing computation; let l′ be the maximum bit-
length of the inputs x. In step (1) of protocol kIndHashing
involves (k− 1) exponentiations among which the plaintext
xk−1 can have the maximum length of l′max = (k − 1)l′

bits. Step (3) of protocol kIndHashing involves (k − 1)
multiplications and (k+ 1) additions of numbers that are at
most l′max bits long. Therefore it is sufficient for N to be
such that logN ≥ (k2− k− 2)(l′/2) + 2 + λ. After the ex-
ecution of kIndHashing the numbers involved in protocols
PrvComparison and EncComparison are log p bits long,
since they are hash values. Thus protocols PrvComparison
and EncComparison operate on integers that are at most
l = log p bits long. Consequently, it is sufficient for N to
be such that logN > log p + λ + 1. We satisfy the above
inequalities by choosing logN ≥ 1024.

Regarding the protocols for cosine sketching, we also
choose a security parameter λ = 100. Recall that vectors
~wi = (wi1, . . . , win) are sampled uniformly at random
from the n-dimensional hypersphere, so each value wij is
a real number. We can transform the above real numbers
to integers by multiplying with a constant K and rounding,
allowing us to interpret wij as part of Paillier’s message
space. The purpose of the random projection is to compute
the sign of the inner product thus one can choose a relatively
small K. In our implementation we choose K = 1000. Sim-
ilarly to the previous instantiation, the parameterization of
Paillier should not overflow by the homomorphic operations

of the encrypted inner product that is performed in step
(2) of protocol Sketching-Cosine. Let l be the maximum
length in bits of the entries in ~v. Then step (2) of protocol
Sketching-Cosine involves the multiplication of a logK bit
long integer with an l bit long integer. Thus, it is sufficient
for N to be such that logN ≥ logK+ l+n. Finally, in our
implementation, both GM and DGK have moduli that are
at least 1024 bits long. The implementation of the protocols
and the serialization of the server is around 1400 lines, while
the code for the client is around 1100 lines, measured using
cloc tool.

Performance. We evaluate the scalability of the server-
aided design based on the described implementation setup.
In Figure 7 we present the recorded computation time for
the sketching protocols.

Protocol n
100 250 500 1000

Sketch-Odd 1112 KB 2930 KB 6218 KB 13201 KB
Sketch-ShimHash 69 KB 165 KB 324 KB 644 KB

TABLE 4. COMMUNICATION OVERHEAD OF SKETCHING. AVERAGE
OVER FIVE RUNS.

The client and server have similar time performance
for the SketchingOdd protocol. This is mostly due to
the fact that both parties are subject to a slowdown by
a similar number of encrypt/decrypt operations. The time
performance presented in Figure 7-(a) is for a a single
minhash value (i.e., κ = 1), and an odd sketch of 151 bits
(i.e., u = 151). Note that the computational overhead scales
linearly with κ: for κ > 1 we have the same computational
overhead as the one depicted in Figure 7-(a), only κ times
larger. Notice, however, that the computation for each of
the κ dimensions of the sketch is independent of each other,
thus the overall task is parallelizable. On the other, hand the
computational overhead of the client in protocol Sketch-
ingCosine is significantly higher than the one of the server.
This is mainly caused by the encryption of each dimension
of ~v, which translates to a large number of exponentiations
taking place in step (1) of the protocol. Furthermore, the
performance of the server (time) is measured when we have
a single random projection, i.e., κ = 1, thus steps (2)-(4)
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Figure 8. Throughput of the server Reconstruct protocol for varied sketch
sizes. Average values over five runs.

of SketchingCosine are repeated only once. Similar to the
case of SketchingOdd, for κ > 1 the overall task is highly
parallelizable into κ tasks. The communication overhead of
the sketching protocols for various values of n is depicted
in Table 4.

In our design we prioritize the speedup the reconstruc-
tion protocol, since it is the protocol that is executed mul-
tiple times throughout the lifetime of the system—once for
every pairwise approximation. On the contrary, the sketching
protocol is invoked only once for every high-dimensional
data point, so as to create the sketch. Thus, using odd
sketches (rather than regular minhashing) introduced, in-
deed, some overhead in the overall sketching protocol but
resulted in a fast and more scalable reconstruction proto-
col. Generally, the reconstruction protocol from the server’s
perspective is the same, regardless of whether we are ap-
proximating Jaccard or cosine similarity, since the only task
performed by the server is to decrypt κ ciphertexts encrypted
under GM. The end result is a rather scalable performance
illustrated in Figure 8.

7. Conclusion

In this paper we introduced the notion of perturbation
attacks for secure similarity approximation protocols. We
proposed concrete perturbation attacks for the well-studied
minhash and cosine sketching techniques, and measured the
performance and scalability of the attacks on both real and
synthetic data, using various parameters.

Subsequently, we formally defined a server-aided model
that mitigates the aforementioned attacks. We also proposed
new sketching protocols for this new architecture, building
upon state-of-the-art sketching techniques. Our design and
implementation aimed at speeding up the reconstruction
protocols, as they constitute the part of the overall computa-
tion that is executed most frequently—thus having the most
severe impact on overall performance. We evaluated the
implementation of the proposed protocols and demonstrated
that this architecture achieves the desired scalability for the
reconstruction process, with reasonable performance.
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8. Appendix

8.1. Perturbation Attack Proof

8.1.1. Proof of Theorem 4.1. If we augment set S with
an element zi picked uniformly at random from the set [m]
of available elements, we get Pr

(
min{π(j)(S ∪ {z})} =

π(j)(z)
)

= 1/(|S|+1) = 1/(s+1) where j ∈ [k] and i ∈ [t].
Therefore we sample t elements zi in total and we test if the
sample has smaller value than the current minimum, under
the j-th permutation π(j). Let Z(j)

i be a random variable
where i ∈ [t] and j ∈ [k]. Random variable Z

(j)
i takes

value 1 if for the i-th sample zi /∈ S holds π(j)(zi) <

min{π(j)(S)} and zero otherwise. The probability that Z(j)
i

takes value 1 is:

Pr(Z
(j)
i = 1) = Pr(min{π(j)(S∪{zi})} = π(j)(zi)

)
=

1

s+ 1

Let t be the number of distinct samples that we draw,
then by Z(j) we denote the random variable such that
Z(j) =

∑t
i=1 Z

(j)
i for the chosen t. Notice that since π(j)

is a permutation if t samples from [m] are distinct, then
their corresponding outputs with respect to the permutation
function are distinct; this is a part that we revisit in the
proof. The probability that Z(j) = 0 means that none of the
sampled elements is smaller than the current minimum of
S according to π(j). Given this probability we can compute
the probability that at least one of the sampled elements
elements is smaller than min{π(j)(S)}.

We use the following expression of the Chernoff
bound [48]:

Pr(Y ≤ (1− δ)µ) ≤ e−µδ
2/2. (6)

Let t = 2c(s+ 1) ln2(s) be the number of distinct samples
that we draw and define δ as δ = 1√

ln(s)
. Then the mean

of Z(j) is E[Z(j)] = 2c(s+ 1) ln2(s) 1
(s+1) = 2c ln2(s) and

from (6) we have:

Pr
(
Z(j) ≤ (1−δ)µ

)
= Pr

(
Z(j) ≤ (1− 1√

ln(s)
)2c ln2(s)

)
= Pr

(
Z(j) ≤

√
ln(s)− 1√

ln(s)
2c
√

ln(s)

√
ln3(s)

)
= Pr(Z(j) ≤ 2c(

√
ln(s)− 1) ln3/2(s))

≤ e
−(2c ln2(s))( 1√

ln(s)
)2 1

2 = e−c ln(s) =
1

sc
.

Also notice that for s > 3 we have 2c(
√

ln(s) −
1) ln3/2(s) > 0, therefore Pr(Z(j) = 0) ≤ Pr(Z(j) ≤
2c(
√

ln(s) − 1) ln3/2(s)). Thus, we have Pr(Z(j) ≥ 1) =
1 − Pr(Z(j) = 0) ≥ 1 − 1

sc . The above event is based
on the premise that we have t = 2c(s + 1) ln2(s) distinct
elements zi that are not in set S, which give t distinct
outputs with respect to π(j). For efficiency reasons though,

we use a hash function h(j) instead of a permutation π(j),
thus the elements zi for i ∈ [t] do not necessarily give
distinct outputs with respect to h(j).

Formally, let h(j) : [m] → R be a hash function with
domain [m] and range R for which |R| = n. The attacker
has to choose an input xi from [m] and as a second step
compute h(j)(xi) ∈ R in order to get an element from R.

This brings up the question, how many elements do we
need to sample from [m] in order to get t = 2c(s+1) ln2(s)
distinct elements from R that do not belong to set S? We
answer the above question using a balls-and-bins argument
on a given hash function h(j). The cardinality of R, that
is |R| = n, represents the number of available bins. The
number of samples that we draw, that is t′, represents the
number of balls that we throw. We define as B(j)

S the set of
bins that contain a ball of the set S with respect to h(j). Let
t′ ≥ t be the number of balls that we throw, we compute
the probability that t out of the total t′ balls land in distinct
bins and those bins do not belong to B(j)

S .
Notice that the cardinality of B(j)

S can be at most s,
therefore we compute the probability of landing t balls
in distinct bins among the available n − s bins. Let X(j)

q

be the random variable that takes value 1 if the q-th ball
lands in a bin that is empty where q ∈ [t′]; takes value 0
otherwise. Then the probability that X(j)

q takes value 1 is
Pr(X

(j)
q = 1) = n−s−(q−1)

n ≥ n−s−(t′−1)
n . For simplicity

we approximate Pr(X
(j)
q = 1) with the value n−s−(t′−1)

n
which is a tight lower bound on the probability that the q-th
ball lands in an empty bin.

Let X(j) be the random variable that counts how many
balls landed in an empty bin, then X(j) =

∑t′

q=1X
(j)
q .

Let t′ take the value t′ = t ln(s), then we have X(j) =∑t ln(s)
q=1 X

(j)
q and its expectation is:

E[X(j)] = E[

t ln(s)∑
q=1

X(j)
q ] =

t ln(s)∑
q=1

E[X(j)
q ]

= t ln(s)
n− s− t ln(s)

n
= t ln(s)− st ln(s)

n
− t2 ln2(s)

n
.

Random variables X
(j)
q for q ∈ [t′] are clearly de-

pendent, therefore we can not use the Chernoff bound of
equation (6). We continue the analysis using the Poisson
approximation technique [48] so we can work with in-
dependent random variables instead. Thus we define ran-
dom variable Y

(j)
q with parameter n−s−(t′−1)

n and form
their sum as Y (j) =

∑t′

q=1 Y
(j)
q that has expectation

µ = t ln(s)− st ln(s)
n − t2 ln2(s)

n . Given the sum of t′ Poisson
random variables Y (j), we are interested in bounding the
probability that more than t out of the t′ have value 1. In
case t < µ we can use the following Chernoff bound for
the sum of independent Poisson random variables Y (j):

Pr(Y (j) ≤ t) ≤ e−µ(eµ)t

tt



If inequality t′ < µ holds then, the following lower
bound on n should also hold:

t < µ⇒ t < t ln(s)− st ln(s)

n
− t2 ln2(s)

n

⇒ n >
s ln(s) + t ln2(s)

ln(s)− 1
> s+ t ln(s). (7)

Thus assumption 1 is (A1) n > s + t ln(s). Using the
above Chernoff bounds we have:

Pr(Y (j) ≤ t) ≤ e−µ(eµ)t

tt
= e−t ln(s)+

ts ln(s)
n +

t2 ln2(s)
n et(

µ

t
)t

= s−ts
ts
n s

t2 ln(s)
n s2c(s+1) ln(s)(

µ

t
)t

= s−ts
ts
n s

t2 ln(s)
n s2c(s+1) ln(s)(t ln(s)−st ln(s)

n
− t

2 ln2(s)

n
)tt−t

≤ s−ts tsn s
t2 ln(s)
n s2c(s+1) ln(s)(ln(s))t

= (s
s+t ln(s)

n +
2c(s+1) ln(s)

t −1 ln(s))t.

We further assume that n > (s+ t ln(s)) ln(s) which is
stronger than (A1), so we have

(A2) n > (s+t ln(s)) ln(s)⇒ n > (s ln(s)+2c(s+1) ln4(s))

. We also use the fact that t = 2c(s+ 1) ln2(s) in order to
get the following expression:

≤ (s
1

ln(n)
+ 1

ln(s)
−1 ln(s))t = (s

1
ln(n)

+ 1
ln(s)
−1slogs(ln(s)))t

= (s
1

ln(n)
+ 1

ln(s)
−1s

ln(ln(s))
ln(s) )t = (s

2+ln(ln(s))
ln(n)

−1)t

= (s
2+ln(ln(s))

ln(n)
2c(s+1) ln2(s)−2c(s+1) ln2(s))

= (s(2+ln(ln(s)))2c(s+1) ln(s)−2c(s+1) ln2(s))

= (s−(2+ln(ln(s)))2c(s+1) ln(s)+2c(s+1) ln2(s))−1

=
1

s2c(s+1) ln(s)
(

ln(s)−(2+ln(ln(s)))
) ≤ 1

s4c

, where we assumed that (s + 1) ln(s)
(

ln(s) − (2 +
ln(ln(s)))

)
> 2 which is true for s > 24.

Switching from the poisson approximation to the exact
case (Corollary 5.9)

Pr(Y (j) ≤ t) ≤ 1

s4c
⇒

Pr(X(j) ≤ t) ≤ e
√
m

1

s4c
=
e
√

2c(s+ 1) ln3(s)

s4c

<
e2c1/2s1/2 ln3/2(s)

s4c
<

6c1/2

s2c
.

Thus we have that

Pr(X(j) = 0) ≤ Pr(X(j) ≤ t)⇒

Pr(X(j) ≥ 1) = 1−Pr(X(j) = 0) ≥ 1−Pr(X(j) ≤ t) = 1−6c1/2

s2c

, where we assume that t ≥ 0.
We define as Q the random variable that takes value 1 if

the output set S+ of the algorithm builds a signature σ(S+)
that is dissimilar to the signature σ(S) of the input set and
takes value 0 otherwise.

Pr(Q = 1) ≥ Pr(Q = 1|
⋂

1≤j≤κ

X(j) ≥ 1) Pr(
⋂

1≤j≤κ

X(j) ≥ 1)

= Pr(Q = 1|
⋂

1≤j≤κ

X(j) ≥ 1)(1− Pr(
⋃

1≤j≤κ

X(j) ≥ 1))

, using the union bound we get:

≥ Pr(Q = 1|
⋂

1≤j≤κ

X(j) ≥ 1)(1−
κ∑
j=1

Pr(X(j) ≥ 1))

≥ Pr(Q = 1|
⋂

1≤j≤κ

X(j) ≥ 1)(1−κ·6c
1/2

s2c
) = 1·(1−6κc1/2

s2c
)

= 1− 6κc1/2

s2c
.

8.1.2. Proof Sketch of Theorem 4.2. The objective func-
tion is maximizing the similarity, or else minimizing the
distance, between the perturbed vector ~v+ = ~v + ~x and ~v.
The final value of the objective function is denoted as ν and
is passed as an output by the attack algorithm. The linear
constraints capture the goal of the adversary to “flip” the
bits of the cosine sketch σ(~v+). Specifically, if sgn( ~wi

T~v)
is 1 then bit σi is also 1 in the original sketch. Thus the
inequality constraint

sgn( ~wi
T~v) · ( ~wiT (~v + ~x)) ≤ 0

is satisfied when ~wi
T (~v+ ~x) is less or equal to zero, which

implies that σi will be 0 in the sketch of the perturbed
vector ~v + ~x. Similarly, if sgn( ~wi

T~v) is 1 then ~wi
T (~v + ~x)

has to be greater or equal to zero in order to satisfy the
inequality constraint, implying that bit σi will be 1 in the
sketch of the perturbed vector. Thus, every solution within
the feasible region flips all the bits of the sketch and achieves
d̂cos(~v, ~v+) = 1.



8.2. Overview of Presented Protocols

Overview of kIndHash. The client encrypts and sends
the values x, . . . , xk−1 to the server. Using the homomor-
phic properties of the cryptosystem, the server computes
[
∑k−1

i=0 aix
i]. Next, the server needs to apply a modulo p

reduction which can not be performed homomorphically on
the ciphertext [

∑k−1
i=0 aix

i]. Therefore, the server blinds the
ciphertext [

∑k−1
i=0 aix

i] with r and sends the result to the
client. The client then decrypts and performs the modulo p
operation on the blinded value, thus gaining no useful in-
formation about the evaluation of the polynomial. As a next
step, the two parties privately compare the pair of values (r
mod p) and

(
(r+

∑k−1
i=0 aix

i) mod p
)
. Based on the result

of the comparison the server computes the output ciphertext
[
∑k−1

i=0 aix
i mod p]. Protocol kIndHash performs one pri-

vate comparison of two log p bits integers (i.e., an invocation
of FPrvComp), 3k + 5 homomorphic operations (e.g., expo-
nentiation, multiplications, encryptions/decryptions, subtrac-
tions), and 3 rounds of communication.

Overview of UpdateOddSketch. As a first step pro-
tocol EncHashing is invoked, which returns to the server
the hash value hodd(x) = (

∑k−1
i=0 aix

i) mod u encrypted
with the client’s public key. As a next step we change
the encryption from Paillier to DGK, since DGK embeds
reductions modulo u to its homomorphic operations (see
Section 2.4). Thus, the result of the blinding in step (3) is a
random element from the range [0, u − 1]. Then the server
sends the blinded ciphertext 〈h′〉 to the client who decrypts it
(step (4)) and prepares an encrypted bit mask for the server.
The mask is a bit string of length u where every bit has
value 0 except the bit in position h′ which has value 1.
We note here that the value of u is relatively small since it
represents the length of the succinct odd sketch. Blinding
the value h with r at step (3) has the effect of shifting the
only “1” value of the bit mask by r positions. Therefore, as
a final step, the server has to re-arrange the encrypted mask
so as to remove the effect of the blinding with r. In order
to cancel-out the effect of blinding, the server has to “pull”
the 1 value back by r positions by applying the following
transformation:

(|msk0|, . . . , |mskr−1|, |mskr|, . . . , |msku|)
 (|mskr|, . . . , |msku|, |msk0|, . . . , |mskr−1|).

The ciphertexts of the updated bit mask are multiplied
with the GM ciphertexts of the input sketch, resulting in a
homomorphic XOR operation—and, therefore, the desired
bit is flipped.

A similar blinding process with Paillier, as opposed to
DGK, would give an element r from the range [0, 2λ+l].
For a standard instantiation λ = 1024, which gives an
impractical number of ciphertexts in steps (5) and (6),
consequently making the protocol completely impracti-
cal. Protocol UpdateOddSketch invokes two protocols
(EncHashing, ChangeEnc), performs 2u+3 homomorphic
operations, and one roundtrip.

Overview of FindMin. Initially the server assigns the
first encrypted value as the current minimum [min]. Then

we compare the current minimum with the next encrypted
value using the protocol EncComp, which outputs the result
of the comparison without revealing the encrypted values to
the key holder (i.e., the client). Notice, however, that if the
server iterates through the ciphertexts in the originally given
order then the client can learn the index of the minimum
value. To overcome this the server picks a random permuta-
tion π that is applied before any pairwise comparison (step
(1)). Thus the client learns the index of the minimum value
with respect to the secret random permutation that the server
applied. After the execution of the comparison protocol the
client returns a re-encryption [ci] of the smallest among the
input values [min], [yπ(i)], so as not to reveal to the server
which of the two ciphertexts is smaller. Re-encryption (de-
noted as Refresh) can be achieved by either decrypting and
re-encrypting the ciphertext, or by using the homomorphic
properties of the cryptosystem to refresh the randomness.
Since the client can decrypt [min] and [yπ(i)], the server
blinds the ciphertexts using ri and si so as to create the
blinded ciphertexts [bi] and [ci]. In the final step we deal with
two cases. If the result of the comparison is min < yπ(i)

(i.e., ti = 1) the server subtracts the blinding ri from the
value that the client returned. Otherwise the server subtracts
si. Protocol FindMin performs n−1 encrypted comparisons
of l bit integers, 8(n−1) homomorphic operations and n−1
roundtrips.

Overview of SketchingOdd. With the building blocks
in place the sketching protocol is rather straight-forward.
First, the server initializes the odd sketch of length u by
encrypting it with the client’s public key. Then the server
computes the hash values using hmin1 by invoking kInd-
Hash in step (2), and finds the minimum hash value by
invoking FindMin in step (3). Next, the server updates the
odd sketch by invoking protocol UpdateOddSketch, using
the minhash value from the previous step as an input. The
above process is repeated for all κ hash functions in order
to compute the final sketch |σ1|, . . . , |σκ| encrypted with the
server’s key. At the end of the protocol the final sketch is
re-encrypted with the server’s public key.

Overview of SketchingCosine. The client encrypts
the value of each dimension of the input vector ~v us-
ing her Paillier public key and sends the ciphertexts to
the server. The server uses the additive homomorphism of
the cryptosystem in order to compute the encrypted inner
product ~v · ~wi in step (2). Next, the server invokes the
encrypted comparison protocol EncComparison2, in order
to compare the encrypted inner product with the ciphertext
of value 0, thus computing the sign of the inner product. If
d1 < d0, which is equivalent to ~w ·~v < 0, the output of the
comparison protocol is 0 (which agrees with Equation (5)),
otherwise the output of the comparison protocol is 1. We
highlight the fact that the result of the comparison in step
(4) is encrypted with the client’s GM key. Due to the security
properties of protocol EncComparison2, the client doesn’t
learn the result of the comparison—thus there is no need to
randomly permute d0 and d1. The above process is repeated
for all k vectors ~wi in order to compute the final cosine
sketch.



Protocol EncHashing
Client: SK(C)

P , k, p Server: [x], {ai}k−1
i=0 , p

(2) ∀i = 2, . . . , k − 1, hi = D(SK
(C)
P , [hi])

[h2],...,[hk−1]←−−−−−−−− (1) ∀i = 2, . . . , k − 1, Pick ri ∈ (0, 2l) ∩ Z, [hi] := [x]ri mod N2

(3) ∀i = 2, . . . , k − 1, [h′i] := E(PK
(C)
P , hii)

[h′2],...,[h′k−1]
−−−−−−−−→ (4) ∀i = 2, . . . , k − 1, [xi] := [h′i]

r−ii mod N2

(6) h′ = D(SK
(C)
P , [h′])

[h′]←−− (5) Pick r ∈ Zu , [h′] := [r] · [a0] · [x]a1
∏k−1
i=2 [xii]

ai mod N2

(7) d = h′ mod p (8) c = r mod p

PrvComparison
(
d,c
)

←−−−−−−−−−−−→ Receive [t] such that t = 1 if d < c

(9) [d] := E(PK
(C)
P , d)

[d]−→ (10) Output [h] = [d] · ([c])−1 · [t]p

Protocol EncComparison
Client: SK(S)

P , SK
(S)
GM , l Server: [a], [b], l

(1) [x] := [2l] · [b] · [a]−1 mod N2

(2) Pick a random r ∈ (0, 2l) ∩ Z
(4) z = D(SK

(C)
P , [z])

[z]←− (3) [z] := [x] · [r] mod N2

(5) d := z mod 2l

(6) c := r mod 2l

PrvComparison
(
d,c
)

←−−−−−−−−−−−→ Receive |t′| such that t′ = 1 if c < d

(7) |zl| ← E(PK
(C)
GM , zl)

|zl|−−→
(8) |rl| := E(PK

(C)
GM , rl)

(10) Output t = D(SK
(C)
GM , |t|)

|t|←− (9) |t| := |zl| · |rl| · |t′| · |1|

Figure 9. Protocol EncComparison is a slight modification of the comparison protocol found in [10], [61]. Protocol EncComparison2 is the same up
to step (9) where it terminates by outputting |t| to the Server.

Overview of Reconstruct. Client CA sends to client
CB the sketch σA that is encrypted with the server’s GM
key. As a next step, client CB performs a homomorphic
XOR operation between her encrypted sketch |σB | and
the received |σA| in order to create |σ′|. Then client B
applies a random permutation π to vector |σ′| so as not
to reveal to the server the positions that the two sketches
match. Next, the server receives the permuted sketch and
decrypts the κ ciphertexts using her secret key. The server
counts the number of 1s among the decrypted bits and
returns the result, denoted as c, to both clients. Finally,
using the appropriate reconstruction equation (Equation (3)
for Jaccard distance, and Equation (5) for cosine distance),
the clients output the distance approximation.

8.3. Omitted Protocols

The omitted protocols are presented in Figure 9.

8.4. Security Proofs

Our security proofs take the classic simulation based
approach for semi-honest adversaries on the hybrid model
with ideal access to functions [13] and show that a party’s
view in a protocol execution is simulatable given its input, its
output (if any), and access to a series of ideal functionalities.
On the one hand we have the hybrid world were protocols
have access to functions that are invoked by specific step of
the protocol and on the other hand we have the ideal world
where the simulator lives. Thus, the participating parties

learn nothing from the protocol’s execution beyond what can
be derived from their input. For the sake of brevity we don’t
denote the public keys, whenever there is an encryption we
indicate which public key is used.

Security of FkIndHash (Lemma 5.1)

Lemma. Protocol kIndHash correctly and securely com-
putes FkIndHash in the (FPrvComp)-hybrid model.

Let’s consider first the case where Client is corrupted,
denoted as A ; notice that Client has no output. Thus we
only need to show that a simulator can generate the view of
incoming messages received by the A .

Adversary (or simulator) A′ is given (SK
(C)
P , x, k, p)

and 1λ and works as follows:

• A′ starts by simulating A .
• A′ receives [x], . . . , [xk−1] from A .
• A′ picks a random h̃′ ∈ (0, 2l+λ)∩Z, encrypts it to

get [h′] using PK(C)
P , and sends it to A .

• A′ receives d̃ and PK(C)
P from A which are sent to

FPrvComp.
• A′ receives [d̃] from A .
• A′ outputs ⊥.

Now we show that the view of A in the simulation with
A′ is indistinguishable from its view in a hybrid execution
using a series of games.

• Game-0: Same as the hybrid execution.
• Game-1: Same as Game-0 except that h′ in step

(3) is replaced by with h̃′ ∈ (0, 2l+λ) ∩ Z. In



Game-0 h′ is the blinded value of
∏k−1
i=1 αix

i with
random r, but in this game h̃′ is picked uniformly
at random from (0, 2l+λ) ∩ Z. Thus the distribution
of h′ = r +

∏k−1
i=1 αix

i and h̃′ are computational
indistinguishable.

Thus, the view of A in the simulation with A′ is indis-
tinguishable from its view in a hybrid execution.

Let’s consider the case where Server is corrupted. Sim-
ulator A′ is given ({ai}k−1

i=0 , p), 1λ, output [h], and works
as follows:

• A′ starts by simulating A .
• A′ generates k−1 distinct encryptions of 1, namely
{[x̃i]}k−1

i=1 , and sends them to A .
• A′ receives [h′].
• A′ encrypts bit t̃ = 1 with PK(C)

P and sends [t̃] to
A .

• A′ receives c̃ from A which is sent to FPrvComp.
• A′ encrypts the bit [d̃] = 1 with PK

(C)
P and sends

it to A .
• Finally A′ outputs [h].

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.
• Game-1: Same as Game-0 except that the messages

x, . . . , xk−1 in step (1) are replaced with {x̃i}k−1
i=1

where all of them have value 1. By semantic security
of the Paillier’s cryptosystem the distribution of the
ciphertexts {[xi]}k−1

i=1 and {[x̃i]}k−1
i=1 are computa-

tionally indistinguishable.
• Game-2: Same as Game-1 except the encrypted bit

[t] returned by FPrvComp in step (7) is replaced by
the encryption of t̃ = 1. Since Server receives the
ciphertext of Paillier, the messages [t] and [t̃] are
computationally indistinguishable.

• Game-3: Same as Game-2 except the encrypted
value [d] sent to the Server in step (8) is replaced
by the encryption of d̃ = 1. As before, due to
CPA security of Paillier the messages [d] and [d̃]
are computationally indistinguishable.

Thus, the view of A in the simulation with A′ is indis-
tinguishable from its view in a hybrid execution.

Security of FFindMin (Lemma 5.3)

Lemma. Protocol FindMin correctly and securely computes
FFindMin in the (FEncComp)-hybrid model.

Let’s assume that A corrupts the Client. Adversary (or
simulator) A′ is given ((PK

(C)
P , SK

(C)
P , PK

(C)
GM , SK

(C)
GM , l)

and 1λ and works as follows:

• A′ starts by simulating A .
• A′ receives the input of A to FEncComp.
• A′ sends to the A a random bit t̃i.
• A′ picks a pair of random values b̃i and c̃i from the

range (0, 2l+λ) ∩ Z and sends their encryption with
PK

(C)
P to A .

• A′ receives the ciphertexts [ci] and [ti].

• A′ repeats the above four steps n− 1 times.
• A′ outputs ⊥.

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.
• Game-1: Same as Game-0 except that the output

bit of the ideal function FEncComp ti in step (3) is
replaced with the random bit t̃i. From the security
of FEncComp the client does not learn any information
about the values that the Server compares. Since
there is no prior information about the result of the
comparison and no inferred information from ideal
function, from Client’s perspective any output of
FEncComp is equally probable.

• Game-2: Same as Game-1 except the values bi and
si in step (4) are replaced with a pair of random
values b̃i and c̃i from the range (0, 2l+λ) ∩ Z. In
Game-1 bi is the blinded value of min with random
ri, but in this game b̃i is picked uniformly at random
from 0, 2l+λ) ∩ Z. Thus the distribution of bi and
b̃i is computationally indistinguishable. Similarly in
Game-1, ci is the blinded value of yπ(i) with random
si, but in this game c̃i is picked uniformly at random
from (0, 2l+λ) ∩ Z. Thus the distribution of ci and
c̃i is computationally indistinguishable.

Thus, the view of A in the simulation with A′ is indis-
tinguishable from its view in a hybrid execution.

Now let’s assume that A corrupts the Server. Simulator
A′ is given ({[yi]}ni=1, l), 1λ, the output [min], and works
as follows:

• A′ starts by simulating A .
• A′ receives the input of A to function FEncComp.
• A′ receives [bi] and [ci].
• A′ picks a pair of random values c̃i and t̃i from the

range (0, 2l+λ) ∩ Z and sends their encryption with
PK

(C)
P to A .

• A′ repeats the above three steps n− 1 times.
• A′ outputs [min].

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.
• Game-1: Same as Game-0 except that the transferred

ciphertexts ci and ti before step (7) are replaced
with the encryption of the random values c̃i and
t̃i with the key PK

(C)
P . From the CPA security of

the Paillier cryptosystem the distribution of [ci] and
[c̃i] is computationally indistinguishable. A similar
argument holds for the distribution of [ti] and [t̃i].

Security of FUpdateOddSketch (Lemma 5.2)

Lemma. Protocol UpdateOddSketch correctly
and securely computes FUpdateOddSketch in the
(FEncHashing,FChangeEnc)-hybrid model.

Let’s assume that A corrupts the Client. Adversary A′
is given

(PK
(C)
GM , SK

(C)
GM , PK

(C)
P , SK

(C)
P , PK

(C)
DGK , SK

(C)
DGK , u, k)



,and 1λ and works as follows:

• A′ starts by simulating A .
• A′ receives the input of A to function FEncHashing.
• A′ receives the input of A to function FChangeEnc.
• A′ picks a random value h̃′ from space Zu and sends

its DGK encryption 〈h̃′〉 with key PK(C)
DGK to A .

• A′ receives |msk0|, . . . , |msku−1| from A .
• A′ outputs ⊥.

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.
• Game-1: Same as Game-0 except that h′ of step (3)

is replaced with a random value h̃′ from space Zu.
In Game-1 h′ is the blinded value of h with random
r, but in this game h̃′ is picked uniformly at random
from Zu. Recall that in the DGK cryptosystem the
homomorphic operations are performed modulo u in
the plaintext space. Thus the distribution of h′ and
h̃′ is identical.

Let’s assume that A corrupts the Server. Simulator A′
is given

(PK
(C)
GM , PK

(C)
P , PK

(C)
DGK , [x], {αi}k−1

i=0 , u, (|skt0|, . . . , |sktu−1|))
,the output (|skt′0|, . . . , |skt′u−1|), and 1λ and works as
follows:

• A′ starts by simulating A .
• A′ receives the input of A to function FEncHashing.
• A′ receives the input of A to function FChangeEnc.
• A′ receives 〈h′〉 which is encrypted with PK

(C)
DGK

from A .
• A′ picks uniformly at random u random bits

m̃sk0, . . . , m̃sku−1. Then A′ encrypts them with
key PK(C)

GM and sends |m̃sk0|, . . . , |m̃sku−1| to A .
• A′ outputs (|skt′0|, . . . , |skt′u−1|).

The games for the security proof are the following:

• Game-0: Same as the hybrid execution.
• Game-1: Same as Game-0 except that the bits

msk0, . . . ,msku−1 of step (5) are replaced with
a random random bits m̃sk0, . . . , m̃sku−1. Notice
that server gets to see bits m̃sk0, . . . , m̃sku−1 en-
crypted using GM . From the CPA security of the
GM cryptosystem the distribution of |m̃ski| and
|mski| is computationally indistinguishable, for all
i ∈ {0, . . . , u− 1}.


