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Abstract. In CRYPTO 2011, Yasuda proposed PMAC_Plus message authentication
code based on an n-bit block cipher. Its design principle inherits the well known PMAC
parallel network with a low additional cost. PMAC_Plus is a rate-1 construction
like PMAC (i.e., one block cipher call per n-bit message block) but provides security
against all adversaries making queries altogether consisting of roughly upto 22n/3

blocks (strings of n-bits). Even though PMAC_Plus gives higher security than the
standard birthday bound security, with currently available best bound, it provides
weaker security than PMAC for certain choices of adversaries. Moreover, unlike
PMAC, PMAC_Plus operates with three independent block cipher keys. In this
paper, we propose 1k-PMAC_Plus, the first rate-1 single keyed block cipher based BBB
(Beyond Birthday Bound) secure (in standard model) deterministic MAC construction
without arbitrary field multiplications. Our construction is a simple one-key variant
of PMAC_Plus. Moreover, we show higher security guarantee than what was proved
originally for PMAC_Plus. Our proven bound shows that PMAC_Plus and 1k-
PMAC_Plus always provide higher security guarantee than what was promised by
PMAC against all types of adversaries.
Keywords: PMAC · PMAC_Plus · Beyond Birthday · Cover-free · PRF · Sum of PRPs.

1 Introduction
A Message Authentication Code (MAC) is a fundamental symmetric-key primitive that
allows a sender to authenticate messages by computing tags that can be verified by the
receiver holding a common secret key with the sender. In literature, there are several MACs
which are based on block ciphers as fundamental primitives (e.g., CBC-MAC [BKR00],
CMAC [NIS05], OMAC [IK03], GCBC [Nan09] etc). Among these, many block cipher
based MACs are specified in a large number of standardized documents including ISO
9797-1 [JTC99]. Unlike these, PMAC (Parallelizable MAC) [BR02] is a distinctive, com-
pletely parallelizable block cipher based MAC. Under parallel implementation, PMAC
outperforms CBC MACs significantly. Besides PMAC, there have been a few proposals of
parallelizable block cipher based MACs, e.g. XOR MAC [BGR95], PCS [Ber99], Light-
MAC [LPTY16] etc. There is also some improvement over PMAC which includes the
constructions PMAC1 [Rog04] and iPMAC [Sar10].

1.1 PMAC and PMAC_Plus
The main focus of this paper is around the design principle followed in PMAC and its
pseudorandom function (PRF) security analysis. Informally, prf-advantage corresponds to
the best advantage an adversary can achieve in distinguishing the concerned construction
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from a uniform random function (the ideal construction). Some known prf-advantages
for PMAC are σ2/2n [BR02], 10`q2/2n [MM07] and 5σq/2n [NM08] against all adversaries
which are allowed to make at most q queries so that (i) total number of blocks in all queries
is σ and (ii) the longest query contains at most ` blocks. Recently, Gaži et al. [GPR17]
have shown the bound 5σq/2n [NM08] is tight. These bounds [BR02, MM07, NM08] are
called birthday bounds. Yasuda in CRYPTO 2011 [Yas11], introduced a variant of
PMAC, called PMAC_Plus, which achieves prf-advantages about 27`3q3/22n. Even though
the bound is beyond birthday in `q, we cannot conclude that PMAC_Plus always achieves
higher security than PMAC as described below.

There are some choices of adversaries for which PMAC can provide better security
guarantee than PMAC_Plus. Suppose, we have n = 128 and we want to fix the prf-
advantage to be bounded by ε = 2−10. If the longest message consists of 250 blocks, then
PMAC permits about 233 queries (using the bound 5`q2/2n), whereas PMAC_Plus would
permit queries less than 231 queries (using the bound 27`3q3/22n). Fig. 1.1 provides detail
values of q for different choices of ` when the block length n is 128, 64 bits with ε = 2−10

and ε = 2−20. PMAC_Plus also does not have improved bound in terms of σ and q as we
have for PMAC [NM08]. Suppose, we have only one large query consisting of 250 blocks
and rest consisting of about 220 blocks each, then roughly 247 queries can be made for
PMAC (using the improve bound 5σq/2n). The bound given by PMAC_Plus does not give
any advantage (permits less than 231 queries as before) against such adversaries. Moreover,

(a) n = 128 (b) n = 64

Figure 1.1: log ` vs log q graph for PMAC, PMAC_Plus and 1k-PMAC_Plus construction
with ε = 2−10, 2−20. For a fixed construction the top curve is for ε = 2−10 and the bottom
one is for ε = 2−20. Observe that, for n = 128, PMAC and PMAC_Plus intersects at
` = 245.2 (248.5) for ε = 2−10 (2−20). So, for any ` beyond that, PMAC always achieves
better security than PMAC_Plus. Similarly for n = 64, the intersecting ` values are 223.82

and 227.15 resp.

PMAC_Plus operates with three independent block cipher keys unlike PMAC which needs
only one block cipher key. Author of PMAC_Plus has mentioned [Yas11] that it would be
challenging to come up with a rate-1 single keyed block cipher based deterministic MAC
with beyond birthday bound security. Similar challenges have been raised by authors of
3kf9 [ZWSW12] and EWCDM [CS16] which have beyond birthday bound security. In this
paper, we show the security bound of our proposed rate-1 single keyed block cipher based
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deterministic MAC construction 1k-PMAC_Plus, is beyond birthday secure and offers a
better security guarantee than that of PMAC_Plus.

1.2 Some Beyond Birthday Bound Constructions
Traditional schemes achieving BBB security either require the ideal cipher model [JJV02]
or require a relatively large amount of randomness (at least 3n bits for the MACRX3
construction of [BGK99]). MAC-R2 [Min10] as proposed by Minematsu in FSE 2010,
uses a random n-bit IV but it is much slower. Nonce based MAC construction (e.g.,
EWCDM [CS16]) and random IV based MAC construction (MAC-R2) are more meaningful
in the context of unforgeable security than PRF security.1 Tweakable block cipher (TBC)
based MAC constructions like PMAC2x [LN17], PMAC_TBC1K [Nai15] achieves optimal
n bit security. These constructions are also very efficient as they require roughly one
tweakable block cipher call per message block. However, we would like to mention
that block ciphers (e.g. AES [DR00], DES [oS97]) are well studied, widely standardized
and adopted primitive. In recent trend of cryptography, tweakable block ciphers (e.g.
SKINNY [BJK+16], Threefish [FLS+10]) are also getting attention parallel to block ciphers.
TBC with tweak size t bits and block size n bits potentially gives (n+ t)/2 bits of security if
the input collisions are avoided. As tweakable block cipher can be viewed as an independent
block cipher for each fixed setting of the tweak, it has overhead of processing tweak along
with key as does in TWEAKEY framework [JNP14].

1.3 Our Contributions
The main contribution of the paper is to design a rate-1 single keyed (without generating
multiple block cipher keys), block cipher based deterministic MAC construction with beyond
birthday bound security. Clearly, one can derive multiple keys used in a construction by
using some pseudorandom bit generator or using the underlying block cipher in a counter
mode. However, there is no way to avoid key scheduling algorithm for multiple key based
constructions. In this respect, 1k-PMAC_Plus, which to the best of our knowledge, is the
first rate-1 single keyed block cipher based beyond birthday bound secure deterministic
MAC construction without arbitrary2 field multiplications. We would like to mention
that our proposed construction is very similar to PMAC_Plus construction with minimal
overhead cost. The notable features of 1k-PMAC_Plus are the following:

1. Single Key. Unlike PMAC_Plus, 1k-PMAC_Plus requires single block cipher key. Both
constructions (i.e. PMAC_Plus and 1k-PMAC_Plus) require two masks and the masks can
be derived from the underlying block cipher.

2. Minimal Cost and Overhead. It is easy to see that a simple one key version (i.e.
make all the three independent block cipher keys K1,K2 and K3 as shown in Fig. 1.2,
identical) of PMAC_Plus is clearly insecure as it returns zero output for any single block
message. So, a modification on PMAC_Plus is required which ensures minimal cost and
overhead. To achieve this, we multiply the intermediate value Θold (See Fig. 1.2) by the
primitive element 2 of GF(2n). We have also observed that xoring Θold by a non zero
constant instead of multiplying it by 2, suffers from a birthday bound attack, as discussed
in Sect. 4.1. Moreover, to get rid off the analysis of some extra bad events, we additionally
introduce fix0 and fix1 function, as discussed in details in Sect. 4.

1Note that, a simple nonce based construction, on an input message M and nonce N that returns
fK(N), is a secure PRF where f is a PRF. Similar PRF construction based on random IV that ignores
message input can be defined.

2By arbitrary, we mean any field multiplication except field multiplication by the primitive element 2
of GF (2n). As a matter of fact, field multiplication by 2 involves only shift and xor operations, which is
cheap to implement in hardware
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Figure 1.2: (i) Upper construction combined with the lower left construction is PMAC_Plus;
(ii) Upper Construction combined with the lower right construction is our proposed
construction 1k-PMAC_Plus. Mi is a n bit binary string, denotes the i-th message block
and l denotes the number of message blocks. ∆0 = EK(0) and ∆1 = EK(1), where 0
is a n bit binary string consisting of all 0’s and 1 is a n bit binary string consisting of
all 0’s with lsb set to 1. ‘2’ is the primitive element of GF(2n). fix0 function takes n bit
binary string as input value and returns the same input binary string with its lsb set to 0.
Similarly, for fix1 function, lsb is set to 1.

3. Improved Security Bound. We have obtained O(qσ2/22n) PRF security bound (also
applicable to PMAC_Plus construction) for 1k-PMAC_Plus. Moreover, when all messages
are of same length then the security bound of our construction becomes O(q3`2/22n)
compared to that of O(q3`3/22n) as proved in the security bound for PMAC_Plus [Yas11].
This also ensures that 1k-PMAC_Plus always achieve higher security than PMAC (See
Fig. 1.1). We note that our proven bound for 1k-PMAC_Plus also holds for PMAC_Plus
and therefore the security bound of PMAC_Plus can be improved upon its existing security
bound.

2 Preliminaries
2.1 Symbol and Notation
We fix a positive integer n and write N = 2n. An element of B := {0, 1}n is said to be a
block which is a bit string of length n, where n denotes the block length which is typically
64 or 128 bits. Let GF(2n) be the field of order 2n. We identify bit string and finite field
element of GF(2n) by representing the string a = an−1an−2 . . . a1a0 ∈ B as polynomial
a(x) = an−1x

n−1 + an−2x
n−2 + . . .+ a1x+ a0 ∈ GF(2n) and vice versa. For a, b ∈ {0, 1}n,

we define field addition a ⊕ b as addition of the polynomials a(x) + b(x) ∈ GF(2n).
Multiplication a � b is defined with respect to the irreducible polynomial f(x) used to
represent GF(2n) as a(x) · b(x) mod f(x). Therefore, we can view B as the finite field
GF(2n) with ⊕ as field addition and � as field multiplication. {0, 1}∗ := ∪i≥0{0, 1}i
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Table 1: BC denotes block cipher calls. Rate defines the average number of message blocks
processed by a single execution of block cipher. l denotes the number of message blocks
in a mesage, q denotes the total number of queries, ` denotes the maximum number of
message blocks in all q queries and σ denotes the total number of message blocks in all q
queries.

Construction # of keys BC rate Security Bound

PMAC [BR02] 1 l + 1 1 10`q2

2n [MM07], 5σq
2n [NM08]

SUM-ECBC [Yas10] 4 2(l + 1) 1/2 40`3q3

22n

PMAC_Plus [Yas11] 3 l + 2 1 27q3`3

22n

3kf9 [ZWSW12] 3 l + 2 1 4q3`3

22n + 4q`
2n

1k-PMAC_Plus [This Paper] 1 l + 2 1 21σ
2n + 224qσ2

22n

denotes the set of all possible binary strings of arbitrary length. We write 0 and 1 to
denote the binary string 0n and 0n−1‖1 respectively. For a, b ∈ B, we write a =1 b to
denote a ∈ {b, b⊕ 1}. In other words, a =1 b gives two equalities : (i) a = b (ii) a = b⊕ 1.
For a given ordered set S we write minS and min2 S to denote the minimum and second
minimum element of S respectively.

The set of all functions from X to Y is denoted as Func(X ,Y) and the set of all
permutations over X is denoted as Perm(X ). A function f mapping an element from
arbitrary domain to B is called a block function. Similarly, a permutation over B is
called the block permutation. The set of all block functions with domain X is denoted
as FuncX and the set of all block permutations is denoted as Perm. We often write FuncX
as Func when the domain of the functions (i.e. X ) is understood from the context.

We denote a tuple x := (xi : i ∈ I) over an index set I as xI to emphasis the index
set I. We use the notation (xi)i to denote a tuple when the index set I is clear from the
context. An element xi of a tuple x could itself be a tuple (in this paper, context wise
we consider an element xi of a tuple x is a tuple of size 2, i.e. xi := (xi0, xi1) and thus in
that case we denote the tuple x as (xi0, xi1)i). A natural choice of index set that we often
use in the paper is [q] := [1..q] := {1, 2, . . . , q} for a positive integer q. A tuple (xi)i is
called a block tuple if every element of the tuple is a member of the set B. Number of
elements xi of a tuple xI is called the size of the tuple, denoted by ||xI ||. Union of two
tuples x and y is denoted by x ∪ y. Similarly, we denote the intersection of two sets X
and Y as X ∩ Y. If X ∩ Y = ∅ then we use the notation X t Y to represent the disjoint
union. An element xi is said to be fresh in a tuple x if for all j 6= i, xi 6= xj . Otherwise
we call the element to be non-fresh in tuple x. We call a pair of block tuple (x, y) to be
permutation compatible, if there exists a permutation π ∈ Perm such that π(xi) = yi

where x := (xi : i ∈ I) and y := (yi : i ∈ I).
For two integers a, b such that a ≥ b, we use the notation P(a, b) :=

∏b
i=1(a− (i− 1))

to denote the number of permutations of a distinct objects taken b at a time. For any set B,
we write B(s) = {

(
x1, . . . , xs

)
∈ Bs : ∀i 6= j, xi 6= xj}. If |B| = m then |B(s)| = P(m, s).

We denote X ←$S to mean that X is sampled uniformly at random from a finite set
S and independently to all other random variables defined so far. Similarly, we denote
X1, . . . , Xi

wor←−− S to mean that X1, . . . , Xi are sampled without replacement from a finite
set S.

2.2 Security Notion
Let A be an oracle algorithm that has access to its oracle O. It makes finitely many queries
adaptively to its oracle O and after the interaction it outputs a bit which we denote as AO(·).
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We denotes the transcript of A by the pair (x[s] :=
(
x1, . . . , xs

)
, y[s] :=

(
y1, . . . , ys

)
where

xi is the i-th query by A to oracle O and yi be the corresponding response of O.
Given an oracle adversary A, we define the prf-advantage of A against a keyed function
family F over a domain D that outputs n bits as

Advprf
F (A) := |Pr

[
AFK = 1 : K ←$K

]
− Pr[Aρ = 1; ρ←$ FuncD ] |.

Similarly, we define prp-advantage of A against a keyed function family F that output n
bits as

Advprp
F (A) := |Pr

[
AFK = 1;K ←$K

]
− Pr

[
AΠ = 1; Π←$ Perm

]
|.

In the above definition of advantage function the probabilities are defined over internal coin
tosses of A (if any) and the choice of K and ρ (or Π) depending on prf (or prp)-advantage.
Advxxx

F (q, σ, t) 3 denotes maxAAdvxxx
F (A) where xxx is either prf or prp and maximum is

taken over all adversaries A running in time t, making at most q queries with an aggregate
of total σ blocks.

2.3 Coefficients H Technique
In this section, we briefly discuss Coefficients H Technique [Pat08a] due to Patarin. Let us
consider a distinguisher A with access to an oracle O and we assume that A is deterministic.
When A interacts with O, it issues query to the oracle and obtains response from it. After
this interaction is over, A outpts a decision bit. The collection of all queries and responses
that is made to and from the oracle during the interaction of A with O, is called a
transcript of A, denoted as τA. For the sake of simplicity of analysis, we slightly modify
the experiment where we release internal information about the oracle to A only after A
completes all queries and responses but before output its decision. That is, we are making
the distinguisher A more powerful by releasing extra information about the oracle. In this
case, τA contains the additional information and clearly the distinguishing advantage of A
in the modified experiment can not be less than the distinguishing advantage of A in the
former one.
Let Xre (resp. Xid) denotes the random variable representing real world (Ore) and ideal
world (Oid) transcript respectively. The probability of realizing a transcript τ in ideal world
(i.e. Pr[Xre = τ ]) is called ideal interpolation probability. Similarly, the probability
of realizing a transcript τ in real world (i.e Pr[Xre = τ ]) is called real interpolation
probability. A transcript τ is said to be attainable with respect to A if the ideal
interpolation probability is non zero (i.e. Pr[Xid = τ ] > 0). We denote the set of all
attainable transcripts by V. Following these notations, we state the main theorem of
Coefficients H Technique as follows.

Theorem 1 (Coefficients H Technique). Let V = Vgood t Vbad be some partition of
the set of attainable transcripts. Suppose there exists εratio ≥ 0 such that for any τ ∈ Vgood,

Pr[Xre = τ ]
Pr[Xid = τ ] := ipreal

ipideal
≥ 1− εratio,

and there exists εbad ≥ 0 such that Pr[Xid ∈ Vbad] ≤ εbad. Then,

AdvOid
Ore

(A) ≤ εratio + εbad. (1)

When Oid is a function chosen uniformly at random and Ore is some keyed construction
in our interest defined over the same domain, then Eqn. (1) says that Advprf

Ore
(A) ≤

εratio + εbad.
3Sometimes, the resources are also measured in terms of q, ` and t, where ` denotes the maximum

number of blocks in a message.



Nilanjan Datta , Avijit Dutta , Mridul Nandi , Goutam Paul and Liting Zhang 7

2.4 Basic Results of Linear Algebra
For any a × s matrix A, A[i][j] denotes the element in the i-th row and j-th column of
A. If a ≤ s, we use the notation A[·, i..(i + a − 1)] to denote a square submatrix of A
containing the columns i, i+ 1, . . . , i+ a− 1 and all the rows. Given a column vector c of
dimenstion a× 1, we write (A : c) to denote a new matrix formed by appending the vector
c to A. This new matrix is called “augmented matrix ”, has dimension a× (s+ 1). It is
easy to see that rank(A) ≤ min{a, s}. For any row vector Y := (Y1, . . . , Ys) of dimension
1× s, Y T denotes the following column vector

Y T :=


Y1
Y2
...
Ys


of dimension s× 1. Y T is called the transpose of the row vector Y .
Consider a system of linear equations of the form A · Y T = c, where each element of A, Y
and c are elements of the field B. This system of linear equations is said to be consistent
if it has at least one solution, otherwise we call it inconsistent. Note that, a system
of linear equations is consistent if and only if rank(A) = rank(A : c). It has a unique
solution if rank(A) = s and it has many solutions if rank(A) < s.
For a given system of equations A · Y T, where A is a matrix of dimension a× s with rank
r and all it’s elements are members of the field B and Y := (Y1, . . . , Ys)

wor←−− S ⊆ B with
|S| = N ′, the probability of realizing of a particular solution is at most 1

P(N ′−s+r,r) as
stated formally in the following proposition.

Proposition 1. Let Y := (Y1, . . . , Ys)
wor←−− S ⊆ B where |S| = N ′ and A be a given

matrix of dimension a× s. Then, for any given column vector c of dimension a× 1, we
have

Pr[(A)a×s · Y T = c] ≤ 1
P(N ′ − s+ r, r) ,

where r is the rank of the matrix A.

Observe that the number of ways we can choose the coefficients of the non-basis vectors
is at most P(N ′, s − r) which uniquely determines the coefficient of the basis vectors.
Moreover, the number of ways we can choose s-many variables is P(N ′, s). Dividing the
former by later gives the required probability bound.
Following two corollaries are immediately followed from Proposition 1:

Corollary 1. Let α, β and γ are three non-zero distinct constants such that α, β, γ ∈
[1, N − 1]. Let ∆0,∆1

wor←−− B. Then, for any c1, c2 ∈ B we have,

(a) Pr[2α∆0 ⊕ 2β∆1 ⊕ c1 = 0] ≤ 1
N − 1

(b) Pr[2α∆0 ⊕ 2β∆1 ⊕ c1 = 0, 2α∆0 ⊕ 2γ∆1 ⊕ c2 = 0] ≤ 1
(N − 1)(N − 2)

where 2 is the primitive element of GF(2n).

3 Sum of Identical Random Permutation Under Condi-
tional Distribution

In this section, we discuss a simple variant of sum of random permutation result: sum of
two identical random permutation Π is a beyond birthday secure pseudorandom function
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even if we restrict some of the inputs and outputs of the random permutation Π. Sum
of PRP is a popular approach for constructing a PRF from PRP [BGK99, BI99, Luc00,
Pat08b, Pat10, CLP14]. In [BI99, Pat10, DHT17] the optimal security of the construction
has been shown. However, none of the above works considered sum of two identical random
permutation under conditional distribution. In this section, we show that sum of two
identical random permutation under conditional distribution is a beyond birthday secure
pseudorandom function.
Let X = {x1, . . . , xs} and Y = {y1, . . . , ys} be two sets where elements of each set is
a member of B. It is well known that, for any random permutation Π, if we condition
on the event Π(xi) = yi, 1 ≤ i ≤ s then for any x ∈ B \ {x1, . . . , xs}, the conditional
random variable Π(x) | (Π(xi) = yi,∀i ∈ [s]) is distributed uniformly on the set B \ Y .
In other words, the conditional distribution of a random permutation is same as random
bijective function with an appropriate domain and range. A random bijective function is a
bijective function sampled uniformly at random from the set of all bijective functions with
appropriate domain and range. The following result informally says that, sum of bijective
functions also behaves close to a random function. We believe that the following result
could be useful whenever we study a construction based on a single random permutation
that involves sum function implicitly. Thus, it can be studied independently of its own
interest.

Theorem 2 (Sum of Identical Random Permutation Under Conditional Distribution).
For any set Y of size s and a r tuple t[r] := (t1, . . . , tr) of non zero n bit strings, let

H = {(hi0, hi1)i : hi0 ⊕ hi1 = ti ∀i ∈ [r], (hi0, hi1)i ∈ (B \ Y )(2r)}.

Then, |H| ≥ P(N−s,2r)
Nr (1− µ2) where µ2 = rs2+2sr2+4r3/3

(N−s−2r)2 . Moreover, if s+ 2r ≤ N
2 , then

µ2 ≤ 4rs2+8sr2+6r3

N2 .

Proof. For each j ∈ [q], we define the following set

Hj := {(hi0, hi1)i : hi0 ⊕ hi1 = ti ∀i ∈ [j], (hi0, hi1)i ∈ (B \ Y )(2j)}.

Note that,

|Hj | ≥ |Hj−1| × |{(hj0, h
j
1) : hj0 ⊕ h

j
1 = tj , (hj0, h

j
1) ∈ (B \ Yj)2}| (2)

where Yj = Y t {a1, . . . , a2(j−1)} such that a2i−1 ⊕ a2i = ti, ∀i ∈ [j − 1]. Now, we make
the following claim, proof of which is postponed later in the section.
Claim 1. For any fixed j ∈ [q], the cardinality of the following set

Tj := {(hj0, h
j
1) : hj0 ⊕ h

j
1 = tj(6= 0), (hj0, h

j
1) ∈ (B \ Yj)2}

where Yj = Y t {a1, . . . , a2(j−1)} such that a2i−1 ⊕ a2i = ti( 6= 0), ∀i ∈ [j − 1], is given by

|Tj | ≥
(N − s′)(N − s′ − 1)

N
·
(
1− s′2

(N − s′)2

)
where s′ = s+ 2(j − 1).
Now, we resume our proof. From Eqn. (2) and Claim 1, we write the following:

|Hj | ≥ |Hj−1| × (N−s′)(N−s′−1)
N ·

(
1− s′2

(N−s′)2

)
A simple algebraic calculation yields the following lower bound on |Hj |.

|Hj | ≥
j−1∏
i=0

(N − (s+ 2i)) · (N − (s+ 2i)− 1)
N

· (1− εi+1) (3)
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where εi+1 := (s+2i)2

(N−(s+2i)2) . Now, we calculate the bound on the cardinality of Hr. Note
that, by definition Hr = H. Therefore, bound on |Hr| is sufficient. It is easy to see
from Eqn. (3) that |Hr| ≥ P(N−s,2r)

Nr · (1 −
∑r
i=1 εi) where one can easily check that∑r

i=1 εi ≤
rs2+2sr2+4r3/3

(N−s−2r)2 (= µ2). Moreover, it is easy to see that if s + 2r ≤ N
2 , then

µ2 ≤ 4rs2+8sr2+6r3

N2 .
Proof of Claim 1. In the proof of this claim, our primary interest is to obtain a
lower bound on |Tj |. To do this, let us define two more sets: for each b = 0, 1, T bj :=
{(hj0, h

j
1) : hj0 ⊕ h

j
1 = tj , hjb ∈ Yj}. Clearly, for each b = 0, 1, we have |T bj | ≤ s′, where

|Yj | = s+ 2(j − 1)(= s′). Therefore,

|Tj | ≥ N − |T 0
j ∪ T 1

j |
≥ N − 2s′

≥ (N − s′)(N − s′ − 1)
N

·
(

1− s′2

(N − s′)2

)
.

Hence, our result follows.

4 1k-PMAC_Plus: Design and Security Claim

M i
1

⊕
⊕

2.∆0

22.∆1

EK

⊕
Y i
1

X i
1

M i
2

⊕
⊕

22.∆0

24.∆1

EK

⊕
Y i
2

X i
2

M i
li

⊕
⊕

2li .∆0

22li .∆1

EK

⊕
Y i
li

X i
li

· · ·0

⊕ � � �⊕ ⊕

2

· · ·0

2 2
fix0 EK

fix1 EK

Σi

Θi
⊕ T i

Figure 4.1: 1k-PMAC_Plus Construction

Our construction of 1k-PMAC_Plus is shown in Fig. 4.1 and the algorithmic description
is given in Fig. 4.2. As shown in Fig. 4.2, 1k-PMAC_Plus differs from the existing
PMAC_Plus construction in one extra field multiplication by 2 (which is nothing but
shift and xor operation), in applying fix0, fix1 functions and obviously replacing three
independent block cipher keys with the same block cipher key. Recall that, for b ∈ {0, 1},
fixb is a function takes an n-bit binary string as input and returns an n-bit binary
string with least significant bit fixed to bit b, keeping all other remaining bits same (i.e.
fix0(x1, . . . , xn) = x1, . . . , xn−10). As a matter of fact, we have used the notation fix0 and
fix1 to separate the range of collision of Σ,Θ, which reduces the analysis of some bad cases
(e.g. Σi cannot be equal to Θj for some i, j) and simplies the proof.
In this paper, we show that 1K-PMAC_Plus[Π] (1k-PMAC_Plus instantiated with random
permutation Π) is indistinguishable from random function up to roughly 22n/3 message
blocks. More formally, we state the following security result about 1k-PMAC_Plus[E]
(1k-PMAC_Plus instantiated with a block cipher E).
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Theorem 3. Any distinguisher with running time t, making q-tuple of distinct messages
with an aggregate of total σ-many blocks, can distinguish 1k-PMAC_Plus[E] from a uniform
random function by,

Advprf
1k-PMAC_Plus[E](q, σ, t) ≤ Advprp

E (σ + 2 + 2q, t′) + 21σ
N

+ 224qσ2

N2

where t′ = t+O(σ + 2q + 2).

Internal[EK ](M)

1. ∆0 ← EK(0)

2. ∆1 ← EK(1)

3. M1‖ . . . ‖Ml �M‖10∗

4. for j = 1 to l:

5. Xj ←Mj ⊕ 2j∆0 ⊕ 22j∆1

6. Yj ← EK(Xj)

7. Σold ← Y1 ⊕ Y2 ⊕ . . .⊕ Yl

8. Θold ← 2l−1 ·Y1⊕2l−1 ·Y2⊕ . . .⊕Yl

9. return (Σold,Θold)

PMAC_Plus[EK,K1,K2 ](M)

1. (Σold,Θold)← Internal[EK ](M)

2. T = EK1(Σold)⊕ EK2(Θold)

3. return T

1K-PMAC_Plus[EK ](M)

1. (Σold,Θold)← Internal[EK ](M)

2. Σ← fix0(Σold)

3. Θ← fix1(2 ·Θold)

4. T = EK(Σ)⊕ EK(Θ)

5. return T

Figure 4.2: 1K-PMAC_Plus Construction;M‖10∗ denotes that 10∗ string is padded toM to
make the size (in number of bits) of the total message multiple of n. M1‖ . . . ‖Ml �M‖10∗
denotes M‖10∗ is partitioned into l-many blocks each of length n bits where n is the block
length of the underlying block cipher.

4.1 Design Rationale of 1k-PMAC_Plus
Let us first see whether the existing construction of PMAC_Plus is secure or not in the
single key setting (meaning K1 = K2 = K). We observe that PMAC_Plus has a very
trivial attack in single key setting as querying a single block message would make Σold
and Θold identical which gives the output 0 with probability 1. So, we look for a modified
version of PMAC_Plus with minimal changes.
Possible minimal changes on PMAC_Plus in this direction are:

1. xoring a non-zero constant c with Θold (i.e. Θ = Θold ⊕ c), and

2. multiplying a primitive element 2 with Θold (i.e. Θ = 2 ·Θold)

We observe that first modified construction has the following birthday bound attack, and
hence we opt for the second choice.

Birthday Bound Attack for the First Modification. Consider a distinguisher A
that makes distinct single block message queries m1, . . . ,m

√
N . Suppose the corresponding

outputs be T 1, . . . , T
√
N . If ∃i 6= j such that T i = T j , A returns 1, o.w. 0.

Let us call the event ∃i 6= j such that T i = T j as COLLT . Define Zi1 := EK(Σiold) = EK(Y i)
and Zi2 := EK(Θi) = EK(Y i ⊕ c). So, T i = Zi1 ⊕ Zi2 and T j = Zj1 ⊕ Z

j
2 .
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It is easy to see, that the probability of holding the event COLLT in ideal oracle is upper
bounded by

√
N(
√
N−1)

2N .
Now in real world, the probability of holding the event COLLT is calculated as:

Pr[COLLT ] =
∑
i,j

Pr[T i = T j ∧ Y i ⊕ Y j = c] + Pr[T i = T j ∧ Y i ⊕ Y j 6= c]

(1)=
∑
i,j

Pr[T i = T j | Y i ⊕ Y j = c] · Pr[Y i ⊕ Y j = c]

+ Pr[T i = T j | Y i ⊕ Y j 6= c] · Pr[Y i ⊕ Y j 6= c]
(2)=

∑
i,j

1 · 1
N −

√
N + 1

+ 1
N −

√
N + 1

· (1− 1
N −

√
N + 1

)

(3)
≥

∑
i,j

2
N
− 1

(N −
√
N + 1)2

=
√
N(
√
N − 1)
N

−
√
N(
√
N − 1)

2(N −
√
N + 1)2

Here we have used the following simple facts:

• By definition, Y i ⊕ Y j = c imply T i = T j .

• Y i and Y j are two wor samples over a set of size (N −
√
N − 2). Hence,

Pr[Y i ⊕ Y j = c] = 1
(N −

√
N − 2)− 1

= 1
N −

√
N + 1

.

• Y i⊕ Y j 6= c implies Zi1, Zi2, Z
j
1 and Zj2 are all distinct, and hence wor samples over a

set of size (N −
√
N − 4). So, the event T i = T j given the event Y i⊕ Y j 6= c, means

distinct Zi1, Zi2, Z
j
1 such that Zi1 ⊕ Zi2 ⊕ Z

j
1 ⊕ Z

j
2 = 0. Therefore,

Pr[T i = T j | Yi ⊕ Yj 6= c] = 1
N − (

√
N − 4)− 3

= 1
N −

√
N + 1

Therefore, the advantage of A is given as

Adv(A) ≥
√
N(
√
N − 1)

2N −
√
N(
√
N − 1)

2(N −
√
N + 1)2

≥ 1
2 −

1
2
√
N
− N

2(N −
√
N + 1)2

≈ 1
2 .

5 Security Analysis of 1k-PMAC_Plus
In this section, we prove Theorem 3 using Coefficients H technique. Before going into the
details of the proof, we would like to give a brief overview of the proof in the following
section.

5.1 Proof Idea of 1k-PMAC_Plus
In this section, we provide a brief proof sketch of the security theorem of 1k-PMAC_Plus.
We extend the main proof idea of PMAC_Plus to the single-key setting and use Coefficients
H Technique to bound the PRF advantage of it. Before that, we define the following,
which will help us to understand the proof idea.



12 Single Key Variant of PMAC_Plus

Definition 1 (Extended Cover-Free Tuple). A tuple (Σ[q],Θ[q]) is said to be an
extended covered tuple if ∃i ∈ [q] such that Σi is non-fresh in Σ[q] ∪X and Θi is non-fresh
in Θ[q] ∪X, where X := (Xi

j : i ∈ [q], j ∈ [li]) denotes the input tuple of internal hash
computation (see Internal algorithm in Fig. 4.2). If no such i exists then the tuple is said
to be extended cover-free (e.c.f) tuple 4

We fix a q-tuple output T [q] := (T 1, . . . , T q) such that each T i 6= 0. We identify some
bad events and claim that if the bad events do not happen then the output distribution
of 1k-PMAC_Plus is indistinguishable from uniform distribution close to upto 22n/3 many
blocks. Thus, to obtain the security bound for 1k-PMAC_Plus, we only need to bound the
bad events in the ideal world.
On i-th query M i, either of the following events can happen:

5.1.1 Σi and Θi are non-fresh

If both Σi and Θi are non-fresh, then the bad event ECF occurs (defined in Fig. 5.1). In
case of PMAC_Plus, if both Σiold and Θi

old are non-fresh, then ∃j, k < i such that Σiold = Σjold
and Θi

old = Θk
old. 5 For 1k-PMAC_Plus, Σi can collide with some previous value of Σ (i.e.

Σi = Σj) as well as some internal input value of the hash computations (i.e. Σi = Xj
α,

where j ≤ i). Similarly, Θi can collide with either some Θj (j < i) or with some Xj
α. Thus,

it gives rise to four different cases i.e.

- Σi = Xj
α,Θi = Xk

α

- Σi = Xj
α,Θi = Θk

- Σi = Σj ,Θi = Xk
α

- Σi = Σj ,Θi = Θk

5.1.2 Σi is non-fresh and Θi is fresh

In this case the output is uniformly random unless the sampled output of Θi collides with
some range value. This leads to following three different cases:

- If Σi = Σj for some j 6= i (and not equals to some internal values Xj
α), and the

sampled output of Θi collides with some range value then we call this bad event
RCOLL 6 (defined in Fig. 5.2).

- If Σi collides with some internal input values Xj
α, then if Y jα ⊕ T i, which is to be

assigned to the output of Θi, collides with some internal output values Y kβ then the
bad event happens and we call this bad event PCF1 (defined in Fig. 5.2).

- If Σi collides with some internal input values Xj
α then if Y jα ⊕ T i, which is to be

assigned to the output of Θi becomes equal to Y lβ⊕T k where either Σk or Θk collides
with some internal input value X l

β then the bad event happens and we call this bad
event PCF2 (defined in Fig. 5.2).

5.1.3 Θi is non-fresh and Σi is fresh

This case is similar to Case 5.1.2, only the role of Σi and Θi is interchanged.
4One could see this definition as an extended version of the definition of cover-free tuple, defined

in [ZWSW12], which says that (Σ[q],Θ[q]) is said to be a covered tuple if ∃i ∈ [q] such that Σi is non-fresh
in Σ[q] and Θi is non-fresh in Θ[q]. If no such i exists then the tuple is said to be cover-free tuple.

5This event was named Coll∗ in [Yas11].
6Yasuda [Yas11] named this event as UpLow∗.
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5.1.4 Both Σi and Θi are fresh

This case is similar to Case (d) of [Yas11] with a subtle difference. For PMAC_Plus, Yasuda
used Lucks’s result [Luc00] on sum of two independent permutations as the construction
uses three independent keys. As we move to single key setting, we require a more general
theorem on conditional distribution of sum of two identical random permutation (see
Theorem 2). 7 We need the conditional distribution of sum of two identical random
permutation as some inputs-outputs of the random permutation Π have already been fixed
earlier due to the internal hash computation.

5.2 Proof of Theorem 3
Using standard argument, we analyze the security of the construction 1k-PMAC_Plus[Π]
(denoted by 1k-PP) based on random permutation Π, instead of the keyed block cipher.
This conversion will add a term Advprp

E (σ′, t′) in the advantage, where σ′ = σ + 2 + 2q
and t′ = t+O(σ + 2 + 2q). Therefore, we show that,

Advprf
1k-PP(q, σ) ≤ 21σ

N
+ 224qσ2

N2 .

Note that, as we are bounding the prf advantage of 1k-PP information theoretically, we
do not consider the time parameter of the distinguisher and hence wlog we consider the
deterministic and unbounded distinguisher. In the remaining of the section, we prove
Theorem 3 which is organized as follows: In Sect. 5.2.1, we discuss about the power of
distinguisher and the description of ideal oracle. We define the set of bad transcripts and
bound the probability of it in Sect. 5.2.2. We analyse good transcripts in Sect. 5.2.3.

5.2.1 Initial Set-up

We fix a deterministic non-repeating query making distinguisher A that interacts with
either (1) the real oracle 1k-PP for a random permutation Π or (2) the ideal oracle $,
making at most q queries with an aggregate of total σ many message blocks.
Description of Ideal Oracle. Ideal oracle consists of the following two phases: (a) In
online phase, for each query M i, the oracle samples the response T i from B uniformly at
random and returns it to A. (b) In offline phase, in which after A makes all the queries
responses, it first samples ∆0,∆1 from B in without replacement manner. Then it samples
the internal hash value for all the queries in without replacement manner from B. During
this sampling stage, if some specfic event occurs (as shown inside the box in Fig. 5.1), then
it aborts the sampling process. More formally, ideal oracle $ works as shown in Fig. 5.1.
Description of Attack Transcript. Let τ := (M [q], T [q]) be the list of queries and
responses of A that constitutes the query response transcript of A. For convenience, we
slightly modify the experiment where we reveal to the distinguisher A (after it made
all it’s queries and obtains corresponding responses but before it output it’s decision)
the transcript of internal computations (X,Y,Σ[q]

out,Θ
[q]
out) (this is obviously wlog since the

distinguisher can ignore this additional piece of information). If A interacts with real
oracle, we have Σiout = Π(Σi) and Θi

out = Π(Θi) for all i ∈ [q] and (X,Y ) is permutation
compatible, denoted as X Π−→ Y . All in all, the transcript of the distinguisher A is

7For one-key construction, there is no way to have unconditional distribution of sum of random
permutation. Thus, we cannot apply directly the result by Bellare et al. [BI99] or by Patarin [Pat08b]. In
one key construction, we can obtain the hash value only if we fix the computation of Hπ which requires
the condition on π. So the sum of permutation for random permutation with some loss of entropy is
essential for one key.
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Online Phase of Ideal Oracle

∀i ∈ [q] : On i-th query M i, return T i ←$ B;
\\ bad event in online phase

1 : if ∃i : T i = 0 then ZeroT← 1, ⊥;

Offline Phase of Ideal Oracle, Initialize Lset = L1 = L2 = ∅

1 : L1(0)← ∆0 ←$ B; L1(1)← ∆1 ←$ B \ {∆0};

2 : ∀i ∈ [q] : (Σi,Θi)← InternalL1 (M i)

1 : ∀j ∈ [li] : Xi
j = 2j∆0 ⊕ 22j∆1 ⊕M i

j ;

if L1(Xi
j) = >

then L1(Xi
j)← Y ij ←$Ran(L1);

else Y ij ← L1(Xi
j);

2 : Σi := fix0(Y i1 ⊕ · · · ⊕ Y ili );

3 : Θi := fix1(2Y i1 ⊕ 22Y i2 · · · ⊕ 2liY ili );

return (Σi, Θi);

3 : if Xi
j ∈ {0,1} then ZeroOneX← 1, ⊥; \\ bad event for ∆0 and ∆1 sampling

4 : if (Σ[q],Θ[q]) is not e.c.f. tuple then ECF← 1, ⊥; \\ bad event for ∆Y sampling

5 : ∀i ∈ [q] : if Σiout := L1(Σi) 6= > then Case A;
if Θi

out := L1(Θi) 6= > then Case B;
6 : FΣ ← {i ∈ [q] : ∃j 6= i, Σi = Σj}; FΘ ← {i ∈ [q] : ∃j 6= i, Θi = Θj};
7 : L2 = L1 ∪ Lset; \\ merge two lists. Lset appeared in Case A, B

8 : ∀i ∈ [q] : if i ∈ FΣ then Case C;
if i ∈ FΘ then Case D;

9 : F = {i ∈ [q] : L2(Σi) = > = L2(Θi)}; f = |F|;

10 : (Σiout,Θi
out)i∈F ←$S := {(ai, bi)i ∈ Ran(L2)

(2f)
: ai ⊕ bi = T i};

11 : return (X,Y,Σ[q]
out,Θ

[q]
out);

Figure 5.1: Ideal oracle $: Boxed statements denote bad events. Whenever a bad event is
set to 1, the oracle immediately aborts (denoted as ⊥) and returns the remaining values of
the transcript in any arbitrary manner. So if we proceed further we can surely assume
that the event ⊥ (and so any bad event so far) does not hold. We write > when the value
of a variable is not defined. Shaded box is used to represent the uniform sampling in ideal
oracle.
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Case A

1 : Θi
out := Σiout ⊕ T i;

2 : if Θi
out ∈ Ran(Lset) : PCF2← 1, ⊥;

3 : if Θi
out ∈ Ran(L1) : PCF1← 1, ⊥;

4 : Lset(Θi) = Θi
out;

Case B

1 : Σiout := Θi
out ⊕ T i;

2 : if Σiout ∈ Ran(Lset) : PCF2← 1, ⊥;

3 : if Σiout ∈ Ran(L1) : PCF1← 1, ⊥;

4 : Lset(Σi) = Σiout;
Case C

1 : if L2(Σi) = > : L2(Σi) ←$Ran(L2);

2 : Σiout := L2(Σi);
3 : if Θi

out := L2(Σi)⊕ T i ∈ Ran(L2) :

4 : RCOLL← 1, ⊥;

5 : set L2(Θi) = Θi
out;

Case D

1 : if L2(Θi) = > : L2(Θi) ←$Ran(L2);

2 : Θi
out := L2(Θi);

3 : if Σiout := L2(Θi)⊕ T i ∈ Ran(L2) :

4 : RCOLL← 1, ⊥;

5 : set L2(Σi) = Σiout;

Figure 5.2: Continutation of ideal oracle $: PCF1 and PCF2 is defined in Case A and Case
B. RCOLL is defined in Case C and Case D. We denote the bad event defined in Case C
and Case D by RCOLL1 and RCOLL2 respectively. ⊥ and > denotes the abort symbol and
an undefined variable resp. Shaded box represents uniform sampling in ideal oracle.

τ := (M [q], T [q], X, Y,Σ[q]
out,Θ

[q]
out). Note that, for such a transcript τ , in real world we must

have

Σiout ⊕Θi
out = T i, ∀i ∈ [q]

(X, Σ[q], Θ[q]) Π7−→ (Y, Σ[q]
out, Θ[q]

out)

Here we use the fact that Σ and Θ can be computed from Y . A transcript τ is said to be
an attainable (with respect to distinguisher A) if the probability to obtain this transcript
in the ideal world is non zero. Recall that, V denotes the set of all attainable transcripts
and Xre and Xid denotes the probability distribution of transcript τ induced by the real
world and ideal world respectively.

5.2.2 Definition and Probability of Bad Transcripts

In this section, we define and bound the set of bad transcripts in ideal world. We start by
defining the set of bad transcripts.

Definition 2. We say that an attainable transcript τ = (M [q], T [q], X, Y,Σ[q]
out,Θ

[q]
out) is

bad if either of the following bad flags are set to 1: ZeroT, ZeroOneX, ECF, PCF1, PCF2,
RCOLL (as defined in Fig. 5.1). With abuse of notation we use the name of the bad flag to
denote its corresponding bad event.

Let Vb be the set of all bad transcripts and Vg := V \ Vb be the set of all good transcripts.
Now, we define the following event:

E-Bad1 := ZeroT ∨ ZeroOneX, E-Bad2 := ECF ∨ PCF1 ∨ PCF2 ∨ RCOLL,
E-Bad := E-Bad1 ∨ E-Bad2. (4)

Now, we bound the probability of realizing the bad transcripts in ideal world. In specific, to
bound the probability of bad transcripts in ideal world, it suffices to bound the probability
of the event E-Bad (due to Definition 2 and Eqn. (4)) in the following lemma.
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Lemma 1. Let Xid and Vb be defined as above then,

Pr[Xid ∈ Vb] ≤ εbad = 206qσ2

N2 + 21σ
N

Proof. As discussed before, bounding the probability of bad transcripts in the ideal world
is equivalent to bounding the probability of the event E-Bad holds in the ideal world. To
bound Pr[E-Bad], we bound the probability of the following events:

Bounding E-Bad1.

- For a fixed i ∈ [q], it is easy to see that Pr[T i = 0] = 1
N since all T i’s are sampled

uniformly at random from B, as defined in Fig. 5.1. Therefore, by varying over all
possible choices of i, we obtain Pr[ZeroT] ≤ q

N .

- For fixed i ∈ [q], j ∈ [li] and b ∈ {0,1}, Xi
j = b⇔ 2j∆0⊕22j∆1 = M i

j⊕b. Therefore,
using Corollary 1, we have Pr[Xi

j = 0] = Pr[Xi
j = 1] ≤ 1

N−1 . Varying over all
possible choices of i, j and b, we obtain Pr[ZeroOneX] ≤ 2σ

N−1 ≤
3σ
N .

Combining the above two, we have Pr[E-Bad1] ≤ 4σ
N (Since, q ≤ σ).

Bounding E-Bad2 ∧ E-Bad1.

- We handle this case in the following lemma, proof of which is postponed to Sect. 7.

Lemma 2. Pr[E-Bad2 ∧ E-Bad1] ≤ 206qσ2

N2 + 17σ
N

The result follows as we sum up the above two bounds.

5.2.3 Analysis of Good Transcripts

Having defined and bounded the probability of realizing bad transcript in ideal world,
it only remains to lower bound the ratio of real and ideal interpolation probability for
a good transcript. For this, let us first understand what does a good transcript in ideal
oracle mean. Note that, for each i ∈ F (see the definition in line 9 of Fig. 5.1) both
Σi
out and Θi

out are fresh. As ECF is not 1, for every i 6∈ F , exactly one of Σi
out or Θi

out is
fresh. Thus, we have exactly q − f non-fresh blocks and remaining q + f fresh blocks,
where f = |F|. We identify two sets F ′

Σ and F ′

Θ that contain all indices i such that Σi

collides with some internal input of hash computation or Θi collides with some internal
input of hash computations respectively. Now, we define an equivalence relation ∼Σ on
FΣ := [q] \ F ′

Σ ∪ F (which is defined in line 6 of Fig. 5.1) as i ∼Σ j if Σi = Σj . Similarly,
we define equivalence relation ∼Θ on FΘ := [q] \ F ′

Θ ∪ F as i ∼Θ j if Θi = Θj . Note that,
we cannot have Σi = Θj as we have separated the range of collisions by applying fix0, fix1
functions.
Clearly, ∼Σ and ∼Θ are equivalence relation on FΣ and FΘ respectively and hence we can
partition the set FΣ as C1t· · ·tCr where each Cj is a part and the set FΘ as C ′1t· · ·tC ′r′

where C ′j is a part. We call the equivalent class Cj as Σ-class and C ′j as Θ-class. Note
that all parts contain at least two elements. Let cj = minCj be the minimum value of
partition Cj and so is c′j = minC ′j . So, when i = cj or c′j′ for some j ∈ [r] or j′ ∈ [r′], we
sample the output L2(·) (see the definition in line 1 of Case C or Case D respectively),
which determines the outputs for all the elements in the corresponding equivalent class Cj
or C ′j respectively.
Due to the definition of Σout and Θout and the good transcript, we have the following
result.
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Claim 2. For a good transcript τ , the following 2q tuples of input and output of a random
permutation Π, namely,

I := (Σ1,Σ2, . . . ,Σq,Θ1,Θ2, . . . ,Θq)
O := (Σ1

out,Σ2
out, . . . ,Σ

q
out,Θ1

out,Θ2
out, . . . ,Θ

q
out)

are permutation compatible.
This is true since no range collision occurs for two different inputs as the bad flag events
are not set to 1. This observation will help us to bound the real interpolation probability
for a good transcript.

Lemma 3. Let τ = (M [q], T [q], X, Y,Σ[q]
out,Θ

[q]
out) be a good transcript. Then,

Pr[Xre = τ ]
Pr[Xid = τ ] ≥ 1− 18qσ2

N2 .

Proof. We first note that, the tuple (Σ[q]
out,Θ

[q]
out) is extended cover-free tuple as τ is a

good transcript. Moreover, in Fig. 5.1, we have performed two phases of lazy sampling. In
the first phase, we sample the internal outputs of the hash computation through list L1
(see line 1 of Internal subroutine in Fig. 5.1). In the next phase, we sample the outputs of
Σi or Θi (as described in line 1 of Case C or D respectively) where i = cj or c′j′ for some
j ∈ [r] or j′ ∈ [r′] respectively through list L2. Let us assume that, the size of the list L1
is η. We consider the set F of all free indices as defined in line 9 with f = |F| and a set
S in line 10 of Fig. 5.1 respectively. We also define a set I := FΣ ∪ FΘ ∪ F . With this
notation, we can compute the ideal interpolation probability pid := Pr[Xid = τ ] as follows.

pid = Pr
[
T [q] = t[q] ∧ L1(xij) = yij ∧ L2(Σi

′
) = Σi

′

out ∧ L2(Θi′) = Θi′

out, ∀i′ ∈ I
]

= 1
Nq
× Pr[L1(xij) = yij︸ ︷︷ ︸

E1

∧L2(Σi
′
) = Σi

′

out︸ ︷︷ ︸
E2

∧L2(Θi′) = Θi′

out︸ ︷︷ ︸
E3

, ∀i′ ∈ I] (5)

The first equality follows from the fact that distribution of T i’s are indepedent of the lazy
sampling that we carry out in the offline phase of the game. Now, consider the following
observations:

- Pr
[
L1(xij) = yij

]
= 1

P(N, η) as |L1| = η.

- The conditional probability

Pr[E2 ∧ E3, ∀i′ ∈ I \ F︸ ︷︷ ︸
E4

| E1] = 1
P(N − (2f + η), r + r′)

as we need to sample the output for a single element from each equivalent class and
there are all total r + r′ equivalent classes (combining the Σ-class and Θ-class).

- Finally for all free indices i, we sample the output from S. Therefore,

Pr[E2 ∧ E3, ∀i′ ∈ F | E1 ∧ E4] ≤ 1
|S|

≤ P(N − η, 2f)
Nf × (1− 4fη2+8f2η+6f3

N2 )

≤ P(N − η, 2f)
Nf × (1− 18qσ2

N2 )
.

This follows from the lower bound of |S| from Theorem 2 with the assumption
η + 2f ≤ N

2 , η ≤ σ and f ≤ q ≤ σ.
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Therefore, we have

pid ≤
1
Nq
× 1

P(N, η) ×
1

P(N − (2f + η), r + r′) ×
P(N − η, 2f)

Nf × (1− 18qσ2

N2 )
(6)

Now, we compute the real interpolation probability for a good transcript τ . By virtue
of Claim 2, we know that, (Σ[q],Θ[q]) is permutation compatible with (Σ[q]

out, Θ[q]
out). Note

that, the number of distinct elements in Σ[q]‖Θ[q] is exactly q + f + r + r′. Hence,

pre := Pr[Xre = τ ] = 1
P(N, η) ×

1
P(N − η, q + f + r + r′) (7)

Therefore,

Pr[Xre = τ ]
Pr[Xid = τ ] ≥

Nq ×Nf × (1− 18qσ2

N2 )×P(N − (2f + η), r + r′)
P(N − η, 2f)×P(N − η, q + f + r + r′) ≥ (1− 18qσ2

N2 )

Applying Theorem 1 with εratio = 18qσ2

N2 and εbad = 21σ
N + 206qσ2

N2 , the result of Theorem 3
follows.

6 Bounding Internal Bad Events for Proving Lemma 2
In the last section we have proved 1k-PMAC_Plus is indistinguishable from random function
upto close to 22n/3 blocks if the underlying block cipher is assumed to be a secure PRP,
with keeping Lemma 2 unproven. Thus, it only remains to prove Lemma 2, which we will
do in Sect. 7. Before that, in this section, we define and bound some additional internal
bad events, which are different from the list of bad events (i.e. E-Bad) already identified
in Sect. 5.2.2. As we will see later, these additional internal bad events will help us in
proving Lemma 2.
Consider a tuple of q messages M1, . . . ,Mq and li denotes the number of message blocks
of message M i (we assume that all the messages are of size multiple of n). Now, we fix
two distinct indices i, j ∈ [q] and we define a set NEQi,j := {α ∈ [min{li, lj}] : M i

α 6=
M j
α} ∪ {α : lj + 1 ≤ α ≤ li}. In other words, the set NEQi,j contains all the positions,

where the message blocks of i-th and j-th message are not equal. Having defined the set,
we define the internal bad events in Fig. 6.1.

Remark 1. We would like to emphasize that our definition of 3CollX event (see Fig. 6.1) is
substantially different from that of Yasuda’s [Yas11]. Yasuda in [Yas11] considered three
collisions between three messages and hence obtained the bound q3`3

N2 . But we observe
that, it is enough to consider three collisions between a fixed pair of messages and a fixed
choice of message block index. Moreover, according to our definition of 3CollX, choice of
γ is unique after the pair of messages are fixed. Hence, we become able to reduce the
dependency of length in the security bound from cubic to quadratic.
Having defined all the internal bad events, we define the event

I-Bad := 3CollX ∨ ZeroY ∨5
a=1 Bada

and recall that we have defined

E-Bad1 := ZeroT ∨ ZeroOneX.

Now, we have

Pr[I-Bad∧E-Bad1] ≤ Pr[3CollX |E-Bad1]+Pr[ZeroY |E-Bad1]+
5∑
a=1

Pr[Bada |E-Bad1]. (8)
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List of Internal Bad Events

1 : 3CollX := Fix i 6= j ∈ [q]. ∃i1, i2, i3 ∈ {i, j} : α ∈ [li1 ], β ∈ [li2 ],

γ = min NEQi,j where α 6= β 6= γ : Xi1
α = Xi2

β = Xi3
γ (See Remark 1)

2 : ZeroY := ∃i ∈ [q], j ∈ [li] such that Y ij = 0
3 : Bad1 := ∃i, j, k ∈ [q], α ∈ [lj ], β ∈ [lk]( 6= α) such that

Σi =1 X
j
α and Xj

α = Xk
β

4 : Bad2 := ∃i, j, k ∈ [q], α ∈ [lj ], β ∈ [lk]( 6= α) such that

Θi =1 X
j
α and Xj

α = Xk
β

5 : Bad3 := ∃i, j, k ∈ [q], α ∈ [lj ], β ∈ [lk]( 6= α) such that

Σi =1 X
j
α and Xi

γ = Xk
β , where γ ∈ min NEQi,j

6 : Bad4 := ∃i, j, k ∈ [q], α ∈ [lj ], β ∈ [lk]( 6= α) such that

Θi =1 X
j
α ⊕ b and Xi

γ = Xk
β , where γ ∈ min NEQi,j .

7 : Bad5 := ∃i ∈ [q], α ∈ [li − 1] : Xi
li = Xi

α

Figure 6.1: List of Internal Bad Events

Now, we bound all the internal bad events that we have identified in Fig. 6.1 conditioned
on E-Bad1, separately. Then using Eqn. (8) we obtain the bound of the probability of
I-Bad ∧ E-Bad1 as shown in the following Lemma.

Lemma 4. Pr[I-Bad ∧ E-Bad1] ≤ 3σ
N + σ2

N2 + 8qσ2

N2

Proof. We bound the probability of all the internal bad events separately as follows:

Bounding 3CollX | E-Bad1. Fix i 6= j ∈ [q]. For any fixed i1, i2, i3 ∈ {i, j} and
α ∈ [li1 ], β ∈ [li2 ], the set of equations Xi1

α = Xi2
β , X

i2
β = Xi3

γ (i.e. M i1
α ⊕ M i2

β =
(2α ⊕ 2β)∆0 ⊕ (22α ⊕ 22β)∆1 and M i3

γ ⊕M
i2
β = (2γ ⊕ 2β)∆0 ⊕ (22γ ⊕ 22β)∆1) has always

rank 2 as α, β and γ are distinct. Now, using part (b) of Corollary 1, we have

Pr[Xi1
α = Xi2

β ∧X
i2
β = Xi3

γ | E-Bad1] ≤ 1
N(N − 1)

Summing over all possible choices of i, j and all possible choices of α ∈ [li1 ], β ∈ [li2 ] we
obtain the bound to be σ(σ−1)

N(N−1) ≤
σ2

N2 .

Bounding ZeroY | E-Bad1. For a fixed i ∈ [q] and α ∈ [li],

Pr[Y iα = 0 | E-Bad1] = Pr[Π(Xi
α) = 0 | E-Bad1] ≤ 1

N − σ

Varying over all possible choices of i and α we bound this event by 2σ
N , assuming σ ≤ N

2 .

Bounding Bad5 |E-Bad1. Fix i ∈ [q] and α ∈ [li − 1]. As li 6= α, 2li ⊕ 2α 6= 0. Similarly,
22li ⊕ 22α 6= 0. Now

Pr[Xi
li = Xi

α | E-Bad1] = Pr[(2li ⊕ 2α)∆0 ⊕ (22li ⊕ 22α)∆1 = M i
li ⊕M

i
α | E-Bad1]

≤ 1
N − 1

The last inequality follows from Corollary 1. By varying over all choices of i and α we
obtain the bound to be σ−1

N−1 ≤
σ
N . Moreover, observe that we require to condition on
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E-Bad1, otherwise the event ZeroOneX implies the collision Xi
li

= Xi
α trivially by choosing

appropriate messages.

Bounding Bad1∨ . . .∨Bad4 | E-Bad1. To bound the event, we first bound the probability
of Bad1 | E-Bad1 as follows:

Pr[Bad1 | E-Bad1] =
∑
i,j,k

∑
α,β

Pr[Σi =1 X
j
α ∧Xj

α = Xk
β | E-Bad1]

=
∑
i,j,k

∑
α,β

Pr[Σi =1 X
j
α |Xj

α = Xk
β ∧ E-Bad1]︸ ︷︷ ︸

(1)

·Pr[Xj
α = Xk

β | E-Bad1]︸ ︷︷ ︸
(2)

Now, we make the following claim, proof of which is postponed to Appendix A.

Claim 3. LetM i,M j andMk be three messages. Let α ∈ [lj ], β ∈ [lk] and c be a non-zero
constant. Then, for any b, b′ ∈ {0,1}, we have

(a) Pr[Σi = Xj
α ⊕ b |cXj

α = Xk
β ⊕ b′] ≤

2
N

(b) Pr[Θi = Xj
α ⊕ b |cXj

α = Xk
β ⊕ b′] ≤

2
N

where σ ≤ N
2 .

Now, based on the above claim, we consider the following two observations:

- Assuming σ ≤ N
2 , (1) can be bounded by 2

N (follows from part (a) of Claim 3).

- (2) can by bounded by 1
N−1 , which follows directly from Corollary 1.

Now varying over all choices of i, j, k and α, β, we obtain the bound to be 2qσ(σ−1)
N(N−1) ≤

2qσ2

N2 .

With similar argument and part (a) of Claim 3, one can show that Pr[Bad3 | E-Bad1] ≤ 2qσ2

N2

and using part (b) of Claim 3, one can show that Pr[Bada | E-Bad1] ≤ 2qσ2

N2 for a = 2, 4.

The result follows as we put all these bounds in Eqn. (8).

7 Proof of Lemma 2 and Bounding RCOLL, ECF, PCF1,
and PCF2

Having defined and bounded all the internal bad events as identified in Sect. 6, we are
now ready to prove Lemma 2. We quickly recall the following bad events from Sect. 5.2.2
and Sect. 6

E-Bad1 := ZeroT ∨ ZeroOneX, E-Bad2 := ECF ∨ PCF1 ∨ PCF2 ∨ RCOLL,
I-Bad := 3CollX ∨ ZeroY ∨5

k=1 Badk.

We begin this section with the proof of Lemma 2.

Lemma 2. Pr[E-Bad2 ∧ E-Bad1] ≤ 204qσ2

N2 + 17σ
N

Proof. Let us define the following event: Bad := E-Bad1∨I-Bad. So, Bad = E-Bad1∧I-Bad.
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Now, we can write

Pr[E-Bad2 ∧ E-Bad1] ≤ Pr[E-Bad2 ∧ E-Bad1 ∧ I-Bad] + Pr[I-Bad ∧ E-Bad1]
= Pr[E-Bad2 ∧ Bad] + Pr[I-Bad ∧ E-Bad1]
[1]
≤ Pr[ECF ∧ Bad] + Pr[PCF1 ∧ Bad] + Pr[PCF2 ∧ Bad]

+ Pr[RCOLL ∧ Bad] + (3σ
N

+ σ2

N2 + 8qσ2

N2 )
[2]
≤ 98qσ2

N2 + 26qσ2

N2 + (147q2σ2

N3 + 7σ
N

)

+6σ
N

+ (3σ
N

+ σ2

N2 + 8qσ2

N2 )
[3]
≤ 206qσ2

N2 + 17σ
N

(9)

where [1] follows from Lemma 4 and [2] follows from Tab. 2. Moreover [3] follows from
simple algebraic calculations assuming q ≤ σ ≤ N

2 .

Table 2: List of the events to be bounded with their corresponding bound
Event to be Bounded Bounds of the Event Reference in the Paper

RCOLL ∧ Bad 6σ
N Section 7.1

ECF ∧ Bad 98qσ2

N2 Section 7.2
PCF1 ∧ Bad 26qσ2

N2 Section 7.3
PCF2 ∧ Bad 147q2σ2

N3 + 7σ
N Section 7.4

In the remaining of the section, we bound the probability of four events (i.e. RCOLL∧Bad,
ECF ∧ Bad, PCF1 ∧ Bad and PCF2 ∧ Bad) as mentioned in Tab. 2 which is organized as
follows: In Sect. 7.1 we establish the bound of the event RCOLL∧Bad. Sect. 7.2 is devoted
for bounding the event ECF ∧ Bad. PCF1 ∧ Bad and PCF2 ∧ Bad are bounded in Sect. 7.3
and Sect. 7.4 respectively.

7.1 Bounding Joint Probability of RCOLL and Bad
In this section, we bound the joint probability of RCOLL and Bad. Recall from Fig. 5.2,
RCOLL event is triggered either from Case C or from Case D which we separated as
RCOLL1 and RCOLL2 respectively, as shown in Tab. 3 and bound them separately. Before
bounding the two events, we first state the following claim, proof of which can be found in
Appendix B.

Table 3: Bound for the joint event (i) RCOLL1 and Bad and (ii) RCOLL2 and Bad.
Events Bound

RCOLL1 := (Σi =1 Σj) ∧ (Θi
out ∈ Ran(L2)) ∧ Bad 4σ

N

RCOLL2 := (Θi =1 Θj) ∧ (Σiout ∈ Ran(L2)) ∧ Bad 2σ
N

Claim 4. Let M i and M j be two distinct messages. If σ ≤ N
2 ,

(a) Pr[Σi =1 Σj ,Bad] ≤ 4(max{li, lj}+ 1)
N

and (b) Pr[Θi =1 Θj ,Bad] ≤ 4
N
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Now, we bound the joint probability of the event RCOLL1 and Bad as follows:

Pr[RCOLL1 ∧ Bad] =
∑
i,j

Pr[Σi =1 Σj ∧Θi
out ∈ Ran(L2) ∧ Bad]

[1]=
∑
i,j

Pr[Σi =1 Σj ∧ Bad] · Pr[Θi
out ∈ Ran(L2)]

[2]
≤

∑
i,j

4(max{li, lj}+ 1)
N

· 1
N − (2q + η)

≤ 4q(σ + q)
N2 ≤ 4σ

N
(10)

where [1] follows from the independence of the two events and [2] follows from Claim 4
and the maximum size of Ran(L2) is 2q+ η. The last inequality follows from q ≤ σ ≤ N

2 .
With similar arguments one can show,

Pr[RCOLL2 ∧ Bad] ≤ 2σ
N
. (11)

Proof of Eqn. (11) can be found in D.1.
Now, combining Eqn. (10) and Eqn. (11), we have

Pr[RCOLL ∧ Bad] ≤ Pr[RCOLL1 ∧ Bad] + Pr[RCOLL2 ∧ Bad] ≤ 6σ
N
.

7.2 Bounding Joint Probability of ECF and Bad
In this section, we bound the joint probability of ECF and Bad. We classify the event
ECF into four disjoint events as listed in Tab. 4. To establish the bound for the joint
probability of ECF and Bad, we separately bound the joint probability of ECFa and Bad
where a = 1, 2, 3, 4 and then apply the union bound. In the following analysis, we assume
that σ ≤ N

2 .
First, we bound the joint probability of ECF1: Σi =1 Σj ∧Θi =1 X

k
β ∧Bad. Recall that for

Table 4: Bound for the joint event (i) ECF1 ∧ Bad (ii) ECF2 ∧ Bad (iii) ECF3 ∧ Bad and
(iv) ECF4 ∧ Bad.

Events Bound
ECF1 := (Σi =1 Σj) ∧ (Θi =1 X

k
β ) ∧ Bad 19qσ2

N2

ECF2 := (Σi =1 X
j
α) ∧ (Θi =1 Θk) ∧ Bad 19qσ2

N2

ECF3 := (Σi =1 X
j
α) ∧ (Θi =1 X

k
β ) ∧ Bad 19qσ2

N2

ECF4 := (Σi =1 Σj) ∧ (Θi = Θk) ∧ Bad 41qσ2

N2

fixed i, j ∈ [q] we defined NEQi,j := {α ∈ [min{li, lj}] : M i
α 6= M j

α} ∪ {α : lj + 1 ≤ α ≤ li}.
Let γ = minNEQi,j . Clearly, γ ≤ max{li, lj} and wlog let us assume that li ≤ lj . Now, we
write the two events (i.e. Σi =1 Σj and Θi =1 X

k
β ) in terms of Y -variables in the following

matrix form:

(
1 b · · ·

2li−γ+1 Xk
β ⊕ b′ · · ·

)
︸ ︷︷ ︸

A

.

Y
i
γ

1
...


︸ ︷︷ ︸

Y

=
(

0
0

)
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where b, b′ ∈ {0,1}. Let us define B to be the event (Xk
β = 2li−γ+1 ⊕ b′). It is easy to see

that, if (b = 1) and B holds, then rank(A) ≥ 1, otherwise rank(A) = 2. Now, we bound
the probability of ECF1 using the above observations as follows:

Pr[ECF1 ∧ Bad] ≤
∑
i,j,k

∑
β

(Pr[Σi = Σj ∧Θi =1 X
k
β |Bad]

+ Pr[Σi = Σj ⊕ 1 ∧Θi =1 X
k
β |Bad ∧ B])

+ Pr[Σi = Σj ⊕ 1 ∧Θi =1 X
k
β | Bad ∧ B] · Pr[B]

[1]
≤

∑
i,j,k

∑
β

(
2

(N − σ)2 + 2
(N − σ)2 + 2

N
.

1
N − 1

)
≤ 19qσ2

N2 (12)

where [1] follows from Proposition 1 and the last inequality follows from q ≤ σ ≤ N
2 .

Similar analysis holds for both ECF2 and ECF3, and we have

Pr[ECF2 ∧ Bad] ≤ 19qσ2

N2 . (13)

Pr[ECF3 ∧ Bad] ≤ 19qσ2

N2 . (14)

Proof of Eqn. (13) and Eqn. (14) can be found in Appendix D.2 and D.3.
Now we are left with bounding the joint probability of ECF4: Σi =1 Σj ∧Θi =1 Θk ∧ Bad,
which requires a different treatment. For that, let CollXijk denotes the event

CollXijk := Xi1
α = Xi2

β

where i1, i2 ∈ {i, j, k} and α ∈ {li1 ,minNEQi1,i2 , min2 NEQi1,i2}, β ∈ [li2 ] are distinct.
From Corollary 1, it is easy to see that,

Pr[CollXijk] ≤ 3 ·max{li, lj , lk}
N − 1 .

Now, we make the following claim, proof of which can be found in Appendix C.
Claim 5. If CollXijk occurs, then the system of equations Σi =1 Σj and Θi =1 Θk has
rank exactly 2.
It is easy to see that, if CollXijk occurs then the system of equations will have rank at
least 1. Based on this claim, we have

Pr[ECF4 ∧ Bad] ≤
∑
i,j,k

Pr[Σi =1 Σj ∧Θi =1 Θk |Bad ∧ CollXijk]

+ Pr[Σi =1 Σj ∧Θi =1 Θk | CollXijk ∧ Bad] · Pr[CollXijk]
[1]
≤

∑
i,j,k

(
4

(N − σ)2 + 4
N − σ

· 3 ·max{li, lj , lk}
N − 1

)
≤ 41qσ2

N2 (15)

where [1] follows from Proposition 1 and the last inequality follows from the assumption
q ≤ σ ≤ N

2 with simple algebraic calculation.
Finally, combining Eqn. (12), Eqn. (13), Eqn. (14) and Eqn. (15), we have

Pr[ECF ∧ Bad] ≤
4∑
a=1

Pr[ECFa,Bad] ≤ 98qσ2

N2 .
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Table 5: Bound for the joint event (i) PCF11 ∧ Bad and (ii) PCF12 ∧ Bad.
Events Bound

PCF11 := (Σi =1 X
j
α) ∧ (Y jα ⊕ Y kβ = T i) ∧ Bad 13qσ2

N2

PCF12 := (Θi =1 X
j
α) ∧ (Y jα ⊕ Y kβ = ti) ∧ Bad 13qσ2

N2

7.3 Bounding Joint Probability of PCF1 and Bad
In this section, we bound the joint probability of PCF1 and Bad. As before, we classify
PCF1 into two disjoint events and bound them separately. In the following analysis, we
assume that σ ≤ N

2 .
To bound the joint probability of PCF11 and Bad, we represent the two equations corre-
sponding to the event PCF11 (i.e. Σi =1 X

j
α and Y jα ⊕ Y kβ = T i) in terms of Y -variables

in the following matrix form:

(
1 Xj

α ⊕ b · · ·
0/1 T i · · ·

)
︸ ︷︷ ︸

A

.

Y
i
li
1
...


︸ ︷︷ ︸

Y

=
(

0
0

)

where b ∈ {0,1}. Let us denote the event Xj
α = T i ⊕ b by B. It is easy to see that, if

(Y ili = Y jα or Y ili = Y kβ ) and B holds, then rank(A) ≥ 1, otherwise rank(A) = 2. Hence,
we can bound the joint probability as follows:

Pr[PCF11 ∧ Bad] ≤
∑
i,j,k

∑
α,β

(Pr[PCF11 |Bad ∧ B]

+ Pr[PCF11 ∧ Bad | B] · Pr[B])
[1]
≤

∑
i,j,k

∑
α,β

max
{

2
(N − σ)2 ,

(
2

(N − σ)2 + 2
N − σ

· 1
N − 1

)}

≤ 13qσ2

N2 (16)

where [1] follows from Proposition 1 and the last inequality follows from q ≤ σ ≤ N
2 with

simple algebraic calculation.
With similar arguments, one can prove that

Pr[PCF12 ∧ Bad] ≤ 13qσ2

N2 . (17)

For the sake of completeness, we have provided the proof of Eqn. (17) in Appendix D.4.
By combining Eqn. (16) and Eqn. (17), we have

Pr[PCF1 ∧ Bad] ≤ Pr[PCF11 ∧ Bad] + Pr[PCF12 ∧ Bad] ≤ 26qσ2

N2 .

7.4 Bounding Joint Probability of PCF2 and Bad
In this section, we bound the joint probability of PCF2 and Bad. As before, we classify
the event PCF2 into three disjoint events as listed in Tab. 6. To establish the bound for
the joint probability of PCF2 and Bad, we separately bound the joint probability of PCF2a
and Bad where a = 1, 2, 3 and then apply the union bound. In the following analysis, we
assume that σ ≤ N

2 .
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Table 6: Bound for the joint event (i) PCF21 ∧Bad (ii) PCF22 ∧Bad and (iii) PCF23 ∧Bad.
Events Bound

PCF21 := (Σi =1 X
j
α) ∧ (Σk =1 X

l
β) ∧ (Y jα ⊕ Y lβ = T i ⊕ T k) ∧ Bad 49q2σ2

N3 + 4σ
N

PCF22 := (Σi =1 X
j
α) ∧ (Θk =1 X

l
β) ∧ (Y jα ⊕ Y lβ = T i ⊕ T k) ∧ Bad 49q2σ2

N3 + σ
N

PCF23 := (Θi =1 X
j
α) ∧ (Θk =1 X

l
β) ∧ (Y jα ⊕ Y lβ = T i ⊕ T k) ∧ Bad 49q2σ2

N3 + 2σ
N

To bound PCF21, we first assume that T i = T k. As a matter of fact, the event T i = T k

induces Σi =1 Σk as T i = T k implies Y jα = Y lβ which implies Σi =1 Σk. Therefore, one
can write

Pr[PCF21 ∧ Bad | T i = T k] = Pr[Σi =1 Σk ∧ Bad | T i = T k]
[1]
≤

∑
i,k

4(max{li, lk}+ 1)
N

≤ 4σ
N

(18)

where [1] follows from Claim 4.
Now, we do the analysis for the case T i 6= T k. Here, we assume that M l

β 6= Mk
β (the

case for M l
β = Mk

β is similar and can be found in Appendix D.5). Let γ ∈ minNEQi,k.
Note that, γ cannot be equal to α and β simultaneously and wlog we assume that, γ 6= β.
Moreover, since γ ∈ max{li, lj}, wlog we assume that, γ ≤ li. Now, we write the three
events (i.e. Σi =1 X

j
α,Σk =1 X

l
β and Y jα ⊕ Y lβ = T i ⊕ T k) in terms of Y variables in the

following matrix form: 1 0/1 Xj
α ⊕ b · · ·

0 0 X l
β ⊕ b′ · · ·

0/1 1 T i ⊕ T j · · ·


︸ ︷︷ ︸

A

.


Y iγ
Y lβ
1
...


︸ ︷︷ ︸

Y

=

0
0
0



where b, b′ ∈ {0,1}. Let us define the event B := (Xj
α ⊕X l

β ⊕ b ⊕ b′ ⊕ T i ⊕ T k = 0). It
is easy to see that, Pr[B] ≤ 1

N as it induces a linear equation over ∆0 and ∆1. Now,
it is easy to observe that, if (A[1][2], A[3][1]) = (1,1) and B holds, then rank(A) ≥ 2,
otherwise rank(A) = 3. Now, from the above observations and the Proposition 1 with our
assumption σ ≤ N

2 , we have

Pr[PCF21 ∧ Bad | T i 6= T k] ≤ Pr[PCF21 | B ∧ T i 6= T k,Bad]
+ Pr[PCF21 | B ∧ Bad ∧ T i 6= T k] · Pr[B | T i 6= T k]

≤
∑
i,j,k,l

∑
α,β

49
N3 ≤

49q2σ2

N3 . (19)

Now, combining both the cases together we obtain

Pr[PCF21 ∧ Bad] ≤ Pr[PCF21 ∧ Bad | T i = T k] + Pr[PCF21 ∧ Bad | T i 6= T k]

≤ 4σ
N

+ 49q2σ2

N3 (20)

where [2] follows from Eqn. (18) and (19).
With similar argument as above, one can show

Pr[PCF22 ∧ Bad] ≤ 49q2σ2

N3 + σ

N
. (21)

Pr[PCF23 ∧ Bad] ≤ 49q2σ2

N3 + 2σ
N
. (22)
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Proof of Eqn. (21) and (22) can be found in Appendix D.6 and D.7 respectively.
Finally combining Eqn. (20), (21) and (22) we have,

Pr[PCF2 ∧ Bad] ≤ Pr[PCF21 ∧ Bad] + Pr[PCF22 ∧ Bad] + Pr[PCF23 ∧ Bad]

≤ 147q2σ2

N3 + 7σ
N
.

8 Conclusion
We have presented a rate-1 single keyed block cipher based beyond birthday bound
secure deterministic MAC. To the best of our knowledge, this is the first single keyed
beyond birthday bound secure block cipher based variable input length PRF construction.
Improving the PRF bound or giving a tight bound of the construction will be an interesting
research problem. We believe, in a similar way, one can acheive the beyond birthday
security of the single key variant of 3kf9, as proposed by Zhang et al. in ASIACRYPT,
2012. Moreover, our result on sum of permutation under conditional distribution could be
applied in proving the security of single keyed construction that inherently uses the sum
construction.
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Appendix

A Proof of Claim 3 from Section 6
Claim 3. LetM i,M j andMk be three messages. Let α ∈ [lj ], β ∈ [lk] and c be a non-zero
constant. Then, for any b, b′ ∈ {0,1}, we have

(a) Pr[Σi = Xj
α ⊕ b |cXj

α = Xk
β ⊕ b′] ≤

2
N

(23)

(b) Pr[Θi = Xj
α ⊕ b |cXj

α = Xk
β ⊕ b′] ≤

2
N

(24)

where σ ≤ N
2 .

Proof. Let us consider a set Ξ := {(δ0, δ1) : (c2α⊕2β)δ0⊕(c22α⊕22β)δ1 = c·M j
α⊕Mk

β⊕b′}.
We equivalently write Eqn. (23) and Eqn. (24) as follows

Pr[Σi = Xj
α ⊕ b |(∆0,∆1) ∈ Ξ] (25)

Pr[Θi = Xj
α ⊕ b |(∆0,∆1) ∈ Ξ] (26)
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Now, for fixed indices i ∈ [q], α ∈ [li] and b ∈ {0,1}, we define the following set:

Zbi,α := {(δ0, δ1) : 2αδ0 ⊕ 22αδ1 = M i
α ⊕ b}.

Moreover, we have Z := ∪b,i,αZbi,α. Now, It is easy to see that

(∆0,∆1) ∈ Ξ⇒ (∆0,∆1) ∈ Z. (27)

In other words, if (∆0,∆1) ∈ Z, then it cannot be the case that there exists some γ such
that c2α ⊕ 2β = 2γ and c22α ⊕ 22β = 22γ holds simultaneously.
Now, under the condition (∆0,∆1) ∈ Z, we have the following:

(a) Pr[Σi = Xj
α ⊕ b | (∆0,∆1) ∈ Z] ≤ 2

N
(28)

(b) Pr[Θi = Xj
α ⊕ b | (∆0,∆1) ∈ Z] ≤ 2

N
. (29)

where we assume ` ≤ N
2 . To justify Eqn. (28), we write the event (Σi = Xj

α⊕ b) as follows:

Y i1 ⊕ · · · ⊕ Y ili = M j
α ⊕ 2α.∆0 ⊕ 22α.∆1 ⊕ b. (30)

From the conditional event (i.e (∆0,∆1) ∈ Z), we see that the right hand side of Eqn. (30)
is non-zero which implies that the equation itself is non-trivial and hence rank of the
equation is 1. Therefore, the result (a) follows from Proposition 1 assuming ` ≤ N

2 .
Similarly, to justify Eqn. (29), we write the event (Θi = Xj

α ⊕ b) as follows:

2liY i1 ⊕ · · · ⊕ 2Y ili = M j
α ⊕ 2α.∆0 ⊕ 22α.∆1 ⊕ b. (31)

Like we argued before, since (∆0,∆1) ∈ Z, it ensures the non-triviality of Eqn. (31) and
hence, using Proposition 1, the result (b) follows assuming ` ≤ N

2 .
Therefore, from Eqn. (25), Eqn. (27) and Eqn. (28) we have,

Pr[Σi = Xj
α ⊕ b |cXj

α = Xk
β ⊕ b′] ≤ Pr[Σi = Xj

α ⊕ b | (∆0,∆1) ∈ Z] ≤ 2
N
.

Similarly, from Eqn. (26), Eqn. (27) and Eqn. (29) we have,

Pr[Θi = Xj
α ⊕ b |cXj

α = Xk
β ⊕ b′] ≤ Pr[Θi = Xj

α ⊕ b | (∆0,∆1) ∈ Z] ≤ 2
N
.

Hence, our result follows.

B Proof of Claim 4 from Section 7.1
Claim 4. Let M i and M j be two distinct messages. If σ ≤ N

2 then,

(a) Pr[Σi =1 Σj ∧ Bad] ≤ 4(max{li, lj}+ 1)
N

and (b) Pr[Θi =1 Θj ∧ Bad] ≤ 4
N

Proof. To prove (a), let γ ∈ minNEQi,j and γ 6= β. Moreover, γ ∈ max{li, lj} and wlog
we assume that, γ ≤ li and therefore Y iγ exists. Now, there are two possibilities:
Case (i): Let CollXij denotes the event that Xi

γ collides with any of X?
β where ? ∈ {i, j}

and β ∈ max{li, lj}. For fixed i, j, we have

Pr[CollXij ] ≤
2 max{li, lj}

N
,
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which follows from Corollary 1. In this case, we bound the probability of the event (i.e.
Σi = Σj⊕b∧Bad) by probability of collision happens between Xi

γ and X?
β , where b ∈ {0, 1}

be any fixed bit.
Case (ii): Let Xi

γ does not collide at all. In this case, Xi
γ is fresh and hence the equation

induced by Σi = Σj ⊕ b is a non-trivial equation for the random variable Y iγ and hence the
probability of the event will be bounded by 2

N , which follows from Proposition 1 with the
assumption that σ ≤ N

2 .
Therefore, we have

Pr[Σi = Σj ⊕ b ∧ I-Bad] = Pr[Σi = Σj ⊕ b | I-Bad ∧ Colli,j ] + Pr[Colli,j ]

≤ 2
N

+ 2 max{li, lj}
N

= 2(max{li, lj}+ 1)
N

Now, we will prove (b). Here, we argue that given the condition Bad, the equation induced
by Θi = Θj ⊕ b is always a non-trivial equation

(2liY i1 ⊕ 2li−1Y i2 ⊕ . . .⊕ 2Y ili)⊕ (2ljY j1 ⊕ 2lj−1Y j2 ⊕ . . .⊕ 2Y jlj ) = b (32)

Case (i): b = 0. Let li 6= lj and wlog we assume that li > lj . Clearly, the sum of all the
coefficients of Eqn. (32) is (2⊕ · · · 2li−lj ) which is non-zero as li ≤ σ < N . When li = lk,
let α ∈ NEQij , then the coefficient of Y iα is of the form 2li−α+1 or (2li−α+1 ⊕ 2li−β+1

(depending on whether Xi
α collides with X∗β or not), which is non-zero. Hence, the equation

is non-trivial.
Case (ii): b = 1. Here, the non-zero constant ensures Eqn. (32) to be non-trivial.
Therefore, from Proposition 1, we obtain the result.

C Proof of Claim 5 from Section 7.2
Claim 5. If CollXijk occurs, then the system of equations Σi =1 Σj and Θi =1 Θk has
rank exactly 2.
Proof. To prove this, we first rewrite the equations as Σi = Σj ⊕ b and Θi = Θk ⊕ b′
where b, b′ ∈ {0, 1}. Now, we analyse the rank of these two simultaenous equations in case
by case:
Case A (b = 0,b′ = 0). We analyze this case using the following subcases:

Case A.1 (li = lk). It is easy to see that, in this case |NEQi,k| ≥ 2. We choose
α ∈ NEQi,j ∪ ADDi,j and β( 6= α) ∈ NEQi,k. This is possible as |NEQi,k| ≥ 2. Now,
consider the following two important observations: (i) The coefficient of the variable Y iα is
2li−α (if Y iα = Y kα ) or 0 (else) for the event (Θi = Θk), (ii) The coefficient of the variable
Y iβ is 0 (if Y iβ = Y jβ ) or 1 (else) for the event (Σi = Σj). So, the two equations can be
written as (

1 0 / 1 · · ·
0 / 2a 2b · · ·

)
︸ ︷︷ ︸

A

.

Y
i
α

Y iβ
...

 =
(

0
0

)

where a = (li − α+ 1) and b = (li − β + 1). As α 6= β, detA 6= 0 and rank of A is always
2.
Case A.2 (li 6= lk and Mj is prefix of Mi). As M j is prefix of M i, (i) li ≥ lj and (ii)
Y ilj = Y jlj . Now, it is easy to see that the coefficient of Y ili and Y ilj in (Σi = Σj) is 1 and
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0 respectively. Moreover the coefficient of Y ilj in (Θi = Θk) is 2li−lj+1 (if Y ilj 6= Y klj ) or
2li−lj+1 ⊕ 2lk−lj+1 (else). Hence, the two equations can be written as

(
1 0 · · ·
? 2a / (2a ⊕ 2b) · · ·

)
︸ ︷︷ ︸

A

.

Y
i
li
Y ilj
...

 =
(

0
0

)

where a = (li − lj + 1) and b = (lk − lj + 1). As li 6= lk, detA 6= 0 and rank of A is always
2.
Case A.3 (li 6= lk and Mi is prefix of Mj). As M j is prefix of M i, (i) li ≥ lj and (ii)
Y ilj = Y jlj . Now, it is easy to see that the coefficient of Y ili and Y ilj in (Σi = Σj) is 1 and 0
respectively. Moreover the coefficient of Y ilj in (Θi = Θk) is 2 (if Y ilj 6= Y klj ) or 2⊕ 2lk−lj+1

(else). Hence, the two equations can be written as

(
1 0 · · ·
? 2 / (2⊕ 2a) · · ·

)
︸ ︷︷ ︸

A

.

Y
j
lj

Y ili
...

 =
(

0
0

)

where a = (lk − li + 1). As li 6= lk, detA 6= 0 and rank of A is always 2.
Case A.4 (li 6= lk and |NEQi,j| ≥ 1). Let α ∈ NEQi,j . Now, it is easy to see that the
coefficient of both Y iα and Y jα in (Σi = Σj) are 1. Moreover the coefficient of Y ilj in
(Θi = Θk) is 2li−lj+1 (if Y ilj 6= Y klj ) or 2li−lj+1 ⊕ 2lk−lj+1 (else). Hence, the two equations
can be written as

E.

Y
i
α

Y jα
...

 =
(

0
0

)

where the matrix E is one of the following three:
(

1 1 . . .
2li−α 0 . . .

)
,(

1 1 . . .
2li−α 2lk−α . . .

)
,
(

1 1 . . .
2li−α ⊕ 2lk−α 0 . . .

)
As li 6= lk, the matrix E always has rank

2.

Case B. (b = 0,b′ = 1). Let α ∈ NEQi,j . So, the two equations can be written as

(
1 0 · · ·
? 1 · · ·

)
︸ ︷︷ ︸

A

.

Y
i
α

1
...

 =
(

0
0

)

Clearly, rank of matrix A is always 2 as detA 6= 0.

Case C. (b = 1,b′ = 0). Let α ∈ NEQi,k. So, the two equations can be written as

(
? 1 · · ·

2li−α+1 0 · · ·

)
︸ ︷︷ ︸

A

.

Y
i
α

1
...

 =
(

0
0

)

Clearly, rank of matrix A is always 2 as detA 6= 0.

Case D. (b = 1,b′ = 1). Let α ∈ NEQi,k. So, the two equations can be written as
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(
0 / 1 1 · · ·

2li−α+1 1 · · ·

)
︸ ︷︷ ︸

A

.

Y
i
α

1
...

 =
(

0
0

)

Clearly, rank of matrix A is always 2 as detA 6= 0.

D Remaining Analysis for Bounding RCOLL, ECF, PCF1
and PCF2

In Sect. 7, we have skipped the detailed analysis of some bad cases due to similarities in
their analysis with some other cases. For the sake of completeness, in this section, we
provide the detailed proof of those cases.

D.1 Bounding Joint Probability of RCOLL2 and Bad.
We bound the joint probability of the event RCOLL1 and Bad as follows:

Pr[RCOLL2,Bad] =
∑
i,j

Pr[Θi =1 Θj ,Σiout ∈ Ran(L2),Bad]

[1]=
∑
i,j

Pr[Θi =1 Θj ,Bad] · Pr[Σiout ∈ Ran(L2)]

[2]
≤

∑
i,j

4
N
· 1
N − (2q + η)

≤ 4q2

N2 ≤
2σ
N

where [1] follows from the independence of the two events and [2] follows from Claim 4
and the maximum size of Ran(L2) is 2q + η. The last inequality follows from q ≤ σ ≤ N

2 .

D.2 Bounding Joint Probability of ECF2 and Bad.
Let γ = minNEQi,j . Clearly, γ ≤ max{li, lj} and wlog letus assume li ≥ lk. Now, we
write the event ECF2 (i.e. Σi =1 X

j
α and Θi =1 Θk) in terms of Y -variables and form the

following set of equations in the following matrix form:

(
1 Xj

α ⊕ b · · ·
2li−γ+1 b′ · · ·

)
︸ ︷︷ ︸

A

.

Y
i
γ

1
...


︸ ︷︷ ︸

Y

=
(

0
0

)

where b, b′ ∈ {0,1}. Here we define B to be the event (2li−γ+1(Xj
α ⊕ b) = 1) and perform

the same analysis as done in for ECF1 to obtain

Pr[ECF2 ∧ Bad] ≤ 19qσ2

N2 .

D.3 Bounding Joint Probability of ECF3 and Bad.
Like the previous cases, we first write the event ECF3 (i.e. Σi =1 X

j
α and Θi =1 X

k
β) in

terms of Y -variables and form the following set of equations in the following matrix form:
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(
1 Xj

α ⊕ b · · ·
2 Xk

β ⊕ b′ · · ·

)
︸ ︷︷ ︸

A

.

Y
i
li
1
...


︸ ︷︷ ︸

Y

=
(

0
0

)

where b, b′ ∈ {0,1}. Here we define B to be the event (2Xj
α ⊕Xk

β = 2b⊕ b′) and perform
the same analysis as before to obtain:

Pr[ECF3 ∧ Bad] ≤ 19qσ2

N2 .

D.4 Bounding Joint Probability of PCF12 and Bad.
We represent the event PCF12: Θi =1 X

j
α, Y

j
α ⊕ Y kβ = T i by Y -variables and form the

following set of equations in the following matrix form:

(
2 Xj

α ⊕ b · · ·
0/1 T i · · ·

)
︸ ︷︷ ︸

A

.

Y
i
li
1
...


︸ ︷︷ ︸

Y

=
(

0
0

)

Now, we analyze this case exactly similar to PCF1 by dividing it in two cases depending on
whether Y ili 6= Y jα , Y

k
β or not. If Y ili = Y jα or Y ili = Y kβ then we similarly separate the case

depending on whether B := Xj
α = 2T i ⊕ b have occured or not and obtain the following

Pr[PCF12 ∧ Bad] ≤ 13qσ2

N2 .

D.5 Bounding PCF21 when T i 6= T k and M l
β = Mk

β

We represent the equations of PCF21 when T i 6= T k and M l
β = Mk

β in the following matrix
form 8:

 1 0/1 Xj
α ⊕ b · · ·

0 1 X l
β ⊕ b′ · · ·

0/1 1 T i ⊕ T k · · ·


︸ ︷︷ ︸

A

.


Y iγ
Y lβ
1
...


︸ ︷︷ ︸

Y

=

0
0
0



where b, b′ ∈ {0,1}. Let B1 := X l
β = b′ ⊕ T i ⊕ T k, B2 := Xj

α ⊕X l
β = b⊕ b′ ⊕ T i ⊕ T k and

B3 := Xj
α = b⊕ T i ⊕ T k. Now, consider the following observations:

• If A[3][1] = 0 then B := B1 and detA[·, 1..3] is X l
β ⊕ b′ ⊕ T i ⊕ T k.

• If (A[1][2], A[3][1]) = (0,1), then B := B2 and detA[·, 1..3] = (Xj
α ⊕X l

β)⊕ (b⊕ b′)⊕
(T i ⊕ T k).

• If (A[1][2], A[3][1]) = (1,1), then B := B3 and detA[·, 1..3] = Xj
α ⊕ b⊕ T i ⊕ T k.

• As det
(

1 Xj
α ⊕ b

0 X l
β ⊕ b′

)
is X l

β ⊕ b′( 6= 0), rank(A) ≥ 2.

8M l
β = Mk

β implies A[2][2] = 1.
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First of all, Pr[B] ≤ 1
N−1 . Moreover, from the first three observations, it is clear that if B

occurs, then detA[·, 1..3] is non-zero and hence rank(A) = 3. Hence, using Proposition 1
and the assumption σ ≤ N

2 , we have

Pr[PCF21 ∧ Bad | T i 6= T k] ≤ Pr[PCF21 | B ∧ T i 6= T k ∧ Bad]
+ Pr[PCF21 | B ∧ Bad ∧ T i 6= T k] · Pr[B | T i 6= T k]

≤
∑
i,j,k,l

∑
α,β

49
N3 ≤

49q2σ2

N3 . (33)

D.6 Bounding PCF22: Σi =1 X
j
α,Θk =1 X

l
β, Y

j
α ⊕ Y l

β = T i ⊕ T k

We follow the similar analysis as we did for bounding PCF21. We first bound this event
based on the occurence of T i 6= T k.
Case A: T i 6= T k. We analyse this case based on whether M l

β 6= Mk
β or M l

β = Mk
β .

We start with the assumption that M l
β 6= Mk

β . Let γ ∈ minNEQi,k. Note that, γ
cannot be equal to α and β simultaneously and wlog we assume that γ 6= β. Moreover,
since γ ∈ max{li, lj}, wlog we assume that γ ≤ li. Now, we write the three events (i.e.
Θi =1 X

j
α,Θk =1 X

l
β and Y jα ⊕ Y lβ = T i ⊕ T k) in terms of Y variables and form the

following set of equations in the following matrix form:

 1 0/1 Xj
α ⊕ b · · ·

0 0 X l
β ⊕ b′ · · ·

0/1 1 T i ⊕ T k · · ·


︸ ︷︷ ︸

A

.


Y iγ
Y lβ
1
...


︸ ︷︷ ︸

Y

=

0
0
0



where b, b′ ∈ {0,1}. Note that this matrix is exactly equal to the matrix that we obtained
in Case B of Sect. 7.4 while bounding PCF21. Therefore, we directly have,

Pr[PCF22 | B ∧ I-Bad ∧ T i 6= T k] = Pr[A · Y = 0]
[1]
≤ 32
N3

Pr[PCF22 | B ∧ I-Bad ∧ T i 6= T k] = Pr[A · Y = 0]
[2]
≤ 16
N2

where [1] and [2] follows from Proposition 1, σ ≤ N
2 and B := Xj

α⊕X l
β = (b⊕b′)⊕(T i⊕T k).

Therefore, combining these two cases we have,

Pr[PCF22 ∧ I-Bad | T i 6= T k] ≤ Pr[PCF22 | B ∧ T i 6= T k ∧ I-Bad]
+ Pr[PCF22 | B ∧ I-Bad ∧ T i 6= T k] · Pr[B | T i 6= T k]

[3]
≤ 49

N3 . (34)

Now, we analyse the case when M l
β = Mk

β . As before, we represent the equations of PCF22

when T i 6= T k and M l
β = Mk

β in the following matrix form:

 1 0/1 Xj
α ⊕ b · · ·

0 2lk−β+1 X l
β ⊕ b′ · · ·

0/1 1 T i ⊕ T k · · ·


︸ ︷︷ ︸

A

.


Y iγ
Y lβ
1
...


︸ ︷︷ ︸

Y

=

0
0
0


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where b, b′ ∈ {0,1}. Let B1 := X l
β = 2lk−β+1(T i⊕T k)⊕b′, B2 := X l

β⊕2lk−β+1 ·(Xj
α⊕b) =

2lk−β+1(T i⊕ T k)⊕ b′ and B3 := 2lk−β+1 · (Xj
α⊕ b) = 2lk−β+1(T i⊕ T k). Now,consider the

following observations:

• If A[3][1] = 0 then we assign B := B1 and we have detA[·, 1..3] is 2lk−β+1(T i⊕T k)⊕
(X l

β ⊕ b′).

• If (A[1][2], A[3][1]) = (0,1), then we assign B := B2 and we have detA[·, 1..3] =
2lk−β+1(T i ⊕ T k)⊕ (X l

β ⊕ b′)⊕ 2lk−β+1 · (Xj
α ⊕ b).

• If (A[1][2], A[3][1]) = (1,1), then we assign B := B3 and we have detA[·, 1..3] =
2lk−β+1(T i ⊕ T k))⊕ 2lk−β+1 · (Xj

α ⊕ b).

• As det
(

1 Xj
α ⊕ b

0 X l
β ⊕ b′

)
is X l

β ⊕ b′( 6= 0), rank(A) ≥ 2.

From the first 3 observations, it is clear that in any case, if B occurs, then detA[·, 1..3] is
non zero and hence rank(A) = 3. Hence we have,

Pr[PCF22 | B ∧ T i 6= T k ∧ I-Bad] = Pr[A · Y = 0]
[1]
≤ 32
N3

where [1] follows from Proposition 1 and the assumption ` ≤ N
2 . Moreover, from the last

observation, we have

Pr[PCF22 | B ∧ I-Bad ∧ T i 6= T k] = Pr[A · Y = 0]
[2]
≤ 16
N2

where [2] follows from Proposition 1 and the assumption σ ≤ N
2 . Finally combining the

above two cases we have

Pr[PCF22 ∧ I-Bad | T i 6= T k] ≤ Pr[PCF22 | B ∧ T i 6= T k ∧ I-Bad]
+ Pr[PCF22 | B ∧ I-Bad ∧ T i 6= T k] · Pr[B | T i 6= T k]

[3]
≤ 49

N3 . (35)

Note that, the conditional event of B conditioned on T i⊕T k 6= 0 induces a linear equation
over ∆0 and ∆1 and thus the probability of this individual event is bouded by 1

N−1 which
follows from Corollary 1.
Taking maximum probability bound of these two cases i.e. maximum bound of Eqn. 34
and Eqn. (35) we obtain,

Pr[PCF22 ∧ I-Bad | T i 6= T k] ≤ 49
N3 . (36)

Case B: T i = T k. We analyse this case in the following two subcases:
Case B.1: (b = b′). Here, we observe that the event T i = T k induces Σi = Θk. Therefore,
we have

Pr[PCF22 ∧ I-Bad | T i = T k] = Pr[Σi = Θk ∧ I-Bad | T i = T k]
[1]= 0

[1] follows as we have separated the domain of collision points from the very beginning of
our construction.
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Case B.2: (b 6= b′). In this case T i = T k induces Σi = Θk ⊕ 1. Therefore, we have

Pr[PCF22 ∧ I-Bad | T i = T k] = Pr[Σi = Θk ⊕ 1 ∧ I-Bad | T i = T k]
[1]= Pr[Σi = Θk ⊕ 1 ∧ I-Bad]

[2]
≤ 2
N

where [1] follows as the event is independent of the T i values and [2] follows as the equation
induced by the event Σi = Θk ⊕ 1 is a non-trivial equation and hence rank is 1 and the
assumption σ ≤ N

2 .
Now combining the above two cases we have,

Pr[PCF22 ∧ I-Bad | T i = T k] ≤ 2
N

(37)

Finally combining all the above cases we have,

Pr[PCF22 ∧ I-Bad] ≤
∑
i,j,k,l

∑
α,β

Pr[PCF22 ∧ I-Bad | T i 6= T k]

+
∑
i,k

Pr[PCF22 ∧ I-Bad | T i = T k] · Pr[T i = T k]

≤
∑
i,j,k,l

∑
α,β

49
N3 +

∑
i,k

2
N2 (From Eqn. (36) and Eqn. (37))

≤ 49q2σ2

N3 + σ

N
(As q ≤ σ ≤ N

2 ) . (38)

D.7 Bounding PCF23 : Θi =1 X
j
α,Θk =1 X

l
β, Y

j
α ⊕ Y l

β = T i ⊕ T k.
We follow the similar analysis as we did for bounding PCF21 and PCF2. As before, we first
bound this event based on the occurence of T i 6= T k.
Case A: T i 6= T k. We analyse this case based on whether M l

β 6= Mk
β or M l

β = Mk
β .

We start with the assumption that M l
β 6= Mk

β . Let γ ∈ minNEQi,k. Note that γ cannot
be equal to α and β simultaneously and alog we assume that γ 6= β. Moreover, since
γ ∈ max{li, lj}, wlog we assume that γ ≤ li. Now, we write the three events (i.e.
Θi =1 X

j
α,Θk =1 X

l
β and Y jα ⊕ Y lβ = T i ⊕ T k) in terms of Y variables and form the

following set of equations in the following matrix form: 9

2li−γ+1 0/2li−β+1 Xj
α ⊕ b · · ·

0 0 X l
β ⊕ b′ · · ·

0/1 1 T i ⊕ T k · · ·


︸ ︷︷ ︸

A

.


Y iγ
Y lβ
1
...


︸ ︷︷ ︸

Y

=

0
0
0



where b, b′ ∈ {0,1}. Now, we consider the following three observations:

• If (A[1][2], A[3][1]) 6= (2li−β+1,1) then detA[·, 1..3] is 2li−γ+1.(X l
β ⊕ b′)(6= 0), imply-

ing rank(A) = 3.

• If (A[1][2], A[3][1]) = (2li−β+1,1) then detA[·, 1..3] is (2li−γ+1 ⊕ 2li−β+1) · (X l
β ⊕ b′),

which is non zero as γ 6= β and X l
β 6= b′. Hence, rank(A) = 3.

9In the matrix A, A[1][2] can’t be anything other than 0 or 2li−β+1 due to Bad2 condition.
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Clearly from the above observations, we have

Pr[PCF23 | T i 6= T k ∧ I-Bad] = Pr[A · Y = 0]
[1]
≤ 32
N3

where [1] follows from Proposition 1 and the assumption ` ≤ N
2 . Therefore, we have

Pr[PCF23 ∧ I-Bad | T i 6= T k] ≤ Pr[PCF23 | T i 6= T k ∧ I-Bad] ≤ 32
N3 . (39)

Now, we analyse the case when M l
β = Mk

β . As before, we represent the equations of PCF23

when T i 6= T k and M l
β = Mk

β in the following matrix form:

2li−γ+1 0/2li−β+1 Xj
α ⊕ b · · ·

0 2lk−β+1 X l
β ⊕ b′ · · ·

0/1 1 T i ⊕ T k · · ·


︸ ︷︷ ︸

A

.


Y iγ
Y lβ
1
...


︸ ︷︷ ︸

Y

=

0
0
0



where b, b′ ∈ {0,1}. Let B1 := X l
β = 2lk−β+1(T i ⊕ T k)⊕ b′. B2 := 2li−γ+1 · (X l

β ⊕ b′)⊕
2lk−β+1 · (Xj

α ⊕ b) = 2li+lk−(γ+β)+2(T i ⊕ T k) and B3 := 2li+1 · (X l
β ⊕ b′) · (2−γ ⊕ 2−β)⊕

2lk−β+1 · (Xj
α ⊕ b) = 2li+lk−(γ+β)+2(T i ⊕ T k). Again, consider the following observations:

• If A[3][1] = 0 then we assign B := B1 and we have detA[·, 1..3] is 2li−γ+1.(X l
β ⊕ b′ ⊕

2lk−β+1(T i ⊕ T k)).

• If (A[1][2], A[3][1]) = (0,1), then we assign B := B2 and we have detA[·, 1..3] =
2li−γ+1.(X l

β ⊕ b′ ⊕ 2lk−β+1(T i ⊕ T k))⊕ 2lk−β+1 · (Xj
α ⊕ b).

• If (A[1][2], A[3][1]) = (2li−β+1,1), then we assign B := B3 and we have detA[·, 1..3] =
2li−γ+1 · (X l

β ⊕ b′ ⊕ 2lk−β+1(T i ⊕ T k))⊕ 2lk−β+1 · (Xj
α ⊕ b)⊕ 2li−β+1 · (X l

β ⊕ b′).

• As det
(

2li−γ+1 Xj
α ⊕ b

0 X l
β ⊕ b′

)
is 2li−γ+1 · (X l

β ⊕ b′)( 6= 0), rank(A) ≥ 2.

From the first 3 observations, it is clear that in each case, if B occurs, then detA[·, 1..3] is
non zero and hence rank(A) = 3. Hence we have,

Pr[PCF23 | B ∧ T i 6= T k ∧ I-Bad] = Pr[A · Y = 0]
[1]
≤ 32
N3

where [1] follows from Proposition 1 and the assumption σ ≤ N
2 . Moreover, from the last

observation, we have

Pr[PCF23 | B ∧ I-Bad ∧ T i 6= T k] = Pr[A · Ỹ = 0]
[2]
≤ 16
N2

where [2] follows from Proposition 1 and the assumption ` ≤ N
2 . Finally combining the

above two cases we have

Pr[PCF23 ∧ I-Bad | T i 6= T k] ≤ Pr[PCF23 | B ∧ T i 6= T k ∧ I-Bad]
+ Pr[PCF23 | B ∧ I-Bad ∧ T i 6= T k] · Pr[B | T i 6= T k]

[3]
≤ 49

N3 . (40)
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Note that, the conditional event of B conditioned on T i⊕T k 6= 0 induces a linear equation
over ∆0 and ∆1 and thus the probability of this individual event is bouded by 1

N , which
follows from Corollary 1.
Taking maximum probability bound of these two cases i.e. maximum bound of Eqn. 39
and Eqn. (40) we obtain,

Pr[PCF23 ∧ I-Bad | T i 6= T k] ≤ 49
N3 . (41)

Case B: T i = T k. We analyze this case in the following two subcases:
Case B.1: (b = b′). Here we observe that the event T i = T k induces Θi = Θk. Therefore,
we have

Pr[PCF23 ∧ I-Bad | T i = T k] = Pr[Θi = Θk ∧ I-Bad | T i = T k]
[1]= Pr[Θi = Θk ∧ I-Bad]

[2]
≤ 4
N

where [1] follows similar to previous analysis and [2] follows from the proof of Claim 4 and
σ ≤ N

2 .
Case B.2: (b 6= b′). Here we observe that the event T i = T k induces Θi = Θk ⊕ 1.
Therefore, we have

Pr[PCF23 ∧ I-Bad | T i = T k] = Pr[Θi = Θk ⊕ 1 ∧ I-Bad | T i = T k]
[1]= Pr[Θi = Θk ⊕ 1 ∧ I-Bad]

[2]
≤ 4
N

where [1] follows the same argument as in Case B.1 and [2] follows from Claim 4 and the
assumption σ ≤ N

2 .
Hence, we have

Pr[PCF23 ∧ I-Bad | T i = T k] ≤ 4
N
. (42)

Finally combining all the above cases we have,

Pr[PCF23 ∧ I-Bad] ≤
∑
i,j,k,l

∑
α,β

Pr[PCF23 ∧ I-Bad | T i 6= T k]

+
∑
i,k

Pr[PCF23 ∧ I-Bad | T i = T k] · Pr[T i = T k]

≤
∑
i,j,k,l

∑
α,β

49
N3 +

∑
i,k

4
N
· 1
N

(From Eqn. (41) and Eqn. (42))

≤ 49q2σ2

N3 + 2σ
N
. (43)
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