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Abstract
This paper contributes to understanding the interplay of security notions for PKE, KEMs, and

DEMs, in settings with multiple users, challenges, and instances. We start analytically by first
studying (a) the tightness aspects of the standard hybrid KEM+DEM encryption paradigm, (b) the
inherent weak security properties of all deterministic DEMs due to generic key-collision attacks in the
multi-instance setting, and (c) the negative effect of deterministic DEMs on the security of hybrid
encryption.

We then switch to the constructive side by (d) introducing the concept of an augmented data encap-
sulation mechanism (ADEM) that promises robustness against multi-instance attacks, (e) proposing
a variant of hybrid encryption that uses an ADEM instead of a DEM to alleviate the problems of
the standard KEM+DEM composition, and (f) constructing practical ADEMs that are secure in the
multi-instance setting.
Keywords: hybrid encryption, multi-user security, tightness

1 Introduction

Hybrid encryption and its security. Public-key encryption (PKE) is typically implemented following
a hybrid paradigm: To encrypt a message, first a randomized key encapsulation mechanism (KEM)
is used to establish—independently of the message—a fresh session key that the receiver is able to
recover using its secret key; then a deterministic data encapsulation mechanism (DEM) is used with
the session key to encrypt the message. Both KEM and DEM output individual ciphertexts, and the
overall PKE ciphertext is just their concatenation. Benefits obtained from deconstructing PKE into
the two named components include easier implementation, deployment, and analysis. An independent
reason that, in many cases, makes separating asymmetric from symmetric techniques actually necessary
is that asymmetric cryptographic components can typically deal only with messages of limited length
(e.g., 2048 bit messages in RSA-based systems) or of specific structure (e.g., points on an elliptic curve).
The paradigm of hybrid encryption, where the message-processing components are strictly separated from
the asymmetric ones, side-steps these disadvantages.

Hybrid encryption was first studied on a formal basis in [11]. (Implicitly the concept emerged much
earlier, for instance in PGP email encryption.) The central result on the security of this paradigm is
that combining a secure KEM with a secure DEM yields a secure PKE scheme. Various configurations
of sufficient definitions of ‘secure’ for the three components have been proposed [11, 18, 15], with the
common property that the corresponding security reductions are tight.
Multi-user security of PKE and KEMs. Classic security definitions for PKE, like IND-CPA
and IND-CCA, formalize notions of confidentiality of a single message encrypted to a single user. (For
public-key primitives, we identify (receiving) users with public keys.) This does not well-reflect real-world
requirements where, in principle, billions of senders might use the same encryption algorithm to send,
concurrently and independently of each other, related or unrelated messages to billions of receivers.
Correspondingly, for adequately capturing security aspects of PKE that is deployed at large scale,



generalizations of IND-CPA/CCA have been proposed that formalize indistinguishability in the face of
multiple users and multiple challenge queries [4] (the goal of the adversary is to break confidentiality of
one message, not necessarily of all messages). On the one hand, fortunately, these generalized notions
turn out to be equivalent to the single-user single-challenge case [4] (thus supporting the relevance of the
latter). On the other hand, and unfortunately, all known proofs of this statement use reductions that are
not tight, losing a factor of n · qe where n is the number of users and qe the allowed number of challenge
queries per user. Of course this does not mean that PKE schemes with tightly equivalent single- and
multi-user security cannot exist, and indeed [4, 17, 19, 20, 1, 14, 12] expose examples of schemes with
tight reductions between the two worlds.

The situation for KEMs is effectively the same as for PKE: While the standard security definitions [11,
15] consider exclusively the single-user single-challenge case, natural multi-user multi-challenge variants
have been considered and can be proven—up to a security loss with factor n · qe—equivalent to the
standard notions.
Multi-instance security of DEMs. Besides scaled versions of security notions for PKE and KEMs,
we also consider similarly generalized variants of DEM security. More specifically, we formalize a new1

security notion for DEMs that assumes multiple independently generated instances and allows for one
challenge encapsulation per instance. (For secret key primitives, we identify instances with secret keys.)
The single-challenge restriction is due to the fact that overall we are interested in KEM+DEM composition
and, akin to the single-instance case [11], a one-time notion for the DEM is sufficient (and, as we show,
necessary) for proving security of the hybrid. Similarly as for PKE and KEMs, the multi-instance security
of a DEM is closely coupled to its single-instance security; however, generically, if N is the number of
instances, the corresponding reduction loses a factor of N .

A couple of works [24, 8] observe that DEMs that possess a specific technical property2 indeed
have a lower security in the multi-instance setting than in the single-instance case. This is shown via
attacks that assume a number of instances that is so large that, with considerable probability, different
instances use the same encapsulation key; such key collisions can be detected, and message contents can
be recovered. Note that, strictly speaking, the mentioned type of attack does not imply that the reduction
of multi-instance to single-instance security is necessarily untight, as the attacks crucially depend on the
DEM key size which is a parameter that does not appear in above tightness bounds. We finally point out
that the attacks described in [24, 8] are not general but target only specific DEMs. (In this paper we
show that the security of any DEM degrades as the number of considered instances increases.)

1.1 Our Contributions
This paper contributes to understanding the interplay of security notions for PKE, KEMs, and DEMs, in
settings with multiple users, challenges, and instances. We start analytically by first studying (a) the
tightness aspects of the standard hybrid KEM+DEM encryption paradigm, (b) the inherent weak security
properties of deterministic DEMs in the multi-instance setting, and (c) the negative effect of deterministic
DEMs on the security of hybrid encryption. We then switch to the constructive side by (d) introducing
the concept of an augmented data encapsulation mechanism (ADEM) that promises robustness against
multi-instance attacks, (e) proposing a variant of hybrid encryption that uses an ADEM instead of a
DEM to alleviate the problems of the standard KEM+DEM composition, and (f) constructing secure
practical ADEMs. We proceed with discussing some of these results in more detail, in the order in which
they appear in the paper.
Standard KEM+DEM Hybrid Encryption. In Section 3 we define syntax and security properties of
PKE, KEMs, and DEMs; we also recall hybrid encryption. Besides unifying the notation of algorithms
and security definitions, the main contribution of this section is to provide a new multi-instance security
notion for DEMs that matches the requirements of KEM+DEM hybrid encryption in the multi-user
multi-challenge setting. That is, hybrid encryption is secure, with tight reduction, if KEM and DEM are
simultaneously secure (in our sense). We further show that any attack on the multi-instance security of

1We are not aware of prior work that explicitly develops multi-instance security models for DEMs; however, [24]
(and others) discuss the multi-instance security of symmetric encryption, and [7] considers the multi-instance security of
(nonce-based) AE.

2The cited work is not too clear about this property; loosely speaking the condition seems to be that colliding ciphertexts
of the same message under random keys can be used as evidence that also the keys are colliding. One example for a DEM
with this property is CBC encryption.
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the DEM tightly implies an attack on the multi-user multi-challenge security of the hybrid scheme. This
implication is particularly relevant in the light of the results of Section 4.
Generic Key-Collision Attacks on Deterministic DEMs. In Section 4 we study two attacks
that target arbitrary (deterministic) DEMs, leveraging on the multi-instance setting and exploiting the
tightness gap between single-instance and multi-instance security. Concretely, inspired by the key-collision
attacks (also known as birthday-bound attacks) from [24, 8, 7], in Section 4.1 and Section 4.2 we describe
two attacks against arbitrary DEMs that break indistinguishability or even recover encryption keys with
success probability N2/ |K|, where N is the number of instances and K is the DEM’s key space. (The
reason for specifying two attacks instead of just one is that deciding which one is preferable may depend
on the particular DEM.) As mentioned above, in hybrid encryption these attacks carry over to the overall
PKE.

What are the options to thwart the described attacks on DEMs? One way to avoid key-collision
attacks in practice is of course to increase the key length of the DEM. This requires the extra burden of
also changing the KEM (it has to output longer keys) and hence might not be a viable option. (Observe
that leaving the KEM as-is but expanding its key to, say, double length using a PRG is not going to
work as our generic DEM attacks would immediately kick in against that construction as well.) Another
way to go would be to randomize the DEM. Drawbacks of this approach are that randomness might be
a scarce resource (in particular on embedded systems, but also on desktop computers there is a price
to pay for requesting randomness3), and that randomized schemes necessarily have longer ciphertexts
than deterministic ones. In Sections 5 to 7 we explore an alternative technique to overcome key-collision
attacks in hybrid encryption without requiring further randomness and without requiring changing the
KEM. We describe our approach in the following.
KEM+ADEM Hybrid Encryption. In Section 5 we introduce the concept of an augmented data
encapsulation mechanism (ADEM). It is a variant of a DEM that takes an additional input: the tag.
The intuition is that ADEMs are safer to use for hybrid encryption than regular DEMs, in particular in
the presence of session-key collisions: Even if two keys collide, security is preserved if the corresponding
tags are different. Importantly, the two generic attacks on DEMs from Section 4 do not apply to ADEMs.
In Section 5 we further consider augmented hybrid encryption which constructs PKE from a KEM and an
ADEM by using the KEM ciphertext as the ADEM tag. The corresponding security reduction is tight.
Practical ADEM Constructions. Sections 6 and 7 are dedicated to the construction of practical
ADEMs. The two constructions in Section 6 are based on the well-known counter mode encryption,
instantiated with an ideal random function and using the tag as initial counter value. We prove tight,
beyond-birthday security bounds of the form N/ |K| for the multi-instance security of our ADEMs. That
is, our constructions provably do not fall prey to key collision attacks, in particular not the ones from
[24, 8] and Section 4. Unfortunately, as they are based on counter mode, the two schemes per se are
not secure against active adversaries. This is remedied in Section 7 where we show that an augmented
message authentication code4 (AMAC) can be used to generically strengthen a passively-secure ADEM to
become secure against active adversaries. (We define AMACs and give a tightly secure construction in
the same section.)

2 Notation
If S is a finite set, s $← S denotes the operation of picking an element of S uniformly at random and
assigning the result to variable s. For a randomized algorithm A we write y $← A(x1, x2, . . .) to denote the
operation of running A with inputs x1, x2, . . . and assigning the output to variable y. Further, we write
[A(x1, x2, . . .)] for the set of values that A outputs with positive probability. We denote the concatenation
of strings with ‖ and the XOR of same-length strings with ⊕. If a ≤ b are natural numbers, we write
[a .. b] for the range {a, . . . , b}.

3Obtaining entropy from a modern operating system kernel involves either file access or system calls; both options
are considerably more costly than, say, doing an AES computation. While some modern CPUs have built-in randomness
generators, the quality of the latter is difficult to assess and relying exclusively on them thus discouraged (see https:
//plus.google.com/+TheodoreTso/posts/SDcoemc9V3J).

4The notion of an augmented MAC appeared recently in an unrelated context: An AMAC according to [3] is effectively
keyed Merkle–Damgård hashing with an unkeyed output transform applied at the end. Importantly, while the notion of [3]
follows the classic MAC syntax, ours does not (for having a separate tag input).
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We say a sequence v1, . . . , vn has a (two-)collision if there are indices 1 ≤ i < j ≤ n such that vi = vj .
More generally, the sequence has a k-collision if there exist 1 ≤ i1 < . . . < ik ≤ n such that vi1 = . . . = vik .
We use predicate Collk[ ] to indicate k-collisions. For instance, Coll2[1, 2, 3, 2] evaluates to true and
Coll3[1, 2, 3, 2] evaluates to false.

Let L be a finite set of cardinality L = |L|. Sometimes we want to refer to the elements of L in an
arbitrary but circular way, i.e., such that indices x and x+ L resolve to the same element. We do this by
fixing an arbitrary bijection J·KL : Z/LZ→ L and extending the domain of J·KL to the set Z in the natural
way. This makes expressions like Ja+bKL, for a, b ∈ N, well-defined. We use the shortcut notation Ja� lKL
to refer to the span {Ja+ 1KL, . . . , Ja+ lKL} of length l. In particular we have Ja� 1KL = {Ja+ 1KL}.

Our security definitions are based on games played between a challenger and an adversary. These
games are expressed using program code and terminate when the main code block executes a ‘return’
command; the argument of the latter is the output of the game. We write Pr[G⇒ 1] or Pr[G⇒ true] or
just Pr[G] for the probability that game G terminates by running into a ‘return’ instruction with a value
interpreted as true. Further, if E is some game-internal event, we similarly write Pr[E] for the probability
this event occurs. (Note the game is implicit in this notation.)

In Appendix A we state a couple of bounds on collision probabilities that will be used throughout this
paper.

3 Traditional KEM/DEM composition and its weakness
We define PKE, KEMs, and DEMs, and give security definitions that consider multi-user, multi-challenge,
and multi-instance attacks. Using the techniques from [4] we show that the multi notions are equivalent
to their single counterparts, up to a huge tightness loss. We show that hybrid encryption enjoys tight
security also in the multi settings. We finally show how (multi-instance) attacks on the DEM can be
leveraged to attacks on the PKE.

3.1 Syntax and security of PKE, KEMs, and DEMs

Public-key encryption. A public-key encryption scheme PKE = (P.gen,P.enc,P.dec) is a triple of
algorithms together with a message spaceM and a ciphertext space C. The randomized key-generation
algorithm P.gen returns a pair (pk, sk) consisting of a public key and a secret key. The randomized
encryption algorithm P.enc takes a public key pk and a message m ∈M to produce a ciphertext c ∈ C.
Finally, the deterministic decryption algorithm P.dec takes a secret key sk and a ciphertext c ∈ C, and
outputs either a message m ∈ M or the special symbol ⊥ /∈ M to indicate rejection. The correctness
requirement is that for all (pk, sk) ∈ [P.gen], m ∈M, and c ∈ [P.enc(pk,m)], we have P.dec(sk, c) = m.

We adapt results from [4] to our notation, giving a game-based security definition for public-key
encryption that formalizes multi-user multi-challenge indistinguishability: For a scheme PKE, to any
adversary A and any number of users n we associate the distinguishing advantage Advmuc-ind

PKE,A,n :=
|Pr[MUC-IND0

A,n] − Pr[MUC-IND1
A,n]|, where the two games are specified in Figure 1. Note that if qe

resp. qd specify upper bounds on the number of Oenc and Odec queries per user, then the single-
user configurations (n, qe, qd) = (1, 1, 0) and (n, qe, qd) = (1, 1,∞) correspond precisely with standard
definitions of IND-CPA and IND-CCA security for PKE.

Game MUC-INDbA,n
00 for all j ∈ [1 .. n]:
01 (pkj , skj) $← P.gen()
02 Cj ← ∅
03 b′ $← A(pk1, . . . , pkn)
04 return b′

Oracle Oenc(j,m0,m1)
05 c $← P.enc(pkj ,mb)
06 Cj ← Cj ∪ {c}
07 return c

Oracle Odec(j, c)
08 if c ∈ Cj : return ⊥
09 m← P.dec(skj , c)
10 return m

Figure 1: PKE security games MUC-INDbA,n, b ∈ {0, 1}, modeling multi-user multi-challenge indistin-
guishability for n users. Adversary A can access oracles Oenc and Odec.

The following states that the multi-user multi-challenge notion is equivalent to the traditional single-
user single-challenge case—up to a tightness loss that is linear in both the number of users and the
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number of challenges. The proof is in [4] (and for completeness also in Appendix B.1).

Lemma 3.1 ([4]). For any public-key encryption scheme PKE, any number of users n, and any adversary A
that poses at most qe-many Oenc and qd-many Odec queries per user, there exists an adversary B such that
Advmuc-ind

PKE,A,n ≤ n · qe ·Advmuc-ind
PKE,B,1, where B poses at most one Oenc and qd-many Odec queries. Further,

the running time of B is at most that of A plus the time needed to perform nqe-many P.enc operations
and nqd-many P.dec operations.

Key encapsulation. A key-encapsulation mechanism KEM = (K.gen,K.enc,K.dec) for a finite session-
key space K is a triple of algorithms together with a ciphertext space C. The randomized key-generation
algorithm K.gen returns a pair (pk, sk) consisting of a public key and a secret key. The randomized
encapsulation algorithm K.enc takes a public key pk to produce a session key K ∈ K and a ciphertext c ∈ C.
Finally, the deterministic decapsulation algorithm K.dec takes a secret key sk and a ciphertext c ∈ C, and
outputs either a session key K ∈ K or the special symbol ⊥ /∈ K to indicate rejection. The correctness
requirement is that for all (pk, sk) ∈ [K.gen] and (K, c) ∈ [K.enc(pk)] we have K.dec(sk, c) = K.

Like for PKE schemes we give a security definition for KEMs that formalizes multi-user multi-challenge
indistinguishability: For a scheme KEM, to any adversary A and any number of users n we associate
the distinguishing advantage Advmuc-ind

KEM,A,n := |Pr[MUC-IND0
A,n]− Pr[MUC-IND1

A,n]|, where the two games
are specified in Figure 2. Note that if qe resp. qd specify upper bounds on the number of Oenc and
Odec queries per user, then the single-user configurations (n, qe, qd) = (1, 1, 0) and (n, qe, qd) = (1, 1,∞)
correspond precisely with standard definitions of IND-CPA and IND-CCA security for KEMs.

Game MUC-INDbA,n
00 for all j ∈ [1 .. n]:
01 (pkj , skj) $← K.gen()
02 Cj ← ∅
03 b′ $← A(pk1, . . . , pkn)
04 return b′

Oracle Oenc(j)
05 (K0, c) $← K.enc(pkj)
06 K1 $← K
07 Cj ← Cj ∪ {c}
08 return (Kb, c)

Oracle Odec(j, c)
09 if c ∈ Cj : return ⊥
10 K ← K.dec(skj , c)
11 return K

Figure 2: KEM security games MUC-INDbA,n, b ∈ {0, 1}, modeling multi-user multi-challenge indistin-
guishability for n users. Adversary A can access oracles Oenc and Odec.

Akin to the PKE case, our KEM multi-user multi-challenge notion is equivalent with its single-user
single-challenge relative—again up to a tightness loss linear in the number of users and the number of
challenges. The corresponding proof is in Appendix B.2.

Lemma 3.2 For any key-encapsulation mechanism KEM, any number of users n, and any adversary A
that poses at most qe-many Oenc and qd-many Odec queries per user, there exists an adversary B such that
Advmuc-ind

KEM,A,n ≤ n · qe ·Advmuc-ind
KEM,B,1, where B poses at most one Oenc and qd-many Odec queries. Further,

the running time of B is at most that of A plus the time needed to perform nqe-many K.enc operations
and nqd-many K.dec operations.

Data encapsulation. A data-encapsulation mechanism DEM = (D.enc,D.dec) for a message spaceM
is a pair of deterministic algorithms associated with a finite key space K and a ciphertext space C. The
encapsulation algorithm D.enc takes a key K ∈ K and a message m ∈M, and outputs a ciphertext c ∈ C.
The decapsulation algorithm D.dec takes a key K ∈ K and a ciphertext c ∈ C, and outputs either a
message m ∈M or the special symbol ⊥ /∈M to indicate rejection. The correctness requirement is that
for all K ∈ K and m ∈M we have D.dec(K,D.enc(K,m)) = m.

As a security requirement for DEMs we formalize a multi-instance variant of the standard one-time
indistinguishability notion: In our model the adversary can request one challenge encapsulation for each
of a total of N independent keys; decapsulation queries are not restricted and can be asked multiple
times for the same key. The corresponding games are in Figure 3. Note that lines 05 and 09 ensure that
the adversary cannot ask for decapsulations with respect to a key before having a challenge message
encapsulated with it. (This matches the typical situation as it emerges in a KEM/DEM hybrid.) For
a scheme DEM, to any adversary A and any number of instances N we associate the distinguishing
advantage Advmiot-ind

DEM,A,N := |Pr[MIOT-IND0
A,N ] − Pr[MIOT-IND1

A,N ]|. Note that if Qd specifies a global
upper bound on the number of Odec queries, then the single-instance configurations (N,Qd) = (1, 0)

5



and (N,Qd) = (1,∞) correspond precisely with standard definitions of OT-IND-CPA and OT-IND-CCA
security for DEMs.

Game MIOT-INDbA,N
00 for all j ∈ [1 .. N ]:
01 Kj

$← K
02 Cj ← ∅
03 b′ $← A
04 return b′

Oracle Oenc(j,m0,m1)
05 if Cj 6= ∅: return ⊥
06 c← D.enc(Kj ,mb)
07 Cj ← Cj ∪ {c}
08 return c

Oracle Odec(j, c)
09 if Cj = ∅: return ⊥
10 if c ∈ Cj : return ⊥
11 m← D.dec(Kj , c)
12 return m

Figure 3: DEM security games MIOT-INDbA,N , b ∈ {0, 1}, modeling multi-instance one-time indistin-
guishability for N instances. Adversary A can access oracles Oenc and Odec.

Similarly to the cases of PKE and KEMs, our multi-instance notion for DEMs is equivalent to its
single-instance counterpart, with a tightness loss of N . The corresponding proof is in Appendix B.3.

Lemma 3.3 For any data-encapsulation mechanism DEM, any number of instances N , and any ad-
versary A that poses at most Qd-many Odec queries in total, there exists an adversary B such that
Advmiot-ind

DEM,A,N ≤ N ·Advmiot-ind
DEM,B,1, where B poses at most one Oenc and Qd-many Odec queries. Further,

the running time of B is at most that of A plus the time needed to perform N -many D.enc operations and
Qd-many D.dec operations.

3.2 Hybrid encryption
The main application of KEMs and DEMs is the construction of public key encryption: To obtain a
(hybrid) PKE scheme, a KEM is used to establish a session key and a DEM is used with this key to
protect the confidentiality of the message [11]. The details of this construction are in Figure 4. It requires
that the session key space of the KEM and the key space of the DEM coincide.

Proc P.gen
00 (pk, sk) $← K.gen
01 return (pk, sk)

Proc P.enc(pk,m)
02 (K, c1) $← K.enc(pk)
03 c2 ← D.enc(K,m)
04 return 〈c1, c2〉

Proc P.dec(sk, 〈c1, c2〉)
05 K ← K.dec(sk, c1)
06 if K = ⊥: return ⊥
07 m← D.dec(K, c2)
08 return m

Figure 4: Hybrid construction of scheme PKE from schemes KEM and DEM. We write 〈c1, c2〉 for the
encoding of two ciphertext components into one.

The central composability result for hybrid encryption [11] says that if the KEM and DEM components
are strong enough then also their combination is secure, with tight reduction. In Theorem 3.4 we give
a generalized version of this claim: it considers multiple users and challenges, and implies the result
from [11] as a corollary. Note that also our generalization allows for a tight reduction. The corresponding
proof is in Appendix B.4.

Theorem 3.4 Let PKE be the hybrid public-key encryption scheme constructed from a key-encapsulation
mechanism KEM and a data-encapsulation mechanism DEM as in Figure 4. Then for any number of
users n and any PKE adversary A that poses at most qe-many Oenc and qd-many Odec queries per user,
there exist a KEM adversary B and a DEM adversary C such that

Advmuc-ind
PKE,A,n ≤ 2Advmuc-ind

KEM,B,n + Advmiot-ind
DEM,C,nqe .

The running time of B is at most that of A plus the time required to run nqe DEM encapsulations and nqe
DEM decapsulations. The running time of C is similar to the running time of A plus the time required to
run nqe KEM encapsulations, nqe KEM decapsulations, and nqe DEM decapsulations. B poses at most
qe-many Oenc and qd-many Odec queries per user, and C poses at most nqe-many Oenc and nqd-many
Odec queries in total.

Theorem 3.4 bounds the distinguishing advantage of adversaries against hybrid PKE conditioned on its
KEM and DEM components being secure. Note that from this result it cannot be deduced that deploying
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an insecure DEM (potentially in combination with a secure KEM) necessarily leads to insecure PKE. We
show in Theorem 3.5 that also the latter implication holds. To ease the analysis, instead of requiring
MUC-IND-like properties of the KEM, we rather assume that it has uniformly distributed session keys.
Formally this means that for all public keys pk the distribution of [(K, c) $← K.enc(pk); output K] is
identical with the uniform distribution on key space K. The proof is in Appendix B.5.

Theorem 3.5 For a key-encapsulation mechanism KEM and a data-encapsulation mechanism DEM let
PKE be the corresponding hybrid encryption scheme. If KEM has uniform keys in K, any attack on DEM
can be converted to an attack on PKE. More precisely, for any n, qe and any DEM adversary A that poses
in total at most nqe-many Odec queries, there exists an adversary B such that

Advmiot-ind
DEM,A,nqe ≤ Advmuc-ind

PKE,B,n + nqe
2

2 |K| .

The running time of B is about that of A, and B poses at most qe-many Oenc queries per user and
Qd-many Odec queries in total.

4 Deterministic DEMs and their multi-instance security
We give two generic key-collision attacks on the multi-instance security of (deterministic) DEMs. They
have different attack goals (indistinguishability vs. key recovery) and succeed with slightly different
probabilities. More precisely, in both cases the leading term of the success probability comes from
the birthday bound and evaluates to roughly N2/ |K|, and is thus much larger than the N/ |K| that
intuition might expect. By Theorem 3.5 the attacks can directly be lifted to ones targeting the multi-user
multi-challenge security of a corresponding hybrid encryption scheme, achieving the same advantage.

4.1 A passive multi-instance distinguishing attack on DEMs
We describe an attack against multi-instance indistinguishability that applies generically to all DEMs.
Notably, the attack is fully passive, i.e., the adversary does not pose any query to its Odec oracle.
As technical requirements we assume a finite message space and a number of instances such that the
inequalities N2 ≤ 2 |K| and |M| ≥ 3 |K|+N − 1 are fulfilled. We consider these conditions extremely
mild, since in practiceM is very large and the value N can be chosen arbitrarily low by simply discarding
some inputs.

For any value N ∈ N the details of our adversary A = AN are in Figure 5. It works as follows: It
starts by picking uniformly at random messages m0,m

1
1, . . . ,m

N
1 ∈M such that m1

1, . . . ,m
N
1 are pairwise

distinct. (Note the corresponding requirement N ≤ |M| follows from above condition.) The adversary
then asks for encapsulations of these messages in a way such that it obtains either N encapsulations
of m0 (if executed in game MIOT-IND0), or one encapsulation of each message mj

1 (if executed in game
MIOT-IND1). If any two of the received ciphertexts collide, the adversary outputs 1; otherwise it outputs 0.
The following theorem makes statements about advantage and running time of this adversary.

Adversary AN
00 m0

$←M
01 for all j ∈ [1 .. N ]:
02 mj

1
$←M\ {m1

1, . . . ,m
j−1
1 }

03 cj ← Oenc(j,m0,m
j
1)

04 return 1 iff Coll2[c1, . . . , cN ]

Figure 5: Adversary A against the multi-instance indistinguishability (MIOT-IND) of a DEM. It asks for
N encapsulations (line 03) but does not use its decapsulation oracle.

Theorem 4.1 For a finite message spaceM, let DEM be a DEM with key space K. Suppose that N2 ≤
2 |K| and |M| ≥ 3 |K|+N − 1. Then adversary A from Figure 5 breaks the N -instance indistinguishability
of DEM, achieving an advantage of

Advmiot-ind
DEM,A,N ≥

N(N − 1)
12 |K| .
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The adversary has a running time of O(N logN), and poses N -many Oenc and no Odec queries.

We remark that, more generally, the bound on |M| can be relaxed to |M| ≥ 2 |K| (1 + δ) +N − 1 for
some δ ≥ 0 to obtain Advmiot-ind

DEM,A,N ≥ δ
δ+1 ·

N(N−1)
4|K| . (Theorem 4.1 is a special case with δ = 1/2.)

Proof. The task of collecting N ciphertexts and checking for the occurrence of a collision can be completed
in O(N logN) operations. In the following we first assess the performance of the adversary when executed
in games MIOT-IND0 and MIOT-IND1; then we combine the results.
Case MIOT-IND0. Adversary A receives N encapsulations of the same message m0, created with N
independently picked keys K1, . . . ,KN . If two of these keys collide the corresponding (deterministically
computed) encapsulations collide as well and A returns 1. Since N(N − 1) < N2 ≤ 2 |K| by Lemma A.1
we obtain

Pr[MIOT-IND0
A,N ] ≥ N(N − 1)

4 |K| .

Case MIOT-IND1. Adversary A receives encapsulations c1, . . . , cN of uniformly distributed (but distinct)
messages m1

1, . . . ,m
N
1 . Denote with Kj the key used to compute cj , letMj :=M\ {m1

1, . . . ,m
j−1
1 }, and

let further Cj := D.enc(Kj ,Mj) denote the image ofMj under (injective) function D.enc(Kj , ·). Observe
this setup implies |Cj | = |Mj | and |C1| > . . . > |CN |. If further follows that each ciphertext cj is uniformly
distributed in set Cj .

We aim at establishing an upper-bound on the collision probability of ciphertexts c1, . . . , cN . The
maximum collision probability is attained in the worst-case C1 ⊃ . . . ⊃ CN , in which it is bounded by the
collision probability of choosing N values uniformly from a set of cardinality |CN | = |M| −N + 1. Using
again Lemma A.1 and |M| ≥ 3 |K|+N − 1 we obtain

Pr[MIOT-IND1
A,N ] ≤ 1

2 ·
N(N − 1)
|M| −N + 1 ≤

N(N − 1)
6 |K| .

Combining the two bounds yields the claimed result:

Advmiot-ind
DEM,A,N ≥

N(N − 1)
12 |K| .

4.2 A passive multi-instance key-recovery attack on DEMs
We give a generic attack on DEMs that aims at recovering keys rather than distinguishing encapsulations.
Like in Section 4.1 the attack is passive. It is inspired by work of Zaverucha [24] and Chatterjee et al. [8].
However, our results are more general than theirs for being generic and not restricted to one specific
DEM.

To formalize the notion of resilience against key recovery we correspondingly adapt the MIOT-IND
game from Figure 3 and obtain the MIOT-KR game specified in Figure 6. The N -instance advantage of
an adversary A is then defined as Advmiot-kr

DEM,A,N := Pr[MIOT-KRA,N ]. The following theorem establishes
that for virtually all practical DEMs (including those based on CBC mode, CTR mode, OCB, etc.,
and even one-time pad encryption) there exist adversaries that achieve a considerable key recovery
advantage, conditioned on the DEM key space being small enough. Concretely, the adversaries we propose
encapsulate 2N times the same message (N times with random but known keys, and N times with
random but unknown keys) and watch out for collisions of ciphertexts.5 As any ciphertext collision stems
(in practice) from a collision of keys, this method allows for key recovery.6

5While our setup is formally meaningful, in practice it would correspond to N parties, for a huge number N , encapsulating
the same message m0. This might feel rather unrealistic. However, we argue that a close variant of the attack might very
well have the potential for practicality: All widely deployed DEMs are online, i.e., compute ciphertexts ‘left-to-right’. For
such DEMs, for our attack to be successful, it suffices that the N parties encapsulate (different) messages that have a
common prefix, for instance a standard protocol header.

6The efficiency of this attack can likely be improved, on a heuristic basis, by deploying dedicated data structures like
rainbow tables.
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Game MIOT-KRA,N
00 for all j ∈ [1 .. N ]:
01 Kj

$← K
02 Cj ← ∅
03 (K, i) $← A
04 return 1 iff K = Ki

Oracle Oenc(j,m)
05 if Cj 6= ∅: return ⊥
06 c← D.enc(Kj ,m)
07 Cj ← Cj ∪ {c}
08 return c

Oracle Odec(j, c)
09 if Cj = ∅: return ⊥
10 if c ∈ Cj : return ⊥
11 m← D.dec(Kj , c)
12 return m

Figure 6: DEM security game MIOT-KRA,N modeling resilience against key recovery, for N instances.
Adversary A is given access to oracles Oenc and Odec.

Theorem 4.2 Fix a DEM and denote its key space with K and its message space withM. Let m0 ∈M
be any fixed message. Fixing N ∈ N as a parameter, consider the adversary A = AN specified in Figure 7.
We then have

Advmiot-kr
DEM,A,N ≥ p(m0) ·min

{
1
2 ,

N2

2 |K|

}
,

where p(m0) denotes the collision probability

p(m0) := Pr
K1,K2

$←K
[K1 = K2 | D.enc(K1,m0) = D.enc(K2,m0)] .

The adversary has a running time of O(N logN), and poses N -many Oenc and no Odec queries.

We further prove that in the case of data encapsulation via one-time pad encryption we have
p(m0) = 1 for any m0. Further, in the case of CBC-based encapsulation there exists a message m0 such
that p(m0) = |B| /(|B|+ |K| − 1), where B is the block space of the blockcipher and the latter is modeled
as an ideal cipher.

Adversary AN
00 for all i ∈ [1 .. N ]:
01 Ki

$← K \ {K1, . . . ,Ki−1}
02 ci ← D.enc(Ki,m0)
03 for all j ∈ [1 .. N ]:
04 c′j ← Oenc(j,m0)
05 if ∃(i, j) ∈ [1 .. N ]2 s.t. ci = c′j :
06 return (Ki, j)
07 return ⊥

Figure 7: Adversary A against multi-instance key recovery (MIOT-KR) of a DEM. It asks for N challenge
encapsulations (line 04) but does not use its decapsulation oracle.

Note that the performance of our attack crucially depends on the choice of message m0, and that
there does not seem to be a general technique for identifying good candidates. In particular, (artificial)
DEMs can be constructed where p(m0) is small for some m0 but large for others, or where p(m0) is small
even for very long messages m0.

Proof. The running time of A is upper bounded by the search for collisions in line 05, since all other
operations require at most linear time in N . We estimate the time bound: The list c1, . . . , cN is sorted,
requiring time O(N logN). Searching an element in the ordered list requires O(logN) time. Repeating
for all N searches requires O(N logN). Combining these observations yields our statement.

We claim that the probability that the adversary does not output ⊥ (in symbols, AN ; ⊥) is lower
bounded by:

Pr[AN ; ⊥] ≥ 1−
(

1− N

|K|

)N
. (1)

Since the DEM is deterministic, the probability to find any collision in line 05 is larger than the probability
that any of the distinct N keys generated in lines 00–02 collides with one of the N keys K̃1, . . . , K̃N used
by the MIOT-KR game to encapsulate. We compute now the latter probability.
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Let K ∈ {K̃1, . . . , K̃N}. We know that the key K is generated uniformly in K. Since the
keys K1, . . . ,KN are distinct and independently chosen we can write: Pr[K ∈ {K1, . . . ,KN}] = N/|K|.
Moreover, since the keys K̃1, . . . , K̃N are generated independently of each other, Equation (1) follows.

Let now (i, j) be the indices for which the condition in line 05 is triggered, i.e., ci = c′j and AN outputs
Ki. We can write:

Advmiot-kr
DEM,A,N = Pr[AN ; ⊥] · Pr[Ki = K̃j | AN ; ⊥]

≥
(

1−
(

1− N

|K|

)N )
· p(m0) .

We apply to the previous inequality Lemma A.4 to obtain:

Advmiot-kr
DEM,A,N ≥ p(m0) ·

(
1−

(
1− N

|K|

)N )
≥ p(m0) ·min

{
1
2 ,

N2

2 |K|

}
,

which proves our main statement.

We compute p(m0) for two specific DEMs (one-time pad and CBC mode) and choices of m0. We
formalize the argument for CBC by considering single-block messages. We note that one can apply the
same argument to other modes of operation, e.g., CTR. For notational simplicity we omit the description
of the probability space, that is, uniform choice of K1,K2 ∈ K.

One-time pad. The one-time pad DEM encapsulation is given by combining a key K ∈ K = {0, 1}k with
a message m ∈M = {0, 1}k using the XOR operation. In this case, if two ciphertexts for the same
message collide, the same key must have been used to encapsulate the message. Thus p(m0) = 1 for
all m0.

CBC with an ideal cipher. CBC-based DEM encapsulation consists of encrypting the message using
a blockcipher in CBC mode with the zero initialization vector (IV). In the following analysis we
assume an idealized blockcipher (ideal cipher model) represented by E. Note that since the IV is
zero, encapsulating a single-block message m0 under the key K is equivalent to enciphering m0
with EK . Let B be the block space. First we observe that for any single-block message m0 we have

Pr[EK1(m0) = EK2(m0)]
= Pr[K1 = K2] + Pr[K1 6= K2] Pr[EK1(m0) = EK2(m0) | K1 6= K2]
= |K|−1 + (1− |K|−1) |B|−1

.

We then use the previous equality to compute p(m0) from its definition:

p(m0) = Pr[K1 = K2]
Pr[EK1(m0) = EK2(m0)]

= |K|−1

|K|−1 + (1− |K|−1) |B|−1 = |B|
|B|+ |K| − 1 .

As an example, if |B| ≥ |K| then p(m0) > 1/2 for any single-block message m0.

5 Augmented data encapsulation
In the previous sections we showed that all deterministic DEMs, including those that are widely used in
practice, might be less secure than expected in the face of multi-instance attacks. We further showed
that, in the setting of hybrid encryption, attacks on DEMs can be leveraged to attacks on the overall
PKE. Given that the KEM+DEM paradigm is so important in practice, we next address the question of
how this situation can be remedied. One option would of course be to increase the DEM key size (recall
that good success probabilities in Theorems 4.1 and 4.2 are achieved only for not too large key spaces);
however, increasing key sizes might not be a viable option in practical systems. (Potential reasons for
this include that blockciphers like AES are slower with long keys than with short keys, and that ciphers
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like 3DES do not support key lengths that have a comfortable ‘multi-instance security margin’ in the first
place.) A second option would be to augment the input given to the DEM encapsulation routine by an
additional value. This idea was already considered in [24, p. 16] where, with the intuition of increasing the
‘entropy’ available to the DEM, it was proposed to use a KEM ciphertext as an initialization vector (IV)
of a symmetric encryption mode. However, [24] does not contain any formalization or security analysis of
this idea, and so it cannot be taken as granted that this strategy actually works. (And indeed, we show
in Section 6.3 that deriving the starting value of blockcipher-based counter mode encryption from a KEM
ciphertext is not ameliorating the situation for attacks based on indistinguishability.)

We formally explore the additional-input proposal for the DEM in this section. More precisely, we
study two approaches of defining an augmented data encapsulation mechanism (ADEM), where we call
the additional input the tag. The syntax is the same in both cases, but the security properties differ:
either (a) the DEM encapsulator receives as the tag an auxiliary random (but public) string, or (b) the
encapsulator receives as additional input a nonce (a ‘number used once’). In both cases the decapsulation
oracle operates with respect to the tag also used for encapsulation. After formalizing this we prove the
following results: First, if the tag space is large enough, ADEMs that expect a nonce can safely replace
ADEMs that expect a uniform tag. Second, ADEMs that expect a uniform tag can be constructed from
ADEMs that expect a nonce by applying a random oracle to the latter. Our third result is that the
augmented variant of hybrid encryption remains (tightly) secure.
Augmented data encapsulation. An augmented data encapsulation mechanism ADEM = (A.enc,A.dec)
for a message spaceM is a pair of deterministic algorithms associated with a finite key space K, a tag
space T , and a ciphertext space C. The encapsulation algorithm A.enc takes a key K ∈ K, a tag t ∈ T ,
and a message m ∈M, and outputs a ciphertext c ∈ C. The decapsulation algorithm A.dec takes a key
K ∈ K, a tag t ∈ T , and a ciphertext c ∈ C, and outputs either a message m ∈M or the special symbol
⊥ /∈M to indicate rejection. The correctness requirement is that for all K ∈ K and t ∈ T and m ∈M
we have A.dec(K, t,A.enc(K, t,m)) = m.
Augmented data encapsulation with uniform tags. The first security notion we formalize
assumes that each encapsulation operation uses a fresh and uniformly picked tag (note this imposes
the technical requirement that the tag space be finite). More precisely, while the tag may become
public after the encapsulation operation has completed, it may not be disclosed to the adversary before
fixing the message to be encapsulated. We formalize this notion of uniform-tag multi-instance one-
time indistinguishability for ADEMs via the games specified in Figure 8. For a scheme ADEM, to any
adversary A and any number of instances N we associate the distinguishing advantage Advu-miot-ind

ADEM,A,N :=
|Pr[U-MIOT-IND0

A,N ]− Pr[U-MIOT-IND1
A,N ]|.

Game U-MIOT-INDbA,N
00 for all j ∈ [1 .. N ]:
01 (Kj , tj) $← K× T
02 Cj ← ∅
03 b′ $← A
04 return b′

Oracle Oenc(j,m0,m1)
05 if Cj 6= ∅: return ⊥
06 c← A.enc(Kj , tj ,mb)
07 Cj ← Cj ∪ {c}
08 return (tj , c)

Oracle Odec(j, c)
09 if Cj = ∅: return ⊥
10 if c ∈ Cj : return ⊥
11 m← A.dec(Kj , tj , c)
12 return m

Figure 8: ADEM security games U-MIOT-INDbA,N , b ∈ {0, 1}, for N instances. Adversary A is given
access to oracles Oenc and Odec. The tags in line 11 are the same as the ones in line 06.

Augmented data encapsulation with nonces. Our second security notion for ADEMs requires the
tag provided to each encapsulation operation to be unique (across all instances). The tag can be generated
using any possible method (e.g., using some global type of counter). We formalize the corresponding
security notion of nonce-based multi-instance one-time indistinguishability for ADEMs via the games
specified in Figure 9. For a scheme ADEM, to any adversary A and any number of instances N we
associate the distinguishing advantage Advn-miot-ind

ADEM,A,N := |Pr[N-MIOT-IND0
A,N ]− Pr[N-MIOT-IND1

A,N ]|.

5.1 Relations between ADEMs with uniform and nonce tags
The two types of ADEMs we consider here can be constructed from each other. More concretely, the
following lemma shows that if the tag space is large enough, ADEMs that expect a nonce can safely
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Game N-MIOT-INDbA,N
00 T ← ∅
01 for all j ∈ [1 .. N ]:
02 Kj

$← K
03 Cj ← ∅
04 b′ $← A
05 return b′

Oracle Oenc(j, t,m0,m1)
06 if Cj 6= ∅: return ⊥
07 if t ∈ T : return ⊥
08 T ← T ∪ {t}; tj ← t
09 c← A.enc(Kj , tj ,mb)
10 Cj ← Cj ∪ {c}
11 return c

Oracle Odec(j, c)
12 if Cj = ∅: return ⊥
13 if c ∈ Cj : return ⊥
14 m← A.dec(Kj , tj , c)
15 return m

Figure 9: ADEM security games N-MIOT-INDbA,N , b ∈ {0, 1}, for N instances. Adversary A is given
access to oracles Oenc and Odec. The tags in line 14 are the same as the ones in line 09.

replace ADEMs that expect a uniform tag. The proof is in Appendix B.6.
Lemma 5.1 Let ADEM be an augmented data encapsulation mechanism. If the cardinality of its tag
space T is large enough and ADEM is secure with non-repeating tags, then it is also secure with random
tags. More precisely, for any number of instances N and any adversary A there exist an adversary B that
makes the same amount of queries such that Advu-miot-ind

ADEM,A,N ≤ Advn-miot-ind
ADEM,B,N +N2/(2 |T |). The running

time of the two adversaries is similar.
The following simple lemma shows that ADEMs that expect a uniform tag can be constructed from

ADEMs that expect a nonce by applying a random oracle to the latter. The proof is immediate since all
queries to the random oracle have different input, thus the corresponding output is uniformly random
and independently generated.
Lemma 5.2 Let ADEM = (A.enc,A.dec) be an augmented data encapsulation mechanism with tag space T .
Let H : T ′ → T denote a hash function, where T ′ is another tag space. Define ADEM′ = (A.enc′,A.dec′)
such that A.enc′(K, t,m) := A.enc(K,H(t),m) and A.dec′(K, t, c) := A.dec(K,H(t), c). Then if H is
modeled as a random oracle and if ADEM is secure with random tags in T , then ADEM′ is secure with
non-repeating tags in T ′. More precisely, for any number of instances N and any adversary A there exists
an adversary B with Advu-miot-ind

ADEM,A,N = Advn-miot-ind
ADEM′,B,N .

5.2 Augmented hybrid encryption
A KEM and an ADEM can be combined to obtain a PKE scheme: the KEM establishes a session key
and a first ciphertext component, and the ADEM is used on input the session key and the first ciphertext
component (as tag) to protect the confidentiality of the message, creating a second ciphertext component.
Figure 10 details this augmented hybrid encryption. It requires that the session key space of the KEM
and the key space of the ADEM coincide. Further, the ciphertext space of the KEM needs to be a subset
of the tag space of the ADEM.

Proc P.gen
00 (pk, sk) $← K.gen
01 return (pk, sk)

Proc P.enc(pk,m)
02 (K, c1) $← K.enc(pk)
03 c2 ← A.enc(K, c1,m)
04 return 〈c1, c2〉

Proc P.dec(sk, 〈c1, c2〉)
05 K ← K.dec(sk, c1)
06 if K = ⊥: return ⊥
07 m← A.dec(K, c1, c2)
08 return m

Figure 10: Augmented hybrid construction of scheme PKE from schemes KEM and ADEM. We write
〈c1, c2〉 for the encoding of two ciphertext components into one.

The claim is that augmented hybrid encryption is more robust against attacks involving multiple
users and challenges than standard hybrid encryption (see Figure 4) is. The security condition posed on
the ADEM would be that it be secure when operated with nonces, and the security property posed on
the KEM would be that it be both indistinguishable and have non-repeating ciphertexts (i.e., invoking its
encapsulation algorithm twice on the same or different public keys does virtually never result in colliding
ciphertexts). Technically, the latter property is implied by indistinguishability. However, to obtain
better bounds, we formalize it as a statistical condition: To any scheme KEM we assign the maximum
ciphertext-collision probability

p := max
pk1,pk2

Pr[(K1, c1) $← K.enc(pk1); (K2, c2) $← K.enc(pk2) : c1 = c2] ,
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where the maximum is over all pairs pk1, pk2 of (potentially coinciding) public keys. Note that practical
KEMs (ElGamal, RSA-based, Cramer–Shoup, . . . ) have much larger ciphertexts than session keys7, so
that the ciphertext-collision probability will always be negligible in practice. We proceed with a security
claim for augmented hybrid encryption. The proof is in Appendix B.7.

Lemma 5.3 Let PKE be the hybrid public-key encryption scheme constructed from a key-encapsulation
mechanism KEM and an augmented data-encapsulation mechanism ADEM as in Figure 10. Let p be the
maximum ciphertext-collision probability of KEM over all possible public keys. Then for any number of
users n and any PKE adversary A that poses at most qe-many Oenc and qd-many Odec queries per user,
there exist a KEM adversary B and an ADEM adversary C such that

Advmuc-ind
PKE,A,n ≤ 2Advmuc-ind

KEM,B,n + Advn-miot-ind
ADEM,C,N + 2

(
N

2

)
p ,

where N = nqe. The running time of B is at most that of A plus the time required to run nqe ADEM
encapsulations and nqe ADEM decapsulations. The running time of C is similar to the running time
of A plus the time required to run nqe KEM encapsulations, nqe KEM decapsulations, and nqe ADEM
decapsulations. B poses at most qe-many Oenc and qd-many Odec queries per user, and C poses at most
nqe-many Oenc and nqd-many Odec queries in total.

6 Constructions of augmented data encapsulation
We construct two augmented data-encapsulation mechanisms and analyze their security. The schemes
are based on operating a function in counter mode. If the function is instantiated with an ideal random
function then the ADEMs are secure beyond the birthday bound. (We also show that if the function is
instead instantiated with an idealized blockcipher, i.e., a random permutation, the schemes’ security may
degrade.) Practical candidates for instantiating the ideal random function are for instance the compression
functions of standardized Merkle–Damgård hash functions, e.g., of SHA2.89 Another possibility is deriving
the random function from an ideal cipher as in [21].

6.1 Counter-mode encryption
Many practical DEMs are based on operating a blockcipher E in counter mode (CTR). Here, in brief,
the encapsulation key is used as the blockcipher key, a sequence of message-independent input blocks
is enciphered under that key, and the output blocks are XOR-ed into the message. More concretely, if
under some key K a message m shall be encapsulated that, without requiring padding, evenly splits into
blocks v1‖ . . . ‖vl, then the DEM ciphertext is the concatenation w1‖ . . . ‖wl where wi = vi ⊕ EK(i).

In the context of this paper, three properties of this way of constructing a DEM are worth pointing
out: (a) the ‘counting’ component of CTR mode serves effectively only one purpose: preventing that
any two inputs to the blockcipher are the same; (b) any ‘starting value’ for the counter can be used;
(c) security analyses of CTR mode typically model E as a pseudorandom function (as opposed to a
pseudorandom permutation)10.

In Figure 11 we detail three ways of turning the principles of CTR mode into a DEM encapsulation
routine. In all cases the underlying primitive is, syntactically, a function F : K × B → D that takes a
key K ∈ K and maps some finite input space B into some finite group (D,⊕). (Intuitively, B serves
as a space of input blocks derived from a counter, and D as a space of pads that can be XORed into
message blocks; note that if F is instantiated with a blockcipher we have B = D, but we explicitly allow
also other instantiations.) The most basic encapsulation routine based on CTR mode that we consider,
and the one closest to what we sketched above, is CTR0enc. Note that this DEM further assumes a
bijection J·KL : Z/LZ → L with L = B. (Intuitively, this bijection turns a counter that is cyclic with
period length L into input blocks for F ; see Section 2 for the notation.) We finally point out that all three
variants of CTR mode that we formalize exclusively work with fixed-length multi-block messages (i.e.,

7This is no coincidence but caused by generic attacks against cyclic groups, RSA, etc.
8These compression functions are regularly modeled as having random behavior [2, 13].
9The idea to construct a DEM from a hash function’s compression function already appeared in the OMD schemes

from [9].
10Technically, the PRP/PRF switching lemma [5] measures the price one has to pay for pursuing this modeling approach.
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M = Dl). This choice, that we made for simplicity of exposition, is not really a restriction as ‘any-length’
CTR mode encryption can be simulated from ‘block-wise’ CTR mode encryption.

Proc CTR0enc(K,m)
00 (v1, . . . , vl)← m
01 for all i ∈ [1 .. l]:
02 wi ← vi ⊕ F (K, JiKL)
03 c← (w1, . . . , wl)
04 return c

Proc CTR+enc(K, t,m)
05 (v1, . . . , vl)← m
06 for all i ∈ [1 .. l]:
07 wi ← vi ⊕ F (K, Jt+ iKL)
08 c← (w1, . . . , wl)
09 return c

Proc CTR‖enc(K, t,m)
10 (v1, . . . , vl)← m
11 for all i ∈ [1 .. l]:
12 wi ← vi ⊕ F (K, t‖JiKL)
13 c← (w1, . . . , wl)
14 return c

Figure 11: Encapsulation algorithms of the CTR0 DEM, the CTR+ ADEM, and the CTR‖ ADEM,
for multi-block messages. In CTR0enc and CTR+enc we assume J·KL : Z/LZ → L with L = B, and in
CTR‖enc we assume J·KL : Z/LZ→ L and T such that B = T ×L. In all cases, finding the corresponding
decapsulation routines is immediate.

The two remaining procedures in Figure 11 are ADEM encapsulation routines. The first one, CTR+enc,
is the natural variant of CTR0enc where the tag space is T = [1 .. L] and the tag specifies the starting
value of the counter. The second, CTR‖enc, concatenates tag and counter. Here, the tag space T and
parameter space L have to be arranged such that B = T × L.

We analyze the security of CTR+ and CTR‖ in the upcoming sections. Scheme CTR0 is not an ADEM
and falls prey to our earlier attacks.

6.2 Security of function-based counter mode
We establish upper bounds on the advantage of U-MIOT-IND adversaries against the CTR+ and CTR‖
ADEMs.

6.2.1 Counter mode with tag-controlled starting value

We limit the maximum amount of blocks in an encapsulation query to a fixed value `. Prerequisites to
our statement on CTR+ are two conditions on the number of instances relative to K and T = [1 .. L].
The bound is namely N ≤ min

{
|K|1/2

, (|T | /(2`))1/(1+δ)}, for some arbitrary constant δ such that
1/N ≤ δ ≤ 1. Despite this restriction we consider our statement to be reflecting real-world applications:
As an extreme example we see that the values |K| = |T | = 2128, N = 256, ` = 256, q = 264 and δ = 2/7 fit
above condition, yielding a maximum advantage of around 2−61.

Theorem 6.1 Suppose N ≤ min
{
|K|1/2

, (|T | /(2`))1/(1+δ)}, for some 1/N ≤ δ ≤ 1, and suppose that F
is modeled as a random oracle (using oracle F). Then for any adversary A against N -instance uniform-tag
indistinguishability of CTR+ that poses at most q queries to F, no decapsulation queries, and encapsulates
messages of length at most ` blocks we have:

Advu-miot-ind
CTR+,A,N ≤

1
3
N

|K|
+ 4`− 2
|T |

+ 2q
|K|

(
1 + 1

δ

)
.

The core of the proof exploits that the outputs of (random oracle) F that are used to encapsulate are
uniformly distributed in D and independent of each other. This requires forcing the inputs to be distinct
in L. We give further insight on some non-standard techniques the we use in the analysis in the proof.

Proof of Theorem 6.1. The definition of the games G0,b
A,N , G1,b

A,N , G2,b
A,N and G3,b

A,N are found in Figure 12.
Except for some bookkeeping, game G0,b

A,N is equivalent to game U-MIOT-INDbA,N , where b ∈ {0, 1}. For
j ∈ [1 .. N ] we define Tj = Jtj � `KL.

Game G1. In game G1,b
A,N we implicitly generate pairs of colliding keys. We loop over all pairs (j1, j2) such

that 1 ≤ j1 < j2 ≤ N . If both indices were not previously paired (matched[j1] = matched[j2] = false)
and the corresponding keys collide (Kj1 = Kj2) then the two indices are marked as paired. Moreover,
if the corresponding tag ranges collide (Tj1 ∩ Tj2 6= ∅) the flag bad1 in line 10 is raised and the
game aborts. We claim that

|Pr[G0,b
A,N ]− Pr[G1,b

A,N ]| ≤ Pr[bad1] ≤ 2`− 1
|T |

. (2)
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To prove (2), we want to compute the probability Pr[bad1]. Let mpairs be the number of colliding
key pairs in game G1,b

A,N , i.e., 2mpairs entries of flag matched are set to 1 at the end of the game.
Then, for every 0 ≤ i ≤ bN/2c,

Pr[bad1 | mpairs = i] ≤ (2`− 1)i/ |T | .

This follows from the independent choices of the values Kj , tj for each instance j ∈ [1 .. N ], and
because for each pair of indices j1, j2 ∈ [1 .. N ], j1 6= j2, and for any choice of tj1 there are exactly
2`− 1 possible values of tj2 such that Tj1 ∩ Tj2 6= ∅.
The sets {mpairs = i}, i ∈ 0, . . . , bN/2c, partition the probability space, thus:

Pr[bad1] =
bN/2c∑
i=0

Pr[bad1 | mpairs = i] Pr[mpairs = i]

≤2`− 1
|T |

bN/2c∑
i=0

iPr[mpairs = i] = 2`− 1
|T |

bN/2c∑
i=1

Pr[mpairs ≥ i] . (3)

The last equality follows since the expected value of any random variable m with values in N can be
written as

∑∞
i=0 iPr[m = i] =

∑∞
i=1 Pr[m ≥ i]. We show by induction that the terms of the sum

are:

pi := Pr[mpairs ≥ i] ≤
(
N2

2 |K|

)i
. (4)

To prove (4), we consider a slightly different event. We say that key Ki is bad if Kj = Ki for some
1 ≤ i < j. Let mbadkeys be the random variable counting the number of bad keys.
Since every colliding key pair implies at least one bad key, then by Lemma A.5:

Pr[mpairs ≥ i] ≤ Pr[mbadkeys ≥ i] ≤
(
N2

2 |K|

)i
.

Finally we prove (2) by combining (3) and (4), and by observing that from our hypothesis N2/ |K| ≤
1:

Pr[bad1] ≤ 2`− 1
|T |

bN/2c∑
i=1

(
N2

2 |K|

)i
≤ 2`− 1
|T |

∞∑
i=1

1
2i = 2`− 1

|T |
. (5)

Game G2. Game G2,b
A,N is equivalent to G1,b

A,N , with the exception that it raises flag bad2 in line 12 and
aborts if any three keys collide. By Lemma A.2, and since N2/ |K| ≤ 1, we obtain

|Pr[G1,b
A,N ]− Pr[G2,b

A,N ]| ≤ Pr[bad2] ≤ 1
6
N3

|K|2
≤ 1

6
N

|K|
. (6)

Game G3. Game G3,b
A,N is equivalent to G2,b

A,N , with the exception that the game raises flag bad3 in line 23
and aborts if A makes a query (K, v) to F for which there exists an index j ∈ [1 .. N ] such that
K = Kj and v ∈ Tj . In the following we fix minters to be the random variable that counts the
maximum number of sets T1, . . . , TN whose intersection is non-empty.
Fix a query (K, v) to F. For each i ∈ [1 .. N ] we have Pr[∃j ∈ [1 .. N ] : v ∈ Tj ∧K = Kj | minters =
i] ≤ i/ |K|, because in the worst case v belongs to exactly minters of the sets T1, . . . , TN . This bound
yields

Pr[∃j ∈ [1 .. N ] : v ∈ Tj ∧K = Kj ]

=
N∑
i=1

Pr[∃j ∈ [1 .. N ] : v ∈ Tj ∧K = Kj | minters = i] · Pr[minters = i]

≤
N∑
i=1

i

|K|
· Pr[minters = i] = 1

|K|
·
N∑
i=1

Pr[minters ≥ i] . (7)
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Game G0,b
A,N – Game G3,b

A,N
00 for all j ∈ [1 .. N ]:
01 matched[j]← false
02 (Kj , tj) $← K× T
03 for all j1 ∈ [1 .. N ]:
04 for all j2 ∈ [j1 + 1 .. N ]:
05 if (Kj1 = Kj2):
06 if ¬matched[j1] ∧ ¬matched[j2]:
07 matched[j1]← true
08 matched[j2]← true
09 if Jtj1 � `KL ∩ Jtj2 � `KL 6= ∅:
10 bad1 ← true; abort |G1

11 if Coll3[K1, . . . ,KN ]:
12 bad2 ← true; abort |G2

13 b′ $← A
14 return b′

Oracle Oenc(j,m0,m1)
15 (v1, . . . , vl)← mb

16 for all i ∈ [1 .. l]:
17 wi ← vi ⊕ F(Kj , Jtj + iKL)
18 c← (w1, . . . , wl)
19 return (tj , c)

Oracle F(K, v)
20 for all j ∈ [1 .. N ]:
21 if (K = Kj) ∧ (v ∈ Jtj � `KL):
22 if T[K, v] 6= ⊥:
23 bad3 ← true; abort |G3

24 if T[K, v] = ⊥:
25 T[K, v] $← D
26 return T[K, v]

Figure 12: The security game G0,b
A,N for CTR+ in the random oracle model, and the games G1,b

A,N , G2,b
A,N ,

and G3,b
A,N . Adversary A is given access to oracles Oenc and F, and can query the oracle Oenc at most

once for the same index j.

By Lemma A.3 we have Pr[minters ≥ i + 1] ≤ N i+1`i/ |T |i. For all i ≥ 1/δ these values can be
upper bounded by Ni+1`i

|T |i ≤
(
N1+δ`
|T |

)i
≤ 1

2i . Thus we can split the sum (7) into

1
|K|
·
N∑
i=1

Pr[minters ≥ i] ≤
1
|K|

( b1/δc∑
i=1

Pr[minters ≥ i] +
∞∑

i=b1/δc+1

1
2i−1

)

≤ 1
|K|

(
1
δ

+ 1
)
.

Since minters is constant for all q queries to F, a union bound gives us

|Pr[G2,b
A,N ]− Pr[G3,b

A,N ]| ≤ Pr[bad3] ≤ q

|K|

(
1
δ

+ 1
)
. (8)

The theorem follows by combining the bounds in (2), (6), (8) for both b = 0 and b = 1 and the fact
that game G3,b

A,N is independent of the bit b.

6.2.2 Counter mode with tag prefix

We have the following security statement on CTR‖. Note it is slightly better than the one for CTR+.

Theorem 6.2 Suppose N ≤ min
{
|K|1/2

, (|T | /2)1/(1+δ)}, for some 1/N ≤ δ ≤ 1, and suppose that F is
modeled as a random oracle (using oracle F). Then for any adversary A against N -instance uniform-tag
indistinguishability of CTR‖ that poses at most q queries to F and no decapsulation queries we have:

Advu-miot-ind
CTR‖,A,N ≤

1
3
N

|K|
+ 1
|T |

+ 2q
|K|

(
1 + 1

δ

)
.

Proof. We refer to Figure 13 for the definition of the games G0,b
A,N , G1,b

A,N , G2,b
A,N and G3,b

A,N . Except for some
bookkeeping, game G0,b

A,N is equivalent to the security game U-MIOT-INDbA,N , with b ∈ {0, 1}.

Game G1. Game G1,b
A,N is equivalent to G0,b

A,N , except when any three keys collide. By Lemma A.2, and
since N2/ |K| ≤ 1, we obtain

|Pr[G0,b
A,N ]− Pr[G1,b

A,N ]| ≤ Pr[bad1] ≤ 1
6
N3

|K|2
≤ 1

6
N

|K|
. (9)
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Game G2. In game G2,b
A,N we abort when two events occur simultaneously: a key 2-collision and a collision

of the corresponding tags. The probability to abort is by Lemma A.2, the independence of the two
events, and the condition N2/ |K| ≤ 1:

|Pr[G1,b
A,N ]− Pr[G2,b

A,N ]| ≤ Pr[bad2] ≤ N2

2 |K|
1
|T |
≤ 1

2
1
|T |

. (10)

Game G3. Game G3,b
A,N is equivalent to G2,b

A,N , with the exception that the game raises flag bad3 in line 16
if some specific condition is met. To get an upper bound on the probability to distinguish G2,b

A,N and
G3,b

A,N we compute the probability that the adversary explicitly queries F for an input (K, v‖JiKL)
such that for some j ∈ [1 .. N ], K = Kj and v = tj . This leads to the equation:

|Pr[G2,b
A,N ]− Pr[G3,b

A,N ]| ≤ Pr[bad3] ≤ q

|K|

(
1
δ

+ 1
)
. (11)

Fix a query (K, v‖JiKL) to F. Since the adversary knows all possible values of v used by Oenc after
each call, the adversary must only guess the key. Assume that there are at most mcoll keys that use
the same tag value v. Then the probability that flag bad3 is triggered during this query is in the
worst case mcoll/ |T |. We compute the probability of this event as follows.

Pr[∃j ∈ [1 .. N ] : v = tj ∧K = Kj ]

=
N∑
i=1

Pr[∃j ∈ [1 .. N ] : v = tj ∧K = Kj | mcoll = i] · Pr[mcoll = i]

≤
N∑
i=1

i

|K|
· Pr[mcoll = i] = 1

|K|
·
N∑
i=1

Pr[mcoll ≥ i] . (12)

The last equality follows since the expected value of any random variable m with values in N can
be written as

∑∞
i=0 iPr[m = i] =

∑∞
i=1 Pr[m ≥ i].

Now we estimate the probability Pr[mcoll ≤ i]. Assume that i ≥ 1/δ. Then from Lemma A.2 and
the condition N ≤ (|T | /2)1/(1+δ) we can write:

Pr[mcoll ≥ i+ 1] ≤ N i+1

(i+ 1)! |T |i
≤
(
N1+δ

|T |

)i
≤ 1

2i .

Considering this observation we split the sum in Equation (12) into

1
|K|
·
N∑
i=1

Pr[mcoll ≥ i] ≤
1
|K|

( b1/δc∑
i=1

Pr[mcoll ≥ i] +
∞∑

i=b1/δc+1

1
2i−1

)

≤ 1
|K|

(
1
δ

+ 1
)
.

Since mcoll is constant for all queries to F, a union bound yields our claim:

Pr[bad3] ≤ q

|K|

(
1
δ

+ 1
)
.

The theorem follows by combining the bounds in (9), (10), (11) for both b = 0 and b = 1 and the fact
that game G3,b

A,N is independent of b.
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Game G0,b
A,N – Game G3,b

A,N
00 for all j ∈ [1 .. N ]:
01 (Kj , tj) $← K× T
02 if Coll3[K1, . . . ,KN ]:
03 bad1 ← true; abort |G1

04 if ∃(j1, j2) ∈ [1 .. N ]2 s.t.
(Kj1 = Kj2) ∧ (tj1 = tj2):

05 bad2 ← true; abort |G2

06 b′ $← A
07 return b′

Oracle Oenc(j,m0,m1)
08 (v1, . . . , vl)← mb

09 for all i ∈ [1 .. l]:
10 wi ← vi ⊕ F(Kj , tj‖JiKL)
11 c← (w1, . . . , wl)
12 return (tj , c)

Oracle F(K, v‖JiKL)
13 for all j ∈ [1 .. N ]:
14 if (K = Kj) ∧ (v = tj):
15 if T[K, v‖JiKL] 6= ⊥:
16 bad3 ← true; abort |G3

17 if T[K, v‖JiKL] = ⊥:
18 T[K, v‖JiKL] $← D
19 return T[K, v‖JiKL]

Figure 13: The security game G0,b
A,N for CTR‖ in the random oracle model, and the games G1,b

A,N , G2,b
A,N ,

and G3,b
A,N . Adversary A is given access to oracles Oenc and F, and can query the oracle Oenc at most

once for the same index j.

6.3 On the security of permutation-based counter mode
In above Theorem 6.1 we assessed the security of the CTR+ ADEM, defined in respect to a function
F : K × B → D. The analysis modeled F as an ideal random function and showed that using sets K
and B of moderate size (e.g., of cardinality 2128) is sufficient to let CTR+ achieve security. We next
show that if F is instead instantiated with a blockcipher and modeled as an ideal family of permutations,
then the minimum cardinality of B = D for achieving security is considerably increased (e.g., to values
around 2256).

Our argument involves the analysis of a U-MIOT-IND adversary A that is specified in Figure 14.
Effectively, the idea of the attack is exploiting the tightness gap of the PRP/PRF switching lemma [5]
via the multi-instance setting. More concretely, the adversary repeats the following multiple times (once
for each instance): It asks either for the encapsulation of a message comprised of identical blocks, or for
the encapsulation of a message consisting of uniformly-generated blocks. The adversary outputs 1 if any
two blocks that form the ciphertext collide. If the ciphertext is the encapsulation of the identical-block
message then the adversary does not find a collision, since F (K, ·) is a permutation for each key K ∈ K
and is evaluated on distinct input values. Otherwise the ciphertext blocks are random, and one can thus
find a collision.

The theorem uses the technical condition that N`(` − 1)/ |T | ≤ 4, where ` is a parameter that
determines the length of the encapsulated messages, measured in blocks. Note that adversaries that
could process values N, ` that are too large to fulfill this bound will reach at least the same advantage as

Adversary AN,`
00 v0

$← B
01 m0 ← v0‖ . . . ‖v0
02 for all j ∈ [1 .. N ]:
03 for all i ∈ [1 .. `]:
04 vji

$← B
05 mj

1 ← vj1‖ . . . ‖v
j
`

06 cj ← Oenc(m0,m
j
1)

07 (wj1, . . . , w
j
`)← cj

08 if Coll2[wj1, . . . , w
j
` ]:

09 return 1
10 return 0

Figure 14: Definition of adversary AN,` against U-MIOT-IND security of CTR+ instantiated with a
permutation F (K, ·). In line 01 message m0 is made of ` identical blocks.
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adversaries considered by the theorem, simply by refraining from posing queries. The stated lower-bound
is roughly N`2/ |T | and effectively induced by N applications of the PRP/PRF switching lemma. Note
that if the above condition is met with equality, the adversary’s advantage is at least 1/2. Further,
if |T | = |B| = 2128, ` = 240 (this corresponds to a message length of 16 terabytes) and we have
N = 248 instances, the success probability of A is about 1/8, or larger.

Theorem 6.3 Consider CTR+ instantiated with a family of permutations F (K, ·) over B, and let N ≥ 2.
Assume moreover that N`(`− 1) ≤ 4 · |T |. Then for the adversary A in Figure 14 it holds:

Advu-miot-ind
CTR+,A,N ≥

N`(`− 1)
8 · |T | .

The adversary has a running time of O(N` log `), makes N queries to Oenc for messages of length at
most ` and makes no Odec queries.

Proof. We start with the analysis of the running time of A: It is predominantly determined by the
search for collisions among ` blocks for each of the N iterations of the main loop, which yields a bound
of O(N` log `) on the time. To bound Advu-miot-ind

CTR+,A,N we compute the probability that the adversary
outputs 1 depending on the game bit b.
Case U-MIOT-IND0. For each instance j ∈ [1 .. N ] the adversary obtains an encapsulation of a sequence
of identical blocks. All blocks composing cj must be distinct, since for each key K, function F (K, ·) is a
permutation over B. Therefore the output of this game is always 0 and we have Pr[U-MIOT-IND0

A,N ] = 0.

Case U-MIOT-IND1. Let p be the probability that there is a collision between ` random variables
that are uniformly distributed in the set B. We show that for each j ∈ [1 .. N ] the probability of A
to output 1 when running the j-th iteration of the loop is p. From the definition of Oenc we can
write wji = vji ⊕ F (Kj , Jtj + iKL) for each i ∈ [1 .. `], where Kj and tj are the key-tag pairs generated by
the game U-MIOT-IND1

A,N . The elements vj1, . . . , v
j
` are generated uniformly in B and independently of

Kj , tj , their index, and from each other. This means that the elements wj1, . . . , w
j
` are also uniformly

distributed in B and mutually independent, even in the presence of colliding keys among K1, . . . ,KN .
Since all blocks vji with i ∈ [1 .. `] and j ∈ [1 .. N ] are independently random, the probability that the
adversary outputs 1 is:

Pr[U-MIOT-IND1
A,N ] = 1− (1− p)N . (13)

Since `(`− 1) ≤ 2 |B| = 2 |T | by our hypotheses we can use Lemma A.1 to bound the probability p as
p ≥ `(`− 1)/(4 · |B|). Using Lemma A.4 we can bound Equation (13), and since N`(`− 1) ≤ 4 |T | = 4 |B|
we can write:

Pr[U-MIOT-IND1
A,N ] ≥ min

{
1
2 ,
Np

2

}
≥ N`(`− 1)

8 · |B| = N`(`− 1)
8 · |T | .

This proves the bound.

7 ADEMs secure against active adversaries
In the preceding section we proposed two ADEMs and proved them multi-instance secure against passive
adversaries. However, the constructions are based on counter mode encryption and obviously vulnerable
in settings with active adversaries that manipulate ciphertexts on the wire. In this section we alleviate
the situation by constructing ADEMs that remain secure in the presence of active attacks. Concretely,
in line with the encrypt-then-MAC approach [6], we show that an ADEM that is secure against active
adversaries can be built from one that is secure against passive adversaries by tamper-protecting its
ciphertexts using a message authentication code (MAC). More precisely, with the goal of tightly achieving
multi-instance security, we use an augmented message authentication code4 (AMAC) where the generation
and verification algorithms depend on an auxiliary input: the tag. In the combined construction, the
same tag is used for both ADEM and AMAC. As before, using KEM ciphertexts as tags is a reasonable
choice. We conclude the section by constructing a (tightly) secure AMAC based on a hash function.
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7.1 Augmented message authentication

Augmented message authentication. An augmented message authentication code AMAC =
(M.mac,M.vrf) for a message space M is a pair of deterministic algorithms associated with a finite
key space K, a tag space T , and a code space C. The algorithm M.mac takes a key K ∈ K, a tag
t ∈ T , and a message m ∈ M, and outputs a code c ∈ C. The verification algorithm M.vrf takes
a key K ∈ K, a tag t ∈ T , a message m ∈ M, and a code c ∈ C, and outputs either true or false.
The correctness requirement is that for all K ∈ K, t ∈ T , m ∈ M and c ∈ [M.mac(K, t,m)] we have
M.vrf(K, t,m, c) = true.
Augmented message authentication with nonces. We give a game-based authenticity model
for AMACs.11 In our model, for each of a total of N independent keys the adversary can request one
MAC code computation but many verifications. The restriction is that for each key the MAC query
has to precede all verification queries, and that always the same tag is used. Further, in line with the
definition of nonce-based security for ADEMs, we require the tag provided in each MAC computation
request to be unique (across all instances). We formalize the corresponding security notion of (strong)
nonce-based multi-instance one-time unforgeability for AMACs via the game specified in Figure 15.
For a scheme AMAC, to any adversary A and any number of instances N we associate the advantage
Advn-miot-uf

AMAC,A,N := Pr[N-MIOT-UFA,N ].

Game N-MIOT-UFA,N
00 forged← 0
01 T ← ∅
02 for all j ∈ [1 .. N ]:
03 Kj

$← K
04 Cj ← ∅
05 run A
06 return forged

Oracle Omac(j, t,m)
07 if Cj 6= ∅: return ⊥
08 if t ∈ T : return ⊥
09 T ← T ∪ {t}; tj ← t
10 c← M.mac(Kj , tj ,m)
11 Cj ← Cj ∪ {(m, c)}
12 return c

Oracle Ovrf(j,m, c)
13 if Cj = ∅: return ⊥
14 if (m, c) ∈ Cj : return ⊥
15 if M.vrf(Kj , tj ,m, c):
16 forged← 1
17 return true
18 return false

Figure 15: AMAC security game N-MIOT-UFA,N , modeling nonce-based multi-instance one-time unforge-
ability for N instances. Adversary A can access oracles Omac and Ovrf. The tags in line 15 are the same
as the ones in line 10.

7.2 The ADEM-then-AMAC construction
Let ADEM and AMAC be an ADEM and an AMAC, respectively. Following the generic encrypt-then-
MAC [6] composition technique, and assuming ADEM is secure against passive adversaries, we combine
the two schemes to obtain the augmented data-encapsulation mechanism ADEM′, which we prove secure
against active adversaries. More formally, if ADEM = (A.enc,A.dec) and AMAC = (M.mac,M.vrf) have
key spaces Kdem and Kmac, respectively, then the key space of ADEM′ is Kdem ×Kmac, and its algorithms
are as in Figure 16. Note that the tag space is the same for all three schemes (and that the message
spaces have to be sufficiently compatible to each other).

Proc A.enc′(K, t,m)
00 (Kdem,Kmac)← K
01 cdem ← A.enc(Kdem, t,m)
02 cmac ← M.mac(Kmac, t, cdem)
03 c← (cdem, cmac)
04 return c

Proc A.dec′(K, t, c)
05 (Kdem,Kmac)← K
06 (cdem, cmac)← c
07 if M.vrf(Kmac, t, cdem, cmac):
08 m← A.dec(Kdem, t, cdem)
09 return m
10 return ⊥

Figure 16: Construction of ADEM′ from ADEM and AMAC.
11In principle we could give two security definitions: one using uniform tags and one using nonce tags. In this paper we

formalize only the latter, not the former, for mainly two reasons: (a) the nonce-based notion is not required for our results;
(b) in the nonce setting it is not clear how to prove a result similar to the one of Theorem 7.1. The reason for (b) is that to
simulate an encapsulation query for a U-MIOT-IND adversary using an AMAC oracle one must specify the tag that is also
used to generate the DEM ciphertext, but this is only given as an output of the AMAC oracle.
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The proof of the following theorem is in Appendix B.8.

Theorem 7.1 Let ADEM′ be constructed from ADEM and AMAC as described. Then for any number
of instances N and any ADEM adversary A that poses at most Qd-many Odec queries, there exist an
AMAC adversary B and an ADEM adversary C such that

Advn-miot-ind
ADEM′,A,N ≤ 2Advn-miot-uf

AMAC,B,N + Advn-miot-ind
ADEM,C,N .

The running time of B is at most that of A plus the time required to run N -many ADEM encapsulations
and Qd-many ADEM decapsulations. The running time of C is the same as the running time of A.
Moreover, B poses at most Qd-many Ovrf queries, and C poses no Odec query.

7.3 A multi-instance secure AMAC
A random oracle directly implies a multi-instance secure AMAC, with a straight-forward construction:
the MAC code of a message is computed by concatenating the key, the tag, and the message, and hashing
the result. We formalize this as follows. Let T be a tag space andM a message space. Let K and C be
arbitrary finite sets. Let H : K× T ×M→ C be a hash function. Define function M.mac and a predicate
M.vrf such that for all K, t,m, c we have M.mac(K, t,m) = H(K, t,m), and M.vrf(K, t,m, c) = true iff
H(K, t,m) = c. Let finally AMAC = (M.mac,M.vrf).

Note that hash functions based on the Merkle–Damgård design, like SHA256, do not serve directly as
random oracles due to generic length-extension attacks [10], and indeed the ADEM′ scheme from Figure 16
is not secure if its AMAC component is derived from such a function. Fortunately, Merkle–Damgård
hashing can be modified to achieve indifferentiability from a random oracle [10]. Further, more recent
hash functions like SHA3 are naturally resilient against length-extension attacks.

The proof of the following theorem is in Appendix B.9.

Theorem 7.2 Let K, T ,M, C and AMAC = (M.mac,M.vrf) be as above. If H behaves like a (non-
programmable) random oracle, for any number of instances N and any adversary A we obtain

Advn-miot-uf
AMAC,A,N ≤

q

|K|
+
(

1
|K|

+ 1
|C|

)
Qv ,

where q is the number of direct calls to the random oracle by the adversary, and Qv is the number of calls
to the oracle Ovrf. Note that the bound does not depend on the number of Omac queries.
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A Collision probabilities
We give some technical lemmas on collision probabilities. The first two lemmas give bounds on the
probability that n random variables collide. The third lemma establishes an upper bound on the
collision probability of sets of the form Jt� lKL for different values of t. The fourth lemma bounds the
expression 1− (1− p)n.

Lemma A.1 Let A be a finite non-empty set of size a. For any n ∈ N such that n(n − 1) ≤ 2a
let X1, . . . , Xn be independent uniformly distributed random variables over the set A. Then:

n(n− 1)
4a ≤ Pr[Coll2[X1, . . . , Xn]] ≤ n(n− 1)

2a .

Proof. If n = 0 or n = 1 the bound is immediate. For the remaining cases we invoke the lower bound
of [23, Theorem 8.28], namely Pr[Coll2[X1, . . . , Xn]] ≥ 1− e−

n(n−1)
2a . Combining this with the property

that 0 < x ≤ 1 ⇒ 1 − e−x > x/2 proves the first inequality. The second inequality follows from [23,
Theorem 8.26].

Lemma A.2 Let A be a finite non-empty set of size a, let n,m be positive integers, and let X1, . . . , Xn

be independent uniformly distributed random variables over the set A. Then:

Pr[Collm[X1, . . . , Xn]] ≤ nm

m!am−1 .

Proof. This lemma follows immediately from [22, Lemma 2], with i = j = k = 1.
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Lemma A.3 Let L be a set of size L and l, n,m be positive integers. Suppose that t1, . . . , tn are
independent uniformly distributed random variables on the set Z/LZ. For each j ∈ [1 .. n] we define
Tj = Jtj � lKL. Then:

Pr[∃i1 6= . . . 6= im ∈ [1 .. n] : Ti1 ∩ . . . ∩ Tim 6= ∅] ≤
nmlm−1

Lm−1 .

Proof. The proof is a modified version of that of [22, Lemma 2].
The proof consists in a counting argument to upper bound the size of the set S that contains all

vectors t = (t1, . . . , tn) ∈ Z/LZn for which there exists a non-empty intersection ∆m = Ti1 ∩ . . . ∩ Tim
for some i1, . . . , im ∈ [1 .. n]. The probability that we want to bound is the probability that a uniformly-
chosen element of Z/LZn belongs to S. For any choice of i1, . . . , im, if the set ∆m is not empty there
must exist some index j ∈ {i1, . . . , im} for which the values at the beginning of all ranges Ti1 , . . . , Tim ,
i.e., Jti1 + 1KL, . . . , Jtim + 1KL, belong to Tj .

We can define a vector t as follows: We choose an element y ∈ Z/LZ, m distinct values j, j1, . . . , jm−1 ∈
[1 .. n] and m − 1 values y1, . . . , ym−1 such that Jy1 + 1KL, . . . , Jym−1 + 1KL ∈ Jy � lKL. The vector t
is defined as tj = y, tji = yi for each i ∈ [1 ..m− 1], and all remaining elements ti for each i ∈
[1 .. n] \ {j, j1, . . . , jm−1} are defined arbitrarily in Z/LZ. The previous description captures all elements
in the set S, albeit with repetitions. We can count the total amount of elements that are defined by this
procedure as L · n!/(n−m)! · lm−1 · Ln−m.

Since there are in total Ln possible choices for the vector t ∈ Z/LZn, the probability of a non-empty
intersection is upper-bounded by:

Ln−m+1lm−1n!
Ln(n−m)! ≤ nmlm−1

Lm−1 .

Lemma A.4 Let n be a positive integer. If 0 ≤ p ≤ 1/n then:

np

2 ≤ 1− (1− p)n ≤ np .

Moreover if 1/n < p ≤ 1 then 1− (1− p)n > 1/2.

Proof. The inequality on the left is [16, Lemma 11]. We prove the upper bound by induction on n for
any 0 ≤ p ≤ 1. The statement holds for n = 1. Suppose that 1− (1− p)n ≤ np. Then:

1− (1− p)n+1 = 1− (1− p)n + (1− p)np ≤ np+ p = (n+ 1)p .

Suppose now that that 1 ≥ p ≥ 1/n. Then we have 1− (1− p)n ≥ 1− (1− 1/n)n ≥ 1− e−1 > 1/2.

Lemma A.5 Let A be a finite non-empty set of size a. For any n ∈ N let X1, . . . , Xn be independent
uniformly distributed random variables over the set A. For every index j ∈ [1 .. n] we define the random
variable badj as:

badj :=
{

1, if ∃k < j s.t. Xk = Xj;
0, otherwise.

We say that the index j is bad if badj = 1. We define the random variable m with values in the
set [0 .. n− 1] as the number of bad indices: m =

∑n
j=1 badj. Then, for any i ∈ [0 .. n]:

Pr[m ≥ i] ≤
(
n2

2a

)i
.

Proof. In the following we assume Pr[m ≥ i] 6= 0, otherwise the proof is trivial. For all i ≥ 0,
Pr[m ≥ i+ 1] = Pr[m ≥ i+ 1 | m ≥ i] · Pr[m ≥ i]. We claim

Pr[m ≥ i+ 1 | m ≥ i] ≤ n2

2a . (14)

Then our statement follows together with Pr[m ≥ 0] ≤ 1.
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To prove (14), assume event m ≥ i has happened and let hi be the random variable representing
the i-th bad index (and taking value ⊥ if there is no such index). In the following we condition our
probability space with respect to the event hi = h for some h ∈ [i+ 1 .. n]. Note that Pr[hi = h] 6= 0
for all h ∈ [i+ 1 .. n]. If we take any configuration of the first h variables for which hi = h, then
the remaining n − h can be arbitrarily assigned to any value. This means that one can consider the
probability space as fixing the variables X1, . . . , Xh according to some distribution and picking the
remaining independent variables Xh+1, . . . , Xn uniformly at random. Note that event m ≥ i+ 1 happens
if and only if one of the indices h+ 1, . . . , n is bad. We can write:

Pr[m ≥ i+ 1 | hi = h] = Pr[∃j ∈ [h+ 1 .. n] : badj = 1 | hi = h]

≤
n∑

j=h+1
Pr[badj = 1 | hi = h]

≤
n∑

j=h+1

j − i− 1
a

≤ (n− i)(n− i− 1)
2a ≤ n2

2a .

To conclude our proof we observe that Pr[m ≥ i] =
∑n
h=i+1 Pr[hi = h] and we write:

Pr[m ≥ i+ 1 | m ≥ i] =
n∑

h=i+1

Pr[hi = h]
Pr[m ≥ i] Pr[m ≥ i+ 1 | hi = h]

≤
n∑

h=i+1

Pr[hi = h]
Pr[m ≥ i]

n2

2a ≤
n2

2a .

B Proofs
B.1 Proof of Lemma 3.1
The following proof is taken from [4]. We only adjusted the notation.

Proof. Let A be an adversary against multi-user multi-challenge indistinguishability for n users that
makes at most qe challenges per user and qd decryption queries per user. We build an adversary B
against MUC-INDbA,1, i.e., standard IND-CCA security, that makes at most one challenge and qd decryption
queries such that:

Advmuc-ind
PKE,B,1 = 1

n · qe
Advmuc-ind

PKE,A,n .

In Figure 17 we define the games GA,u,q, with (u, q) ∈ [0 .. n] × [0 .. qe]; we define moreover pu,q :=
Pr[GA,u,q]. Notice that for the adversary A the two games GA,0,qe and MUC-IND0

A,n, as well as GA,n,qe
and MUC-IND1

A,n, have the same output distribution, and in particular Advmuc-ind
PKE,A,n = |p0,qe − pn,qe |.

Similarly, for any u ∈ [1 .. n] the games GA,u,0 and GA,u−1,qe are equivalent.

Game GA,u,q
00 i← 0
01 for all j ∈ [1 .. n]:
02 (pkj , skj) $← P.gen()
03 Cj ← ∅
04 b′ $← A(pk1, . . . , pkn)
05 return b′

Oracle Oenc(j,m0,m1)
06 if j < u: c $← P.enc(pkj ,m1)
07 if j = u:
08 i← i+ 1
09 if i ≤ q: c $← P.enc(pkj ,m1)
10 if i > q: c $← P.enc(pkj ,m0)
11 if j > u: c $← P.enc(pkj ,m0)
12 Cj ← Cj ∪ {c}
13 return c

Oracle Odec(j, c)
14 if c ∈ Cj : return ⊥
15 m← P.dec(skj , c)
16 return m

Figure 17: Definition of games GA,u,q for the adversary A. Adversary A is given access to oracles Oenc
and Odec.

25



The adversary B is described in Figure 18. First it generates randomly a pair (u, q). Depending on
the bit b of game MUC-INDbB,1 against which B is playing, adversary A faces different output distributions.
Namely:

• If b = 0, then A is playing against game GA,u,q−1.

• If b = 1, then A is playing against game GA,u,q.

Adversary B(pk)
00 (u, q) $← [1 .. n]× [1 .. qe]
01 i← 0
02 for all j ∈ [1 .. n] \ {u}:
03 (pkj , skj) $← P.gen()
04 Cj ← ∅
05 pku ← pk
06 Cu ← ∅
07 b′ $← A(pk1, . . . , pkn)
08 return b′

if A calls Oenc(j,m0,m1)
09 if j < u: c $← P.enc(pkj ,m1)
10 if j = u:
11 i← i+ 1
12 if i < q: c $← P.enc(pkj ,m1)
13 if i = q: c $← Oenc(1,m0,m1)
14 if i > q: c $← P.enc(pkj ,m0)
15 if j > u: c $← P.enc(pkj ,m0)
16 Cj ← Cj ∪ {c}
17 return c

if A calls Odec(j, c)
18 if c ∈ Cj : return ⊥
19 if j = u: m← Odec(1, c)
20 else: m← P.dec(skj , c)
21 return m

Figure 18: The definition of the adversary B. Notice that in lines 13 and 19 the adversary calls its own
oracle, which is different from the one called by A.

Since the choice of the pair (u, q) is uniform and independent of the rest of the game we can write:

Pr[MUC-IND0
B,1] = 1

nqe

n∑
u=1

qe∑
q=1

pu,q−1 , Pr[MUC-IND1
B,1] = 1

nqe

n∑
u=1

qe∑
q=1

pu,q .

Combining the previous expressions with GA,u,0 = GA,u−1,qe we obtain:

Advmuc-ind
PKE,B,1 = |Pr[MUC-IND0

B,1]− Pr[MUC-IND1
B,1]|

= 1
n · qe

|p0,qe − pn,qe | =
1

n · qe
Advmuc-ind

PKE,A,n .

The time required to run B can be estimated from the code in Figure 18.

B.2 Proof of Lemma 3.2
The proof of Lemma 3.2 follows the same steps as the proof of Lemma 3.1 in Appendix B.1. The main
difference consists in replacing all encryptions of the message mb with the pair containing the KEM
ciphertext and either the corresponding key K0 if b = 0 or a randomly generated key K1 if b = 1.

B.3 Proof of Lemma 3.3
The proof of Lemma 3.3 is similar to the proof of Lemma 3.1 in Appendix B.1.

Proof. Let A be an adversary against multi-instance one-time indistinguishability for N instances that
makes at most Qd decapsulation queries in total. We build an adversary B against MIOT-INDbA,1 that
makes at most one encapsulation and Qd decapsulation queries such that:

Advmiot-ind
DEM,B,1 = 1

N
Advmiot-ind

DEM,A,N .

In Figure 19 we define the games GA,q, with q ∈ [0 .. N ]; we define moreover pq := Pr[GA,q]. Notice
that for the adversary A the two games GA,0 and MIOT-IND0

A,N , as well as GA,N and MIOT-IND1
A,N , have

the same output distribution, meaning that Advmiot-ind
DEM,A,N = |p0 − pN |.

The adversary B is described in Figure 20. First it generates randomly the value q. Depending on the
bit b of game MIOT-INDbA,1 against which B is playing, adversary A faces different output distributions.
Namely:
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Game GA,q
00 for all i ∈ [1 .. N ]:
01 Ki

$← K
02 Ci ← ∅
03 b′ $← A
04 return b′

Oracle Oenc(j,m0,m1)
05 if j ≤ q: c← D.enc(Kj ,m1)
06 if j > q: c← D.enc(Kj ,m0)
07 Cj ← Cj ∪ {c}
08 return c

Oracle Odec(j, c)
09 if Cj = ∅: return ⊥
10 if c ∈ Cj : return ⊥
11 m← D.dec(Kj , c)
12 return m

Figure 19: Definition of the games GA,q for an adversary A. Adversary A is given access to oracles Oenc
and Odec.

• If b = 0, then A is playing against game GA,q−1.

• If b = 1, then A is playing against game GA,q.

Adversary B
00 q $← [1 .. N ]
01 for all i ∈ [1 .. N ] \ {q}:
02 Ki

$← K
03 Ci ← ∅
04 Cq ← ∅
05 b′ $← A
06 return b′

if A calls Oenc(j,m0,m1)
07 if j < q: c $← D.enc(Kj ,m1)
08 if j = q: c $← Oenc(1,m0,m1)
09 if j > q: c $← D.enc(Kj ,m0)
10 Cj ← Cj ∪ {c}
11 return c

if A calls Odec(j, c)
12 if c ∈ Cj : return ⊥
13 if j = q: m← Odec(1, c)
14 else: m← D.dec(Kj , c)
15 return m

Figure 20: The definition of the adversary B. Notice that in lines 08 and 13 the adversary calls its own
oracle, which is different from the one called by A.

Since the choice of q is uniform and independent of the rest of the game we can write:

Pr[MIOT-IND0
A,N ] = 1

N

N∑
q=1

pq−1 , Pr[MIOT-IND1
A,N ] = 1

N

N∑
q=1

pq .

Combining the previous expressions we obtain:

Advmiot-ind
DEM,B,1 = |Pr[MIOT-IND0

A,1]− Pr[MIOT-IND1
A,1]|

= 1
N
|p0 − pN | =

1
N

Advmiot-ind
DEM,A,N .

The time required to run B can be estimated from the code in Figure 20.

B.4 Proof of Theorem 3.4
Proof. The game sequence is described in Figure 21.

The game hops are as follows. All modifications involve only the encapsulation oracle. In G1,b
A,n we

replace the keys generated by the KEM scheme with randomly generated keys in K. Then, in game G2,b
A,n

we flip the bit of the encapsulated message. Eventually, in game G3,b
A,n, we switch back from random keys

to KEM keys.
First we observe that the game G0,b

A,n (resp. G3,b
A,n) is equivalent to the game MUC-IND0

A,n (resp. MUC-IND1
A,n).

The main difference consists in storing the encapsulation keys in a list key, which is then used to
decapsulate. The correctness of KEM ensures that the procedures are equivalent. Thus we can
write Advmuc-ind

PKE,A,n = |Pr[G0,b
A,n]− Pr[G3,b

A,n]|.
We now claim that there exist an adversary B such that:

|Pr[G0,b
A,n]− Pr[G1,b

A,n]| = Advmuc-ind
KEM,B,n , |Pr[G2,b

A,n]− Pr[G3,b
A,n]| = Advmuc-ind

KEM,B,n . (15)

The adversary B is described in Figure 22. We show that its advantage in breaking multi-user
multi-challenge indistinguishability of KEM is exactly |Pr[G0,b

A,n]− Pr[G1,b
A,n]|. The adversary B is correctly
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Game G0,b
A,n – Game G3,b

A,n
00 for all j ∈ [1 .. n]:
01 (pkj , skj) $← K.gen()
02 Cj ← ∅
03 b′ $← A(pk1, . . . , pkn)
04 return b′

Oracle Oenc(j,m0,m1)
05 (K, c1)← K.enc(pkj)
06 K $← K |G1

07 (K, c1)← K.enc(pkj) |G3

08 key[j, c1]← K
09 c2

$← D.enc(K,m0)
10 c2

$← D.enc(K,m1) |G2

11 c← 〈c1, c2〉
12 Cj ← Cj ∪ {c}
13 return c

Oracle Odec(j, 〈c1, c2〉)
14 if 〈c1, c2〉 ∈ Cj : return ⊥
15 if key[j, c1] 6= ⊥:
16 K ← key[j, c1]
17 else:
18 K ← K.dec(skj , c1)
19 if K = ⊥: return ⊥
20 m← D.dec(K, c2)
21 return m

Figure 21: Definition of the security games G0,b
A,n, G1,b

A,n, G2,b
A,n, and G3,b

A,n. Notice that the vector key is
initialized implicitly as an empty vector. Adversary A is given access to oracles Oenc and Odec.

Adversary B(pk1, . . . , pkn)
00 for all j ∈ [1 .. n]:
01 Cj ← ∅
02 b′ $← A(pk1, . . . , pkn)
03 return b′

if A calls Oenc(j,m0,m1)
04 (K, c1)← Oenc(j)
05 key[j, c1]← K
06 c2

$← D.enc(K,m0)
07 c← 〈c1, c2〉
08 Cj ← Cj ∪ {c}
09 return c

if A calls Odec(j, 〈c1, c2〉)
10 if 〈c1, c2〉 ∈ Cj : return ⊥
11 if key[j, c1] 6= ⊥:
12 K ← key[j, c1]
13 else:
14 K ← Odec(j, c1)
15 if K = ⊥: return ⊥
16 m← D.dec(K, c2)
17 return m

Figure 22: The definition of the adversary B. Notice that the vector key is initialized implicitly as an
empty vector.

simulating the games MUC-INDbA,n for A, depending on the bit b: we just need to prove that no oracle
call unexpectedly outputs ⊥. For this we consider the calls to Odec in line 14. By our definition of key, if
the condition in line 11 is not satisfied, then the ciphertext has never been queried before.

We count now the number of queries made by B to the oracles. The adversary A makes at most qe
queries per user to the oracle Oenc, which correspond to at most qe queries per user to the oracle Oenc.
Similarly, A makes at most qd queries per user to the oracle Odec, which correspond to at most qd queries
per user to the oracle Odec. This verifies the restrictions on the number of queries in our statement.

Observe that one can always transform the adversary B in an adversary B′A to distinguish G2,b
A,n

and G3,b
A,n. The adversary B′A simply runs the adversary B and swaps the messages m0 and m1 for each

call to Oenc. In this setting the adversary B is playing the games G0,b
A,n or G1,b

A,n. Thus, the probability
of B′A to distinguish G2,b

A,n and G3,b
A,n is exactly Advmuc-ind

KEM,B,n. This justifies Equation (15).
Furthermore we claim that there exist an adversary C such that:

|Pr[G1,b
A,n]− Pr[G2,b

A,n]| = Advmiot-ind
DEM,C,nqe . (16)

The adversary C is described in Figure 23. The adversary C is correctly simulating the games MUC-INDbA,n
for A, depending on the bit b: we just need to prove that no oracle calls unexpectedly outputs ⊥. Since
the counter i increases before each oracle query, the oracle Oenc is called for the same i only once.
Moreover C can call Odec in line 15: if the condition in line 14 is satisfied then c1 has been used during a
previous encapsulation. Hence we can assume that c2 has not been queried before, otherwise C would
have returned ⊥ in line 13.

We count the number of queries made by C to the oracles. The adversary A makes at most qe queries
per user to the oracle Oenc, which correspond to at most nqe queries to the oracle Oenc. Similarly, A
makes at most qd queries per user to the oracle Odec, which correspond to at most nqd queries in total to
the oracle Odec. This verifies the restrictions on the number of queries in our statement.

Combining Equation (15) and (16) together we obtain our main statement. The time required to
run B and C can be estimated from the code in Figure 22 and Figure 23 respectively.
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Adversary C
00 i← 0
01 for all j ∈ [1 .. n]:
02 (pkj , skj) $← K.gen()
03 Cj ← ∅
04 b′ $← A(pk1, . . . , pkn)
05 return b′

if A calls Oenc(j,m0,m1)
06 i← i+ 1
07 (K, c1)← K.enc(pkj)
08 index[j, c1]← i
09 c2

$← Oenc(i,m0,m1)
10 c← 〈c1, c2〉
11 Cj ← Cj ∪ {c}
12 return c

if A calls Odec(j, 〈c1, c2〉)
13 if 〈c1, c2〉 ∈ Cj : return ⊥
14 if index[j, c1] 6= ⊥:
15 m← Odec(index[j, c1], c2)
16 else:
17 K ← K.dec(j, c1)
18 if K = ⊥: return ⊥
19 m← D.dec(K, c2)
20 return m

Figure 23: The definition of the adversary C. Notice that the vector index is initialized implicitly as an
empty vector.

B.5 Proof of Theorem 3.5
Proof. The game sequence is described in Figure 24. Game G0,b

A,n is an instantiation of the security
game MUC-INDbA,n. Game G1,b

A,n is identical except that the game aborts if two KEM ciphertexts for the
same user collide.

Game G0,b
A,n – Game G1,b

A,n
00 for all j ∈ [1 .. n]:
01 (pkj , skj) $← K.gen()
02 Cj ← ∅
03 Ckem,j ← ∅
04 b′ $← A(pk1, . . . , pkn)
05 return b′

Oracle Oenc(j,m0,m1)
06 (K, c1)← K.enc(pkj)
07 if c1 ∈ Ckem,j :
08 bad← true; abort |G1

09 Ckem,j ← Ckem,j ∪ {c1}
10 c2

$← D.enc(K, c1,mb)
11 c← 〈c1, c2〉
12 Cj ← Cj ∪ {c}
13 return c

Oracle Odec(j, 〈c1, c2〉)
14 if 〈c1, c2〉 ∈ Cj : return ⊥
15 K ← K.dec(skj , c1)
16 if K = ⊥: return ⊥
17 m← D.dec(K, c1, c2)
18 return m

Figure 24: Definition of the security games G0,b
A,n and G1,b

A,n. Adversary A is given access to oracles Oenc
and Odec.

We claim that the advantage of an adversary to distinguish the two games is

|Pr[G0,b
A,n]− Pr[G1,b

A,n]| ≤ Pr[bad] ≤ nqe
2

2 |K| . (17)

Notice that if two KEM ciphertexts for the same user collide, then the encapsulated key is the same
for both. Since the keys are uniform, the probability of a ciphertext collision for a single user is upper
bounded by the probability of two keys to collide. By Lemma A.2 this probability is upper bounded
by qe2/(2 |K|) Since the keys are generated independently for each of the n users, our claim follows.

Now we show that for any adversary A against the security of DEM there exists an adversary B against
the security of PKE such that:

Pr[G1,b
B,n] = Advmiot-ind

DEM,A,nqe . (18)

Let A be any adversary against multi-instance one-time indistinguishability with advantage Advmiot-ind
DEM,A,nqe .

We build an adversary B against multi-user multi-challenge security of the hybrid scheme PKE. The
attack is in figure Figure 25.

We argue that, from the point of view of the adversary A called by B, if the game does not abort
it is playing against the game MIOT-INDbA,nqe for DEM. We observe that the keys implicitly generated
by KEM are uniform in K. Moreover A does not receive any input that is dependent on the randomness
used to generate the DEM keys, if not in the form of the keys themselves. Notably, the decryption
procedures uses the KEM ciphertext to call the PKE decryption oracle, but the output message depends
uniquely on the corresponding KEM key. The decryption query can always be requested, since by our
abort condition on colliding ciphertexts all ciphertext components c1 appear only once for a each user,
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Adversary B(pk1, . . . , pkn)
00 (u, q)← (1, 0)
01 for all j ∈ [1 .. nqe]:
02 Cdem,j ← ∅
03 for all u ∈ [1 .. n]
04 Ckem,u ← ∅
05 b′ $← A
06 return b′

if A calls Oenc(j,m0,m1)
07 if Cdem,j 6= ∅: return ⊥
08 q ← q + 1
09 if q > qe: (u, q)← (u+ 1, 1)
10 〈c1, c2〉 ← Oenc(u,m0,m1)
11 if c1 ∈ Ckem,u: abort
12 Cdem,j ← Cdem,j ∪ {c2}
13 Ckem,u ← Ckem,u ∪ {c1}
14 DKEM[j]← (u, c1)
15 return c2

if A calls Odec(j, c2)
16 if Cdem,j = ∅: return ⊥
17 if c2 ∈ Cdem,j : return ⊥
18 (u, c1)← DKEM[j]
19 m← Odec(u, 〈c1, c2〉)
20 return m

Figure 25: The definition of the adversary B. Notice that the vector DKEM is initialized implicitly as an
empty vector.

and thus we never ask for a decryption of a PKE challenge. This does not change in case of a collision
of KEM keys/ciphertexts. Since the victory condition of the DEM security game is the same as that
for G1,b

A,n we get Equation 18.
Combining Equation (17) and (18) gives the first part of our statement. By construction there are at

most qe encryption calls to each user. The number of decryption queries by B coincides with the number
of decryption queries by A. The running time of the two adversaries is roughly equivalent.

B.6 Proof of Lemma 5.1
Proof. The adversary B uniformly generates the tags t1, . . . , tN ∈ T . For each query of A the adversary
B forwards the input to the game N-MIOT-INDbA,N , b ∈ {0, 1}, after including the corresponding tag. If
none of the tags t1, . . . , tN collide, then B is correctly simulating the game U-MIOT-INDbA,N , and the
advantages of the two adversaries A and B coincide. Moreover, from Lemma A.2 the probability that two
tags collide is upper bounded by N2/(2 |T |). These two observations prove our bound.

B.7 Proof of Lemma 5.3
Proof. The proof follows closely that of Theorem 3.4. The game sequence is described in Figure 26.

Game G0,b
A,n – Game G2,b

A,n
00 Ckem ← ∅
01 for all j ∈ [1 .. n]:
02 (pkj , skj) $← K.gen()
03 Cj ← ∅
04 b′ $← A(pk1, . . . , pkn)
05 return b′

Oracle Oenc(j,m0,m1)
06 (K, c1)← K.enc(pkj)
07 if c1 ∈ Ckem:
08 bad← true; abort |G2

09 Ckem ← Ckem ∪ {c1}
10 K $← K |G1

11 key[j, c1]← K
12 c2

$← D.enc(K, c1,mb)
13 c← 〈c1, c2〉
14 Cj ← Cj ∪ {c}
15 return c

Oracle Odec(j, 〈c1, c2〉)
16 if 〈c1, c2〉 ∈ Cj : return ⊥
17 if key[j, c1] 6= ⊥:
18 K ← key[j, c1]
19 else:
20 K ← K.dec(skj , c1)
21 if K = ⊥: return ⊥
22 m← D.dec(K, c1, c2)
23 return m

Figure 26: Definition of the security games G0,b
A,n, G1,b

A,n, and G2,b
A,n. Notice that the vector key is initialized

implicitly as an empty vector. Adversary A is given access to oracles Oenc and Odec.

The game hops are as follows. All modifications involve only the encapsulation oracle. In G1,b
A,n we

replace the keys generated by the KEM scheme with randomly generated keys in K. In game G2,b
A,n we

abort if KEM generates the same ciphertext c1 more than once.
We observe that game G0,0

A,n (resp. G0,1
A,n) has the same output distribution of the security game MUC-IND0

A,n
(resp. MUC-IND1

A,n). The main difference consists in storing the encapsulation keys in a list key, which is
then used to decapsulate. The correctness of KEM ensures that the procedures are equivalent. We can
write Advmuc-ind

PKE,A,n = |Pr[G0,0
A,n]− Pr[G0,1

A,n]|.
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We now claim that there exist an adversary B such that for any bit b:

|Pr[G0,b
A,n]− Pr[G1,b

A,n]| = Advmuc-ind
KEM,B,n . (19)

Adversary B(pk1, . . . , pkn)
00 for all j ∈ [1 .. n]: Cj ← ∅
01 b′ $← A(pk1, . . . , pkn)
02 return b′

if A calls Oenc(j,m0,m1)
03 (K, c1)← Oenc(j)
04 key[j, c1]← K
05 c2

$← D.enc(K, c1,m0)
06 c← 〈c1, c2〉
07 Cj ← Cj ∪ {c}
08 return c

if A calls Odec(j, 〈c1, c2〉)
09 if 〈c1, c2〉 ∈ Cj : return ⊥
10 if key[j, c1] 6= ⊥:
11 K ← key[j, c1]
12 else:
13 K ← Odec(j, c1)
14 if K = ⊥: return ⊥
15 m← D.dec(K, c1, c2)
16 return m

Figure 27: The definition of the adversary B. Notice that the vector key is initialized implicitly as an
empty vector.

The adversary B is described in Figure 27. We show that its advantage in breaking multi-user
multi-challenge indistinguishability of KEM is exactly |Pr[G0,0

A,n]− Pr[G1,0
A,n]|. The adversary B is correctly

simulating the games MUC-INDbA,n for A, depending on the bit b: we just need to show that B can
call Odec in line 13. By our definition of key, if the condition in line 10 is not satisfied, then the ciphertext
has never been queried before, hence B can decapsulate.

We count the number of queries to the oracles that are made by B. The adversary A makes at most qe
queries per user to the oracle Oenc, which correspond to at most qe queries per user to the oracle Oenc.
Similarly, A makes at most qd queries per user to the oracle Odec, which correspond to at most qd queries
per user to the oracle Odec. This verifies the restrictions on the number of queries in our statement.

Observe that one can always transform the adversary B in an adversary B′ to distinguish G0,1
A,n and G1,1

A,n.
The adversary B′ simply runs the adversary B and swaps the messages m0 and m1 for each call to Oenc.
In this setting the adversary B is playing the games G0,0

A,n or G1,0
A,n. The probability of B′ to distinguish G0,1

A,n
and G1,1

A,n is thus exactly Advmuc-ind
KEM,B,n. This justifies Equation (19).

Next we argue that, for any bit b:

|Pr[G1,b
A,n]− Pr[G2,b

A,n]| ≤ Pr[bad] ≤
(
N

2

)
p . (20)

In fact the probability that the game G2,b
A,n aborts during the i-th encryption query is lower bounded

by (i− 1)p. Summing up for all the N = nqe queries yields exactly Equation (20).
Finally we claim that there exist an adversary C such that:

|Pr[G2,0
A,n]− Pr[G2,1

A,n]| = Advmiot-ind
DEM,C,nqe . (21)

The adversary C is described in Figure 28. The adversary C is correctly simulating the games MUC-INDbA,n
for A, depending on the bit b: we just need to show that the adversary can call the oracles without
receiving any invalid output ⊥. Since the counter i is always increasing before each oracle query, the
oracle Oenc is called only once for the same i. From our abort condition we also know that the tag used
as input to the same oracle has never been queried before. We argue similarly for the oracle Odec in
line 18. Suppose that the oracle has been queried with input (j, 〈c1, c2〉). If the condition in line 17 is
satisfied then c1 was used as tag during the previous encapsulation for the index[j, c1]-th instance, thus
becoming implicitly assigned to that instance for decapsulation. We also see that c2 has not been queried
before, otherwise C would have returned ⊥ in line 16.

We count the number of queries to the oracles that are made by C. The adversary A makes at
most qe queries per user to the oracle Oenc, which correspond to at most nqe queries to the oracle Oenc.
Similarly, A makes at most qd queries per user to the oracle Odec, which correspond to at most nqd queries
in total to the oracle Odec. This verifies the restrictions on the number of queries in our statement.

Combining Equation (19) and (20) (both for b = 0 and b = 1) with Equation (21) we obtain our main
statement. The time required to run B and C can be estimated from the code in Figure 27 and Figure 28
respectively.
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Adversary C
00 Ckem ← ∅
01 i← 0
02 for all j ∈ [1 .. n]:
03 (pkj , skj) $← K.gen()
04 Cj ← ∅
05 b′ $← A(pk1, . . . , pkn)
06 return b′

if A calls Oenc(j,m0,m1)
07 i← i+ 1
08 if c1 ∈ Ckem: abort
09 Ckem ← Ckem ∪ {c1}
10 (K, c1)← K.enc(pkj)
11 index[j, c1]← i
12 c2

$← Oenc(i, c1,m0,m1)
13 c← 〈c1, c2〉
14 Cj ← Cj ∪ {c}
15 return c

if A calls Odec(j, 〈c1, c2〉)
16 if 〈c1, c2〉 ∈ Cj : return ⊥
17 if index[j, c1] 6= ⊥:
18 m← Odec(index[j, c1], c2)
19 else:
20 K ← K.dec(j, c1)
21 if K = ⊥: return ⊥
22 m← D.dec(K, c1, c2)
23 return m

Figure 28: The definition of the adversary C. Notice that the vector index is initialized implicitly as an
empty vector.

B.8 Proof of Lemma 7.1
Proof. The proof involves the two games specified in Figure 29. The game G0,b

A,N coincides with
N-MIOT-INDbA,N instantiated with the ADEM of Figure 16. We correspondingly have Advn-miot-ind

ADEM′,A,N =
|Pr[G0,0

A,N ]− Pr[G0,1
A,N ]|. Game G1,b

A,N coincides with game G0,b
A,N insofar as the adversary never submits a

query to Omac that passes the MAC verification in line 19; otherwise the flag bad is set to true and the
game aborts.

Game G0,b
A,N – G1,b

A,N
00 T ← ∅
01 for all j ∈ [1 .. N ]:
02 Kj

$← K
03 Cj ← ∅
04 b′ $← A
05 return b′

Oracle Oenc(j, t,m0,m1)
06 if Cj 6= ∅: return ⊥
07 if t ∈ T : return ⊥
08 T ← T ∪ {t}; tj ← t
09 (Kdem,Kmac)← Kj

10 cdem ← A.enc(Kdem, tj ,mb)
11 cmac ← M.mac(Kmac, tj , cdem)
12 c← (cdem, cmac)
13 Cj ← Cj ∪ {c}
14 return c

Oracle Odec(j, c)
15 if Cj = ∅: return ⊥
16 if c ∈ Cj : return ⊥
17 (Kdem,Kmac)← Kj

18 (cdem, cmac)← c
19 if M.vrf(Kmac, tj , cdem, cmac):
20 bad← true; abort |G1

21 m← A.dec(Kdem, tj , cdem)
22 return m
23 return ⊥

Figure 29: The security games G0,b
A,N and G1,b

A,N . Adversary A is given access to oracles Oenc and Odec.
When the game “aborts” this means it stops executing and returns 0.

We argue that any adversary A playing the game G0,b
A,N obtaining any output other than ⊥ from the

oracle Odec can be used to break the security of AMAC. Concretely, in Figure 30 we build an adversary B
against AMAC that breaks the security game N-MIOT-UFB,N by calling the adversary A and answering
its oracle queries using the oracles Omac and Ovrf.

Adversary B
00 T ← ∅
01 for all j ∈ [1 .. N ]:
02 Kj

$← Kdem
03 Cj ← ∅
04 run A
05 return ⊥

if A calls Oenc(j, t,m0,m1)
06 if Cj 6= ∅: return ⊥
07 if t ∈ T : return ⊥
08 T ← T ∪ {t}; tj ← t
09 cdem ← A.enc(Kj , tj ,mb)
10 cmac ← Omac(j, tj , cdem)
11 c← (cdem, cmac)
12 Cj ← Cj ∪ {c}
13 return c

if A calls Odec(j, c)
14 if Cj = ∅: return ⊥
15 if c ∈ Cj : return ⊥
16 (cdem, cmac)← c
17 forged← Ovrf(j, cdem, cmac)
18 if ¬ forged: return ⊥
19 m← A.dec(Kj , tj , cdem)
20 return m

Figure 30: Adversary B against game N-MIOT-UF. It has access to oracles Omac and Ovrf.

The probability that the condition in line 19 of Figure 29 is triggered is exactly the probability that B
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Game G0
A,N – Game G1

A,N
00 forged← 0
01 T,H ← ∅
02 for all j ∈ [1 .. N ]:
03 Kj

$← K
04 Cj ← ∅
05 mj ← ⊥; tj ← ⊥
06 run A
07 return forged

Oracle H(K, t, x)
08 if ∃j : (K, t, x) = (Kj , tj ,mj):
09 if H[K, t, x] 6= ⊥:
10 bad← true; abort |G1

11 if H[K, t, x] = ⊥:
12 H[K, t, x] $← C
13 return H[K, t, x]

Oracle Omac(j, t,m)
14 if Cj 6= ∅: return ⊥
15 if t ∈ T : return ⊥
16 T ← T ∪ {t}
17 mj ← m; tj ← t
18 c← H(Kj , t,m)
19 Cj ← Cj ∪ {(m, c)}
20 return c

Oracle Ovrf(j,m, c)
21 if Cj = ∅: return ⊥
22 if (m, c) ∈ Cj : return ⊥
23 c′ ← H(Kj , tj ,m)
24 if c = c′:
25 forged← 1
26 return true
27 return false

Figure 31: The security games G0
A,N and G1

A,N . Adversary A is given access to oracles H, Omac, and Ovrf.
When the game “aborts” this means it stops executing and returns 0.

wins the game N-MIOT-UFB,N for the scheme AMAC, hence, for any bit b ∈ {0, 1}:

|Pr[G0,b
A,N ]− Pr[G1,b

A,N ]| ≤ Pr[bad] = Advn-miot-uf
AMAC,B,N .

Finally, game G1,b
A,N is equivalent to the game N-MIOT-INDA,N with no calls to the decapsulation oracle.

Hence if we define the adversary C that runs A forwarding all calls to the oracle Oenc and answering all
calls to Odec with ⊥ we obtain:

|Pr[G1,0
A,N ]− Pr[G1,1

A,N ]| = Advn-miot-ind
ADEM,C,N .

Combining the previous formulas for both b ∈ {0, 1} yields our statement.

B.9 Proof of Lemma 7.2
Proof. The proof involves the two games specified in Figure 31. The game G0

A,N is the game N-MIOT-UFA,N
instantiated with the described hash-based AMAC, with the random oracle made explicit. We correspond-
ingly have Advn-miot-uf

AMAC,A,N = Pr[G0
A,N ]. Game G1

A,N is equivalent to game G0
A,N except that the adversary

never queries the random oracle for any input that was used to generate any output of Omac.12

We claim that |Pr[G0
A,N ]−Pr[G1

A,N ]| ≤ Pr[bad] ≤ q/|K|. To show this, we analyze the abort condition
in line 10. Notice that the adversary has no information on the MAC keys but full control on the inputs
to Omac. The probability of the adversary to trigger the abort condition stems solely from key guessing.
Since all tags t1, . . . , tN are used at most once for each call to Omac, the adversary guesses at most one
key at a time for each call to the random oracle. The probability to guess the key on a single query to H
is at most 1/|K|. Repeating this argument for each of the q queries to H yields our claim.

From game G1
A,N the adversary has no additional information on the MAC keys, in particular it cannot

determine whether any value in C is a valid code for a fixed instance j ∈ [1 .. N ] and message m ∈ M.
It remains to compute the probability that the adversary is able to guess the code by chance while
calling Ovrf, which coincides with Pr[G1

A,N ]. This is achieved either by guessing the key Kj and sending
to the oracle the correct input (j,m,H(Kj , tj ,m)), or by guessing the correct code in C. This yields:

Pr[G1
A,N ] ≤

(
1
|K|

+ 1
|C|

)
Qv . (22)

Applying the triangle inequality to our previous equations gives our statement.

12Notice that our abort condition consider both the case in which the adversary queries first Omac and later guesses the
inputs to H that were used by the reduction to answer the query, and that in which the order of the two queries is switched.
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