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Abstract. Password-based authenticated key exchange (PAKE) enables
two users with shared low-entropy passwords to establish cryptographi-
cally strong session keys over insecure networks. At Asiacrypt 2009, Katz
and Vaikuntanathan showed a generic three-round PAKE based on any
CCA-secure PKE with associated approximate smooth projective hash-
ing (ASPH), which helps to obtain the first PAKE from lattices. In this
paper, we give a framework for constructing PAKE from CCA-secure
PKE with associated ASPH, which uses only two-round messages by
carefully exploiting a splittable property of the underlying PKE and its
associated non-adaptive ASPH. We also give a splittable PKE with asso-
ciated non-adaptive ASPH based on the LWE assumption, which finally
allows to instantiate our two-round PAKE framework from lattices.

1 Introduction

As one of the most fundamental and widely used cryptographic primitives, key
exchange (KE) dates back to the seminal work of Diffie and Hellman (DH) [25],
and it enables users to establish a session key via public exchanges of messages.
Due to lack of authentication, the original DH protocol, and key exchange in
general, only ensures two users to share a secure session key in presence of passive
eavesdroppers, and it is insecure against an active adversary who has full control
of all communication. To overcome this issue, authenticated key exchange (AKE)
enables each user to authenticate the identities of others with the help of some
pre-shared information, and thus provides the additional guarantee that only the
intended users can access the session key. Typically, the shared information can
be either a high-entropy cryptographic key (such as a secret key for symmetric-
key encryption, or a public key for digital signature) or a low-entropy password.
After decades of development, the community has witnessed great success in
designing AKE based on high-entropy cryptographic keys, even in the setting
of lattices [52,60,7]. However, people rarely make full use of the large character
set in forming passwords and many tend to pick easily memorizable ones from
a relatively small dictionary. AKEs based on high-entropy cryptographic keys
usually do not apply to the case where only low-entropy passwords are available.
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Indeed, as shown in [34,39], it can be trivially insecure to use a low-entropy
password as a cryptographic key.

Informally, a secure password-based AKE (PAKE) should resist off-line dic-
tionary attacks in which the adversary tries to determine the correct password
using only information obtained during previous protocol executions, and limit
the adversary to the trivial on-line attacks where the adversaries simply run the
protocol with honest users using (a bounded number of) password trials. For-
mal security models for PAKE were developed in [10,17]. Later, many provably
secure PAKE protocols based on various hardness assumptions were proposed,
where the research mainly falls into two lines:4 the first line starts from the work
of Bellovin and Merritt [12], followed by plenty of excellent work focusing on
PAKE in the random oracle/ideal cipher models and aiming at achieving the
highest possible levels of performance [10,17,47,18]; the second line dates back
to the work of Katz, Ostrovsky and Yung [39], from which Gennaro and Lin-
dell [31] abstracted out a generic PAKE framework (in the CRS model) based
on smooth projective hash (SPH) functions [23]. This line of research devoted
to seeking more efficient PAKE in the standard model [22,3,37,41,13,2].

As noted in [40], none of the above PAKEs can be instantiated from lattices.
In particular, it is an open problem [54] to instantiate SPH functions [23] on
lattice assumptions. Despite the great success in lattice-based cryptography in
the past decade, little progress was made on lattice-based PAKE until the work
of Katz and Vaikuntanathan [40]. Concretely, they [40] introduced the notion
of approximate smooth projective hashing (ASPH) so as to be instantiatable
from lattices, and plugged it into an adapted version of the GL-framework [31]
to yield the first lattice-based PAKE by using only three-round messages in the
standard model (just like the counterparts in [39,31]). Up until now (seven years
after the publication of [40]), the Katz-Vaikuntanathan PAKE remained the
most efficient lattice-based PAKE to the best of our knowledge. This raises the
following questions: is it possible to construct more efficient PAKE from lattices
(e.g., a PAKE with less message rounds/communication overheads), and does
there exist other generic PAKE framework that fits better with lattices?

1.1 Our Contribution

In this paper, we first give a new PAKE framework (also in the CRS model) from
PKE with associated ASPH, which uses only two-round messages. We mainly
benefit from two useful features of the underlying primitives: 1) the PKE is
splittable, which informally requires that each ciphertext of the PKE scheme
consists of two relatively independent parts, where the first part is designed for
realizing the “functionality” of encryption, while the second part helps to achieve
CCA-security; and 2) the ASPH is non-adaptive [41], i.e., the projection function
only depends on the hash key, and the smoothness property holds even when
the ciphertext depends on the projection key. By carefully exploiting the above

4 Please refer to Section 1.3 for other related works.
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features, we overcome several obstacles (e.g., the “approximate correctness” of
ASPH) to obtain a generic two-round PAKE in the standard model.

We also propose a concrete construction of splittable PKE with associated
non-adaptive ASPH from learning with errors (LWE). Note that the PKEs with
associated SPH (based on either DDH or decisional linear assumptions) in [41]
can be used to instantiate our framework, but the only known lattice-based PKE
with associated ASPH in [40] does not satisfy our requirements. We achieve our
goal by first developing an adaptive smoothing lemma for q-ary lattices, and then
combining it with several recent techniques. Technically, the lemma is needed
for achieving the strong smoothness of our non-adaptive ASPH, and may be
of independent interest. As in [41], our PKE construction relies on simulation-
sound non-interactive zero-knowledge (SS-NIZK) proofs, and thus, in general, is
computationally inefficient. Fortunately, we can construct an efficient SS-NIZK
from lattices in the random oracle model,5 and finally obtain an efficient two-
round lattice-based PAKE in the random oracle model, which is at least O(log n)
times more efficient in the communication overhead than the three-round lattice-
based PAKE (in the standard model) [40].

1.2 Our Techniques

We begin with the GL-framework [31] from CCA-secure public-key encryption
(PKE) with associated smooth projective hash (SPH) functions. Informally, the
SPH for a PKE scheme is a keyed hash function which maps a ciphertext-
plaintext pair into a hash value, and can be computed in two ways: either using
the hash key hk or using a projection key hp (which can be efficiently determined
from hk and a targeted ciphertext c). The GL-framework for PAKE roughly relies
on the following two properties of SPH:

Correctness: if c is an encryption of the password pw using randomness r,
then the hash value Hhk(c, pw) = Hash(hp, (c, pw), r), where both functions
H and Hash can be efficiently computed from the respective inputs.

Smoothness: if c is not an encryption of pw, the value Hhk(c, pw) is statistically
close to uniform given hp, c and pw (over the random choice of hk).

Specifically, the GL-framework for PAKE has three-round messages: 1) the
client computes an encryption c1 of the password pw using randomness r1, and
sends c1 to the server; 2) the server randomly chooses a hash key hk2, computes
a projection key hp2 (from hk2 and c1) together with an encryption c2 of the
password pw using randomness r2, and sends (hp2, c2) to the client; 3) the client
sends a projection key hp1 corresponding to a randomly chosen hash key hk1 and
c2. After exchanging the above three messages, both users can compute the same
session key sk = Hhk1(c2, pw)⊕Hash(hp2, (c1, pw), r1) = Hash(hp1, (c2, pw), r2)⊕
Hhk2(c1, pw) by the correctness of the SPH. Note that if the PKE scheme is CCA-
secure, no user can obtain useful information about the password held by the

5 We leave it as an open problem to directly construct an SS-NIZK from lattice prob-
lems in the standard model.
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other user from the received ciphertext. Thus, if the client (resp., the server) does
not hold the correct password pw, his view is independent from the “session key”
computed by the server (resp., the client) by the smoothness of the SPH. We
stress that the above discussion is very informal and omits many details. For
example, a verification key vk should be sent in the first message such that the
client can generate a signature σ on the protocol transcripts in the third message
(and thus the total communication cost is determined by |hp|+ |c|+ |vk|+ |σ|).

Clearly, a lattice-based PAKE is immediate if a PKE with associated SPH
could be obtained from lattice assumptions. However, the literature [54] suggests
that it is highly non-trivial, if not impossible, to instantiate SPH from lattices.
Instead, Katz and Vaikuntanathan [40] provided a solution from a weaker no-
tion of SPH—Approximate SPH (ASPH), which weakens both the correctness
and smoothness properties of the SPH notion in [31]. First, ASPH only provides
“approximate correctness” in the sense that Hhk(c, pw) and Hash(hp, (c, pw), r)
may differ at a few positions when parsed as bit-strings. Second, the smoothness
property of ASPH only holds for some (c, pw) that pw is not equal to the de-
cryption of c, and hence leaves a gap that there exists (c, pw) for which ASPH
provides neither correctness nor smoothness guarantee. This relaxation is nec-
essary for instantiating ASPH on lattices, since in the lattice setting there is no
clear boundary between “c is an encryption of pw” and “c is not an encryption of
pw”, which is actually one of the main difficulties for realizing SPH from lattices.

Thus, if one directly plugs ASPH into the GL-framework [31], neither the
correctness nor the security of the resulting PAKE is guaranteed. Because both
users may not compute the same session key, and the adversary may break the
protocol by exploiting the (inherent) gap introduced by ASPH. The authors [40]
fixed the issues by relying on error correcting codes (ECC) and the robustness of
the GL-framework [31]. Specifically, in addition to sending a projection key hp1,
the client also randomly chooses a session key sk, computes tk = Hhk1(c2, pw)⊕
Hash(hp2, (c1, pw), r1), and appends ∆ = tk⊕ECC(sk) to the third message (i.e.,
tk is used as a masking key to deliver sk to the server), where ECC and ECC−1 are
the corresponding encoding and decoding algorithms. After receiving the third
message, the server can compute the session key sk′ = ECC−1(tk′ ⊕∆), where
tk′ = Hash(hp1, (c2, pw), r2) ⊕ Hhk2(c1, pw). By the “approximate correctness”
of the ASPH, we know that tk′ ⊕ ∆ is not far from the codeword ECC(sk).
Thus, both users can obtain the same session key sk = sk′ by the correctness of
an appropriately chosen ECC, which finally allows [40] to obtain a three-round
PAKE from PKE with associated ASPH.

However, the techniques of [40] are not enough to obtain a two-round PAKE
(in particular, they cannot be applied into the PAKE framework [41]) due to
the following two main reasons. First, the ASPH in [40] is adaptive (i.e., the
projection key hp depends on the ciphertext c, and the smoothness only holds
when c is independent of hp), which seems to inherently require at least three-
round messages [31,41]. Second, the strategy of delivering a random session key
to deal with the “approximate correctness” of ASPH can only be applied when
one user (e.g., the client) obtained the masking key tk, and may be vulnerable
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to active attacks (e.g., modifications) because of the loose relation between the
marking part (namely, ∆) and other protocol messages. This is not a problem
for the GL-framework [31], since it had three-round messages and used one-
time signatures, which allows the authors of [40] to simply send ∆ in the third
message and tightly bind it with other protocol messages by incorporating it into
the one-time signature. Nevertheless, the above useful features are not available
in the more efficient PAKE framework [41].

In order to get a two-round PAKE from PKE with associated ASPH, we
strengthen the underlying primitive with several reasonable properties. First,
we require that the ASPH is non-adaptive, i.e., the projection function only
depends on the hash key, and the smoothness property holds even when the
ciphertext c depends on hp. Second, we require that the underlying PKE is
splittable. Informally, this property says that a ciphertext c = (u, v) of the
PKE scheme can be “independently” computed by two functions (f, g), where
u = f(pk, pw, · · · ) mainly takes a plaintext pw as input and plays the role of
“encrypting” pw, while v = g(pk, label, · · · ) mainly takes a label as input and
plays the role of providing non-malleability for CCA-security.6 Third, we require
that the hash value of the ASPH is determined by the hash key hk, the first part
u of the ciphertext c = (u, v), as well as the password pw. At a high level, the
first enhancement allows us to safely compute the masking key tk after receiving
the first message, while the second and third enhancements enable us to leverage
the non-malleability of the underlying CCA-secure PKE scheme to tightly bind
the masking part ∆ with other protocol messages. Concretely, we let the client
to send the projection hash key hp1 together with the ciphertext c1 in a single
message, and let the server compute the masking key tk immediately after it
has obtained the first part u2 = f(pk, pw, · · · ) of the ciphertext c2 = (u2, v2),
and compute the second part v2 = g(pk, label, · · · ) with a label consisting of
hp1, c1, hp2, u2 and ∆ = tk ⊕ sk for some randomly chosen session key sk. The
protocol ends with a message (hp2, c2,∆) sent by the server to the client. A high
level overview of our two-round PAKE framework is given in Fig. 1.

Note that the PKEs with associated SPH in [41] can be used to instantiate
our two-round PAKE framework, but the only known lattice-based PKE with
associated ASPH [40] does not satisfy our requirements. Actually, it is highly
non-trivial to realize non-adaptive ASPH from lattices. One of the main reason
is that the smoothness should hold even when the ciphertext c is adversari-
ally chosen and dependent on the projection key hp (and thus is stronger than
that in [40]), which gives the adversary an ability to obtain non-trivial informa-
tion about the secret hash key hk, and makes the above (inherent) gap intro-
duced by the ASPH notion more problematic. In order to ensure the stronger
smoothness property, we first develop an adaptive smoothing lemma for q-ary
lattices, which may be of independent interest. Then, we combine it with sev-
eral other techniques [51,57,40,32,49] to achieve our goal. As in [41], our PKE
is computationally inefficient due to the use of simulation-sound non-interactive
zero-knowledge (SS-NIZK) proofs. However, we can obtain an efficient SS-NIZK

6 Similar properties were also considered for identity-based encryptions [61,4].



6

from lattices in the random oracle model, and finally get an efficient lattice-
based PAKE. Despite the less message rounds, our PAKE (in the random or-
acle model) is also at least O(log n) times more efficient in the communication
overhead than the one in [40], because they used the correlated products tech-
nique [56] and signatures. Specifically, the communication cost of [40] is deter-
mined by |vk| + |c| + |hp|, where vk is the verification key of signatures (which
usually consists of matrices on lattices [59]), c is the ciphertext of the underlying
PKE scheme and hp is the projective hashing key. Since [40] used the correlated
products technique [56] (which introduces an expansion factor n w.r.t. the basic
CPA-secure PKE scheme) to achieve CCA-secure PKE, their communication
cost is dominated by |c| (which is at least O(log n) times larger than |hp| when
setting k = O(n) or ℓ = O(n) in our notation). Since our framework does not use
signatures, the communication cost is mainly determined by |c|+ |hp|. Although
the use of Stern-like ZK introduces an ω(log n) expansion factor, the ciphertext
c of our PKE scheme is still n/ω(log n) times shorter than that of [40]. Thus, the
communication cost of our PAKE is now dominated by |hp|, which is asymptoti-
cally the same as that in [40]. This is why we can (only) save a factor of O(log n)
in the total communication cost. Note that one can also use our PKE with ASPH
to instantiate the three-round PAKE framework in [40] with improved efficiency,
but currently there seems no other way to do it significantly better even in the
random oracle model.

1.3 Other Related Work and Discussions

Gong et al. [35] first considered the problem of resisting off-line attacks in the
“PKI model” where the server also has a public key in addition to a password.
A formal treatment on this model was provided by Halevi and Krawczyk [38].
At CRYPTO 1993, Bellovin and Merritt [12] considered the setting where only a
password is shared between users, and proposed a PAKE with heuristic security
arguments. Formal security models for PAKE were provided in [10,17]. Goldreich
and Lindell [34] showed a PAKE solution in the plain model, which does not
support concurrent executions of the protocol by the same user. As a special case
of secure multiparty computations, PAKEs supporting concurrent executions in
the plain model were studied in [9,36,20]. All the protocols in [34,9,36,20] are
inefficient in terms of both computation and communication. In the setting where
all users share a common reference string, Katz et al. [39] provided a practical
three-round PAKE based on the DDH assumption, which was later generalized
and abstracted out by Gennaro and Lindell [31] to obtain a PAKE framework
from PKE with associated SPH [23]. Canetti et al. [22] considered the security of
PAKE within the framework of universal composability (UC) [19], and showed
that an extension of the KOY/GL protocol was secure in the UC model.

Relations to [40,41]. The works [40,41] due to Katz and Vaikuntanathan are
most related to our work. First, the ASPH notion in this paper is stronger than
that in [40]. In particular, the PKE with associated ASPH in [40] cannot be used
to instantiate our framework. Our PAKE framework with less message rounds
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is obtained by strengthening the underlying primitives with several useful and
achievable features, which provide us a better way to handle lattice assumptions.
Besides, our PKE with associated SPH can be used to instantiate the PAKE
framework in [40] (with improved efficiency). Second, our ASPH notion is much
weaker than the SPH in [41], which means that our PKE with associated ASPH
cannot be used to instantiate the PAKE framework in [41]. In fact, it is still an
open problem to construct PKE with associated SPH from lattices, and we still
do not know how to instantiate the efficient one-round PAKE framework [41]
with lattice assumptions (recall that our PAKE has two-round messages). Third,
our PAKE framework is inspired by [40,41], and thus shares some similarities to
the latter. However, as discussed above, there are technical differences among the
underlying primitives used in the three papers, and several new ideas/techniques
are needed to obtain a two-round PAKE from lattices.

1.4 Roadmap

After some preliminaries in Section 2, we propose a generic two-round PAKE
from splittable PKE with associated ASPH in Section 3. In Section 4, we give
some backgrounds together with a new technical lemma on lattices. We construct
a concrete splittable PKE with associated ASPH from lattices in Section 5.

2 Preliminaries

2.1 Notation

Let κ be the natural security parameter. By log2 (resp. log) we denote the
logarithm with base 2 (resp. the natural logarithm). A function f(n) is negligible,
denoted by negl(n), if for every positive c, we have f(n) < n−c for all sufficiently
large n. A probability is said to be overwhelming if it is 1−negl(n). The notation
←r denotes randomly choosing elements from some distribution (or the uniform
distribution over some finite set). If a random variable x follows some distribution
D, we denote it by x ∽ D. For any strings x, y ∈ {0, 1}ℓ, denote Ham(x, y) as
the hamming distance of x and y.

By R (resp. Z) we denote the set of real numbers (resp. integers). Vectors
are used in the column form and denoted by bold lower-case letters (e.g., x).
Matrices are treated as the sets of column vectors and denoted by bold capital
letters (e.g., X). The concatenation of the columns of X ∈ Rn×m followed by the
columns of Y ∈ Rn×m′

is denoted as (X∥Y) ∈ Rn×(m+m′). By ∥ ·∥ and ∥ ·∥∞ we
denote the l2 and l∞ norm, respectively. The largest singular value of a matrix
X is s1(X) = maxu ∥Xu∥, where the maximum is taken over all unit vectors u.

2.2 Security Model for PAKE

We recall the security model for password-based authenticated key exchange
(PAKE) in [10,39,41]. Formally, the protocol relies on a setup assumption that
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a common reference string (CRS) and other public parameters are established
(possibly by a trusted third party) before any execution of the protocol. Let U
be the set of protocol users. For every distinct A,B ∈ U , users A and B share
a password pwA,B . We assume that each pwA,B is chosen independently and
uniformly from some dictionary set D for simplicity. Each user A ∈ U is allowed
to execute the protocol multiple times with different partners, which is modeled
by allowing A to have an unlimited number of instances with which to execute
the protocol. Denote instance i of A as Πi

A. An instance is for one-time use only
and it is associated with the following variables that are initialized to ⊥ or 0:

– sidiA, pid
i
A and skiA denote the session id, parter id, and session key for in-

stance Πi
A. The session id consists of the (ordered) concatenation of all

messages sent and received by Πi
A; while the partner id specifies the user

with whom Πi
A believes it is interacting;

– acciA and termi
A are boolean variables denoting whether instance Πi

A has
accepted or terminated, respectively.

For any user A,B ∈ U , instances Πi
A and Πj

B are partnered if sidiA = sidjB ̸= ⊥,
pidiA = B and pidjB = A. We say that a PAKE protocol is correct if instances Πi

A

and Πj
B are partnered, then we have that acciA = accjB = 1 and skiA = skjB ̸= ⊥

hold (with overwhelming probability).

Adversarial abilities. The adversary A is a probabilistic polynomial time (PPT)
algorithm with full control over all communication channels between users. In
particular, A can intercept all messages, read them all, and remove or modify
any desired messages as well as inject its own messages. A is also allowed to
obtain the session key of an instance, which models possible leakage of session
keys. These abilities are formalized by allowing the adversary to interact with
the various instances via access to the following oracles:

– Send(A, i,msg): This sends message msg to instanceΠi
A. After receiving msg,

instance Πi
A runs according to the protocol specification, and updates its

states as appropriate. Finally, this oracle returns the message output by Πi
A

to the adversary. We stress that the adversary can prompt an unused instance
Πi

A to execute the protocol with partner B by querying Send(A, i, B), and
obtain the first protocol message output by Πi

A.

– Execute(A, i, B, j): If both instances Πi
A and Πj

B have not yet been used,

this oracle executes the protocol between Πi
A and Πj

B , updates their states
as appropriate, and returns the transcript of this execution to the adversary.

– Reveal(A, i): This oracle returns the session key skiA to the adversary if it
has been generated (i.e., skiA ̸= ⊥).

– Test(A, i): This oracle chooses a random bit b←r {0, 1}. If b = 0, it returns
a key chosen uniformly at random; if b = 1, it returns the session key skiA of
instance Πi

A. The adversary is only allowed to query this oracle once.

Definition 1 (Freshness). We say that an instance Πi
A is fresh if the following

conditions hold:
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– the adversary A did not make a Reveal(A, i) query to instance Πi
A;

– the adversary A did not make a Reveal(B, j) query to instance Πj
B, where

instances Πi
A and Πj

B are partnered;

Security Game. The security of a PAKE protocol is defined via the following
game. The adversary A makes any sequence of queries to the oracles above, so
long as only one Test(A, i) query is made to a fresh instance Πi

A, with acciA = 1
at the time of this query. The game ends when A outputs a guess b′ for b. We say
A wins the game if its guess is correct, so that b′ = b. The advantage AdvΠ,A
of adversary A in attacking a PAKE protocol Π is defined as |2 ·Pr[b′ = b]− 1|.

We say that an on-line attack happens when the adversary makes one of the
following queries to some instance Πi

A: Send(A, i, ∗), Reveal(A, i) or Test(A, i). In
particular, the Execute queries are not counted as on-line attacks. Since the size
of the password dictionary is small, a PPT adversary can always win by trying
all password one-by-one in an on-line attack. The number Q(κ) of on-line attacks
represents a bound on the number of passwords the adversary could have tested
in an on-line fashion. Informally, a PAKE protocol is secure if online password
guessing attacks are already the best strategy (for all PPT adversaries).

Definition 2 (Security). We say that a PAKE protocol Π is secure if for
all dictionary D and for all PPT adversaries A making at most Q(κ) on-line
attacks, it holds that AdvΠ,A(κ) ≤ Q(κ)/|D|+ negl(κ).

3 PAKE from Splittable PKE with Associated ASPH

In this section, we give a new PAKE framework which only has two-round mes-
sages. We begin with the definition of splittable PKE with associated ASPH.

3.1 Public-Key Encryption

A (labeled) public-key encryption (PKE) with plaintext-space P consists of
three PPT algorithms PKE = (KeyGen,Enc,Dec). The key generation algo-
rithm KeyGen takes the security parameter κ as input, outputs a public key
pk and a secret key sk, denoted as (pk, sk)← KeyGen(1κ). The encryption algo-
rithm Enc takes pk, a string label ∈ {0, 1}∗, and a plaintext pw ∈ P as inputs,7

with an internal coin flipping r, outputs a ciphertext c, which is denoted as
c ← Enc(pk, label, pw; r), or c ← Enc(pk, label, pw) in brief. The deterministic
algorithm Dec takes sk and c as inputs, and produces as output a plaintext pw
or ⊥, which is denoted as pw ← Dec(sk, label, c).

For correctness, we require that for all (pk, sk) ← KeyGen(1κ), any label ∈
{0, 1}∗, any plaintext pw and c ← Enc(pk, label, pw), the equation Dec(sk, label,
c) = pw holds with overwhelming probability. For security, consider the following
game between a challenger C and an adversary A.
7 The notation ‘pw’ stands for password, and we keep several other commonly used
notations such as ‘m’ and ‘w’ for latter use on lattices.
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Setup. The challenger C first computes (pk, sk) ← KeyGen(1κ). Then, it gives
the public key pk to A, and keeps the secret key sk to itself.

Phase 1. The adversary A can make a number of decryption queries on any
pair (label, c), and C returns pw ← Dec(sk, label, c) to A accordingly.

Challenge. At some time, A outputs two equal-length plaintexts pw0, pw1 ∈ P
and a label∗ ∈ {0, 1}∗. The challenger C chooses a random bit b∗ ←r {0, 1},
and returns the challenge ciphertext c∗ ← Enc(pk, label∗, pwb∗) to A.

Phase 2. A can make more decryption queries on any (label, c) ̸= (label∗, c∗),
the challenger C responds as in Phase 1.

Guess. Finally, A outputs a guess b ∈ {0, 1}.

The adversary A wins the game if b = b∗. The advantage of A in the above game

is defined as Advind-ccaPKE,A(1
κ)

def
= |Pr[b = b∗]− 1

2 |.

Definition 3 (IND-CCA). We say that a PKE scheme PKE is CCA-secure
if for any PPT adversary A, its advantage Advind-cca

PKE,A(1
κ) is negligible in κ.

Informally, the splittable property of a PKE scheme PKE requires that the
encryption algorithm can be split into two functions.

Definition 4 (Splittable PKE). A labeled CCA-secure PKE scheme PKE =
(KeyGen,Enc, Dec) is splittable if there exists a pair of two efficiently computable
functions (f, g) such that the followings hold:

1. for any (pk, sk) ← KeyGen(1κ), string label ∈ {0, 1}∗, plaintext pw ∈ P and
randomness r ∈ {0, 1}∗, we have c = (u, v) = Enc(pk, label, pw; r), where
u = f(pk, pw, r) and v = g(pk, label, pw, r). Moreover, the first part u of
the ciphertext c = (u, v) fixes the plaintext pw in the sense that for any v′

and label′ ∈ {0, 1}∗, the probability that Dec(sk, label′, (u, v′)) /∈ {⊥, pw} is
negligible in κ over the random choices of sk and r;

2. the security of PKE still holds in a CCA game with modified challenge phase:
the adversary A first submits two equal-length plaintexts pw0, pw1 ∈ P. Then,
the challenger C chooses a random bit b∗ ←r {0, 1}, randomness r∗ ←r

{0, 1}∗, and returns u∗ = f(pk, pwb∗ , r
∗) to A. Upon receiving u∗, A outputs

a string label ∈ {0, 1}∗. Finally, C computes v∗ = g(pk, label, pwb∗ , r
∗), and

returns the challenge ciphertext c∗ = (u∗, v∗) to A;
Definition 4 captures the “splittable” property in both the functionality and

the security of the PKE scheme. In particular, the modified CCA game allows
the adversary to see the first part u∗ of c∗ and then adaptively determine label
to form the complete challenge ciphertext c∗ = (u∗, v∗). We note that similar
properties had been used in the context of identity-based encryption (IBE) [61,4],
where one part of the ciphertext is defined as a function of the plaintext, and the
other part is a function of the user identity. By applying generic transformations
such as the CHK technique [21] from IBE (with certain property) to PKE, it
is promising to get a splittable PKE such that the g function simply outputs a
tag or a signature which can be used to publicly verify the validity of the whole
ciphertext. Finally, we stress that the notion of splittable PKE is not our main
goal, but rather a crucial intermediate step to reaching two-round PAKE.
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3.2 Approximate Smooth Projective Hash Functions

Smooth projective hash (SPH) functions were first introduced by Cramer and
Shoup [23] for achieving CCA-secure PKEs. Later, several works [31,41] extended
the notion for PAKE. Here, we tailor the definition of approximate SPH (ASPH)
in [40] to our application. Formally, let PKE = (KeyGen,Enc, Dec) be a split-
table PKE scheme with respect to functions (f, g), and let P be an efficiently
recognizable plaintext space of PKE . As in [40], we require that PKE defines a
notion of ciphertext validity in the sense that the validity of a label-ciphertext
pair (label, c) with respect to any public key pk can be efficiently determined
using pk alone, and all honestly generated ciphertexts are valid. We also assume
that given a valid ciphertext c, one can easily parse c = (u, v) as the outputs of
(f, g). Now, fix a key pair (pk, sk) ← KeyGen(1κ), and let Cpk denote the set of
valid label-ciphertexts with respect to pk. Define sets X,L and L̄ as follows:

X = {(label, c, pw) | (label, c) ∈ Cpk; pw ∈ P}
L = {(label, c, pw) ∈ X | label ∈ {0, 1}∗; c = Enc(pk, label, pw)}
L̄ = {(label, c, pw) ∈ X | label ∈ {0, 1}∗; pw = Dec(sk, label, c)}

By the definitions, for any ciphertext c and label ∈ {0, 1}∗, there is at most
a single plaintext pw ∈ P such that (label, c, pw) ∈ L̄.

Definition 5 (ϵ-approximate SPH). An ϵ-approximate SPH function is de-
fined by a sampling algorithm that, given a public key pk of PKE, outputs
(K, ℓ, {Hhk : X → {0, 1}ℓ}hk∈K , S,Proj : K → S) such that

– There are efficient algorithms for (1) sampling a hash key hk ←r K, (2)
computing Hhk(x) = Hhk(u, pw) for all hk ∈ K and x = (label, (u, v), pw) ∈
X,8 and (3) computing hp = Proj(hk) for all hk ∈ K.

– For all x = (label, (u, v), pw) ∈ L and randomness r such that u = f(pk, pw, r)
and v = g(pk, label, pw, r), there exists an efficient algorithm computing the
value Hash(hp, x, r) = Hash(hp, (u, pw), r), and satisfies Pr[Ham(Hhk(u, pw),
Hash(hp, (u, pw), r)) ≥ ϵ · ℓ] = negl(κ) over the choice of hk←r K.

– For any (even unbounded) function h : S → X\L̄, hk ←r K, hp = Proj(hk),
x = h(hp) and ρ←r {0, 1}ℓ, the statistical distance between (hp,Hhk(x)) and
(hp, ρ) is negligible in the security parameter κ.

Compared to the ASPH notion in [40], our ASPH notion in Definition 5
mainly has three modifications: 1) the projection function only depends on the
hash key; 2) the value Hhk(x) = Hhk(u, pw) is determined by the hash key hk,
the first part u of the ciphertext c = (u, v), as well as the plaintext pw (i.e., it is
independent from the pair (label, v)); and 3) the smoothness property holds even
for adaptive choice of x = h(hp) /∈ L̄. Looking ahead, the first modification allows
us to achieve PAKE with two-round messages, whereas the last two are needed

8 For all x = (label, (u, v), pw) ∈ X, we slightly abuse the notation Hhk(x) = Hhk(u, pw)
by omitting (label, v) from its inputs. Similarly, the notation Hash(hp, x, r) =
Hash(hp, (u, pw), r) will be used later.
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Common reference string: pk

Client A (pw) Server B (pw)

r1 ←r {0, 1}∗
hk1 ←r K
hp1 = Proj(hk1)
label1 := A∥B∥hp1
u1 = f(pk, pw, r1)
v1 = g(pk, label1, pw, r1)

tk′ = Hhk1(u2, pw)
⊕Hash(hp2, (u1, pw), r1)

sk = ECC−1(tk′ ⊕∆)

r2 ←r {0, 1}∗
hk2 ←r K
sk ←r {0, 1}κ
hp2 = Proj(hk2)
u2 = f(pk, pw, r2)
tk = Hash(hp1, (u2, pw), r2)

⊕Hhk2(u1, pw)
∆ = tk ⊕ ECC(sk)
label2 := A∥B∥hp1∥c1∥hp2∥∆
v2 = g(pk, label2, pw, r2)

A, hp1, c1 = (u1, v1)

hp2, c2 = (u2, v2),∆

Fig. 1. PAKE from splittable PKE with ASPH

for proving the security of the resulting PAKE. One can check that the PKEs
with associated SPH (based on either DDH or decisional linear assumptions)
in [41] satisfy Definition 5 with ϵ = 0 (under certain choices of f and g). We will
construct a splittable PKE with associated ASPH from lattices in Section 5.

3.3 A Framework for Two-Round PAKE

Let PKE = (KeyGen,Enc,Dec) be a splittable PKE scheme with respect to
functions (f, g). Let (K, ℓ, {Hhk : X → {0, 1}ℓ}hk∈K , S,Proj : K → S) be the
associated ϵ-approximate SPH for some ϵ ∈ (0, 1/2). Let the session key space
be {0, 1}κ, where κ is the security parameter. Let ECC : {0, 1}κ → {0, 1}ℓ be
an error-correcting code which can correct 2ϵ-fraction of errors, and let ECC−1 :
{0, 1}ℓ → {0, 1}κ be the decoding algorithm. We assume that for uniformly
distributed ρ ∈ {0, 1}ℓ, the distribution of w = ECC−1(ρ) conditioned on w ̸= ⊥
is uniform over {0, 1}κ. A high-level overview of our PAKE is given in Fig. 1.

Public parameters. The public parameter consists of a public key pk of the
scheme PKE , which can be generated by a trusted third party using KeyGen(1κ).
No users in the system need to know the secret key corresponding to pk.

Protocol Execution. Consider an execution of the protocol between a client
A and a server B holding a shared password pw ∈ D ⊂ P, where D is the set of
valid passwords in the system. First, A chooses random coins r1 ←r {0, 1}∗ for
encryption, a hash key hk1 ←r K for the ASPH, and computes the projection key
hp1 = Proj(hk1). Then, it defines label1 := A∥B∥hp1, and computes (u1, v1) =
Enc(pk, label1, pw; r1), where u1 = f(pk, pw, r1) and v1 = g(pk, label1, pw, r1).
Finally, A sends (A, hp1, c1 = (u1, v1)) to the server B.
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Upon receiving (A, hp1, c1 = (u1, v1)) from the client A, the server B checks
if c1 is a valid ciphertext with respect to pk and label1 := A∥B∥hp1.9 If not,
B rejects and aborts. Otherwise, B chooses random coins r2 ←r {0, 1}∗ for
encryption, a hash key hk2 ←r K for the ASPH, and a random session key
sk ←r {0, 1}κ. Then, it computes hp2 = Proj(hk2), u2 = f(pk, pw, r2), tk =
Hash(hp1, (u2, pw), r2)⊕Hhk2(u1, pw), and∆ = tk⊕ECC(sk). Finally, let label2 :=
A∥B∥hp1∥c1∥hp2∥∆, the server B computes v2 = g(pk, label2, pw, r2), and sends
the message (hp2, c2 = (u2, v2),∆) to the client A.

After receiving (hp2, c2 = (u2, v2),∆) from the server B, the client A checks
if c2 is a valid ciphertext with respect to pk and label2 := A∥B∥hp1∥c1∥hp2∥∆. If
not, A rejects and aborts. Otherwise, A computes tk′ = Hhk1(u2, pw)⊕Hash(hp2,
(u1, pw), r1), and decodes to obtain sk = ECC−1(tk′⊕∆). If sk = ⊥ (i.e., an error
occurs during decoding), A rejects and aborts. Otherwise, A accepts sk ∈ {0, 1}κ
as the shared session key. This completes the description of our protocol.

In the following, we say that a user (or an instance of a user) accepts an
incoming message msg as a valid protocol message if no abort happens during
the computations after receiving msg. Note that a client/server will only obtain
a session key when he accepts a received message as a valid protocol message.

Correctness. It suffices to show that honestly users can obtain the same session
key sk ∈ {0, 1}κ with overwhelming probability. First, all honestly generated
ciphertexts are valid. Second, Hhk1(u2, pw) ⊕ Hash(hp1, (u2, pw), r2) ∈ {0, 1}ℓ
has at most ϵ-fraction non-zeros by the ϵ-approximate correctness of the ASPH.
Similarly, Hash(hp2, (u1, pw), r1) ⊕Hhk2(u1, pw) ∈ {0, 1}ℓ has at most ϵ-fraction
non-zeros. Thus, tk′⊕tk has at most 2ϵ-fraction non-zeros. Since ECC can correct
2ϵ-fraction of errors by assumption, we have that sk = ECC−1(tk′⊕tk⊕ECC(sk))
holds. This completes the correctness argument.

Security. We now show that the above PAKE is secure. Formally,

Theorem 1. If PKE = (KeyGen,Enc,Dec) is a splittable CCA-secure PKE
scheme associated with an ϵ-approximate SPH (K, ℓ, {Hhk : X → {0, 1}ℓ}hk∈K ,
S,Proj : K → S), and ECC : {0, 1}κ → {0, 1}ℓ is an error-correcting code which
can correct 2ϵ-fraction of errors, then the above protocol is a secure PAKE.

Before giving the proof, we first give some intuitions. Without loss of general-
ity we assume 0 ∈ P\D (i.e., 0 is not a valid password in the system). First, by the
CCA-security of the PKE scheme PKE , the adversary cannot obtain any useful
information of the real password pw via the Execute query (i.e., by eavesdropping
on a protocol execution). In particular, it is computationally indistinguishable
for the adversary if the encryption of pw is replaced by an encryption of 0 in
answering the Execute queries. Since 0 /∈ D, by the smoothness of the ASPH we
have that the session keys corresponding to the instances used in the Execute
queries are indistinguishable from uniform in the adversary’s view.

9 Recall that the validity of a ciphertext can be efficiently determined using pk alone.
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Second, if the adversary simply relays the messages between honest instances,
the proof is the same for the Execute queries. In case that the adversary modifies
the message (i.e., the label-ciphertext pair) output by some instance, then one
can use the decryption oracle provided by the CCA-security to decrypt the
modified ciphertext, and check if the decrypted result pw′ is equal to the real
password pw. For pw′ = pw the attack is immediately considered successful (note
that this will only increase the advantage of the adversary). By the CCA-security
of PKE and the fact that pw is uniformly chosen from D at random, we have
Pr[pw′ = pw] is at most 1/|D|. Thus, for Q(κ) times on-line attacks, this will
only increase the adversary’s advantage by at most Q(κ)/|D|. Otherwise (i.e.,
pw′ ̸= pw) we again have that the corresponding session key is indistinguishable
from uniform in the adversary’s view by the smoothness of the ASPH.

Proof. We now formally prove Theorem 1 via a sequence of games from G0

to G10, where G0 is the real security game, and G10 is a random game with
uniformly chosen session keys. The security is established by showing that the
adversary’s advantage in game G0 and G10 will differ at most Q(κ)/|D|+negl(κ).
Let AdvA,i(κ) be the adversary A’s advantage in game Gi.

Game G0: This game is the real security game as defined in Section 2.2, where
all the oracle queries are honestly answered following the protocol specification.

Game G1: This game is similar to gameG0 except that in answering each Execute
query the value tk′ is directly computed using the corresponding hash keys hk1
and hk2, i.e., tk

′ = Hhk1(u2, pw)⊕Hhk2(u1, pw).

Lemma 1. Let (K, ℓ, {Hhk : X → {0, 1}ℓ}hk∈K , S,Proj : K → S) be an ϵ-
approximate SPH, and ECC : {0, 1}κ → {0, 1}ℓ be an error-correcting code which
can correct 2ϵ-fraction of errors, then |AdvA,1(κ)−AdvA,0(κ)| ≤ negl(κ).

Proof. Since the simulator knows both hk1 and hk2, this lemma follows from the
approximate correctness of the ASPH and the correctness of the ECC. □

Game G2: This game is similar to game G1 except that the ciphertext c1 is
replaced with an encryption of 0 /∈ D in answering each Execute query.

Lemma 2. If PKE = (KeyGen,Enc,Dec) is a CCA-secure scheme, then we have
that |AdvA,2(κ)−AdvA,1(κ)| ≤ negl(κ).

Proof. Since the adversary A can only make polynomial times Execute queries,
it is enough to consider that A only makes a single Execute query by a standard
hybrid argument. In this case, the only difference between game G1 and G2 is
that the encryption of pw is replaced by an encryption of 0 /∈ D. We now show
that any PPT adversary A that distinguishes the two games with non-negligible
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advantage can be directly transformed into an algorithm B that breaks the CCA-
security of the underlying PKE scheme with the same advantage.

Formally, given a challenge public key pk, the algorithm B sets pk as the CRS
of the protocol, and interacts with A as in game G1. When B has to answer the
adversary’s Execute(A, i, B, j) query, it first randomly chooses a hash key hk1 ←r

K for the ASPH, and computes the projection key hp1 = Proj(hk1). Then, B
submits two plaintexts (pw, 0) and label1 := A∥B∥hp1 to its own challenger, and
obtains a challenge ciphertext c∗1. Finally, B uses c∗1 to form the answer of the
Execute(A, i, B, j) query, and returns whatever A outputs as its own guess.

Note that if c∗1 is an encryption of pw, then B exactly simulates the attack
environment of gameG1 for adversaryA, else it simulates the attack environment
of G2 for A. Thus, if A can distinguish G1 and G2 with non-negligible advantage,
then B can break the CCA-security of PKE with the same advantage. □

Game G3 This game is similar to game G2 except that in answering each Execute
query: 1) the value tk is directly computed by using the corresponding hash keys
hk1 and hk2, i.e., tk = Hhk1(u2, pw)⊕Hhk2(u1, pw); 2) the ciphertext c2 is replaced
with an encryption of 0 /∈ D.

Lemma 3. If PKE = (KeyGen,Enc,Dec) is a splittable CCA-secure scheme,
(K, ℓ, {Hhk : X → {0, 1}ℓ}hk∈K , S,Proj : K → S) is an ϵ-approximate SPH, and
ECC : {0, 1}κ → {0, 1}ℓ is an error-correcting code which can correct 2ϵ-fraction
of errors, then we have that |AdvA,3(κ)−AdvA,2(κ)| ≤ negl(κ).

Proof. This lemma can be shown by using a sequence of games similar to that
from G0 to G2 except the modified CCA-security game considered in Definition 4
is used instead of the standard CCA-security game, we omit the details. □

Game G4 This game is similar to game G3 except that a random session key
skiA = skjB is set for both Πi

A and Πj
B in answering each Execute(A, i, B, j) query.

Lemma 4. If (K, ℓ, {Hhk : X → {0, 1}ℓ}hk∈K , S,Proj : K → S) is an ϵ-
approximate SPH, then we have that |AdvA,4(κ)−AdvA,3(κ)| ≤ negl(κ).

Proof. Since both ciphertexts c1 = (u1, v1) and c2 = (u2, v2) in answering
each Execute(A, i, B, j) query are encryptions of 0 /∈ D, the value tk′ = tk =
Hhk1(u2, pw) ⊕ Hhk2(u1, pw) is statistically close to uniform by the smoothness
of the ASPH. Thus, the masking part ∆ = tk ⊕ ECC(sk) in answering each
Execute(A, i, B, j) query statistically hides sk ∈ {0, 1}κ from the adversary A.
Since sk ∈ {0, 1}κ is uniformly random, the modification in game G4 can only
introduce a negligible statistical difference. Since A can only make polynomial
times Execute queries, this lemma follows by a standard hybrid argument. □

Game G5 This game is similar to game G4 except that the simulator generates
the CRS pk by running (pk, sk)← KeyGen(1κ), and keeps sk private.

Lemma 5. AdvA,5(κ) = AdvA,4(κ).
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Proof. This lemma follows from the fact that the modification from game G4 to
G5 is just conceptual. □

Before continuing, we divide the adversary’s Send query into three types
depending on the message which may be sent as part of the protocol:

– Send0(A, i, B): the adversary prompts an unused instance Πi
A to execute the

protocol with partner B. This oracle updates pidiA = B, and returns the
message msg1 = (A, hp1, c1) output by Πi

A to the adversary.
– Send1(B, j, (A, hp1, c1)): the adversary sends message msg1 = (A, hp1, c1)
to an unused instance Πj

B. This oracle updates (pidjB , sk
j
B, acc

j
B , term

j
B) as

appropriate, and returns the message msg2 = (hp2, c2,∆) output by Πj
B to

the adversary (only if Πj
B accepts msg1 as a valid protocol message).

– Send2(A, i, (hp2, c2,∆)): the adversary sends message msg2 = (hp2, c2,∆) to
instance Πi

A. This oracle updates (skjB, acc
j
B , term

j
B) as appropriate.

Game G6 This game is similar to game G5 except that each Send1(B, j,msg′1 =
(A′, hp′1, c

′
1)) query is handled as follows:

– If msg′1 was output by a previous Send0(A
′, ∗, B) query, the simulator C

performs exactly as in game G5;
– Otherwise, let label′1 := A′∥B∥hp′1, and distinguish the following two cases:
• If c′1 is not a valid ciphertext with respect to pk and label′1, the simulator
C rejects this query;

• Else, C decrypts (label′1, c
′
1) using the secret key sk corresponding to pk,

and let pw′ be the decryption result. If pw′ is equal to the real password
pw shared by A and B (i.e., pw′ = pw), the simulator C declares that
A succeeds, and terminates the experiment. Otherwise, C answers this
query as in game G5 but sets the session key skjB for instance Πj

B by
using an independently and uniformly chosen element from {0, 1}κ.

Lemma 6. If (K, ℓ, {Hhk : X → {0, 1}ℓ}hk∈K , S,Proj : K → S) is an ϵ-
approximate SPH, then we have that AdvA,5(κ) ≤ AdvA,6(κ) + negl(κ).

Proof. We only have to consider the case that msg′1 = (A′, hp′1, c
′
1) was not

output by any previous Send0(A
′, ∗, B) query and c′1 is a valid cipertext with

respect to pk and label′1 (note that B will always reject invalid ciphertexts in
the real run of the protocol). Since C knows the secret key sk corresponding to
pk in both game G5 and G6, it can always decrypt (label′1, c

′
1) to obtain the

decryption result pw′. Obviously, the modification for the case pw′ = pw can
only increase the advantage of the adversary A. As for the case pw′ ̸= pw,
we have (label′1, c

′
1, pw) /∈ L̄. By the smoothness of the underlying ASPH (in

Definition 5), the masking part ∆ = tk ⊕ ECC(sk) output by Πj
B statistically

hides sk ∈ {0, 1}κ from the adversary A with knowledge of hp2 = Proj(hk2)
(because tk has a term Hhk2(u

′
1, pw) for c′1 = (u′1, v

′
1) and hk2 ←r K). Using

the fact that sk is essentially uniformly chosen from {0, 1}κ, we have that the
modification for the case pw′ ̸= pw in game G6 can only introduce a negligible
statistical difference. In all, we have that AdvA,5(κ) ≤ AdvA,6(κ) + negl(κ). □
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Game G7 This game is similar to game G6 except that each Send2(A, i,msg′2 =
(hp′2, c

′
2,∆

′)) query is handled as follows: let msg1 = (A, hp1, c1) be the message
output by a previous Send0(A, i, B) query (note that such a query must exist),

– If msg′2 was output by a previous Send1(B, j,msg1) query, the simulator
C performs as in game G6 except that C computes tk′ directly using the
corresponding hash keys hk1 and hk2, and sets the session key skiA = skjB ;

– Otherwise, let label′2 := A∥B∥hp1∥c1∥hp
′
2∥∆′, and distinguish the following

two cases:

• If c′2 is not a valid ciphertext with respect to pk and label′2, the simulator
C rejects this query;

• Else, C decrypts (label′2, c
′
2) using the secret key sk corresponding to pk,

and let pw′ be the decryption result. If pw′ = pw, the simulator C declares
that A succeeds, and terminates the experiment. Otherwise, C performs
the computations on behalf of Πi

A as in game G6. If Π
i
A accepts msg′2 as

a valid protocol message, C sets the session key skiA for instance Πi
A by

using an independently and uniformly chosen element from {0, 1}κ (note
that Πi

A might reject msg′2 if the decoding algorithm returns ⊥, and thus
no session key is generated in this case, i.e., acciA = 0 and skiA = ⊥).

Lemma 7. If (K, ℓ, {Hhk : X → {0, 1}ℓ}hk∈K , S,Proj : K → S) is an ϵ-
approximate SPH, and ECC : {0, 1}κ → {0, 1}ℓ is an error-correcting code which
can correct 2ϵ-fraction of errors, then AdvA,6(κ) ≤ AdvA,7(κ) + negl(κ).

Proof. First, if both msg1 and msg′2 were output by previous oracle queries,
then the simulator C knows the corresponding hash keys hk1 and hk2 needed
for computing tk′, and it is just a conceptual modification to compute tk′ using
(hk1, hk2) and set skiA = skjB . Second, as discussed in the proof of Lemma 6,
C knows the secret key sk corresponding to pk in both game G6 and G7, it
can always decrypt (label′2, c

′
2) to obtain the decryption result pw′. Obviously,

the modification for the case pw′ = pw can only increase the advantage of
the adversary A. Moreover, if pw′ ̸= pw, we have (label′2, c

′
2, pw) /∈ L̄. By the

smoothness of the ASPH, the value tk′ ∈ {0, 1}ℓ computed by Πi
A is statistically

close to uniform over {0, 1}ℓ (because tk′ has a term Hhk1(u
′
2, pw) for c′2 =

(u′2, v
′
2)). By our assumption on ECC−1, if sk = ECC−1(tk′ ⊕ ∆′) ̸= ⊥, then it

is statistically close to uniform over {0, 1}κ. Thus, the modification for the case
pw′ ̸= pw in game G6 can only introduce a negligible statistical difference. In
all, we can have that AdvA,6(κ) ≤ AdvA,7(κ) + negl(κ) holds. □

Game G8 This game is similar to game G7 except that the ciphertext c1 is
replaced with an encryption of 0 /∈ D in answering each Send0(A, i, B) query.

Lemma 8. If PKE = (KeyGen,Enc,Dec) is a CCA-secure scheme, we have that
|AdvA,8(κ)−AdvA,7(κ)| ≤ negl(κ).
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Proof. By a standard hybrid argument, it is enough to consider that A only
makes a single Send0(A, i,B) query. In this case, the only difference between
game G8 and G7 is that the encryption of pw is replaced with an encryption of
0 /∈ D. We now show that any PPT adversaryA that distinguishes the two games
with non-negligible advantage can be directly transformed into an algorithm B
that breaks the CCA-security of the underlying PKE scheme.

Formally, given a challenge public key pk, the algorithm B sets pk as the
CRS of the protocol, and simulates the attack environment for A as in game
G7. When B has to answer the adversary’s Send0(A, i, B) query, it first ran-
domly chooses a hash key hk1 ←r K for the ASPH, and computes the projec-
tion key hp1 = Proj(hk1). Then, B submits two plaintexts (pw, 0) and label1 :=
A∥B∥hp1 to its own challenger, and obtains a challenge ciphertext c∗1. Finally,
B sends (A, hp1, c

∗
1) to the adversary A. When B has to decrypt some valid

label-ciphertext pair (label′1, c
′
1) ̸= (label1, c

∗
1), it submits (label′1, c

′
1) to its own

CCA-security challenger for decryption. At some time, the adversary A outputs
a bit b ∈ {0, 1}, B outputs b as its own guess.

Note that if c∗1 is an encryption of pw, then B exactly simulates the attack
environment of gameG7 for adversaryA, else it simulates the attack environment
of game G8 for A. Thus, if A can distinguish game G7 and G8 with non-negligible
advantage, then B can break the CCA-security of the PKE scheme PKE with
the same advantage, which completes the proof. □

Game G9 This game is similar to game G8 except that each Send1(B, j,msg′1 =
(A′, hp′1, c

′
1)) query is handled as follows:

– If msg′1 was output by a previous Send0(A
′, ∗, B) query, the simulator C

performs as in game G8 except that it computes tk directly using the corre-
sponding hash keys (hk1, hk2), and sets the session key skjB for instance Πj

B

by using an independently and uniformly chosen element from {0, 1}κ;
– Otherwise, C performs exactly as in game G8.

Lemma 9. If (K, ℓ, {Hhk : X → {0, 1}ℓ}hk∈K , S,Proj : K → S) is an ϵ-
approximate SPH, and ECC : {0, 1}κ → {0, 1}ℓ is an error-correcting code which
can correct 2ϵ-fraction of errors, then |AdvA,9(κ)−AdvA,8(κ)| ≤ negl(κ).

Proof. Note that if msg′1 was output by a previous Send0(A
′, ∗, B) query, then

we have that 1) the simulator C knows the corresponding hash keys (hk1, hk2)
and 2) c′1 = (u′1, v

′
1) is an encryption of 0 /∈ D. In other words, C can directly

compute tk using (hk1, hk2), and tk is statistically close to uniform (because
pw ̸= 0, and tk has a term Hhk2(u

′
1, pw) that is statistically close to uniform

by the smoothness of the ASPH). Thus, the masking part ∆ = tk ⊕ ECC(sk)
output by Πj

B statistically hides sk ∈ {0, 1}κ from the adversary A. Since sk
is essentially uniformly chosen from {0, 1}κ, we have that the modification in
game G9 can only introduce a negligible statistical difference, which means that
|AdvA,9(κ)−AdvA,8(κ)| ≤ negl(κ). □
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Game G10 This game is similar to game G9 except that each Send1(B, j,msg′1 =
(A′, hp′1, c

′
1)) query is handled as follows:

– If msg′1 was output by a previous Send0(A
′, ∗, B) query, the simulator C

performs as in game G9 except that the ciphertext c2 is replaced with an
encryption of 0 /∈ D;

– Otherwise, C performs exactly as in game G9.

Lemma 10. If PKE = (KeyGen,Enc,Dec) is a splittable CCA-secure scheme,
then |AdvA,10(κ)−AdvA,9(κ)| ≤ negl(κ).

Proof. As before, it is enough to consider that A only makes a single Send1(B, j,
msg′1 = (A′, hp′1, c

′
1)) query with msg′1 output by some Πi

A′ . We now show that
any PPT adversary A that distinguishes the two games with non-negligible ad-
vantage can be directly transformed into an algorithm B that breaks the modified
CCA-security game of the underlying PKE scheme with the same advantage.

Formally, given a challenge public key pk, the algorithm B sets pk as the
CRS of the protocol, and interacts with A as in game G9. When B has to
answer a Send1(B, j,msg′1 = (A′, hp′1, c

′
1)) query for some c′1 = (u′1, v

′
1), it first

randomly chooses a hash key hk2 ←r K for the ASPH, a random session key
sk ←r {0, 1}κ, and computes hp2 = Proj(hk2). Then, B submits two plaintexts
(pw, 0) to its own challenger. After obtaining u∗2, B computes tk = Hhk1(u

∗
2, pw)⊕

Hhk2(u
′
1, pw), ∆ = tk ⊕ ECC(sk), and submits label2 := A′∥B∥hp′1∥c′1∥hp2∥∆ to

its own modified CCA-security challenger to obtain the challenge ciphertext
c∗2 = (u∗2, v

∗
2). Finally, B sends (hp2, c

∗
2,∆) to the adversary A. When B has

to decrypt some valid label-ciphertext pair (label′2, c
′
2) ̸= (label2, c

∗
2), it submits

(label′2, c
′
2) to its own challenger for decryption. At some time, the adversary A

outputs a bit b ∈ {0, 1}, B outputs b as its own guess.
Note that if c∗2 is an encryption of pw, then B perfectly simulates the attack

environment of gameG9 for adversaryA, else it simulates the attack environment
of G10 for A. Thus, if A can distinguish game G9 and G10 with non-negligible
advantage, then algorithm B can break the modified CCA-security of the PKE
scheme PKE with the same advantage, which completes the proof. □
Lemma 11. If the adversary A only makes at most Q(κ) times on-line attacks,
then we have that AdvA,10(κ) ≤ Q(κ)/|D|+ negl(κ).

Proof. Let E be the event that A submits a ciphertext that decrypts to the
real password pw. If E does not happen, we have that the advantage of A is
negligible in κ (because all the session keys are uniformly chosen at random).
Now, we estimate the probability that E happens. Since in game G10, all the
ciphertexts output by oracle queries are encryptions of 0 /∈ D, the adversary
cannot obtain useful information of the real password pw via the oracle queries.
Thus, for any adversary A that makes at most Q(κ) times on-line attacks, the
probability that E happens is at most Q(κ)/|D|, i.e., Pr[E] ≤ Q(κ)/|D|. By a
simple calculation, we have AdvA,10(κ) ≤ Q(κ)/|D|+ negl(κ). □

In all, we have that AdvA,0(κ) ≤ Q(κ)/|D|+negl(κ) by Lemma 1∼11. This
completes the proof of Theorem 1. □
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4 Lattices

In this section, we first give some backgrounds on lattices. Then, we show a
useful technical lemma, which was crucial for our construction in Section 5.

4.1 Backgrounds on Lattices

An m-dimensional full-rank lattice Λ ⊂ Rm is the set of all integral combi-
nations of m linearly independent vectors B = (b1, . . . ,bm) ∈ Rm×m, i.e.,
Λ = L(B) = {

∑m
i=1 xibi : xi ∈ Z}. The dual lattice of Λ, denote Λ∗ is de-

fined to be Λ∗ = {x ∈ Rm : ∀ v ∈ Λ, ⟨x,v⟩ ∈ Z}. For x ∈ Λ, define the
Gaussian function ρs,c(x) over Λ ⊆ Zm centered at c ∈ Rm with parameter
s > 0 as ρs,c(x) = exp(−π∥x− c∥2/s2). Let ρs,c(Λ) =

∑
x∈Λ ρs,c(x), and define

the discrete Gaussian distribution over Λ as DΛ,s,c(y) =
ρs,c(y)
ρs,c(Λ) , where y ∈ Λ.

The subscripts s and c are taken to be 1 and 0 (resp.) when omitted.

Lemma 12 ([50,53]). For any positive integer m ∈ Z, and large enough s ≥
ω(
√
logm), we have Prx←rDZm,s

[∥x∥ > s
√
m] ≤ 2−m+1.

First introduced in [50], the smoothing parameter ηϵ(Λ) for any real ϵ > 0 is
defined as the smallest real s > 0 s.t. ρ1/s(Λ

∗\{0}) ≤ ϵ.

Lemma 13 ([50]). For any m-dimensional lattice Λ, ηϵ(Λ) ≤
√
m/λ1(Λ

∗),
where ϵ = 2−m, and λ1(Λ

∗) is the length of the shortest vector in lattice Λ∗.

Lemma 14 ([32]). Let Λ,Λ′ be m-dimensional lattices, with Λ′ ⊆ Λ. Then,
for any ϵ ∈ (0, 1/2), any s ≥ ηϵ(Λ

′), and any c ∈ Rm, the distribution of (DΛ,s,c

mod Λ′) is within distance at most 2ϵ of uniform over (Λ mod Λ′).

Let A ∈ Zn×m
q , define lattices Λ⊥q (A) = {e ∈ Zm s.t. Ae = 0 mod q} and

Λq(A) = {y ∈ Zm s.t. ∃s ∈ Zn, Ats = y mod q}. We have the following facts.

Lemma 15 ([32]). Let integers n,m ∈ Z and prime q satisfy m ≥ 2n log q.
Then, for all but an at most 2q−n fraction of A ∈ Zn×m

q , we have that 1)
the columns of A generate Zn

q , 2) λ∞1 (Λq(A)) ≥ q/4, and 3) the smoothing

parameter ηϵ(Λ
⊥
q (A)) ≤ ω(

√
logm) for some ϵ = negl(κ).

Lemma 16 ([32]). Assume the columns of A ∈ Zn×m
q generate Zn

q , and let

ϵ ∈ (0, 1/2) and s ≥ ηϵ(Λ
⊥
q (A)). Then for e ∼ DZm,s, the distribution of the

syndrome u = Ae mod q is within statistical distance 2ϵ of uniform over Zn
q .

Furthermore, fix u ∈ Zn
q and let v ∈ Zm be an arbitrary solution to Av = u

mod q. Then the conditional distribution of e ∼ DZm,s given Ae = u mod q is
exactly v +DΛ⊥

q (A),s,−v.

There exist efficient algorithms [5,8,49] to generate almost uniform matrix A
together with a trapdoor (or a short basis of Λ⊥q (A)).
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Proposition 1 ([49]). Given any integers n ≥ 1, q > 2, sufficiently large m =
O(n log q), and k = ⌈log2 q⌉, there is an efficient algorithm TrapGen(1n, 1m, q)

that outputs a matrix A ∈ Zn×m
q and a trapdoor R ∈ Z(m−nk)×nk

q such that

s1(R) ≤
√
m · ω(

√
log n), and A is negl(n)-close to uniform.

Moreover, given any y = Ats+e ∈ Zm
q satisfying ∥e∥ ≤ q

2
√

5(s1(R)2+1)
, there

exists an efficient algorithm Solve(A,R,y) that outputs the vector s ∈ Zn
q .

Let dist(z,Λq(A)) be the distance of the vector z from the lattice Λq(A). For
any A ∈ Zn×m

q , define YA =
{
ỹ ∈ Zm

q : ∀a ∈ Zq\{0}, dist(aỹ,Λq(A)) ≥ √q/4
}
.

Lemma 17 ([32,40]). Let integers n,m and prime q satisfy m ≥ 2n log q. Let
γ ≥ √q ·ω(

√
log n). Then, for all but a negligible fraction of A ∈ Zn×m

q , and for
any z ∈ YA, the distribution of (Ae, zte) is statistically close to uniform over
Zn
q × Zq, where e ∼ DZm,γ .

Lemma 18 ([40]). Let κ be the security parameter. Let intergers n1, n2,m and
prime q satisfy m ≥ (n1 + n2 + 1) log q and n1 = 2(n2 + 1) + ω(log κ). Then,
for all but a negligible fraction of B ∈ Zm×n1

q , the probability that there exist
numbers a, a′ ∈ Zq\{0}, vectors w ̸= w′ ∈ Zn2

q , and a vector c ∈ Zm
q , s.t.

dist(ay,Λq(B
t)) ≤ √q/4 and dist(a′y′,Λq(B

t)) ≤ √q/4

is negligible in κ over the uniformly random choice of U ←r Zm×(n2+1)
q , where

y = c−U

(
1
w

)
and y′ = c−U

(
1
w′

)
.

Learning with Errors. For any positive integers n, q ∈ Z, real α > 0 and vector
s ∈ Zn

q , define the distribution As,α = {(a,ats + e mod q) : a ←r Zn
q , e ←r

DZ,αq}. For any m independent samples (a1, b1), . . . , (am, bm) from As,α, we
denote it in matrix form (A,b) ∈ Zn×m

q × Zm
q , where A = (a1, . . . ,am) and

b = (b1, . . . , bm)t. We say that the LWEn,q,α problem is hard if, for uniformly
random s←r Zn

q and given polynomially many samples, no PPT algorithm can
recover s with non-negligible probability. The decisional LWE problem is asked to
distinguish polynomially many samples from uniform. For certain parameters,
the decisional LWE problem is polynomially equivalent to its search version,
which is in turn known to be at least as hard as quantumly approximating SIVP
on n-dimensional lattices to within polynomial factors in the worst case [55].

4.2 An Adaptive Smoothing Lemma for q-ary Lattices

Based on a good use of Lemma 17 from [32], the authors [40] constructed the
first lattice-based ASPH with adaptive projection function [31,41] (i.e., the pro-
jection key is generated after given the input ciphertext). However, Lemma 17 is
not enough to obtain a non-adaptive ASPH for constructing two-round PAKEs
(where the ciphertext is chosen after seeing the projection key). Specifically, it
provides no guarantee for the distribution of zte when the choice of z ∈ YA is
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dependent on Ae ∈ Zn
q . In particular, it is possible that for each z ∈ YA, there

is a negligible fraction of bad values Badz ⊂ Zn
q such that for all Ae ∈ Badz the

distribution of zte is far from uniform (and thus given a fixed u = Ae ∈ Zn
q , the

adversary may choose z ∈ YA such that u ∈ Badz). Instead, we show a stronger
result in Lemma 19, which is very crucial for our construction in Section 5.

Lemma 19. Let positive integers n,m ∈ Z and prime q satisfy m ≥ 2n log q.
Let γ ≥ 4

√
mq. Then, for all but a negligible fraction of A ∈ Zn×m

q , and for
any (even unbounded) function h : Zn

q → YA, the distribution of (Ae, zte) is
statistically close to uniform over Zn

q × Zq, where e ∼ DZm,γ and z = h(Ae).

Proof. By Lemma 15, for all but a negligible fraction of A ∈ Zn×m
q , the columns

ofA generate Zn
q and the length λ1(Λq(A)) (in the l2 norm) of the shortest vector

in Λq(A) is at least q/4 (since λ1(Λq(A)) ≥ λ∞1 (Λq(A)) ≥ q/4). Moreover,
the smoothing parameter ηϵ(Λ

⊥
q (A)) ≤ ω(

√
logm) for some negligible ϵ. In

the following, we always assume that A satisfies the above properties. Since
γ ≥ 4

√
mq > ηϵ(Λ

⊥
q (A)), by Lemma 16 the distribution of Ae mod q is within

statistical distance 2ϵ of uniform over Zn
q , where e ∼ DZm,γ . Furthermore, fix

u ∈ Zn
q and let v be an arbitrary solution to Av = u mod q, the conditional

distribution of e ∼ DZm,γ given Ae = u mod q is exactly v + DΛ⊥
q (A),γ,−v.

Thus, it is enough to show that for arbitrary v ∈ Zm and z = h(Av) ∈ YA, the
distribution zte is statistically close to uniform over Zq, where e ∼ DΛ⊥

q (A),γ,−v.

Now, fix v ∈ Zm and z = h(Av) ∈ YA, let A′ =

(
A
zt

)
∈ Z(n+1)×m

q . By the

definition YA =
{
ỹ ∈ Zm

q : ∀a ∈ Zq\{0}, dist(aỹ,Λq(A)) ≥ √q/4
}
, we have that

the rows of A′ are linearly independent over Zq. In other words, the columns of
A′ generate Zn+1

q . Let x be the shortest vector of Λq(A
′). Note that the lattice

Λq(A
′) is obtained by adjoining the vector z toΛq(A). Without loss of generality

we assume x = y+ az for some y ∈ Λq(A) and a ∈ Zq. Then, if a = 0, we have
∥x∥ ≥ q/4 by the fact that λ1(Λq(A)) ≥ q/4. Otherwise, for any a ∈ Zq\{0},
we have ∥x∥ ≥ dist(az,Λq(A)) ≥ √q/4. In all, we have that λ1(Λq(A

′)) =
∥x∥ ≥ √q/4. By Lemma 13 and the duality Λq(A

′) = q · (Λ⊥q (A′))∗, we have

ηϵ(Λ
⊥
q (A

′)) ≤ 4
√
mq ≤ γ for ϵ = 2−m.10

Since the columns of A′ ∈ Z(n+1)×m
q generate Zn+1

q , we have the set of

syndromes {u = zte : e ∈ Λ⊥q (A)} = Zq. By the factΛ⊥q (A
′) = Λ⊥q (A)∩Λ⊥q (zt),

the quotient group (Λ⊥q (A)/Λ⊥q (A
′)) is isomorphic to the set of syndromes Zq via

the mapping e+Λ⊥q (A
′) 7→ zte mod q. This means that computing zte mod q

for some e ∈ Λ⊥q (A) is equivalent to reducing e modulo the lattice Λ⊥q (A
′).

By Lemma 14, for any ϵ = negl(n), any γ ≥ ηϵ(Λ
⊥
q (A

′)) and any v ∈ Zm, the

distribution of DΛ⊥
q (A),γ,−v mod Λ⊥q (A

′) is within statistical distance at most

2ϵ of uniform over (Λ⊥q (A)/Λ⊥q (A
′)). Thus, the distribution zte is statistically

close to uniform over Zq, where e ∼ DΛ⊥
q (A),γ,−v. This completes the proof. □

10 It is possible to set a smaller γ by a more careful analysis with ϵ = negl(n).
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5 Lattice-based Splittable PKE with Associated ASPH

In order to construct a splittable PKE with associated ASPH from lattices, our
basic idea is to incorporate the specific algebraic properties of lattices into the
Naor-Yung paradigm [51,57], which is a generic construction of CCA-secure PKE
scheme from any CPA-secure PKE scheme and simulation-sound non-interactive
zero knowledge (NIZK) proof [57], and was used to achieve the first one-round
PAKEs from DDH and decisional linear assumptions [41].

Looking ahead, we will use a CPA-secure PKE scheme from lattices and a
simulation-sound NIZK proof for specific statements, so that we can freely apply
Lemma 18 and Lemma 19 to construct a non-adaptive approximate SPH and
achieve the stronger smoothness property. Formally, we need a simulation-sound
NIZK proof for the following relation:

Rpke :=


((A0,A1, c0, c1, β), (s0, s1,w)) :∥∥∥∥∥∥c0 −At

0

 s0
1
w

∥∥∥∥∥∥ ≤ β ∧

∥∥∥∥∥∥c1 −At
1

 s1
1
w

∥∥∥∥∥∥ ≤ β


where A0,A1 ∈ Zn×m

q , c0, c1 ∈ Zm
q , β ∈ R, s0, s1 ∈ Zn1

q ,w ∈ Zn2
q for some

integers n = n1 + n2 + 1,m, q ∈ Z. Note that under the existence of (enhanced)
trapdoor permutations, there exist NIZK proofs with efficient prover for any
NP relation [28,11,33]. Moreover, Sahai [57] showed that one can transform any
general NIZK proof into a simulation-sound one. Thus, there exists a simulation-
sound NIZK proof with efficient prover for the relation Rpke. In Section 5.3, we
will also show how to directly construct an efficient one from lattices.

For our purpose, we require that the NIZK proof supports labels [1], which
can be obtained from a normal NIZK proof by a standard way (e.g., appending
the label to the statement [41,27]). Let (CRSGen,Prove,Verify) be a labeled NIZK
proof for relation Rpke. The algorithm CRSGen(1κ) takes a security parameter κ
as input, outputs a common reference string crs, i.e., crs← CRSGen(1κ). The al-
gorithm Prove takes a pair (x,wit) = ((A0,A1, c0, c1, β), (s0, s1,w)) ∈ Rpke and
a label ∈ {0, 1}∗ as inputs, outputs a proof π, i.e., π ← Prove(crs, x, wit, label).
The algorithm Verify takes as inputs x, a proof π and a label ∈ {0, 1}∗, outputs a
bit b ∈ {0, 1} indicating whether π is valid or not, i.e., b← Verify(crs, x, π, label).
For completeness, we require that for any (x,wit) ∈ Rpke and any label ∈ {0, 1}∗,
Verify(crs, x,Prove(crs, x, wit, label), label) = 1. We defer more information of
simulation-sound NIZK to Appendix A.

5.1 A Splittable PKE from Lattices

Let n1, n2 ∈ Z and prime q be polynomials in the security parameter κ. Let n =
n1+n2+1,m = O(n log q) ∈ Z, and α, β ∈ R be the system parameters. Let P =
{−αq+1, . . . , αq− 1}n2 be the plaintext space. Let (CRSGen,Prove,Verify) be a
simulation-sound NIZK proof for Rpke. Our PKE scheme PKE = (KeyGen,Enc,
Dec) is defined as follows.
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KeyGen(1κ): Given the security parameter κ, compute (A0,R0)← TrapGen(1n,
1m, q), (A1,R1) ← TrapGen(1n, 1m, q) and crs ← CRSGen(1κ). Return the
public and secret key pair (pk, sk) = ((A0,A1, crs),R0).

Enc(pk, label,w ∈ P): Given pk = (A0,A1, crs), label ∈ {0, 1}∗ and plaintext
w, randomly choose s0, s1 ←r Zn1

q , e0, e1 ←r DZm,αq. Finally, return the
ciphertext C = (c0, c1, π), where

c0 = At
0

 s0
1
w

+ e0, c1 = At
1

 s1
1
w

+ e1,

and π ← Prove(crs, (A0,A1, c0, c1, β), (s0, s1,w), label).

Dec(sk, label, C): Given sk = R0, label ∈ {0, 1}∗ and ciphertext C = (c0, c1, π),
if Verify(crs, (A0,A1, c0, c1, β), π, label) = 0, return ⊥. Otherwise, compute

t =

 s0
1
w

← Solve(A0,R0, c0),

and return w ∈ Zn2
q (note that a valid π ensures that t has the right form).

Correctness. By Lemma 12, we have that ∥e0∥, ∥e1∥ ≤ αq
√
m hold with over-

whelming probability. Thus, it is enough to set β ≥ αq
√
m for the NIZK proof to

work. By Proposition 1, we have that s1(R0) ≤
√
m ·ω(

√
log n), and the Solve al-

gorithm can recover t from any y = At
0t+e0 as long as ∥e0∥·

√
m·ω(

√
log n) ≤ q.

Thus, we can set the parameters appropriately to satisfy the correctness. Besides,
for the hardness of the LWE assumption, we need αq ≥ 2

√
n1. In order to obtain

an ϵ-approximate SPH function, we require β ≤ √q/4, √mq/4 · ω(
√
log n) ≤ q

and αγm < ϵ/8, where γ ≥ 4
√
mq is the parameter for ASPH in Section 5.2.

In all, fix ϵ ∈ (0, 1/2), we can set the parameters m,α, β, q, γ as follows (where
c ≥ 0 is a real such that q is a prime) for both correctness and security:

m = O(n log n), β > 16m
√
mn/ϵ

q = 16β2 + c α = 2
√
n/q

γ = 4
√
mq

(1)

In practice, given a target length of session keys, one can first choose an appro-
priate ECC scheme, and then set other parameters to satisfy Equation (1). For
example, the Reed-Muller code with ℓ = 1024 can be used to encode a 176-bit
session key with ϵ = 1/32, and thus is far enough to establish a 128-bit session
key. In the setting of P = {−αq + 1, . . . , αq − 1}7 (i.e., n2 = 7), one can set
n1 ≈ 211,m ≈ 219, α ≈ 2−83.5, β ≈ 243 and q ≈ 290, which provides about
105-bit security by the lwe-estimator [6]. We note that there are many tradeoffs
between the parameters, and it is possible to give a more tight parameter for any
targeted security level. One can also reduce the parameters by using a careful
proof of Lemma 19 with smaller γ.
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Security. For any C = (c0, c1, π) ← Enc(pk, label,w), let r be the correspond-
ing random coins which includes (s0, s1, e0, e1) for generating (c0, c1), and the
randomness used for generating π. We define functions (f, g) as follows:

– The function f takes (pk,w, r) as inputs, computes (c0, c1) with random
coins r, and returns (c0, c1), i.e., (c0, c1) = f(pk,w, r);

– The function g takes (pk, label,w, r) as inputs, computes the Prove algorithm
with random coins r and returns the result π, i.e., π = g(pk, label,w, r).

We fix the two functions (f, g) in the rest of Section 5, and have the following
theorem for security.

Theorem 2. Let n = n1 + n2 + 1,m ∈ Z, α, β, γ ∈ R and prime q be as in
Equation (1). If LWEn1,q,α is hard, (CRSGen,Prove,Verify) is a simulation-sound
NIZK proof, then the scheme PKE is a splittable CCA-secure PKE scheme.

Since PKE is essentially an instantiation of the Naor-Yung paradigm [51,57]
using a special LWE-based CPA scheme (similar to the ones in [40,49]), and a
SS-NIZK for a special relation Rpke, this theorem can be shown by adapting the
proof techniques in [51,57]. We deter the proof to Appendix B.

5.2 An Associated Approximate SPH

Fix a public key pk = (A0,A1, crs) of the PKE scheme PKE . Given any string
label ∈ {0, 1}∗ and C = (c0, c1, π), we say that (label, C) is a valid label-
ciphertext pair with respect to pk if Verify(crs, (A0,A1, c0, c1, β), π, label) = 1.
Let sets X,L and L̄ be defined as in Section 3.2. Define the associated ASPH
function (K, ℓ, {Hhk : X → {0, 1}ℓ}hk∈K , S,Proj : K → S) for PKE as follows.

– The hash key is an ℓ-tuple of vectors hk = (x1, . . . ,xℓ), where xi ∼ DZm,γ .

Write At
0 = (B∥U) ∈ Zm×n

q such that B ∈ Zm×n1
q and U ∈ Zm×(n2+1)

q .
Define the projection key hp = Proj(hk) = (u1, . . . ,uℓ), where ui = Btxi.

– Hhk(x) = Hhk((c0, c1),w): Given hk = (x1, . . . ,xℓ) and x = (label, C,w) ∈ X

for some C = (c0, c1, π), compute zi = xt
i

(
c0 −U

(
1
w

))
for i ∈ {1, . . . , ℓ}.

Then, treat each zi as a number in {−(q − 1)/2, . . . , (q − 1)/2}. If zi = 0,
then set bi ←r {0, 1}. Else, set

bi =

{
0 if zi < 0
1 if zi > 0

.

Finally, return Hhk((c0, c1),w) = (b1, . . . , bℓ).
– Hash(hp, x, s0) = Hash(hp, ((c0, c1),w), s0): Given hp = (u1, . . . ,uℓ), x =

(label, (c0, c1, π),w) ∈ L and s0 ∈ Zn1
q such that c0 = Bs0 +U

(
1
w

)
+ e0

for some e0 ←r DZm,αq, compute z′i = ut
is0. Then, treat each z′i as a number

in {−(q − 1)/2, . . . , (q − 1)/2}. If z′i = 0, then set b′i ←r {0, 1}. Else, set

b′i =

{
0 if zi < 0
1 if z′i > 0

.
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Finally, return Hash(hp, ((c0, c1),w), s0) = (b′1, . . . , b
′
ℓ).

Theorem 3. Let ϵ ∈ (0, 1/2), and let n,m, q, α, β, γ be as in Theorem 2. Let ℓ
be polynomial in the security parameter κ. Then, (K, ℓ, {Hhk : X → {0, 1}ℓ}hk∈K ,
S,Proj : K × Cpk → S) is an ϵ-approximate SPH as in Definition 5.

Proof. Clearly, there are efficient algorithms for (1) sampling a hash key hk←r

K, (2) computing Hhk((c0, c1),w) for all hk ∈ K and all x = (label, C,w) ∈
X with C = (c0, c1, π), and (3) computing hp = Proj(hk) for all hk ∈ K. In
addition, for any x = (label, C,w) ∈ L, the values Hash(hp, ((c0, c1),w), s0)
can be efficiently computed, where C = (c0, c1, π) and c0 is generated using
the randomness s0. In the following, we show that the above construction also
satisfies the approximate correctness and the smoothness given in Definition 5.

First, let C = (c0, c1, π) be a ciphertext such that c0 = Bs0 +U

(
1
w

)
+ e0

for some s0 ←r Zn1
q and e0 ←r DZm,αq. For any i ∈ {1, . . . , ℓ}, we have that

zi = xt
i

(
c0 −U

(
1
w

))
= xt

i(Bs0+e0) = ut
is0+xt

ie0. This means that |zi−z′i| ≤

|xt
ie0| ≤ γ

√
m · αq

√
m < ϵ/2 · q/4 with overwhelming probability. Using the

fact that B ∈ Zm×n1
q is statistically close to uniform, we have that ui = Btxi

is statistically close to uniform over Zn1
q for all i ∈ {1, . . . , ℓ} by Lemma 16.

Moreover, for any non-zero s0 ∈ Zn
q (note that the probability that s0 = 0 is at

most q−n1 , which is negligible in κ), we have that z′i = ut
is0 is uniformly random.

By a simple calculation, we have the probability that bi ̸= b′i is at most ϵ
2 . By a

Chernoff bound, the Hamming distance between Hhk((c0, c1),w) = (b1, . . . , bℓ)
and Hash(hp, ((c0, c1),w), s0) = (b′1, . . . , b

′
ℓ) is at most ϵℓ with overwhelming

probability. This shows the approximate correctness.
Second, for any C = (c0, c1, π) and ((label, C),w) ∈ X\L̄, let w′ be the

decryption result of (label, C) using the secret key sk corresponding to pk (note
that the validity of π ensures that the existence of w′ ̸= ⊥). By assumption, we

know that w′ ̸= w. Let y = c0 −U

(
1
w

)
∈ Zm

q and y′ = c0 −U

(
1
w′

)
, we

have dist(y′,Λq(B
t)) ≤ β ≤

√
q

4 by the soundness of the NIZK proof π. Note
that the matrix U is statistically close to uniform by Proposition 1. Hence, with
overwhelming probability we always have that

y = c0 −U

(
1
w

)
∈ Y =

{
ỹ ∈ Zm

q : ∀a ∈ Zq\{0}, dist(aỹ,Λq(B
t)) ≥ √q/4

}
for any C = (c0, c1, π) and ((label, C),w) ∈ X\L̄ by Lemma 18. In addition,
if zi = xt

iy is uniformly random over Zq, then by the definition the i-th bit
bi of Hhk((c0, c1),w) is uniformly random over {0, 1}. Thus, for smoothness, it
suffices to show that for any (even unbounded) function h : Zn1×ℓ

q → Y, hk =

(x1, . . . ,xℓ) ←r (DZm,γ)
ℓ, hp = (Btx1, . . . ,B

txℓ) = Proj(hk),y = h(hp), z =
(xt

1y, . . . ,x
t
ℓy) and z′ ←r Zℓ

q, the statistical distance between (hp, z) and (hp, z′)
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is negligible in κ. Since γ ≥ 4
√
mq and B ∈ Zm×n1

q is statistically close to uni-
form, by Lemma 19 we have that for any function h′ : Zn1

q → Y , the distribution
of (Btx,xty′) is statistically close to uniform over Zn1

q × Zq, where x ∼ DZm,γ

and y′ = h′(Btx). Using the facts that Lemma 19 holds for arbitrary choice of
h′ : Zn1

q → Y and that each xi is independently chosen from DZm,γ , we have
that (hp, z) = ((Btx1, . . . ,B

txℓ), (x
t
1y, . . . ,x

t
ℓy)) is statistically close to uniform

by a standard hybrid argument. This completes the proof Theorem 3. □

5.3 Achieving Simulation-Sound NIZK for Rpke on Lattices

In this section, we will show how to construct an simulation-sound NIZK for Rpke

from lattices in the random oracle model. Formally, let n = n1+n2+1,m, q ∈ Z
be defined as in Section 5.1. We begin by defining a variant relation R′pke of Rpke

(in the l∞ form):

R′pke :=


((A0,A1, c0, c1, ζ), (s0, s1,w)) : ∥w∥∞ ≤ ζ ∧∥∥∥∥∥∥c0 −At

0

 s0
1
w

∥∥∥∥∥∥
∞

≤ ζ ∧

∥∥∥∥∥∥c1 −At
1

 s1
1
w

∥∥∥∥∥∥
∞

≤ ζ

 ,

where A0,A1 ∈ Zn×m
q , c0, c1 ∈ Zm

q , ζ ∈ R, s0, s1 ∈ Zn1
q and w ∈ Zn2

q . Write

At
0 = (B0∥U0) ∈ Zm×n1

q ×Zm×(n2+1)
q . Note that for large enoughm = O(n1 log q),

the rows of a uniformly random B0 ∈ Zm×n1
q generate Zn1

q with overwhelm-
ing probability. By the duality [48], one can compute a parity check matrix

G0 ∈ Z(m−n1)×m
q such that 1) the columns of G0 generate Zm−n1

q , and 2)
G0B0 = 0. Now, let vector e0 ∈ Zm satisfy

c0 = At
0

 s0
1
w

+ e0 = B0s0 +U0

(
1
w

)
+ e0. (2)

By multiplying Equation (2) with matrix G0 and rearranging the terms, we have

the equation D0w + G0e0 = b0, where (a0∥D0) = G0U0 ∈ Z(m−n1)×(1+n2)
q ,

and b0 = G0c0 − a0 ∈ Zm−n1
q . Similarly, by letting At

1 = (B1∥U1) and

c1 = B1s1 + U1

(
1
w

)
+ e1, we can compute an equation D1w + G1e1 = b1,

where G1 ∈ Z(m−n1)×m
q is a parity check matrix for B1, (a1∥D1) = G1U1 ∈

Z(m−n1)×(1+n2)
q , and b1 = G1c1 − a1 ∈ Zm−n1

q . As in [46,42], in order to show
((A0,A1, c0, c1, ζ), (s0, s1,w)) ∈ R′pke, it is enough to prove that there exists

(w, e0, e1) such that ((D0,G0,D1,G1,b0,b1, ζ), (w, e0, e1)) ∈ R̃′pke:

R̃′pke :=


((D0,G0,D1,G1, b0,b1, ζ), (w, e0, e1)) :(

D0 G0 0
D1 0 G1

)w
e0
e1

 =

(
b0

b1

)
∧

∥w∥∞ ≤ ζ ∧ ∥e0∥∞ ≤ ζ ∧ ∥e1∥∞ ≤ ζ

 ,
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which is essentially a special case of the ISIS relation RISIS (in the l∞ norm):

RISIS := {((M,b, ζ),x) : Mx = b ∧ ∥x∥∞ ≤ ζ} .

Notice that if there is a three-round public-coin honest-verifier zero-knowledge
(HVZK) proof for the relation RISIS , one can obtain an NIZK proof for RISIS

by applying the Fiat-Shamir transform [29] in the random oracle model [16].
Moreover, if the basic protocol additionally has the quasi unique responses prop-
erty [30,26,14], the literature [15,26,14] shows that the resulting NIZK proof
derived from the Fiat-Shamir transform meets the simulation-soundness needed
for constructing CCA-secure PKE via the Naor-Yung paradigm [51,57]. Fortu-
nately, we do have an efficient three-round public-coin HVZK proof with quasi
unique responses in [44],11 which is extended from the Stern protocol [58] and
has the same structure as the latter. Specifically, the protocol [44] has three
messages (a, e, z), where a consists of several commitments sent by the prover, e
is the challenge sent by the verifier, and the third message z (i.e., the response)
consists of the openings to the commitments specified by the challenge e.

Note that the quasi unique responses property [30,26] essentially requires
that it is computationally infeasible for an adversary to output (a, e, z) and
(a, e, z′) such that both (a, e, z) and (a, e, z′) are valid. Thus, if, as is usually the
case, the parameters of the commitment scheme are priorly fixed for all users,
the protocol in [44] naturally has the quasi unique responses property by the
binding property of the commitment scheme. In other words, the NIZK proof
for RISIS [43,45] (and thus for R̃′pke) obtained by applying the Fiat-Shamir
transform to the protocol in [44] suffices for our PKE scheme (where labels can
be incorporated into the input of the hash function used for the transformation).

Finally, we clarify that the protocol [44] is designed for RISIS in the l∞ norm,
while the l2 norm is used in Section 5.1. This problem can be easily fixed by
setting ζ = αq · ω(

√
logn) in the NIZK proof, and setting the parameter β in

Equation (1) such that β ≥ 2ζ
√
n holds, since 1) for e0, e1 ←r DZm,αq, both

Pr[∥e0∥∞ ≥ ζ],Pr[∥e1∥∞ ≥ ζ] are negligible in n by [32, Lemma. 4.2]; and 2)
P = {−αq + 1, . . . , αq − 1}n2 in our PKE scheme PKE . By [44], the resulting
NIZK can be achieved with total communication cost log2 β · Õ(m log q).
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A Simulation-Sound Non-Interactive Zero-Knowledge

In this section, we recall the definitions of (labeled) NIZK proof, and simulation-
sound NIZK from [16,57,33,41].

Definition 6 (NIZK). An efficient (labeled) NIZK proof for an NP language
L with witness relation R is a tuple of probability polynomial time (PPT) algo-
rithms (CRSGen,Prove,Verify,S1,S2) such that the following holds:

– Completeness: For all n, all x ∈ L ∩ {0, 1}n, all wit such that (x,wit) ∈
R, all label ∈ {0, 1}∗ and all strings crs ← CRSGen(1n), it holds that
Verify(crs, x, Prove(crs, x, wit, label), label) = 1.

– Soundness: For all (even unbounded) adversaries A, the following is neg-
ligible in n:

Pr[crs← CRSGen(1n); (x, label, π)← A(1n, crs) :
Verify(crs, x, π, label) = 1 ∧ x /∈ L]

– Adaptive Zero Knowledge: For all PPT adversaries A, the following is
negligible in n:∣∣∣∣Pr[crs← CRSGen(1n) : AProve(crs,·,·,·)(1n, crs) = 1]−

Pr[(crs, τ)← S1(1n) : AS
′(crs,τ,·,·,·)(1n, crs) = 1]

∣∣∣∣ ,
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where S ′(crs, τ, ·, ·, ·) is defined as:

S ′(crs, τ, x, wit, label) =
{
S2(crs, τ, x, label), if (x,wit) ∈ R ∧ x ∈ {0, 1}n;

⊥ , otherwise.

Definition 7 (Simulation-soundness). A labeled NIZK proof (CRSGen,Prove,
Verify,S1,S2) for a NP language L with witness relation R is simulation-sound
if for all PPT adversaries A, it holds that Pr[ExpA(n) = 1] is negligible in n,
where Pr[ExpA(n) denotes the following experiment:

(crs, τ)← S1(1n)
(x, label, π)← AS2(crs,τ,·,·)(1n, crs)
Let Q be the set of query-responses for S2(crs, τ, ·, ·), above
Return 1 iff ((x, label), π) /∈ Q and x /∈ L and Verify(crs, x, π, label) = 1.

Moreover, the NIZK proof is one-time simulation-sound if the adversary A is
only allowed to submit a single query to S2(crs, τ, ·, ·) in the above experiment.

Note that the notion of one-time simulation-soundness is enough for our
construction of CCA-secure PKE. Besides, assuming the existence of doubly
enhanced trapdoor permutations, every NP language has a simulation-sound
NIZK proof [24].

B The Proof of Theorem 2

For convenience, we first restate Theorem 2 in the following.

Theorem 2. Let n = n1 + n2 + 1,m ∈ Z, α, β, γ ∈ R and prime q be as in
Equation (1). If LWEn1,q,α is hard, (CRSGen,Prove,Verify) is a simulation-sound
NIZK proof, then the scheme PKE is a splittable CCA-secure PKE scheme.

Proof. We will prove Theorem 2 via a sequence of games from G0 to G12, where
G0 is a game with b∗ = 0, while G12 is a game with b∗ = 1. The security is
established by showing that the adversary’s advantages in game G0 and G12 are
negligibly close (and thus the adversary cannot distinguish b∗ with non-negligible
advantage). Let AdvA,i(κ) be the adversary A’s advantage in game Gi.

Game G0 This game is the real game considered in Definition 4. Formally,
the challenger C first computes (A0,R0) ← TrapGen(1n, 1m, q), (A1, R1) ←
TrapGen(1n, 1m, q) and crs← CRSGen(1κ). Then, it keeps sk = R0 private, and
gives the public key pk = (A0,A1, crs) to the adversary A.

Upon receiving a decryption query (label, C) for some C = (c0, c1, π), the
challenger C checks if Verify(crs, (A0,A1, c0, c1, β), π, label) = 1. If not, C returns
⊥ to A. Otherwise, C computes

t =

 s
1
w

← Solve(A0,R0, c0),
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and returns w ∈ Zn2
q to A.

At some time, A outputs two equal-length plaintexts w0,w1 ∈ P . Then, C
chooses s∗0, s

∗
1 ←r Zn1

q , e∗0, e
∗
1 ←r DZm,αq, and returns (c∗0, c

∗
1) to A, where

c∗0 = At
0

 s∗0
1
w0

+ e∗0, c∗1 = At
1

 s∗1
1
w0

+ e∗1.

Upon receiving a string label∗ ∈ {0, 1}∗ from A, the challenger C computes
π∗ ← Prove(crs, (A0,A1, c0, c1, β), (s

∗
0, s
∗
1,w0), label

∗), and returns the challenge
ciphertext C∗ = (c∗0, c

∗
1, π
∗) to A.

Game G1 This game is similar to game G0 except that the public key pk =
(A0,A1, crs) is generated by uniformly choosing A1 ←r Zn×m

q at random.

Lemma 20. Let n = n1 + n2 + 1,m, q, α, β, γ be as in Equation (1). Then,
|AdvA,1(κ)−AdvA,0(κ)| ≤ negl(κ).

Proof. Since in game G0 the matrix A1 output by the trapdoor generation algo-
rithm is statistically close to uniform by Proposition 1, and the only difference
between game G0 and G1 is the generation of A1, we have that G1 is statistically
indistinguishable from G0. Thus, |AdvA,1(κ)−AdvA,0(κ)| ≤ negl(κ). □

Game G2 This game is similar to game G1 except that the NIZK simulators S1
and S2 are used to generate the crs and the proof π∗ in the challenge ciphertext
c∗, respectively.

Lemma 21. If (CRSGen,Prove,Verify,S1,S2) is a NIZK proof, then we have
|AdvA,2(κ)−AdvA,1(κ)| ≤ negl(κ).

Proof. We complete the proof by showing that G2 is indistinguishable from G1

for any PPT adversary A. Now, assume that the adversary A can distinguish
G2 from G1 with any non-negligible probability, we construct an algorithm B
that breaks the adaptive zero-knowledge of the NIZK proof.

Formally, given a common reference string crs as input, B first generates
A0,A1 and R0 as in game G1. Then, it gives the public key pk = (A0,A1, crs)
to A, and uses sk = R0 to honestly answer the decryption query from A. At
some time, A outputs two equal-length plaintexts w0,w1 ∈ P. Then, B chooses
s∗0, s

∗
1 ←r Zn1

q , e∗0, e
∗
1 ←r DZm,αq, and returns (c∗0, c

∗
1) to A, where

c∗0 = At
0

 s∗0
1
w0

+ e∗0, c∗1 = At
1

 s∗1
1
w0

+ e∗1.

Upon receiving a label∗ ∈ {0, 1}∗ from A, the algorithm B submits x∗ = (A0,A1,
c0, c1, β), wit

∗ = (s∗0, s
∗
1,w0) and label∗ to its own NIZK proof oracle to obtain

a proof π∗. Finally, B returns the challenge ciphertext C∗ = (c∗0, c
∗
1, π
∗) to A.

Whenever A outputs a guess b ∈ {0, 1}, B outputs b and terminates.
Clearly, if A can distinguish game G2 from G1 with non-negligible advantage,

B can break the zero-knowledge of the NIZK with the same advantage. □
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Game G3 This game is similar to game G2 except that c∗1 = d1 +U1

(
1
w0

)
is

generated by uniformly choosing d1 ←r Zm
q at random, where At

1 = (B1∥U1).

Lemma 22. Let n = n1+n2+1,m, q, α, β, γ be as in Equation (1). If LWEn1,q,α

is hard, then |AdvA,3(κ)−AdvA,2(κ)| ≤ negl(κ).

Proof. We complete the proof by showing that under the LWE assumption, G3 is
indistinguishable from G2 for any PPT adversary A. Assume that the adversary
A can distinguish G3 from G2 with any non-negligible advantage, we construct
an algorithm B that breaks the LWE assumption with the same advantage.

Formally, given a LWE challenge tuple (Bt
1,d1) ∈ Zn1×m

q × Zm
q , B first ran-

domly chooses U1 ←r Zm×(n2+1)
q , generates (A0,R0)← TrapGen(1n, 1m, q) and

(crs, τ) ← S1(1κ) as in game G2. Then, it sets At
1 = (B1∥U1) ∈ Zm×n

q , gives
the public key pk = (A0,A1, crs) to A, and uses sk = R0 to honestly answer the
decryption query from A. At some time, A outputs two equal-length plaintexts
w0,w1 ∈ P. Then, B chooses s∗0 ←r Zn1

q , e∗0 ←r DZm,αq, and returns (c∗0, c
∗
1) to

A, where

c∗0 = At
0

 s∗0
1
w0

+ e∗0, c∗1 = d1 +Ut
1

(
1
w0

)
.

Upon receiving a label∗ ∈ {0, 1}∗ from A, the algorithm B computes π∗ ←
S2(crs, τ, x∗, label∗), where x∗ = (A0,A1, c0, c1, β). Finally, B returns the chal-
lenge ciphertext C∗ = (c∗0, c

∗
1, π
∗) to A. Whenever A outputs a guess b ∈ {0, 1},

B outputs b and terminates.
Clearly, if (Bt

1,d1) ∈ Zn1×m
q ×Zm

q is a valid LWE tuple, then B simulates the
attack environment of game G2 for A, else it simulates the attack environment of
game G3 for A. Thus, if A can distinguish game G3 from G2 with non-negligible
advantage, B can break the LWE assumption with the same advantage. □

Game G4 This game is similar to game G3 except that c∗1 = d1 +U1

(
1
w1

)
is

generated by using d1 ←r Zm
q and w1, where At

1 = (B1∥U1).

Lemma 23. |AdvA,4(κ)−AdvA,3(κ)| ≤ negl(κ).

Proof. This lemma follows from the fact that 1) d1 is uniformly chosen from
Zm
q in both game G4 and G3; and 2) wb for b ∈ {0, 1} is perfectly hidden in

c∗1 = d1 +U1

(
1
wb

)
. □

Game G5 This game is similar to game G4 except that c∗1 = B1s
∗
1 + e∗1 +

U1

(
1
w1

)
is generated by using s∗1 ←r Zn1

q , e∗1 ←r DZm,αq, whereA
t
1 = (B1∥U1).

Lemma 24. Let n = n1+n2+1,m, q, α, β, γ be as in Equation (1). If LWEn1,q,α

is hard, then |AdvA,5(κ)−AdvA,4(κ)| ≤ negl(κ).
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Proof. The proof is similar to that of Lemma 22, we omit the details. □

Game G6 This game is similar to game G5 except that the public key pk =
(A0,A1, crs) is generated by computing (A1,R1)←r TrapGen(1n, 1m, q).

Lemma 25. Let n = n1 + n2 + 1,m, q, α, β, γ be as in Equation (1). Then,
|AdvA,6(κ)−AdvA,5(κ)| ≤ negl(κ).

Proof. Since in game G6 the matrix A1 output by the trapdoor generation algo-
rithm is statistically close to uniform by Proposition 1, and the only difference
between game G6 and G5 is the generation of A1, we have that G6 is statistically
indistinguishable from G5. Thus, |AdvA,6(κ)−AdvA,5(κ)| ≤ negl(κ). □

Game G7 This game is similar to game G6 except that R1 is used to answer the
decryption queries from the adversary.

Lemma 26. Let n = n1+n2+1,m, q, α, β, γ be as in Equation (1). If (CRSGen,
Prove,Verify,S1,S2) is a simulation-sound NIZK proof, then we have |AdvA,7(κ)
−AdvA,6(κ)| ≤ negl(κ).

Proof. For a decryption query (label, C) from the adversary with C = (c0, c1, π),
let x = (A0,A1, c0, c1, β), where the public key pk = (A0,A1, crs). Note that
the simulator will always return ⊥ if Verify(crs, x, π, label) ̸= 1. Moreover, if there
exists wit = (s0, s1,w) such that (x,wit) ∈ Rpke, the decryption results in both
games are identical except with negligible probability by Proposition 1. Besides,
by the definition of CCA-security, the adversary is not allowed to make a de-
cryption query with (label, C) = (label∗, C∗) after seeing the challenge ciphertext
(label∗, C∗) for some C∗ = (c∗0, c

∗
1, π
∗). Let E be the event that the adversary A

makes a decryption query (label, C) with C = (c0, c1, π) such that 1) (label, C)
is not output in the challenge phase (i.e., the decryption query (label, C) is
made before the challenge phase or (label, C) ̸= (label∗, C∗) after the challenge
phase); 2) there does not exist wit = (s0, s1,w) such that (x,wit) ∈ Rpke; and
3) Verify(crs, x, π, label) = 1. Obviously, if E does not happen, then game G7

and G6 are indistinguishable from the adversary.
Now, we show that E can only happen with negligible probability. In fact, we

can construct an algorithm B that breaks the simulation-soundness of the NIZK
by interacting with any adversary A that makes E happen with non-negligible
probability. Formally, B can simulate the attack environment as in game G6 for
the adversary A except that it directly obtains crs from its own challenger, and
generates the proof π∗ using its NIZK proof oracle. Clearly, if A can make E
happen with non-negligible probability, then B can make E happen with the
same probability, and thus breaks the simulation-soundness of the NIZK. By
our assumption on the NIZK, we have that E can only happen with negligible
probability. In other words, |AdvA,7(κ) −AdvA,6(κ)| ≤ negl(κ). □
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Game G8 This game is similar to game G7 except that the public key pk =
(A0,A1, crs) is generated by uniformly choosing A0 ←r Zn×m

q at random.

Lemma 27. Let n = n1 + n2 + 1,m, q, α, β, γ be as in Equation (1). Then,
|AdvA,8(κ)−AdvA,7(κ)| ≤ negl(κ).

Proof. The proof is similar to Lemma 20, we omit the details. □

Game G9 This game is similar to game G8 except that c∗0 = B0s
∗
0 + e∗0 +

U0

(
1
w1

)
is generated by choosing s∗0 ←r Zn1

q , e∗0 ←r DZm,αq, where At
0 =

(B0∥U0).

Lemma 28. Let n = n1+n2+1,m, q, α, β, γ be as in Equation (1). If LWEn1,q,α

is hard, then |AdvA,9(κ)−AdvA,8(κ)| ≤ negl(κ).

Proof. This lemma can be shown via a sequence of games similar to that from
game G2 to G5, we omit the details. □

Game G10 This game is similar to game G9 except that 1) the public key
pk = (A0,A1, crs) is generated by computing crs ← CRSGen(1κ); and 2) the
challenge ciphertext C∗ = (c∗0, c

∗
1, π
∗) for label∗ ∈ {0, 1}∗ is generated by using

π∗ ← Prove(crs, (A0,A1, c
∗
0, c
∗
1, β), (s

∗
0, s
∗
1,w1), label

∗).

Lemma 29. If (CRSGen,Prove,Verify,S1,S2) is a NIZK proof, then we have
|AdvA,10(κ)−AdvA,9(κ)| ≤ negl(κ).

Proof. Note that (c∗0, c
∗
1) is honestly generated using (s∗1, s

∗
2,w1), the proof is

similar to Lemma 21, we omit the details. □

Game G11 This game is similar to game G10 except that the public key pk =
(A0,A1, crs) is generated by computing (A0,R0)←r TrapGen(1n, 1m, q).

Lemma 30. Let n = n1 + n2 + 1,m, q, α, β, γ be as in Equation (1). Then,
|AdvA,11(κ)−AdvA,10(κ)| ≤ negl(κ).

Proof. The proof is similar to Lemma 25, we omit the details. □

Game G12 This game is similar to game G11 except that R0 is used to answer
the decryption queries from the adversary.

Lemma 31. Let n = n1+n2+1,m, q, α, β, γ be as in Equation (1). If (CRSGen,
Prove,Verify,S1,S2) is a NIZK proof, then |AdvA,12(κ) −AdvA,11(κ)| ≤ negl(κ).
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Proof. For a decryption query (label, C) from the adversary with C = (c0, c1, π),
let x = (A0,A1, c0, c1, β), where the public key pk = (A0,A1, crs). Note that
the simulator will always return ⊥ if Verify(crs, x, π, label) ̸= 1. Moreover, if
there exists wit = (s0, s1,w) such that (x,wit) ∈ Rpke, the decryption results
in both games are identical except with negligible probability by Proposition 1.
Let E be the event that the adversary A makes a decryption query (label, C)
with C = (c0, c1, π) such that 1) Verify(crs, x, π, label) = 1; and 2) there does
not exist wit = (s0, s1,w) such that (x,wit) ∈ Rpke. Obviously, if E does not
happen, then game G12 and G11 are indistinguishable from the adversary.

Now, we show that E can only happen with negligible probability. In fact,
we can construct an algorithm B that breaks the soundness of the NIZK by in-
teracting with any adversary A that makes E happen with non-negligible prob-
ability. Formally, B can simulate the attack environment as in game G11 for the
adversary A except that it directly obtains crs from its own challenger, and hon-
estly runs the Prove algorithm to generate the proof π∗ for the challenge label-
ciphertext pair (label∗, C∗) for some C∗ = (c∗0, c

∗
1, π
∗). Recall that (label∗, C∗)

is actually a valid encryption of w1, we always have (c0, c1) ̸= (c∗0, c
∗
1) for any

(label, C) that makes E happen, where C = (c0, c1, π). Clearly, if A can make
E happen with non-negligible probability, then B can make E happen with the
same probability, and thus breaks the soundness of the NIZK. By our assump-
tion on the NIZK, we have that E can only happen with negligible probability.
In other words, |AdvA,12(κ) −AdvA,11(κ)| ≤ negl(κ). □

By combining the previous lemmas, we have |AdvA,12(κ) −AdvA,0(κ)| ≤
negl(κ). Since game G0 is a real game where the challenge ciphertext is an
encryption of w0, and game G12 is a real game where the challenge ciphertext
is an encryption of w1, we have the claims in Theorem 2. □
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