
Efficient Hybrid Proxy Re-Encryption for
Practical Revocation and Key Rotation

Steven Myers? and Adam Shull??

Indiana University, Bloomington, IN, USA

Abstract. We consider the problems of i) using public-key encryption
to enforce dynamic access control on clouds; and ii) key rotation of data
stored on clouds. Historically, proxy re-encryption, ciphertext delegation,
and related technologies have been advocated as tools that allow for
revocation and the ability to cryptographically enforce dynamic access
control on the cloud, and more recently they have suggested for key
rotation of data stored on clouds. Current literature frequently assumes
that data is encrypted directly with public-key encryption primitives.
However, for efficiency reasons systems would need to deploy with hybrid
encryption. Unfortunately, we show that if hybrid encryption is used,
then schemes are susceptible to a key-scraping attack.
Given a proxy re-encryption or delegation primitive, we show how to
construct a new hybrid scheme that is resistant to this attack and highly
efficient. The scheme only requires the modification of a small fraction
of the bits of the original ciphertext. The number of modifications scales
linearly with the security parameter and logarithmically with the file
length: it does not require the entire symmetric-key ciphertext to be
re-encrypted!
Beyond the construction, we introduce new security definitions for the
problem at hand, prove our construction secure, discuss use cases, and
provide quantitative data showing its practical benefits and efficiency.
We show the construction extends to identity-based proxy re-encryption
and revocable-storage attribute-based encryption, and thus that the con-
struction is robust, supporting most primitives of interest.

1 Introduction

Data storage on the cloud is now a major business. Examples include Dropbox,
Box, Google Drive, iCloud and many more. All of these services provide some
degree of sharing and access control that allow one to share files with others,
but they all come at the price that all of one’s data is either i) encrypted under
a key that the cloud has access to or ii) placed on the cloud in plaintext. This is
necessary because the service provider acts as an all-trusted reference monitor
that decides who can access data. It makes the plaintext data available only to
those that are supposed to have access. This makes data held by such providers

? Email: samyers@indiana.edu
?? Email: amshull@indiana.edu

samyers@indiana.edu
amshull@indiana.edu

2

privy to insider and data exfiltration attacks that can put the data of large
numbers of users at risk. Similarly, many content providers wish to provide
content easily through the cloud to subscribing customers, but remove content
access in scenarios where subscriptions terminate.

Cryptography seemingly provides natural solutions to the problem of un-
trusted cloud access control; tools from traditional public-key through attribute-
based and predicate encryption allow one to store data on a public cloud, with
cryptography enforcing access control functions. However, as detailed by Garri-
son et al. [17], these cryptographic techniques are not yet well-suited for even
traditional dynamic access control policies, such as RBAC0, where users may
have their access rights to data changed or revoked over time. In particular,
their work highlights the need for more efficient revocation mechanisms in such
schemes.

Consider a typical cryptographic access control scenario where a file is en-
crypted under a public key, and those that have read access are given the secret
key. Now if a user’s access is revoked from a file that is shared amongst many on
an untrusted server, the typical cryptographic solution involves providing new
secret keys to all users that should continue to have access to the file, and then
re-encrypting the file. When the server is not trusted with the underlying data
but can be trusted to perform computation, proxy re-encryption or ciphertext
delegation can be used. Otherwise, a user or administrator needs to download
the revoked resources, process them by decrypting and then re-encrypting them
under new keys, and then transmitting them back to the server. Such a process
is expensive both in terms of bandwidth and time. Also, when the administrator
is a thin client, it imposes an expensive computational cost. This is particularly
true with devices such as smartphones that frequently share large data files, such
as video.

Given that we typically can trusts clouds to compute correctly—even if we
can’t trust them against data exfiltration attacks—proxy re-encryption and ci-
phertext delegation are clearly solutions that need to be considered. In proxy
re-encryption [7,22,4], a proxy (such as the cloud) converts a ciphertext from
one key to another key without accessing the underlying plaintext. In proxy re-
encryption, revocation works as follows: The administrator of the access control
scheme generates new public- and secret-key pairs, passes the new secret keys
to those who should have read access to the data, and sends the public key to
those that should have write access. The administrator then generates a proxy
re-encryption key and asks the cloud to proxy re-encrypt the data with said
key. Here the cloud is trusted to compute on the data, but it is never exposed
to sensitive data. Garrison et al. [17] give a scheme which implements RBAC0

access controls on the cloud, and suggest it can be modified to use proxy re-
encryption schemes to allow revocation on the cloud. Ciphertext delegation in
attribute-based encryption (ABE) refers to the ability to re-encrypt a ciphertext
so that it is harder to decrypt, without using any secret information. Sahai et
al. [35] show how this can be used to achieve revocable-storage ABE.

3

Another related scenario is that of key rotation for encrypted files stored on
the cloud. Key rotation is the process by which files encrypted and stored must
be re-keyed on a timely basis. This ensures that if keys are accidentally leaked
or otherwise revealed, the files’ data remain secure. For example, corporations
that regularly have consultants and other external visitors often give them tem-
porary access. Corporations need to ensure that on a regular and timely basis
such access is revoked. Because of frequent breakdowns in communication chan-
nels on the human side, files may not be re-encrypted under new keys when the
consultant has moved on. Similarly, there is fear that as time progresses, keys
are inadvertently exposed, or the chance of key-theft goes up. In either case,
later exfiltration of the encrypted data can lead to its exposure. Therefore, it
is typically recommend that regular key rotations take place. This ensures that
there are no lingering access permissions to individuals who should no longer
possess them, and to lock out those who have maliciously acquired a copy of a
key. Key rotation is recommended across a wide range of industries and orga-
nizations. For example, NIST [5] recommends regular and planned rotation, as
does the Open Web Application Security Project (OWASP) [30], and the pay-
ment card industry [31] requires it on a periodic basis for customer data. Proxy
re-encryption schemes allows for such key rotation for files stored on the cloud or
other untrusted servers. Even on the cloud, the cost of re-keying large databases
can be expensive.

Work has been done on revocation and/or proxy re-encryption for symmetric-
key encryption [38], public-key encryption [7,22,4], identity-based encryption
[19,22], and attribute-based encryption [25]. The work in the symmetric case
[38], while recognizing the problem and attack we addresses, provides non-
standard security properties that are difficult to reconcile with modern secu-
rity notions. The concern with all the asymmetric-primitive–based proxy re-
encryption schemes is that while they exist, they all involve computing a num-
ber of expensive asymmetric primitives such that the number of such expensive
computations scales at least linearly with the length of the file being encrypted.
The work of Wang et al. [39] considers revocation for ABE when hybrid en-
cryption is used. However, to grapple with the attack described next, they use
a key-homomorphic pseudo-random function by Boneh et al. [10] for hybrid
encryption, which has significant efficiency issues: it requires a number of expo-
nentiations in cyclic groups that is linear in the file’s length.

Key Scraping Attacks on Cryptographic Dynamic Access Control via
Proxy Re-Encryption or Ciphertext Delegation The traditional solu-
tion for efficiently encrypting large files with asymmetric cryptography is to
use hybrid encryption: files are encrypted first with the faster and more efficient
symmetric-key encryption, and the short symmetric key is then encrypted with
the asymmetric encryption scheme. Further, one can apply this with proxy re-
encryption and ciphertext delegation schemes. However, the hybrid construction
has a serious flaw for the motivating scenarios we describe: dynamic crypto-
graphic access control and key rotation. In these scenarios, the adversary is

4

initially a user that is supposed to have access to a file, and that access is later
supposed to be revoked. Consider when data is stored using a hybrid proxy
encryption scheme, and then the proxy re-encryption procedure is applied to
the ciphertext—the naive usage can allow revoked users to retain access to re-
encrypted files. Note that the asymmetric ciphertext which encrypts the symmet-
ric key is renewed and encrypted under a new key, but the symmetric ciphertext
is not modified at all. The unchanged symmetric key can be used to retrieve
the plaintext from the “re-encrypted” ciphertext. The result is that a practical
adversary, with minimal resources in bandwidth and storage, can download and
decrypt symmetric keys for all the files that it is ever granted access to, and
maintain that access in perpetuity if hybrid proxy re-encryptions are the only
method ever used to revoke access. This concern has been observed indepen-
dently by both Garrison et al. [17] and Wang et al. [39]. Garrison et al. consider
it in the scenario of attempting to implement efficient RBAC0 with proxy re-
encryption on an untrusted cloud, to measure efficiency and practicality. Wang
et al. consider it in the context of their Sieve system, which allows users to en-
crypt their data, provide it to the cloud, and the discriminantly allow different
service providers access to data, which can later be revoked.

To make the problem more concrete, consider the following scenario based
on Garrison et al. [17]: Content files are stored on a cloud and are hybrid-
encrypted using a hybrid proxy re-encryption scheme with public-key encryption
algorithm E and a symmetric-key encryption algorithm ESym. Alice has access to
a large number of files {fi}i that are encrypted on the cloud in the ciphertexts{(

E(pkSub0
, ki),E

Sym(ki, fi)
)}
i
. Alice has the secret key, skSub0

, corresponding
to public key pkSub0

, as she belongs to an initial group of subscribers, and the
subscribers all have access to skSub0 , the secret key for this role.1 She does not
have the resources to download all of the content files she has access to. She
is removed from the subscriber group, so the cloud proxy re-encrypts all data
under a new public-key pkSub1

, denoting the new group of valid subscribers, and
to which Alice does not have the key. The result is that the cloud now serves{
E(pkSub1

, ki),E
Sym(ki, fi)

}
i
, and Alice cannot directly access the content in the

subscription service.
However, while it may not be reasonable to assume that Alice can download

all of the files she has access to on the cloud service while she is a subscriber, due
to their collective size or rate limits on the outgoing service provider’s network
connection, it is more reasonable to assume that at some point Alice downloads
and decrypts all of the symmetric keys {ki}i. Even for millions of files, this would

1 In Garrison et al.[17] this key is accessed indirectly through another ciphertext spe-
cific to a given user which is encrypted under the user’s personal public key. We
simplify to keep the example simple.
We stress that while in traditional PKI settings, only one person has a given secret-
key, in cryptographic access control settings this is not necessarily the case. This
is further reflected in cryptographic systems more directly related to access control
such as attribute-based encryption and predicate encryption, where a given set of
credentials or a given access policy can result in the multiple users being given the
same corresponding key.

5

require less than a gigabyte of storage/bandwidth, and she could use these keys
to decrypt all of

{
ESym(ki, fi)

}
i
. Therefore, even if the symmetric keys are re-

encrypted via proxy re-encryption, it is reasonable to assume that Alice would
maintain the ability to decrypt the symmetric portion of the proxy hybrid re-
encrypted files on the cloud. One needs to ensure with hybrid re-encryption that
ciphertexts are re-encrypted at both the public-key and symmetric-key ciphertext
portions.

Use Cases Cryptographic cloud-based dynamic access control has many ap-
plications from the storage and sharing of personal videos, data, and personal
sensor information, to household IoT sensor data, digital content subscription
services, and sharing of medical and sensitive corporate data. In all of these sce-
narios, there are use and business cases where it makes sense to place data on
the cloud, but due to fear of data exfiltration or insider attacks on the cloud, the
data should be stored in encrypted format. For example, a large number of works
on attribute-based, predicate, and functional encryption are motivated by such
use cases. However, only a small percentage of these papers consider dynamic
revocation. Yet, being able to revoke, and revoke efficiently, can be extremely
important in many real-world scenarios (e.g., termination of employment with
cause, or a relationship ending on bad terms). Our scheme allows very efficient
revocation that applies against all adversaries that do not go to the effort of
downloading essentially all of the files that are to be revoked—and if an ad-
versary has downloaded a file then revocation of said file doesn’t provide much
benefit in any case. Further, we simultaneously protect against key-scraping at-
tacks. While other techniques have been proposed for this problem, such as that
of the Sieve system in [39], our solution is significantly more efficient on any
reasonably-sized file due to the need for such schemes to compute exponentia-
tion for each block of the file, and our construction provides comparable security
in real-world scenarios.

While one could use the cloud to provide access control against scraping
attacks, by for example monitoring a user who accesses the encrypted symmetric-
keys portion of too many files, this has several downsides. It implies that the
cloud needs to have user accounts, and is aware of and actively records the history
of such accesses, and implements access control denial when such occasions occur.
The cloud thus monitors which files the users accesses, which portions, and
how frequently, which for privacy, security and anonymity reasons may be very
undesirable.

Consider the concrete use case of a subscription content service. With a tra-
ditional hybrid encryption scheme a malicious user may be tempted to download
symmetric keys for the entire content service—performing a scraping attack—
so that all the content could be accessed at a late time after the user stopped
paying for the service. Our proposed scheme would limit the user to the mate-
rial they could download while paying for the service. Note that a service can
easily limit the download rate to be useful for legitimate users, but make mass
download attacks of limited use, by simply limiting its network rate connections.

6

For example, a library might limit downloads to a few tens of books of data a
day, and a streaming service might limit a user to the equivalent of 48 hours
of high-definition video in a given day. This doesn’t provide much limit on how
much of the library of content a legitimate user might actually access. However,
a key-scraping attack under such a rate-limit would permit access to a significant
fraction of all content of the service. While one can ask the cloud to monitor
which files are accessed and which portions, we are then placing more trust into
the cloud to perform access control, and maintaining lists of which content users
have been accessing has clear privacy concerns.

With respect to the scenario of key rotation of data stored on the cloud, our
construction’s ability to efficinetly rotate keys lowers its cost, and this can allow
for more efficient and less costly key rotations on large data stores, or alternately
may permit for more frequent key rotations due to lowered costs. Other systems,
such as those proposed by Boneh et al. [10], which permit updating of symmet-
ric encryptions through key-homomorphisms also fulfill this function, but their
computational costs are significantly more expensive requiring, for each “block”
of the file, exponentiations on cyclic groups where discrete log is hard.

Overview of our Contributions We define a new security notion aimed at
proxy re-encryption which provides security against the previously described
attacks in the revocation and key-rotation scenarios. In situations where users
will have access to data that is to be later revoked, there is clearly nothing
that can be done about an adversary that is willing to download and store
all files for potential use later. Such an adversary can continue to access the
file after revocation by using its local copy, regardless of whether the file is
re-encrypted in the cloud. Therefore, we focus our definition on the realistic
scenario that assumes that the adversary has not previously stored nor viewed
the entire original ciphertext. In the increasingly typical setting of cloud storage,
this corresponds to the adversary not downloading the entire ciphertext prior to
having its access removed. In particular, our security definition specifically rules
out symmetric key-scraping attacks. More specifically, our security definition’s
goal is that an adversary that has access to i) potentially the vast majority—
but not all—of a ciphertext before any proxy re-encryption, and ii) the original
decryption key, cannot learn anything about the underlying plaintext, even after
giving the adversary access to a new proxy re-encrypted version—assuming the
adversary does not possess the corresponding new secret key.

We provide a solution by giving a construction that satisfies our definition
while performing proxy re-encryption in the hybrid model. Further, the cost of
the proxy re-encryption does not scale directly with the length of the file, but
rather as a linear function of the security parameter, and a logarithmic function
of the length of the file. The real-world savings are significant, and ensure that
when bulk revocations occur—as is often the case with key rotations and changes
to access control policies—large numbers of large files can be revoked efficiently.
We provide quantitative analysis showing the savings of our technique.

7

While our construction is susceptible to collusion between the cloud and
a revoked user, this is unavoidable when the cloud is trusted to perform the
proxy re-encryption because it can simply retain all the old files and then give
them to the revoked user for decryption. Such collusion is unlikely in the case
of a commercial cloud storage provider, as it would likely violate the service
agreement and is much riskier than simply reading data stored unencrypted on
the cloud.

We note that one might prefer to derive a solution such that any adversary
that initially has access to the encrypted files, but is only willing to expense
minimal storage to maintain access, will no longer be able to access the files after
revocation or key rotation. We show that this cannot be done without making
substantial modifications to each encrypted file. Thus solutions are possible, but
they will be costly in terms of disk access, and such costs will scale linearly with
file sizes, bypassing our efficiency gains.

Finally, we show how our definitions naturally extend to proxy re-encryption
for identity-based encryption and delegation in attribute-based encryption. This
demonstrates the construction can be used for dynamic cryptographic access
control that supports expressive access policies. It further suggests the construc-
tion generalizes to other reasonable definitions of ciphertext delegation and proxy
re-encryption for related encryption primitives.

Overview of our Construction We show how the novel use of an All-or-
Nothing Transform (AONT) [33,11,12,15] with traditional ideas from hybrid en-
cryption can be used to achieve an efficient hybrid proxy re-encryption scheme
for asymmetric primitives that is friendly to revocation. In particular, the re-
encryption algorithm only touches a small fraction of the symmetric-key–encrypted
ciphertext, resulting in much greater efficiency than producing a fresh encryp-
tion of the plaintext. The re-encrypted ciphertext grows slightly in size by an
additive length of one public-key encryption, and thus in practice by several
hundred to several thousand bits. However, for the use cases discussed above,
storage is typically cheap, and so this ciphertext growth adds a negligible cost.

For those versed in the area, the key idea of our construction is to take a
traditional hybrid construction where we have an asymmetric proxy-scheme en-
cryption of the symmetric key, and a symmetric-key encryption of the file in
question. We then apply an AONT on top of the symmetric ciphertext. Upon
proxy re-encryption we use the original proxy re-encryption scheme to update
the asymmetric encryption to a new asymmetric key. We then pseudorandomly
choose a number of locations in the AONT-transformed symmetric ciphertext to
encrypt. We encrypt enough of the AONT’s output that with all-but-negligible
probability the adversary did not download some of the newly encrypted loca-
tions. Therefore, it cannot invert the AONT and decrypt the ciphertext. We
then add a new asymmetric encryption of the symmetric key used to choose and
encrypt the random bit locations, so that the appropriate decryptor can later
invert all the operations and retrieve the appropriate locations. The number of
locations to encrypt is roughly i) proportional to the inverse of the fraction of

8

the file the adversary does not look at, and ii) proportional to the number of bits
that need to be changed by the AONT, which ensures that chances of inversion
are essentially zero.

2 Related Work

Proxy re-encryption was first considered in the public-key realm by Mambo and
Okamoto [27], but first defined by Blaze et al. [7], where they introduced the
notion of asymmetric and symmetric proxies for public-key encryption, digital
signatures, and identification protocols. Symmetric and asymmetric proxies refer
to the trust between the individuals in proxy schemes, and not symmetric and
asymmetric-key cryptography. In symmetric proxies, if Alice is delegating to Bob,
then not only must Alice trust Bob (because Bob can decrypt her ciphertexts),
but also Bob must trust Alice since in such schemes Alice can combine her private
key along with the proxy re-encryption key to compute Bob’s secret key. In an
asymmetric scheme, there is no such trust, and Bob’s key is not at risk of being
computed.

Jakobsson [23] provides the first steps towards an asymmetric proxy, but
his scheme requires an honest quorum to perform the proxy-transformation
and ensure that no information about the underlying plaintext is learned. Ivan
and Dodis [22] gave the first asymmetric proxy re-encryption scheme for tradi-
tional public-key encryption, and the first for identity-based encryption. They
also formalize and rename the notions of asymmetric and symmetric proxies to
unidirectional and bidirectional, which prevents confusion with the associated
terms in cryptography. Further, they formalize security definitions for proxy re-
encryption, where they extend traditional notions of CPA and CCA security to
hold against adversaries that do not have access to decryption keys/oracles of
not only the delegator, but also that of any of the delegatees. Later, Ateniese
et al. [4] pushed further, extending security definitions to include security of the
delagator’s secret key against colluding coalitions of delegatees, noting distinc-
tions between transitivity and transferability of decryption rights, and providing
constructions that meet all but one (they do not guarantee non-transferability)
of their security notions. Further, they show their scheme is efficient and provide
performance benchmarks showing that proxy re-encryption can be practical.

Green and Ateniese [19] gave the first proxy scheme for identity-based en-
cryption (IBE), where individual identities could develop proxy keys without the
need to incorporate the master secret key, a key practicality in many scenarios.
Since this paper, there has been a number of works extending proxy schemes
in IBE [40,37]. This was later extended to attribute-based encryption (ABE) by
[25], and there has now, similarly, been a fair amount of work in this area.

Related is the notion of revocable encryption schemes. Such schemes have
been constructed for PKI [28,29,1], for IBE [8], and for ABE [35]. In these
schemes, certificates/keys can be revoked so that they cannot be used to decrypt
ciphertexts encrypted in the future. These schemes differ from ours in that they
are concerned with revoking access to future ciphertexts, while our scheme is

9

used to revoke access to existing ciphertexts. However, the ABE scheme [35] also
provides a mechanism for revoking access to previously encrypted ciphertexts by
delegating the ciphertext to a later time. Since this scheme only delegates the
ABE portion of the ciphertext and not the symmetric-key-encrypted portion,
this scheme also has the security weakness our construction addresses.

Ateniese et al. [4] also provide a description of a secure file system scheme that
uses proxy re-encryption. In their scheme, all files are encrypted under symmetric
keys, and all the symmetric keys are encrypted under a master public key. When
a user requests a file it has access to, the proxy will re-encrypt the file’s symmetric
key to the user’s public key, giving the user access to the symmetric key and thus
to the file’s contents. However, this scheme does not consider what happens when
a user is revoked; in particular, symmetric keys are never changed.

Proxy re-encryption has been considered in the symmetric realm by Syalim
et al. [38]. Their scheme, like ours, uses an AONT as part of their proxy re-
encryption. However, their security analysis only considers the ability of a re-
voked user to obtain the new encryption/decryption key when it possesses plain-
texts, old keys, and both old and new ciphertexts. They do not consider our
scenario, where the revoked user has to obtain the plaintext from the old key,
part of an old ciphertext, and the new ciphertext. In addition, they focus strictly
on the symmetric case, and do not address the use of their scheme as part of
hybrid encryption.

Watanabe and Yoshino [41] present a mechanism for efficiently updating
symmetric keys. They also use an AONT to improve efficiency. However, their
scheme is in the symmetric key setting, and it does not consider revocation,
where the adversary previously had legitimate access to the file.

Boneh et al. [10] show how to use key-homomorphic pseudorandom functions
to implement symmetric-key proxy re-encryption. A pseudorandom function F :
K×X → Y for keyspace K is key-homomorphic if F (k1, x) and F (k2, x) can be
combined to produce F (k1 ⊕ k2, x) for some group operation ⊕. Using a key-
homomorphic PRF allows the symmetric key to be updated easily, providing
a much cleaner solution than the one used in our scheme. However, current
constructions of key-homomorphic PRFs are far too inefficient to be used in
practice, and their constructions would require asymmetric operations that scale
directly with the length of the file being encrypted.

We note that the problem we are addressing may, on first appearance, may
have similarities to the Bounded Retrieval Model [14,16], and the recent work
of Bellare et al. [6] which tries to make symmetric keys secure against exfiltra-
tion. However, while similar in that they both restrict the amount of a secret
(or ciphertext) that can be downloaded, they are quite different in that in our
setting i) the adversary is later given full access to another transformed version
of the ciphertext, ii) the adversary initially has access to the secret key for the
ciphertext and is typically able to download the entirety of the symmetric key
embedded in the ciphertext, and iii) the legitimate user is expected to download
the entire ciphertext in order to decrypt.

10

3 Notation

Given a string s over a given alphabet, we denote by |s| the length of the string. A
function µ is negligible if it grows slower than any inverse polynomial. Let D1 =
{D1,i}i∈N and D2 = {D2,i}i∈N be two indexed sequences of distributions, then
D1 ≈ D2 denotes that the two sequences are computationally indistinguishable
[24]. Let [N] denote {1, . . . , N} and let

{
N
`

}
be the set of all `-element subsets

of [N]. For y ∈ {0, 1}N and L ∈
{
N
`

}
, we use [y]L to denote the N − ` bits of y

that are not in L.

4 Background Definitions

In this section we overview the definitions of the component primitives neces-
sary for our construction. We assume the reader is familiar with the concept of
symmetric-key encryption, and chosen-plaintext attack (CPA) security for such
encryption. Definitions are included in Appendix A for those that are not.

4.1 All-Or-Nothing Transforms

All-or-nothing transforms were introduced by Rivest [33], as a primitive which
intuitively presented a type of function that had the property that without
access to essentially the entire output, no party could retrieve any bit of the
underlying input. However, with the full output of the function, the input was
easily retrievable. The notion was formalized by Boyko [11] in the Random Oracle
Model, and later by Canetti et al. [12] in the standard model. Later Dodis et
al. [15] extended the definition to include more powerful adaptive adversaries
that are allowed to adaptively choose which output bit positions the adversary
wishes to see.

Definition 1 (Adaptive and Non-Adaptive AONTs [12,15]). A random-
ized polynomial time computable function T : {0, 1}n → {0, 1}N is a (non-
adaptive) `-AONT if it satisfies conditions 1 and 2. It is an Adaptive `-AONT
if it satisfies conditions 1 and 3.

1. T is efficiently invertible, i.e., there is a polynomial time machine I such
that for any x ∈ {0, 1}n and any y ← T (x), we have I(y) = x.

2. (Non-adaptive) For any L ∈
{
N
`

}
and any PPT adversary A, we have:

|Pr[A(x0, x1, [T (x0)]L) = 1]− Pr[A(x0, x1, [T (x1)]L) = 1]| ≤ ε(N)

for some negligible function ε.
3. (Adaptive) For any PPT adversary A with oracle access to string y = T (xb)

who can read at most N − ` bits of y, we have:∣∣∣Pr
[
AT (x0)(x0, x1) = 1

]
− Pr

[
AT (x1)(x0, x1) = 1

]∣∣∣ ≤ ε(N)

for some negligible function ε.

11

Construction of AONTs The first construction of an AONT was given by
Rivest [33], which requires two passes of the input with a block cipher. However,
it is only known to satisfy a weaker definition of security than Defn. 1. Boyko
[11] showed that Optimal Asymmetric Encryption Padding (OAEP) satisfies
the non-adaptive version of Defn. 1 in the random oracle model. Extending the
work of Canetti et al.[12] and Dodis et al. [15] we show that OAEP is also an
adaptively secure AONT in the Random Oracle Model. We note that OAEP is
quite efficient, requiring two cryptographic hashes over the length of the input.

Lemma 1. Let G : {0, 1}k → {0, 1}n, and H : {0, 1}n → {0, 1}k be ran-
dom oracles. Define the probablistic function fOAEP : {0, 1}n → {0, 1}n+k as
fOAEP(x; r) = 〈G(r)⊕ x,H(G(r)⊕ x)⊕ r)〉, where r ∈R {0, 1}k. Let ` ≤ k, then
fOAEP is an adaptive 2`-AONT, with security q/2`−2 for an adversary that makes
at most q < 2`−1 adaptive queries to G or H.

The proof is given in Lemma 25 from Appendix G.

4.2 Public-Key Proxy Re-Encryption

We begin with the traditional unidirectional proxy re-encryption (PRE) public-
key encryption primitive. There is some variation in the definitions for PRE
schemes, such as bidirectionality vs. unidirectionality and single-hop vs multi-
hop. Since unidirectional multi-hop schemes are the most versatile, we use the
definition from [32], as that is the only secure unidirectional multi-hop scheme
that we know of. Our results apply to bidirectional and/or single-hop schemes as
well, with the resulting scheme inheriting the properties of the underlying PRE
scheme.

Definition 2 (Public-Key Proxy Re-Encryption). A proxy public-key re-
encryption primitive consists of five probabilistic polynomial time algorithms:
G(1λ)→ (pk, sk) A key generation algorithm that given a security parameter gen-
erates a public- and secret-key pair.
E(pk,M)→ C. Public-key encryption—takes a public key and message and gen-
erates a ciphertext.
D(sk,C)→M. Decryption—takes a secret key and ciphertext and returns the
underlying message.
RG(pki, ski, pkj, skj)→ rki→j. Takes two public/secret key pairs—a source and a
destination2—and creates a re-encryption key that can transform a ciphertext
encrypted under the source’s public key pki to one encrypted under the destina-
tion’s public key pkj.
RE(rki→j),Ci)→ Cj. Takes a re-encryption key and a ciphertext encrypted un-
der the re-encryption key’s corresponding source public key, and translates it into
a ciphertext under the destination’s public key.
2 Many PRE schemes are “non-interactive”: the destination secret key is not needed to

produce the re-encryption key. We present the definition for an “interactive” scheme
to match that of [32]. All of our results apply to non-interactive schemes as well.
We note in our use cases the ”interactive” definition does not require interaction
amongst parties.

12

Correctness A proxy re-encryption scheme is correct if all encryptions and
proxy re-encryptions decrypt properly. Formally, for every message M and every
set of public/secret key pairs {(pkiu , skiu)← G}u∈{0,...,r} and re-encryption keys
{rkiu→iu+1 ← RG(skiu , pkiu , pkiu+1

)}u∈{0,...,r−1}, we have

D
(
skir ,RE

(
rkir−1→ir , . . .RE

(
rki0→i1 ,E

(
pki0 ,M

))
. . .
))

= M.

Unidirectional, Multi-Hop, PRE CPA-Security This security notion es-
tablishes the basic concept of chosen-plaintext-attack (CPA) security for proxy
re-encryption. The unidirectionality property tells us that the proxy can only be
computed in one direction. The multi-hop property ensures that someone who
has received a proxy re-encrypted ciphertext from an original source is able to
again proxy re-encrypt to a new source, and this process can be repeated an
unlimited number of times.

The security game allows the adversary to query public keys for which it
has the corresponding secret key—in which case we say that the index of the
public key is corrupted—and public keys for which it does not have the secret
key—in which case the index is uncorrupted. The challenge ciphertext must be
encrypted under a key with uncorrupted index. The adversary can query any
re-encryption or re-encryption key that does not go from an uncorrupted to a
corrupted index.

Definition 3 (Basic Unidirectional, Multi-Hop, PRE CPA-Security Game
[3]). Let λ be the security parameter. Let A be an oracle TM, representing the
adversary. The PRE-CPA game consists of an execution of A in two phases,
which are executed in order, as described in Fig. 1 (pg. 15).

Within each phase, A has access to oracles (described below) and each can
be queried in any order, poly(λ) times, unless otherwise specified.
Phase 1: This phase consists of two oracles. On the ith query of either type the
oracle computes (pki, ski)← G and then depending on the query:

– Uncorrupted Key Generation Oukey: Output pki for (pki, ski)← G(1λ).
Index i is denoted as uncorrupted.

– Corrupted Key Generation Ockey: Output (pki, ski)← G(1λ). Index i is
denoted as corrupted.

Phase 2: This phase consists of oracles producing re-encryption keys and re-
encryptions of ciphertexts, as well as the challenge oracle. Note that the indices
correspond to those of the keys produced in the first phase, and these oracles are
based on state established in the first phase.

– Re-Encryption Key Generation Orkey(i, j): If i = j, or if i is un-
corrupted and j is corrupted, then output ⊥. Otherwise, output rki→j ←
RG(pki, ski, pkj , skj).

– Re-Encryption Orenc(i, j, C): If i = j, or if i is uncorrupted and j is
corrupted, then output ⊥. Otherwise, output RE(rki→j , C) where rki→j ←
RG(ski, pki, pkj).

13

– Challenge Ochal(M0,M1, i
∗): If i∗ is corrupted, output ⊥. Otherwise, output

C∗ ← E(pki∗ ,Mb). The oracle can only be called once.

Definition 4. A Proxy Re-Encryption scheme Π is Unidirectional, Multi-Hop,
PRE CPA-Secure if for all oracle P.P.T. adversaries A, there exists a negligible
function negl:

Pr[PRE-CPAA,Π(λ) = 1] ≤ 1

2
+ negl(λ)

5 Revocation- and Key-Rotation-Friendly Proxy
Re-Encryption

In this section we provide the definition of our new proxy re-encryption primitive,
and our proposed construction.

5.1 (1 − ε)-Revocable, Unidirectional, Multi-Hop, PRE
CPA-Security

We modify the above security definition of traditional unidirectional, multi-hop
PRE security to incorporate abilities that adversaries have in practice in the re-
vocation and re-keying scenarios: initial access to files and their decryption keys,
but a lack of inclination or capability to download all of these files. In particular,
they may download the symmetric keys used in a file’s hybrid encryption. The
goal is now that after a file is re-encrypted the adversary cannot, at this point,
decrypt the ciphertext.

The new definitions are a modification of the previous security game given
in Defn. 3, differing in the definition of the challenge query. While in Defn. 3
the challenge ciphertext is produced as a fresh encryption under the challenge
index, in this definition the challenge ciphertext can be produced from a series
of re-encryptions. The challenge query contains a list of (possibly corrupted)
indices [i∗0, . . . , i

∗
r] through which the message will be successively re-encrypted.

The adversary can receive portions of these ciphertexts so long as the total
size is sufficiently less than the size of each ciphertext (e.g., 90% of the size),
representing the assumption that the adversary did not download the entire file
prior to revocation. Then the challenge ciphertext is re-encrypted from i∗r to an
uncorrupted index j∗, representing the revocation of the adversary. At this point
the adversary receives the entire challenge ciphertext encrypted under index j∗.

Definition 5 ((1−ε)-{Static, Adaptive}-Revocable, Unidirectional, Multi-
Hop, PRE CPA-Security Game). We define games (1−ε)-Stat-Revoke-PRE-CPAA,Π(λ)
and (1 − ε)-Adap-Revoke-PRE-CPAA,b(λ) as being identical to PRE-CPAA,Π(λ)
given in Defn. 3 except with the following change to the challenge query oracle
in Phase 2:

– Challenge Ochal(M0,M1, [i
∗
0, . . . , i

∗
r], j

∗, bitPos).

14

The adversary can call (M0, M1, [i∗0, . . . , i
∗
r], j

∗, bitPos) for any distinct values
of [i∗0, . . . , i

∗
r]. They represent the multiple hops, prior to the final hop, through

which the challenge ciphertext is proxy re-encrypted. These keys may be cor-
rupted, to model the fact that an adversary typically has decryption keys prior
to revocation. However, now j∗ must be an uncorrupted index distinct from each
index in [i∗0, . . . , i

∗
r]. The input bitPos will be used to indicate the bits of cipher-

texts created prior to revocation that the adversary receives; bitPos differs in its
use between the adaptive and static cases. In both the static and adaptive games
the following are computed:

– {C∗u}0≤u≤r where C∗0 = E(pki∗0 ,Mb), and for u > 0, C∗u = RE(rki∗u−1→i∗u , C
∗
u−1)

– C∗∗ = RE(rki∗r→j∗ , C
∗) for rki∗r→j∗ = RG(pki∗r , ski∗r , pkj∗ , skj∗)

Here each C∗u represents a ciphertext before revocation and C∗∗ represents the
ciphertext after revocation. Let N ′ = max0≤u≤r |C∗u|.

In the static game, (1 − ε)-Stat-Revoke-PRE-CPA, the adversary provides
bitPos which consists of (1 − ε)N ′ pairs (u, v) for 0 ≤ u ≤ r and 0 ≤ v < C∗u.
The output of the query is C∗∗ and the vth bit of C∗u for each pair (u, v) specified
by bitPos. This challenge oracle can only successfully be called once.

In the adaptive game, (1− ε)-Adap-Revoke-PRE-CPA, the Challenge oracle is
stateful. The adversary selects bitPos one pair (u, v) at a time and receives the
vth bit of ciphertext C∗u, so it can choose each pair based on the previous bits it
received. Once the adversary has received (1− ε)N ′ total bits of {C∗u}0≤u≤r, the
oracle outputs C∗∗. After this it refuses to respond. Similarly, the oracle refuses
to respond if queries change any of the calling values other than bitPos.

Definition 6. A Proxy Re-Encryption scheme Π is (1− ε)-{Static, Adaptive}-
Revocable, Unidirectional, Multi-Hop, PRE CPA-Secure if for all oracle P.P.T.
adversaries A, there exists a negligible function negl s.t. both hold:

1. Pr[(1− ε)-{Stat,Adap}-Revoke-PRE-CPAA,Π(λ) = 1] ≤ 1
2 + negl(λ)

2. Pr[PRE-CPAA,Π(λ) = 1] ≤ 1
2 + negl(λ) .

Note that we need the scheme to satisfy both the traditional definition and
the revocable definition, as it is possible to construct revocation schemes that
produces secure re-keyed ciphertexts, but where the originals are insecure.

6 CPA-Secure Hybrid Public-Key Proxy Re-Encryption
Scheme

We now give a hybrid construction of a CPA-secure public-key proxy re-encryption

scheme Πhyb =
(
GHyb,EHyb,DHyb,RGHyb,REHyb

)
, assuming the existence of a

public-key proxy re-encryption scheme Π = (G,E,D,RG,RE), a symmetric-key
encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an AONT T .

15

PRE-CPAA,Π(λ)

σ ← AOukey,Ockey(λ) . (Phase 1)
b← {0, 1}
b′ ← AOrkey,Orenc,Ochal(σ) . (Phase 2)
Output 1 iff b = b′

Fig. 1. Proxy Re-Encryption CPA-
Security Experiment

EHyb(pk,M)

k0 ← GSym
(
1λ
)

Cpk ← E(pk, k0)
CT ← T

(
ESym(k0,M)

)
return C =

(
Cpk, [], CT

)
Fig. 2. EHyb Encryption

DHyb(sk, C = (Cpk,
[
Cbks1 , . . . , Cbksr

]
,

CTr = CTr,1 · · ·CTr,N))

for u← r, . . . , 1 do
(su, ku)← D

(
sk, Cbksu

)
indu ← Ind(su, `

∗)
stru ← Ctr(ku, `

∗)
for v ← 1, . . . , N do

if v ∈ indu then
CTu−1,v ← CTu,v ⊕ str[v]

else
CTu−1,v ← CTu,v

end if
end for

end for
CT ← CT0,1 · · ·CT0,N
k0 ← D

(
sk, Cpk

)
return M ← DSym

(
k0, T

−1
(
CT
))

Fig. 3. DHyb Decryption

REHyb(rki→j=
(
pkj , rk

′
i→j
)
, C=(Cpk,[

Cbks1 , . . . , Cbksr

]
, CT=CT1 · · ·CTN))

C̃pk ← RE
(
rk′i→j , C

pk
)

for u← 1, . . . , r do

C̃bksu ← RE
(
rk′i→j , C

bks
u

)
end for
Choose sr+1, kr+1 uniformly.
Cbksr+1 ← E

(
pkj , (sr+1, kr+1)

)
indr+1 ← Ind(sr+1, `

∗)
strr+1 ← Ctr(kr+1, `

∗)
for v ← 1, . . . , N do

if v ∈ indr+1 then

C̃Tv ← CTv ⊕ strr+1[v]
else

C̃Tv ← CTv
end if

end for
C̃T ← C̃T1 · · · C̃TN
return C = (C̃pk, [C̃bks1 , . . ., C̃bksr+1],

C̃T)

Fig. 4. REHyb Re-Encryption

Bounded-Storage-ReconstA,Π(f, n)

σ ← A(f) for |σ| ≤ n
f̃ ← Π(f)

f ′ ← A(σ, f̃)
Output 1 iff f = f ′

Fig. 5. Bounded Storage Reconstruc-
tion Security Game

16

6.1 Overview of Construction

The basis of our construction is a standard hybrid encryption scheme with an
AONT applied to the symmetric ciphertext portion of the hybrid ciphertext.
That is, an initial ciphertext has the form (Cpk, CT), where the components are:

– Cpk = E(pk, k0) is an encryption under the user’s public key pk of the sym-
metric key k0.

– CT = T
(
ESym(k0,M)

)
is the AONT applied to a symmetric-key encryption

of the message M .

Now, for each proxy re-encryption, the proxy re-encrypts a randomly selected
set of bits of CT , on top of any previous re-encryptions of bits of CT . This
makes inverting the AONT impossible unless the adversary was lucky enough
to have previously queried and stored all of the encrypted bits, and since they
are (pseudo-)randomly distributed this is incredibly unlikely. However, to allow
decryption, the proxy needs to store the locations of the re-encrypted bits and
the key used to encrypt them. This is done by producing a new public-key
encryption of the seed used to select the positions and encrypt the bits, and
adding this to the ciphertext. As a result, the ciphertext size and encryption
time grow additively with the number of re-encryptions, where the summand is
the size of a proxy ciphertext.

A ciphertext that is a re-encryption of a previous ciphertext has the form(
Cpk,

[
Cbks1 , . . . , Cbksr

]
, CT

)
, where the components are:

– Cpk = E(pk, k0) is an encryption under the user’s public key pk of the sym-
metric key k0.

– Each of Cbks1 , . . . , Cbksr is an encryption under the user’s public key of the bit
positions and key for a previous re-encryption; there is one for each previous
re-encryption.

– CT is T
(
ESym(k0,M)

)
with some bits re-encrypted, as determined by

[
Cbks1 , . . . , Cbksr

]
.

To keep the notation consistent, we write an initial ciphertext as
(
Cpk, [], CT

)
.

6.2 Notation

We let r be the number of previous re-encryptions of a hybrid ciphertext. We
let N denote the output length of T , and let `∗ ≤ N with `∗ = ω(log(λ)) be the
number of bits of the AONT output that are re-encrypted. The value of `∗ will
depend on the security of the AONT and assumptions about the behavior of the
adversary.

We use a deterministic function Ind(s, `∗) that takes a seed s and produces
a pseudorandom element of

{
N
`∗

}
, i.e. a pseudorandom subset of {1, . . . , N} of

size `∗. We use Ctr(k, `∗) to denote the keystream of length `∗ produced by
pseudorandom generator (e.g., here our notation envisions using counter mode
encryption with key k and nonce 0, which is a known PRG). Note that if the
underlying block cipher is secure, then Ctr(k, `∗) is pseudorandom. We XOR

17

Ctr(k, `∗) with the bits of the AONT output that we want re-encrypted. For a
keystream str, we let str[j] represent the jth bit of str that has not yet been
XORed with any bit of the AONT output.

We let rInd(`∗) denote a random element of
{
N
`∗

}
, i.e. a random subset

of {1, . . . , N} of size `∗; and, rStr(`∗) is a random string of length `∗. Let
[T (·)]ind,str represent a modified output of T—specifically, the values of bit posi-
tions specified by the indices in ind are XORed with keystream str. For example,
T (x)ind=1,3,4,str=101 would output t1 ⊕ 1, t2, t3 ⊕ 0, t4 ⊕ 1, t5,, where ti is the
ith output bit of T (x). Finally, C(1−ε) represents the fraction 1 − ε of the bits
of ciphertext C that the adversary receives;

6.3 Proxy Re-Encryption Construction

Our proxy re-encryption scheme is the five-tuple (GHyb, EHyb, DHyb, RGHyb, REHyb),
where GHyb

(
1λ
)

= G
(
1λ
)
, EHyb is defined in Fig. 2 (pg. 15), DHyb is defined in

Fig. 3 (pg. 15), RGHyb
(
pki, ski, pkj , skj

)
=
(
pkj ,RG

(
pki, ski, pkj , skj

))
= rki→j ,

and REHyb is defined in Fig. 4 (pg. 15).

6.4 Correctness

A valid ciphertext for message M under public key pk with corresponding secret
key sk has the form C =

(
Cpk,

[
Cbks1 , . . . , Cbksr

]
, CTr

)
where

– Cpk is an encryption under pk of symmetric key k0
– Each Cbksu is an encryption under pk of (su, ku)
– CTr is T

(
ESym(k,M

)
with the bits at positions Ind(s1) encrypted under sym-

metric key k1, then the bits at positions Ind(s2, `
∗) encrypted under sym-

metric key k2, etc.

The decryption algorithm computes k0 = D
(
sk, Cpk

)
and each (su, ku) =

D
(
sk, Cbksu

)
; computes CT0 by decrypting the bits of CTr at positions Ind(sr, `

∗)
using symmetric key kr to produce CTr−1, then decrypting the bits of CTr−1 at po-
sitions Ind(sr−1, `

∗) using symmetric key kr−1 to produce CTr−2, etc., eventually
reaching CT0 ; and finally computes M = DSym

(
k0, T

−1(CT)).
6.5 Basic PRE-CPA Security

We first provide the basic Proxy Re-Encryption CPA security of the scheme
(Defn. 4). We note that this is necessary because (1−ε)-{Stat,Adap}-Revoke-PRE-CPA
security game (Defn. 5) provides the adversary the decryption key and oracle
access to earlier versions of the ciphertext (pre re-encryption), and therefore tra-
ditional security is not implied by the new definition; rather, the new definition
provides an additional proxy re-encryption security property.

Theorem 1. Assume the existence of a CPA-secure public-key proxy re-encryption
scheme Π = (G,RG,E,RE,D), a CPA-secure symmetric-key encryption scheme
Πsym =

(
GSym,ESym,DSym

)
, and an AONT T . Then the construction in Section

6.3 is CPA-secure.

18

This is a basic hybrid security proof, which is provided in Appendix B.

6.6 Adaptive-Revocable-PRE-CPA Security

We now provide a proof of (1 − ε)-revocable security for the adaptive case,
showing that it satisfies Definition 6. We require a minor additional property of
the underlying PRE scheme, which we call re-encryption history independence,
which says that the distribution of a re-encrypted ciphertext does not depend on
the keys used in encryption and re-encryption prior to the current key (though
it may depend on the number of previous re-encryptions):

Definition 7 (Re-Encryption History Independence). A public-key proxy
re-encryption scheme Π = (G,RG,E,RE,D) has re-encryption history indepen-
dence if for every set of public/secret key pairs

{
(pk0, sk0),

(
pk′0, sk

′
0

)
, . . .,

(
pkr−1, skr−1

)
,(

pk′r−1, sk
′
r−1
)
, (pkr, skr)

}
with re-encryption keys rku→u+1 ← RG

(
pku, sku, pku+1, sku+1

)
,

rk′u→u+1 ← RG
(
pk′u, sk

′
u, pk

′
u+1, sk

′
u+1

)
for u ∈ [0, . . . , r − 2] and rkr−1→r ←

RG
(
pkr−1, skr−1, pkr, skr

)
, rk′r−1→r ← RG

(
pk′r−1, sk

′
r−1, pkr, skr

)
and every mes-

sage M :

RE(rkr−1→r, . . .RE(rk0→1,E(pk0,M)) . . .) ≈ RE
(
rk′r−1→r, . . .RE

(
rk′0→1,E

(
pk′0,M

))
. . .
)

where ≈ denotes computationally indistinguishable distributions.

Although PRE schemes do not need to have this property to be PRE-CPA-
secure, it is a natural property to have. It does follow from re-encryption key
privacy, an additional security property found in the schemes of [3,2,32]. Every
PRE scheme we looked at [4,13,19,26,3,2,32] has re-encryption history indepen-
dence.

Theorem 2. Assume the existence of a PRE-CPA-secure public-key proxy re-
encryption scheme Π = (G,RG,E,RE,D) with re-encryption history indepen-
dence3, a symmetric-key encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an

adaptive `-AONT T . Suppose that for the construction of Πhyb from Section
6.3, CT comprises at least a fraction 1 − δ of the total size of each cipher-
text. Then for any ε < 1 with ε > δ and any `∗ > `

ε−δ , this construction is
(1− ε)-Adap-Revoke-PRE-CPA-secure.

Hybrid Argument We show the computational indistinguishability of a series
of games. Each game is the same as the real game except in regards to C∗∗. In
each game, the challenge query is (M0,M1, [i

∗
0, . . . , i

∗
r], j

∗, bitPos). We highlight in
bold the portions of C∗∗ that differ from the previous games, in the descriptions
of the respective games that follow:

3 If the scheme is otherwise secure but lacks re-encryption history independence, this
theorem can be proven under a weaker version of (1 − ε)-Adap-Revoke-PRE-CPA
security—the list of identities [i∗0, . . . , i

∗
r] in the challenge query has the additional

requirement that for u ∈ [0, . . . , r1], if i∗u is uncorrupted then so is i∗u+1.

19

Game0: This is the real game, where:

C∗∗ =
(
RE
(
rki∗r→j∗ , C

pk
)
,
[
Cbks1 , . . . , Cbksr ,E

(
pkj∗ , (s, k1)

)]
,
[
CT
]
Ind(s,`∗),Ctr(k1,`∗)

)
.

Game1: This is identical to Game0 except that we replace E
(
pkj∗ , (s, k1)

)
with

E
(
pkj∗ , (0, 0)

)
, resulting in:

C∗∗ =
(
RE
(
rki∗r→j∗ , C

pk
)
,
[
Cbks1 , . . . , Cbksr ,E

(
pkj∗ , (0, 0)

)]
,
[
CT
]
Ind(s,`∗),Ctr(k1,`∗)

)
.

Game2: This is identical to Game1 except that we replace the pseudorandom
Ind(s, `∗) with truly random rInd(`∗), resulting in:

C∗∗ =
(
RE
(
rki∗r→j∗ , C

pk
)
,
[
Cbks1 , . . . , Cbksr ,E

(
pkj∗ , (0, 0)

)]
,
[
CT
]
rInd(`∗),Ctr(k1,`∗)

)
.

Game3: This is identical to Game2 except that we replace the keystream Ctr(k1, `
∗)

we get from counter mode encryption with a random string rStr(`∗), resulting
in:

C∗∗ =
(
RE
(
rki∗r→j∗ , C

pk
)
,
[
Cbks1 , . . . , Cbksr ,E

(
pkj∗ , (0, 0)

)]
,
[
CT
]
rInd(`∗),rStr(`∗)

)
.

We now provide a series of lemmas that show that any adverary’s probabili-
ties of success in two successive games are negligibly close. These are presented
in Lemmas 2, 3, and 4. Finally, we show in Lemma 6 that any adversary’s chance
of success in the final game is negligibly close to 1/2.

Lemma 2. Suppose that an adversary A1 for the (1−ε)-Adap-Revoke-PRE-CPA
security game has probability of success p0 in Game0 and probability of success p1
in Game1. If the underlying proxy re-encryption scheme Π is PRE-CPA-secure,
then p1 − p0 is negligible.

Proof. We construct an adversary B1 that plays the PRE-CPA security game
by simulating adversary A1. B1 gives A1 the public parameters it receives. B1
responds to queries from A1 as follows:

– Uncorrupted Key Generation query Oukey: B1 makes an uncorrupted key
generation query to its oracle and receives pki in response. B1 sends pki to
A1.

– Corrupted Key Generation query Ockey: B1 makes a corrupted key generation
query to its oracle and receives (pki, ski) in response. B1 sends (pki, ski) to
A1.

– Re-Encryption Key Generation query Orkey(i, j): B1 queries (i, j) to its re-
encryption key generation oracle, receiving rk′i→j in response. Note that
B1 will have pki from a previous key generation query. B1 sends rki→j =(
pkj , rk

′
i→j
)

to A1.
– Re-Encryption query Orenc(i, j, C): B1 queries (i, j) to its re-encryption key

generation oracle, receiving rk′i→j in response. B1 then runs REHyb
((
pkj , rk

′
i→j
)
, C
)

from Algorithm 4 and sends the result to A1.

20

– Challenge query Ochal(M0,M1, [i
∗
0, . . . , i

∗
r], j

∗): B1 generates random bit b,
random symmetric keys k0, k1, . . . , kr+1 ← GSym, and random seeds s1, . . . , sr+1.
B1 also makes r corrupted key generation queries, receiving {(pki′u , ski′u)}0≤u≤r−1
in response. B1 creates Cpk0 = E

(
pki∗0 , k0

)
and Ĉpk0 = E

(
pki′0 , k0

)
, and then

queries

Cpkα = Orenc

(
i′α−1, i

∗
α, Ĉ

pk
α−1

)
, Ĉpkα = Orenc

(
i′α−1, i

′
α, Ĉ

pk
α−1

)
,

where 1 ≤ α ≤ r and Cpkr+1 = Orenc

(
i′r, j

∗, Ĉpkr

)
.

Note that each Cpku is produced by encrypting k0 under pki′0 and then re-

encrypting it through [pki′1 , pki′u−1
, pki∗u]. By re-encryption history indepen-

dence, this is indistinguishable from a ciphertext produced by encrypting k0
under pki∗0 and then re-encrypting it through [pki∗1 , pki∗u−1

, pki∗u].

For each u ∈ {1, . . . , r}, B1 creates Cbksu,u = E
(
pki∗u , (su, ku)

)
and Ĉbksu,u =

E
(
pki′u , (su, ku)

)
, and then queries

Cbksu,u+1 = Orenc

(
i′u, i

∗
u+1, Ĉ

bks
u,u

)
, Ĉbksu,u+1 = Orenc

(
i′u, i

′
u+1, Ĉ

bks
u,u

)
,

Cbksu,u+2 = Orenc

(
i′u+1, i

∗
u+2, Ĉ

bks
u,u+1

)
, Ĉbksu,u+2 = Orenc

(
i′u+1, i

′
u+2, Ĉ

bks
u,u+1

)
, . . .

Cbksu,r = Orenc

(
i′r−1, i

∗
r , Ĉ

bks
u,r−1

)
, Ĉbksu,r = Orenc

(
i′r−1, i

′
r, Ĉ

bks
u,r−1

)
,

Cbksu,r+1 = Orenc

(
i′r, j

∗, Ĉbksu,r

)
Note that each Cbksu,v is produced by encrypting (su, ku) under pki′u and then
re-encrypting it through [pki′u , pki′v−1

, pki∗v]. By re-encryption history inde-

pendence, this is indistinguishable from a ciphertext produced by encrypting
(su, ku) under pki∗u and then re-encrypting it through [pki∗u , pki∗v−1

, pki∗v].

Then B1 creates CT0 = T
(
ESym(k0,Mb)

)
and C∗0 =

(
Cpk0 , [], CT0

)
. For each

u ∈ {1, . . . , r}, B1 creates CTu =
[
CTu−1

]
Ind(su,`∗),Ctr(ku,`∗)

and C∗u =
(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
.

B1 makes challenge query ((sr+1, kr+1), (0, 0), j∗), receiving ciphertext C ′

in response. It gives A1 the (1 − ε)|C∗r | bits that it adaptively requests of
{C∗u}0≤u≤r as well as

C∗∗ =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1, C

′], [CTr]Ind(sr+1,`∗),Ctr(kr+1,`∗)

)
.

– Guess b′: If b = b′ then B1 guesses that C ′ is an encryption of (sr+1, kr+1),
otherwise B1 guesses that C ′ is an encryption of (0, 0).

If C ′ is an encryption of (sr+1, kr+1), then A1 is in Game0 (the real game)
and has probability of success p0; thus B1 is correct with probability p0. If C ′

21

is an encryption of (0, 0) then A1 is in Game1 and has probability of success p1;
thus B1 is correct with probability 1− p1. Therefore B1’s probability of success
is 1

2 (p0 + 1−p1) = 1
2 + 1

2 (p0−p1). By the PRE-CPA security of (G,RG,E,RE,D),
1
2 (p0 − p1) is negligible, and so p0 − p1 is negligible. ut

Lemma 3. Suppose that an adversary A2 for the (1−ε)-Adap-Revoke-PRE-CPA
security game has probability of success p1 in Game1 and probability of success
p2 in Game2. If Ind(s, `∗) with random seed s is pseudorandom (indistinguishable
from rInd(`∗)), then p2 − p1 is negligible.

Proof. We construct a distinguisher D1 that receives a set of indices ind—either
ind = Ind(s, `∗) with random seed s or ind = rInd(`∗). D1 simulates adversary A2.
D1 instantiates the PRE itself and sends A2 the public parameters. D1 responds
to queries from A2 as follows:

– Uncorrupted Key Generation query Oukey: D1 creates a key pair (pki, ski)←
G and sends pki to A2.

– Corrupted Key Generation query Ockey: D1 creates a key pair (pki, ski)← G
and sends (pki, ski) to A2.

– Re-Encryption Key Generation query Orkey(i, j): If i = j or if i is un-
corrupted and j is corrupted then D1 sends ⊥; otherwise, D1 computes
rk′i→j ← RG(pki, ski, pkj , skj). D1 sends rki→j =

(
pkj , rk

′
i→j
)

to A2.
– Re-Encryption query Orenc(i, j, C): If i = j or if i is uncorrupted and j is cor-

rupted thenD1 sends⊥; otherwise,D1 computes rk′i→j ← RG(pki, ski, pkj , skj).

D1 then runs REHyb
((
pkj , rk

′
i→j
)
, C
)

from Algorithm 4 and sends the result
to A2.

– Challenge query Ochal(M0,M1, [i
∗
0, . . . , i

∗
r], j

∗): D1 generates random bit b,
random symmetric keys k0, k1, . . . , kr+1 ← GSym, and random seeds s1, . . . , sr+1.

D1 creates Cpk0 = E
(
pki∗0 , k0

)
and

Cpk1 = RE
(
rki∗0→i∗1 , C

pk
0

)
, Cpk2 = RE

(
rki∗1→i∗2 , C

pk
1

)
,

. . . , Cpkr = RE
(
rki∗r−1→i∗r , C

pk
r−1

)
, Cpkr+1 = RE

(
rki∗r→j∗ , C

pk
r

)
For each u ∈ {1, . . . , r}, D1 creates Cbksu,u = E

(
pki∗u , (su, ku)

)
and computes

Cbksu,u+1 = RE
(
rki∗u→i∗u+1

, Cbksu,u

)
, Cbksu,u+2 = RE

(
rki∗u+1→i∗u+2

, Cbksu,u+1

)
,

. . . , Cbksu,r = RE
(
rki∗r−1→i∗r , C

bks
u,r−1

)
, Cbksu,r+1 = RE

(
rki∗r→j∗ , C

bks
u,r

)
Then D1 creates CT0 = T

(
ESym(k0,Mb)

)
and C∗0 =

(
Cpk0 , [], CT0

)
. For

each u ∈ {1, . . . , r}, D1 creates CTu =
[
CTu−1

]
Ind(su,`∗),Ctr(ku,`∗)

and C∗u =(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
.

D1 gives A2 the (1− ε)|C∗r | bits that it adaptively requests of {C∗u}0≤u≤r as
well as

C∗∗ =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E

(
pkj∗ , (0, 0)

)]
,
[
CTr
]
ind,Ctr(kr+1,`∗)

)
.

22

– Guess b′: If b = b′ then D1 guesses that ind = Ind(s, `∗), otherwise D1 guesses
that ind = rInd(`∗).

If ind = Ind(s, `∗), then A2 is in Game1 and has probability of success p1;
thus D1 is correct with probability p1. If ind = rInd(`∗), then A2 is in Game2
and has probability of success p2; thus D1 is correct with probability 1 − p2.
Therefore D1’s probability of success is 1

2 (p1 + 1 − p2) = 1
2 + 1

2 (p1 − p2). By
the pseudorandomness of Ind(s, `∗), 1

2 (p1 − p2) is negligible, and so p1 − p2 is
negligible. ut

Lemma 4. Suppose that an adversary A3 for the (1−ε)-Adap-Revoke-PRE-CPA
security game has probability of success p2 in Game2 and probability of success p3
in Game3. If Ctr(k1, `

∗) with random key k1 is pseudorandom (indistinguishable
from rStr(`∗)), then p3 − p2 is negligible.

Proof. We construct a distinguisher D2 that receives a bitstream str—either
str = Ctr(k1, `

∗) with random key k1 or str = rStr(`∗). D2 simulates adversary
A3. D2 instantiates the PRE itself and sends A3 the public parameters. D2

responds to queries from A3 as follows:

– D2 responds to Oukey, Ockey, Orkey, and Orenc queries the same ways as D1 in
Lemma 3.

– Challenge query Ochal(M0,M1, [i
∗
0, . . . , i

∗
r], j

∗): D2 generates random bit b

and constructs C∗0 , . . . , C
∗
r , Cpkr+1, and

[
Cbks1,r+1, . . . , C

bks
r,r+1

]
following the pro-

cedure in Lemma 3. D2 gives A3 the (1 − ε)|C∗r | bits that it adaptively
requests of {C∗u}0≤u≤r as well as

C∗∗ =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E

(
pkj∗ , (0, 0)

)]
,
[
CTr
]
rInd(`∗),str

)
.

– Guess b′: If b = b′ then D2 guesses that str = Ctr(k1, `
∗), otherwise D2

guesses that str = rStr(`∗).

If str = Ctr(k1, `
∗), then A2 is in Game2 and has probability of success p2;

thus D2 is correct with probability p2. If str = rStr(`∗), then A2 is in Game3
and has probability of success p3; thus D2 is correct with probability 1 − p3.
Therefore D2’s probability of success is 1

2 (p2 + 1 − p3) = 1
2 + 1

2 (p2 − p3). By
the pseudorandomness of Ctr(k1, `

∗), 1
2 (p2 − p3) is negligible, and so p2 − p3 is

negligible. ut

Adversary’s success rate in Game3 We begin with a technical lemma:

Lemma 5. Suppose that there are N possible balls. In the first stage, a fraction
ε′ are selected (by any method). In the second stage, exactly `∗ balls are selected
uniformly at random. Let `′ be the number of balls selected in both stages. Then
for any t > 0,

Pr[`′ ≤ `∗(ε′ − t)] ≤ e−2`
∗t2

23

Its proof can be found in Lemma 9 from Appendix C, but follows from a standard
application of Hoeffding’s inequality. Next, we look at the success rate of an
adversary in Game3:

Lemma 6. Suppose that an adversary A4 for the (1−ε)-Adap-Revoke-PRE-CPA
security game has probability of success p3 in Game3. Suppose also that the under-
lying AONT T is a computationally-secure adaptive `-AONT and CT comprises
at least a fraction 1−δ of the total size of each ciphertext. If ε > δ and `∗ > `

ε−δ ,

then p3 <
1
2 + negl for some negligible function negl.

Proof. We construct an adversary B2 that plays the `-AONT security game by
simulating adversary A4. B2 instantiates the PRE itself and sends A4 the public
parameters. B2 responds to queries from A4 as follows:

– B2 responds to Oukey, Ockey, Orkey, and Orenc queries the same ways as D1 in
Lemma 3.

– Challenge query Ochal(M0,M1, [i
∗
0, . . . , i

∗
r], j

∗, bitPos): B2 generates random
symmetric keys k0, k1, . . . , kr+1 ← GSym and seeds s1, . . . , sr+1. B2 then con-
structs Cpk0 , . . . , Cpkr+1 and Cbksu,u , . . . , C

bks
u,r+1 for u ∈ {1, . . . , r} following the

procedure in Lemma 3. B2 makes AONT challenge query
(
ESym(k0,M0),ESym(k0,M1)

)
,

receiving oracle access to anyN−` bits of AONT output CT0 = T
(
ESym(k0,Mb

)
in response. B2 responds to A4 by giving it oracle access to

{C∗u =
(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
}0≤u≤r

for
CTu =

[
. . .
[[
CT0
]
Ind(s1,`∗),Ctr(k1,`∗)

]
. . .
]
Ind(su,`∗),Ctr(ku,`∗)

,

with a limit of (1 − ε)|C∗r | total bits queried. Whenever A4 queries a bit
of CTu , B2 queries the corresponding bit of CT0 . For each u′ ∈ {1, . . . , u}, if
the bit is in Ind(su′ , `

∗), B2 XORs it with the corresponding bit of Ctr(ku′).
B2 returns the resulting bit to A4. When A4 finsihes its queries, B2 chooses
random L ∈

{
N
`∗

}
and queries any bits of

[
CT0
]
L

that it hadn’t previously

queried. If this requires more than N − ` bits of CT0 then B2 aborts the

simulation. Otherwise, it produces C̃Tr ∈ {0, 1}N by setting the bits not in L
as their corresponding values from CTr and choosing the bits in L randomly.
B2 then gives A4

C∗∗ =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E

(
pkj∗ , (0, 0)

)]
, C̃Tr

)
– Guess b′: B2 receives b′ as A4’s guess and uses the same bit b′ for its guess

as well.

We now look at the probability that B2 aborts when responding to A4’s
challenge query. Let ε′ be the fraction of CT0 that B2 does not query from its
oracle; note that ε′ ≥ ε − δ. Let `′ be the number of bits of CT0 that are in L
but that B2 does not query. B2 aborts if and only if `′ < `. To get any upper

24

bound on `′, we apply Lemma 5. We let balls in the lemma correspond to bits
here. Balls selected in the first stage correspond to bits not in bitPos, and balls
selected in the second stage correspond to bits in L. Then `′ here is equivalent to
`′ in the lemma. Thus by Lemma 5, for any t > 0, Pr[`′ ≤ `∗(ε′ − t)] ≤ e−2`∗t2 .

For any fixed t, this probability is negligible for `∗ = ω(log(λ)). Thus as long
as ` < `∗ · ε′, the probability that B2 aborts is negligible. Since ε′ ≥ ε − δ, if
`∗ > `

ε−δ then this will hold.

If B2 does not abort then its probability of success is identical to A4’s prob-
ability of success. Since L was chosen randomly and any string XORed with a

random string is a random string, C̃Tr =
[
CTr
]
rInd(`∗),rStr(`∗)

.

Thus A′4s view here is the same as in Game3, so its probability of success
is p3. Hence B2’s probability of success, when accounting for the probability
that it aborts, is p3 − negl′ for some negligible function negl′. By the `-AONT
security of T , p3−negl′ < 1

2 +negl′′ for some negligible function negl′′. Therefore
p3 <

1
2 + negl for negl = negl′ + negl′′. ut

Now we use these lemmas to prove Theorem 2.

Proof. By Lemmas 2, 3, and 4, we see that the adversary’s probability of success
in Game0 can only be negligibly greater than its probability of success in Game3.
By Lemma 6, the adversary’s success in Game3 can be at most 1

2 +negl for some
negligible function negl. Thus the adversary’s success in Game0, which is the real
case, can be at most 1

2 + negl′ for some negligible function negl′. Combined with
Theorem 1, this proves that is (1− ε)-Adap-Revoke-PRE-CPA-secure. ut

For completeness, we provide a proof for the static case in Appendix D,
showing that it satisfies Definition 6. Note that while for the adaptive case the
AONT must be adaptive, for the static case we can use a non-adaptive AONT.

7 Extensions to Proxy IBE and Revocable ABE

There is strong potential of identity-based proxy re-encryption [19,25,40] and
revocable-storage ABE [35] in providing strong dynamic access control on un-
trusted clouds. Further, they can support expressive access control policies that
are more difficult to achieve with traditional public-key encryptions. Therefore,
being able to efficiently revoke large files using the hybrid scheme presented here
is important.

We note that it is difficult to present a unified theorem that directly shows
our construction immediately lifts to these primitives. This is similar to how it
is difficult to have a generic hybrid encryption theorem that covers traditional
PKE, IBE and ABE even though intuitively one understands the construction
goes through. Regardless, in Sections 11 and 12 we show how to extend the
traditional definitions to support (1 − ε)-revocable security, and show that our
hybrid constructions naturally achieve the security definitions.

25

8 Implementation Issues

A standard block or stream cipher can be used to implement the symmetric-
key encryption and pseudo-random generator. AES with CTR mode is a natural
choice for both symmetric-key encryption scheme and as the pseudorandom num-
ber generator, and is aided by the inclusion of AES in silico on many modern
integrated circuits. The choice of the AONT depends on whether or not one
needs an adaptive security notion. However, for practical deployment random
oracle model constructions seem practical; Boyko [11] gives a tight reduction of
OAEP for non-adaptive security, and we provide a loose, but technically easier,
proof of adaptive security for OAEP in Lemma 25 from Appendix G.4 Imple-
mentation details for OAEP are well understood due to its use in PKCS #1 [34].
Basing the Random Oracle implementation on standard cryptographic hashes,
such as SHA-256, also typically benefits from the its inclusion in modern silicon.

From a practical perspective our construction allows certain overhead compu-
tations to be moved to the cloud, where they may be more palatable. For exam-
ple, a thin client need not compute the AONT on the symmetric ciphertext—this
computation does not rely on any secret data. Thus a thin client can upload an
appropriate traditional hybrid encryption (Epk(k),ESym

k(m)), where E is part
of a proxy re-encryption scheme, and the cloud can compute T (ESym

k(m)) for
the AONT T—the cloud covers the extra encryption costs. Similarly, if a hybrid
ciphertext has not been proxy re-encrypted, the cloud can remove the AONT,
reducing the decryption cost to that of traditional hybrid encryption.

We note that the more times a file is proxy re-encrypted, the more effort
decryption takes, and the longer ciphertexts get. However, in the worst case we
can use lazy re-encryption and amortization to solve this problem. For lazy re-
encryption, when someone goes to modify a file that has been revoked several
times, they will need to decrypt everything, but when they go to update the
file, they can produce a new ciphertext (i.e., they do not need to reproduce the
re-encryptions), and thus the ciphertext is renewed. In the case where files are
not updated frequently, files that have been frequently revoked can be updated
via a traditional download, re-encrypt, and upload process; but now the costs
are amortized over a deployment-specific acceptable number of revocations.

Finally, a negative effect of this construction is that it limits streaming de-
cryption services (but not streaming upload services, due to the prior observation
that the cloud can apply T). However, a moment’s thought shows that this is
an inherent property of our security definition—if you could download a small
portion of the file and start decryption, you could break CPA security.

9 Efficiency

We compare the efficiency of our scheme to a naive approach to hybrid proxy
re-encryption. In the naive approach, to re-encrypt a ciphertext the proxy re-

4 Boyko [11] provides a weaker adaptive definition of AONT security and shows that
OAEP meets it; however, this definition is weaker than the definition we require.

26

encrypts the public-key–encrypted symmetric key using the public-key proxy
re-encryption algorithm, creates a new symmetric key and encrypts it under the
new public-key, and re-encrypts the already encrypted message under the new
symmetric key. We note that this naive solution does not necessarily achieve our
security definition, because the adversary may be able to begin decrypting the
original ciphertext when it downloads a (1−ε) fraction of it, and this may break
CPA security. Regardless, it provides a reasonable benchmark system.

Since the public-key costs will be the same between our construction and
the naive construction, we only compare the costs of symmetric-key encryp-
tion/decryption and the AONT. We assume that the scheme is implemented as
described in Sect. 8, using OAEP, implemented with SHA-256, as the AONT.

The AONT is only used in our scheme for encryption and decryption. Com-
puting the AONT on an N -bit message, as well as inverting the AONT, requires
computing two hash functions: G : {0, 1}256 → {0, 1}N and H : {0, 1}N →
{0, 1}256. According to [34], G(R) for R ∈ {0, 1}256 is computed 256 bits at
a time by running the SHA-256 compression function on the input R and a
counter, so the compression function runs N/256 times. Since the block size of
SHA-256 is 512 bits, computing H(M) requires running the compression func-
tion N/512 times. Thus computing OAEP requires the SHA-256 compression
function to run a total of 3N/512 times, e.g., 49152 times for a 1 MiB file and
50331648 times for a 1 GiB file.

Table 1 compares the number of times the AES block cipher is run for each
operation. This depends on `∗, the number of bits that are encrypted in each
re-encryption, which in turn depends on several parameters: `, the minimum
number of missing bits for the AONT to be secure; ε, the minimum fraction of
the ciphertext not downloaded by the adversary; and δ, is the maximum fraction
of the ciphertext comprised by the public-key portion. Let ε∗ denote ε − δ,
the minimum fraction of the symmetric-key portion of the ciphertext that the
adversary has not downloaded. Although Thm. 2 provides an asymptotic security
guarantee, we can make it concrete. Lemmas 2, 3, and 4 give tight reductions
based on the security of the underlying PRE scheme and the pseudorandomness
of AES-CTR. Thus the main consideration is Lemma 6, which depends on the
probability that adversary B2 aborts and the security of the AONT.

By Lemma 5, Pr[`′ ≤ `∗(ε′ − t)] ≤ e−2`
∗t2 for any t > 0, where `′ is the

number of bits of the symmetric-key ciphertext not learned by adversary A4 and
ε′ is the fraction of the symmetric-key portion of the ciphertext not downloaded
by A4. Since B2 will abort if and only if `′ < ` and ε′ ≥ ε∗, if ` ≤ `∗(ε′ − t) then

the probability that B2 aborts will be at most e−2`
∗t2 . For 128 bits of security, we

want the probability that B2 aborts to be at most 2128. Thus we need to select
values for `∗ and t such that ` ≤ `∗(ε′ − t) and e−2`

∗t2 ≤ 2128. This system of
inequalities has a solution with t > 0 if

`∗ ≥
(

4ε∗`+ 128 ln(2) +
√

(4ε∗`+ 128 ln(2))2 − 16(ε∗)2`2
)
/
(
4(ε∗)2

)
.

Thus to maximize efficiency, we set `∗ as the least integer for which this inequality
holds.

27

OAEP implemented with SHA-256 as described above with ` = 260 will have
128 bits of security as an adaptive `-AONT (Lemma 1), so we use 260 as our
value for `. We consider a few different values of ε∗.

We assume that Ind(s, `∗) runs using AES as a pseudorandom number gener-
ator. Choosing a random bit position out of N possibilities requires log2N bits of
randomness. However, since N may not be a power of 2, we will allocate 2 log2N
bits of randomness to allow the bit selection to be sufficiently close to uniform.
In addition, 1 random bit will be required to “hide” the selected bit. Thus a total
of `∗ ·(2 log2(N) + 1) bits are required for each re-encryption, so the block cipher
runs `∗ · (2 log2(N) + 1)/128 times per re-encryption. Encryption takes N/128
instances of the block cipher, while decryption takes N/128 instances of the
block cipher to decrypt the underlying encryption plus `∗ · (2 log2(N) + 1)/128
instances for each previous re-encryption.

Table 1. Instances of the AES block cipher required for each operation in the naive
approach and in our scheme, where r is the number of re-encryptions

File size ε∗ `∗ Encryption Re-enc.
Decryption

r = 1 r = 10 r = 100

1 MiB
N = 223

naive 6.554×104 6.554×104 1.311×105 7.209×105 6.619×106

0.5 926 3.400×102 6.554×104 6.588×104 6.894×104 9.954×104

0.25 2325 8.537×102 6.554×104 6.639×104 7.407×104 1.509×105

0.1 8875 3.259×103 6.554×104 6.879×104 9.812×104 3.914×105

1 GiB
N = 233

naive 6.711×107 6.711×107 1.342×108 7.382×108 6.778×109

0.5 926 4.847×102 6.711×107 6.711×107 6.711×107 6.716×107

0.25 2325 1.217×103 6.711×107 6.711×107 6.712×107 6.723×107

0.1 8875 4.646×103 6.711×107 6.711×107 6.716×107 6.757×107

Figure 6 shows the effect that file size has on the cost of re-encryption,
comparing naive re-encryption and our scheme with various values of ε∗. Naive
re-encryption cost is linear in terms of file size, while our re-encryption cost is
logarithmic in terms of file size (the number of bits re-encrypted is independent
of file size, but the amount of pseudorandomness required to choose the bit
positions to re-encrypt is logarithmic in terms of file size). Because the cost in
the naive scheme dominates the cost in our scheme for any reasonably-sized file,
this is presented as a log-log graph.

Figure 7 shows the effect that the number of previous re-encryptions has on
the cost of decryption (for AES), comparing naive re-encryption with our scheme
at ε∗ = 0.1 for various small file sizes. For both schemes the cost of decryption
is linear in the number of previous re-encryptions, but if the file is bigger than
just 40 KiB the decryption cost grows faster for naive re-encryption than for our
scheme. For files larger than 200 KiB the decryption cost for the naive scheme
completely dominates our scheme when more than a few re-encryptions have

28

32

128

512

2048

8192

32768

131072

524288

2097152

1 8 64 512 4096 32768

In
st

an
ce

s
o

f
A

ES
 b

lo
ck

 c
ip

h
er

File size (in KiB)

Naive ε* = 0.5 ε* = 0.25 ε* = 0.1

Fig. 6. Cost of re-encryption vs. file size
(log-log graph)

0

200000

400000

600000

800000

1000000

1200000

1400000

0 20 40 60 80 100

In
st

an
ce

s
o

f
A

ES
 b

lo
ck

 c
ip

h
er

Number of re-encryptions

Naive 8 KiB Naive 40 KiB Naive 200 KiB

Ours 8 KiB Ours 40 KiB Ours 200 KiB

Fig. 7. Cost of decryption vs. number of
previous re-encryptions

occurred. Note that while SHA-256 costs will add to the cost of decryption for
our scheme only, this cost does not grow with the number of re-encryptions.

While our scheme is slower for encryption (due to computing the hash func-
tion), in practice this will only occur once for each file. In addition, it is unlikely
that a user will encrypt a large number of files at once, so any computation will
likely be minimally disruptive. Re-encryption costs are more significant because
re-encryption can occur for a large number of files at the same time, such as
when a user leaves or changes jobs, and so all the files the user had access to
need to be re-encrypted. In this case, our scheme is several orders of magnitude
faster than the naive approach, with the difference greater for larger files. Fi-
nally, while our scheme is slower than the naive scheme when decrypting a file
that has never been re-encrypted, as noted in the previous section, the cloud can
offload these costs from the client. Alternately, once a file has been re-encrypted
enough times our scheme becomes significantly faster.

10 Bounded Storage Security and Error Correction

Suppose that an adversary is able to download and view each file in its entirety,
but is limited in the amount of information stored about each file. That is,
what if we consider a model where the adversary is limited in storage instead of
bandwidth? First, we argue that in today’s reality, bandwidth is a more expensive
requirement than storage, and many security operations centers actively monitor
for large data exfiltration.

Regardless, imagine we want to proxy re-encrypt each file so that the adver-
sary cannot reconstruct the original file from its limited storage (smaller than
the original file) and the re-encrypted file. We show that in such a scenario, then
there can be no solution where we are able to only touch a small number of the
bits in the original ciphertext, as our construction does. That is, any solution

29

will have to “re-encrypt” a much larger fraction of the original ciphertext than
our construction. This follows naturally from linear error-correcting codes.

We formally define this scenario in Figure 5 (pg. 15) for adversary A, re-
encryption scheme Π, and file f .

Theorem 3. Let Π be a re-encryption scheme such that when given a file of
length N , it modifies ` bits of f . Then there exists an adversary A such that for
any file f of length N and any n > `, Pr[Bounded-Storage-ReconstA,Π(f, n) = 1]
is a non-negligible function of N .

Proof. Adversary A can apply a systematic folded Reed-Solomon code, a sys-
tematic linear error-correcting code, of message length N and block length N+n
to f . It will storing the n syndrome bits in σ. Thus the code maps f to (f, σ),

resulting in code rate R = N
N+n . Since f̃ is f with ` bits modified, (f̃ , σ) is (f, σ)

with ` errors, resulting in a fraction `
N+n of errors. Note that the n bits the

user stores will not incur errors, so all ` errors will occur in the original N bits.
However, this restriction on possible error locations can only help A further.

Let ε = n−`
N+n . Since n > `, ε is positive. Then 1−R− ε = `/(N +n). Now A

applies the list decoding algorithm for folded Reed-Solomon codes from [20] to
f as described above. Since ε is positive and the fraction of errors is 1−R−ε, A
can produce a polynomial-sized list containing f ‖ σ. It can then choose an item
from this list at random and output the first N bits, resulting in a non-negligible
probability of A outputting f . ut

In this scenario, re-encryption is insecure if it does not touch at least as many
bits as the adversary stores. This makes it much less efficient in the scenario
where the adversary does not download the entire file, where re-encryption can
touch far fewer bits than the adversary downloads and stores while remaining
secure.

11 Identity-Based Proxy Re-Encryption

The traditional notion of identity-based encryption [9] was extended to include
proxy re-encryption by Green and Ateniese [19].

Definition 8 (Identity-Based Proxy Re-Encryption (IB-PRE) [19]). An
identity-based proxy re-encryption primitive consists of six probabilistic polyno-
mial time algorithms:

– Setup(1λ)→ (param,msk). The setup algorithm generates global parameters.
Both λ and param are considered implicit parameters to the remaining algo-
rithms, but are suppressed for clarity of notation. msk is the master secret
key.

– G(msk, id)→ skid. Key generation produces a secret key corresponding to the
given identity.

– E(id,M)→ C. Identity-based encryption takes an identity and message and
generates a ciphertext.

30

– D(skid, C) → M . Decryption takes a secret key and ciphertext and returns
the underlying message.

– RG(skidi , idi, idj) → rkidi→idj . Re-encryption key generation takes a secret
key for the source and the identities of the source and destination, and cre-
ates a re-encryption key that can transform a ciphertext encrypted under the
source’s identity idi to one encrypted under the destination’s identity idj.

– RE(rkidi→idj , Cidi)→ Cidj . Re-encryption takes a re-encryption key and a ci-
phertext encrypted under the re-encryption key’s corresponding source iden-
tity, and translates it into a ciphertext under the destination’s identity.

11.1 Correctness

An IB-PRE scheme is correct if all encryptions and proxy re-encryptions decrypt
properly. Formally, for every message M and every set of identity/secret-key
pairs {idi, skidi ← G(msk, idi)}i∈{0,...,r} and re-encryption keys{

rkidi→idi+1
← RG(skidi , idi, idi+1)

}
i∈{0,...,r−1} ,

we have

D
(
skidr ,RE

(
rkidr−1→idr , . . .RE(rkid0→id1 ,E(id0,M)) . . .

))
= M .

11.2 Unidirectional, Multi-Hop, IB-PRE CPA-Security

Definition 9 (Basic Unidirectional, Multi-Hop, IB-PRE CPA-Security
Game [19]). Let λ be the security parameter. Let A be an oracle TM, repre-
senting the adversary. The IB-PRE-CPA game consists of an execution of A in
two phases, which are executed in order, as described in Alg. 1.

Algorithm 1 Identity-Based Proxy Re-Encryption CPA-Security

experiment IB-PRE-CPAA,Π(λ)
param← G(1λ)
(M0,M1, id

∗, σ)← AOkey,Orkey(param)
b← {0, 1}
C∗ ← E(id∗,Mb)
b′ ← AOkey,Orkey(σ,C∗)
Output 1 iff b = b′

end experiment

Within each phase, A has access to oracles producing secret keys and re-
encryption keys, which can be queried in any order, poly(λ) times, as follows:

– Key Generation Okey(id): Output skid ← G(msk, id).
– Re-Encryption Key Generation Orkey(idi, idj). Output rkidi→idj ← RG(skidi , idi, idj).

31

Challenge identity id∗ cannot be chosen to allow trivial decryption of the chal-
lenge ciphertext from the keys queried in Phase 1. This means that if A queries a
series of re-encryption keys going from idi to idj, and it queries Okey(idj), then it
cannot select idi or idj as the challenge identity. Similarly, in Phase 2, no queries
can be made that would allow trivial decryption of the challenge ciphertext.

Definition 10. An Identity-Based Proxy Re-Encryption scheme Π is Unidirec-
tional, Multi-Hop, IB-PRE CPA-Secure if for all oracle P.P.T. adversaries A,
there exists a negligible function negl such that

Pr[IB-PRE-CPAA,Π(λ) = 1] ≤ 1

2
+ negl(λ) .

11.3 (1 − ε)-Revocable, Unidirectional, Multi-Hop, IB-PRE
CPA-Security

We now modify the above security definition for IB-PRE in a similar way as for
regular PRE.

Definition 11 ((1−ε)-{Static, Adaptive}-Revocable, Unidirectional, Multi-
Hop, IB-PRE CPA-Security Game). We define the new games (1−ε)-Stat-Revoke-IB-PRE-CPAA,Π(λ)
and (1−ε)-Adap-Revoke-IB-PRE-CPAA,b(λ) as a modification of IB-PRE-CPAA,Π(λ)
given in Defn. 9, as described in Alg. 2.

Algorithm 2 (1 − ε)-{Static, Adaptive}-Revocable Identity-Based Proxy Re-
Encryption CPA-Security

experiment (1− ε)-{Stat,Adap}-Revoke-IB-PRE-CPAA,Π(λ)

param← G(1λ)
(M0,M1, [id

∗
0, . . . , id

∗
r], id

∗∗), σ ← AOkey,Orkey(param)
b← {0, 1}
C∗0 ← E(id∗0,Mb)
For 0 < u ≤ r, C∗u ← RE(rkid∗u−1→id∗u , C

∗
u−1)

σ′ ← AOkey,Orkey,bC∗e(σ)
C∗∗ ← RE

(
rkid∗r→id∗∗ , C

∗) for rkid∗r→id∗∗ = RG
(
skid∗r , id

∗
r , id

∗∗)
b′ ← AOkey,Orkey(σ′, C∗∗)
Output 1 iff b = b′

end experiment

Note that the experiment provides a new oracle, bC∗e, that provides random
access to (1 − ε)N ′ bits of {C∗u}0≤u≤r, where N ′ = max0≤u≤r |C∗u|. Again, this
access is either adaptive or static, and is equivalent to the adversary selecting
bitPos in Defn. 5. Once the adversary is done querying bC∗e, it is given complete
access to C∗∗. The adversary can output any distinct values of [id∗0, . . . , id

∗
r].

However, id∗∗, which must be distinct from each identity in [id∗0, . . . , id
∗
r], must

also be an identity that cannot be trivially decrypted through either a direct query

32

to Okey, or through a sequence of Orkey queries and then a Okey query. Similarly,
after the adversary has been given the challenge ciphertext C∗∗ we disallow any
queries that would allow trivial decryption of C∗∗.

Definition 12. An identity-based proxy re-encryption scheme Π is (1 − ε)-
{Static, Adaptive}-Revocable, Unidirectional, Multi-Hop, IBEPRE CPA-Secure
if for all oracle P.P.T. adversaries A, there exists a negligible function negl such
that

Pr[(1− ε)-{Stat,Adap}-Revoke-IB-PRE-CPAA,Π(λ) = 1] ≤ 1

2
+ negl(λ)

and

Pr[IB-PRE-CPAA,Π(λ) = 1] ≤ 1

2
+ negl(λ) .

11.4 Identity-Based Proxy Re-Encryption Construction

We now give a hybrid construction of an identity-based proxy re-encryption

scheme Πhyb =
(
SetupHyb,GHyb,EHyb,DHyb,RGHyb,REHyb

)
, assuming the exis-

tence of an identity-based proxy re-encryption schemeΠ = (Setup,G,E,D,RG,RE),
a symmetric-key encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an AONT

T . Our scheme is the IB-PRE version of the PRE construction from Section 6.3.
It uses the same notation as Section 6.2 and has the following six algorithms:

– SetupHyb
(
1λ
)

= Setup
(
1λ
)

– GHyb(msk, id) = G(msk, id)
– EHyb, which is described in Alg. 3
– DHyb, which is described in Alg. 4
– RGHyb(skidi , idi, idj), which outputs rkidi→idj = RG(skidi , idi, idj).

– REHyb, which is described in Alg. 5

Algorithm 3 EHyb Encryption Pseudocode

procedure EHyb(id,M)
k0 ← GSym

(
1λ
)

Cpk ← E(id, k0)
CT ← T

(
ESym(k0,M)

)
return C =

(
Cpk, [], CT

)
end procedure

11.5 Correctness

A valid ciphertext for message M under public key id with corresponding secret
key skid has the form C =

(
Cpk,

[
Cbks1 , . . . , Cbksr

]
, CTr

)
where

33

Algorithm 4 DHyb Decryption Pseudocode

procedure DHyb
(
sk, C =

(
Cpk,

[
Cbks1 , . . . , Cbksr

]
, CTr = CTr,1 · · ·CTr,N

))
for u← r, . . . , 1 do

(su, ku)← D
(
sk, Cbksu

)
indu ← Ind(su, `

∗)
stru ← Ctr(ku, `

∗)
for v ← 1, . . . , N do

if v ∈ indu then
CTu−1,v ← CTu,v ⊕ str[v]

else
CTu−1,v ← CTu,v

end if
end for

end for
CT ← CT0,1 · · ·CT0,N
k0 ← D

(
sk, Cpk

)
return M ← DSym

(
k0, T

−1
(
CT
))

end procedure

Algorithm 5 REHyb Re-Encryption Pseudocode

procedure REHyb
(
rkidi→idj , C =

(
Cpk,

[
Cbks1 , . . . , Cbksr

]
, CT = CT1 · · ·CTN

))
C̃pk ← RE

(
rkidi→idj , C

pk
)

for u← 1, . . . , r do

C̃bksu ← RE
(
rkidi→idj , C

bks
u

)
end for
Choose sr+1, kr+1 uniformly at random
Cbksr+1 ← E(idj , (sr+1, kr+1))
indr+1 ← Ind(sr+1, `

∗)
strr+1 ← Ctr(kr+1, `

∗)
for v ← 1, . . . , N do

if v ∈ indr+1 then

C̃Tv ← CTv ⊕ strr+1[v]
else

C̃Tv ← CTv
end if

end for
C̃T ← C̃T1 · · · C̃TN
return C =

(
C̃pk,

[
C̃bks1 , . . . , C̃bksr+1

]
, C̃T

)
end procedure

34

– Cpk is an encryption under id of symmetric key k0
– Each Cbksu is an encryption under id of (su, ku)
– CTr is T

(
ESym(k,M

)
with the bits at positions Ind(s1) encrypted under sym-

metric key k1, then the bits at positions Ind(s2, `
∗) encrypted under sym-

metric key k2, etc.

The decryption algorithm computes k0 = D
(
skid, C

pk
)

and each (su, ku) =

D
(
skid, C

bks
u

)
; computes CT0 by decrypting the bits of CTr at positions Ind(sr, `

∗)
using symmetric key kr to produce CTr−1, then decrypting the bits of CTr−1 at po-
sitions Ind(sr−1, `

∗) using symmetric key kr−1 to produce CTr−2, etc., eventually
reaching CT0 ; and finally computes M = DSym

(
k, T−1

(
CT
))

.

11.6 Security Theorems

We have the following security theorems, which are the IB-PRE versions of
Theorems 1, 2, and 11, respectively. The proofs are analogous to the proofs
from the corresponding PRE theorems presented in Appendix B, Section 6, and
Appendix D, respectively. See Appendix E for details.

Theorem 4. Assume the existence of a IB-PRE-CPA-secure identity-based proxy
re-encryption scheme Π = (Setup,G,E,D,RG,RE), a CPA-secure symmetric-
key encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an AONT T . Then the

construction in Section 11.4 is IB-PRE-CPA-secure.

Theorem 5. Assume the existence of a IB-PRE-CPA-secure identity-based proxy
re-encryption scheme Π = (Setup,G,E,D,RG,RE) with re-encryption history
independence, a symmetric-key encryption scheme Πsym =

(
GSym,ESym,DSym

)
,

and an adaptive `-AONT T . Suppose that for the construction from Section
11.4, CT comprises at least a fraction 1− δ of the total size of each ciphertext.
Then for any ε < 1 with ε > δ and any `∗ > `

ε−δ , this construction is (1 −
ε)-Adap-Revoke-IB-PRE-CPA-secure.

Theorem 6. Assume the existence of a IB-PRE-CPA-secure identity-based proxy
re-encryption scheme Π = (Setup,G,E,D,RG,RE) with re-encryption history
independence, a symmetric-key encryption scheme Πsym =

(
GSym,ESym,DSym

)
,

and an `-AONT T . Suppose that for the construction from Section 11.4, CT com-
prises at least a fraction 1−δ of the total size of each ciphertext. Then for any ε <
1 with ε > δ and any `∗ > `

ε−δ , this construction is (1−ε)-Stat-Revoke-IB-PRE-CPA-
secure.

12 Revocable-Storage Attribute-Based Encryption

Revocable-Storage Attribute-Based Encryption [35] combines the notion of attribute-
based encryption (ABE) [36,18] with identity-based revocation [8]. It allows
for users’ keys to be revoked and also provides for ciphertext delegation—re-
encrypting ciphertexts to more restrictive policies—so that revoked users can-
not access existing data. This provides a natural use for our techniques, as the

35

existing data will need to be encrypted under a new symmetric key. We focus
on key-policy ABE (KP-ABE), where each key is associated with a policy and
each ciphertext with a set of attributes, though our techniques could also be
used with ciphertext-policy ABE (CP-ABE).

Definition 13 (Revocable-Storage KP-ABE [35]). A revocable-storage KP-
ABE scheme with time bound T consists of six probabilistic polynomial time
algorithms:

– Setup(1λ)→ (param,msk). The setup algorithm generates global parameters.
Both λ and param are considered implicit parameters to the remaining algo-
rithms, but are suppressed for clarity of notation. msk is the master secret
key.

– G(msk, P, id) → skP,id. Key generation produces a secret key corresponding
to the given policy P and identity id.

– E(S,M, t) → CS,t. Attribute-based encryption encrypts message M under
attribute set S at time t ≤ T .

– KU(msk, rl, t) → kut. The key update algorithm produces key update infor-
mation for revocation list rl (a set of revoked identities) at time t.

– D(skP,id, kut′ , CS,t) → M . Decryption takes a secret key skP,id, key update
information kut′ , and a ciphertext CS,t, and returns a message or ⊥.

– CTU(CS,t) → CS,t+1. The ciphertext update algorithm transforms a cipher-
text encrypted under time t to a ciphertext encrypted at time t+ 1.

12.1 Correctness

A revocable-storage KP-ABE scheme is correct if for every message M , identity
id and revocation list r such that id /∈ rl, every policy P and attribute set S such
that P (S) = 1, and times t′ ≥ t+ r for r ≥ 0,

D(G(msk, P, id),KU(msk, rl, t′),CTU(· · ·CTU(E(S,M, t)) · · ·)) = M .

Note that this is weaker than the correctness requirement from [35], which
additionally requires that for every message M , attribute set S, and time t,

E(S,M, t+ 1) ≡ CTU(E(S,M, t))

where ≡ denotes equal distributions. This means that encrypting a message at
time t + 1 results in the same distribution as encrypting the same message at
time t and then updating it to time t + 1. Our scheme will not achieve this
requirement—the size of the ciphertext grows with each update, and most bits
of the ciphertext are not changed with each update. However, this requirement
for equal distributions is only needed when a ciphertext at time t is updated to
time t + 1 multiple times, as then the randomness may be correlated, possibly
breaking security. Since this will not occur when the scheme is used as intended
for revocation, we do not believe that the requirement is necessary.

36

12.2 Revocable Storage KP-ABE Security

Definition 14 (Basic Revocable-Storage KP-ABE Security Game [35]).
Let λ be the security parameter. Let A be an oracle TM, representing the adver-
sary. The RS-KP-ABE game consists of an execution of A in two phases, which
are executed in order, as described in Alg. 6.

Algorithm 6 Revocable-Storage KP-ABE Security

experiment RS-KP-ABEA,Π(λ)
param← G(1λ)
(M0,M1, S

∗, t∗, σ)← AOsk,Oku(param)
b← {0, 1}
CS∗,t∗ ← E(S∗,Mb, t

∗)
b′ ← AOsk,Oku(σ,C∗)
Output 1 iff b = b′

end experiment

Within each phase, A has access to oracles producing secret keys and key
updates, which can be queried in any order, poly(λ) times, as follows:

– Secret Key Generation Osk(P, id): Output skP,id ← G(msk, P, id).
– Key Update Generation Oku(t, rl). Output kut ← KU(msk, t, rl).

The challenge attribute set S∗ and time t∗ cannot be chosen to allow trivial
decryption of the challenge ciphertext from the outputs of the queries from Phase
1. This means that if A has queried Osk(P, id) and Oku(t, rl) for id /∈ rl, then it it
cannot select S∗ and t∗ if P (S∗) = 1 and t ≥ t∗. Similarly, in Phase 2, no queries
can be made that would allow trivial decryption of the challenge ciphertext.

Definition 15. A key-policy attribute-based encryption scheme Π has Revocable
Storage if for all oracle P.P.T. adversaries A, there exists a negligible function
negl such that

Pr[RS-KP-ABEA,Π(λ) = 1] ≤ 1

2
+ negl(λ) .

12.3 (1− ε)-Revocable, Revocable Storage KP-ABE Security

We now modify the above security definition for Revocable Storage KP-ABE in
a similar way as for proxy re-encryption. Here we have in mind a scenario where
a user has access at time t∗ + r to a file created at time t∗, but then the user is
revoked at time t∗ + r + 1. This user may have downloaded and decrypted part
of the time-(t∗ + r) or previous versions of this file and obtained the symmetric
key. However, when this file is updated to time t∗+ r+1, we want the adversary
now to be unable to decrypt the ciphertext. This is the same goal as for the
proxy re-encryption case except that files are updated to a new time instead of
being re-encrypted to a new key.

37

Definition 16 ((1 − ε)-{Static, Adaptive}-Revocable, Revocable Stor-
age KP-ABE Security Game). We define the new games (1−ε)-Stat-Revoke-RS-KP-ABEA,Π(λ)
and (1−ε)-Adap-Revoke-RS-KP-ABEA,b(λ) as a modification of RS-KP-ABEA,Π(λ)
given in Defn. 14, as described in Alg. 7.

Algorithm 7 (1−ε)-{Static, Adaptive}-Revocable Revocable Storage KP-ABE
Security

experiment (1− ε)-{Stat,Adap}-Revoke-RS-KP-ABEA,Π(λ)

param← G(1λ)
(M0,M1, S

∗, t∗, r), σ ← AOsk,Oku(param)
b← {0, 1}
CS∗,t∗ ← E(S∗,Mb, t

∗)
For 0 < u ≤ r + 1, CS∗,t∗+u ← CTU(CS∗,t∗+u−1)
σ′ ← AOkey,Orkey,bC∗e(σ)
b′ ← AOkey,Orkey(σ′, CS∗,t∗+r+1)
Output 1 iff b = b′

end experiment

Note that the experiment provides a new oracle, bC∗e, that provides random
access (1 − ε)N ′ bits of {CS∗,t∗+u}0≤u≤r, where N ′ = max0≤u≤r |CS∗,t∗+u|.
Again, this access is either adaptive or static, and is equivalent to the adversary
selecting bitPos in Defn. 5. Once the adversary is done querying bC∗e, it is given
complete access to CS∗,t∗+r+1. We allow the adversary to make queries such that
{CS∗,t∗+u}0≤u≤r can be trivially decrypted. However, the challenge attribute set
S∗ and time t∗ + r cannot be chosen to allow trivial decryption of CS∗,t∗+r+1.
This means that if A has queried Osk(P, id) and Oku(t, rl) for id /∈ rl, then it it
cannot select S∗ and t∗ if P (S∗) = 1 and t ≥ t∗ + r + 1.

Definition 17. A Key-Policy Attribute-Based Encryption scheme Π has (1−ε)-
{Static, Adaptive}-Revocable Revocable Storage if for all oracle P.P.T. adver-
saries A, there exists a negligible function negl such that

Pr[(1− ε)-{Stat,Adap}-Revoke-RS-KP-ABEA,Π(λ) = 1] ≤ 1

2
+ negl(λ)

and

Pr[RS-KP-ABEA,Π(λ) = 1] ≤ 1

2
+ negl(λ) .

12.4 Revocable-Storage KP-ABE Construction

We now give a hybrid construction of a revocable-storage KP-ABE scheme

Πhyb =
(
SetupHyb,GHyb,EHyb,KUHyb,DHyb,CTUHyb

)
, assuming the existence of a

revocable-storage KP-ABE scheme Π = (Setup,G,E,KU,D,CTU), a symmetric-
key encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an AONT T . Our scheme

is the revocable-storage KP-ABE version of the PRE construction from Section
6.3. It uses the same notation as Section 6.2 and has the following six algorithms:

38

– SetupHyb
(
1λ
)

= Setup
(
1λ
)

– GHyb(msk, P, id) = G(msk, P, id)
– EHyb, which is described in Alg. 8
– KUHyb(msk, rl, t) = KU(msk, rl, t)
– DHyb, which is described in Alg. 9
– CTUHyb, which is described in Alg. 10

Algorithm 8 EHyb Encryption Pseudocode

procedure EHyb(S,M, t)
k0 ← GSym

(
1λ
)

Cpk ← E(S, k0, t)
CT ← T

(
ESym(k0,M)

)
return C =

(
Cpk, [], CT

)
end procedure

Algorithm 9 DHyb Decryption Pseudocode

procedure DHyb
(
sk, ku, C =

(
Cpk,

[
Cbks1 , . . . , Cbksr

]
, CTr = CTr,1 · · ·CTr,N

))
for u← r, . . . , 1 do

(su, ku)← D
(
sk, ku, Cbksu

)
indu ← Ind(su, `

∗)
stru ← Ctr(ku, `

∗)
for v ← 1, . . . , N do

if v ∈ indu then
CTu−1,v ← CTu,v ⊕ str[v]

else
CTu−1,v ← CTu,v

end if
end for

end for
CT ← CT0,1 · · ·CT0,N
k0 ← D

(
sk, ku, Cpk

)
return M ← DSym

(
k0, T

−1
(
CT
))

end procedure

12.5 Correctness

A valid ciphertext for message M under attribute set S at time t has the form
C =

(
Cpk,

[
Cbks1 , . . . , Cbksr

]
, CTr

)
where

– Cpk is an encryption under attribute set S at time t of symmetric key k0

39

Algorithm 10 CTUHyb Ciphertext Update Pseudocode

procedure CTUHyb
(
CS,t =

(
Cpk,

[
Cbks1 , . . . , Cbksr

]
, CT = CT1 · · ·CTN

))
C̃pk ← CTU(Cpk)
for u← 1, . . . , r do

C̃bksu ← CTU(Cbksu)
end for
Choose sr+1, kr+1 uniformly at random
Cbksr+1 ← E(S, (sr+1, kr+1), t+ 1)
indr+1 ← Ind(sr+1, `

∗)
strr+1 ← Ctr(kr+1, `

∗)
for v ← 1, . . . , N do

if v ∈ indr+1 then

C̃Tv ← CTv ⊕ strr+1[v]
else

C̃Tv ← CTv
end if

end for
C̃T ← C̃T1 · · · C̃TN
return C =

(
C̃pk,

[
C̃bks1 , . . . , C̃bksr+1

]
, C̃T

)
end procedure

– Each Cbksu is an encryption under attribute set S at time t of (su, ku)

– CTr is T
(
ESym(k,M

)
with the bits at positions Ind(s1) encrypted under sym-

metric key k1, then the bits at positions Ind(s2, `
∗) encrypted under sym-

metric key k2, etc.

The decryption algorithm takes secret key skP,id with P (S) = 1 and key
update information kut′ with t′ ≥ t; computes k0 = D

(
skP,id, kut′ , C

pk
)

and each

(su, ku) = D
(
skP,id, kut′ , C

bks
u

)
; computes CT0 by decrypting the bits of CTr at

positions Ind(sr, `
∗) using symmetric key kr to produce CTr−1, then decrypting the

bits of CTr−1 at positions Ind(sr−1, `
∗) using symmetric key kr−1 to produce CTr−2,

etc., eventually reaching CT0 ; and finally computes M = DSym
(
k, T−1

(
CT
))

.

12.6 Security Theorems

We have the following security theorems, which are the revocable-storage KP-
ABE versions of Theorems 1, 2, and 11, respectively. The proofs are analogous
to the proofs from the corresponding PRE theorems presented in Appendix B,
Section 6, and Appendix D, respectively. See Appendix F for details.

Theorem 7. Assume the existence of a RS-KP-ABE-secure revocable-storage
attribute-based encryption scheme Π = (Setup,G,E,KU,D,CTU), a CPA-secure
symmetric-key encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an AONT T .

Then the construction in Section 12.4 is IB-PRE-CPA-secure.

40

Theorem 8. Assume the existence of a RS-KP-ABE-secure revocable-storage
attribute-based encryption scheme Π = (Setup,G,E,KU,D,CTU), a symmetric-
key encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an adaptive `-AONT T .

Suppose that for the construction from Section 12.4, CT comprises at least a
fraction 1− δ of the total size of each ciphertext. Then for any ε < 1 with ε > δ
and any `∗ > `

ε−δ , this construction is (1− ε)-Adap-Revoke-RS-KP-ABE-secure.

Theorem 9. Assume the existence of a RS-KP-ABE-secure revocable-storage
attribute-based encryption scheme Π = (Setup,G,E,KU,D,CTU), a symmetric-
key encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an `-AONT T . Suppose

that for the construction from Section 12.4, CT comprises at least a fraction
1− δ of the total size of each ciphertext. Then for any ε < 1 with ε > δ and any
`∗ > `

ε−δ , this construction is (1− ε)-Stat-Revoke-RS-KP-ABE-secure.

13 Conclusions

We identified a problem with most current proxy re-encryption schemes. These
schemes do not consider the issue that when hybrid encryption is used, revoked
users may have stored symmetric keys and can still use them to decrypt files
that they are no longer supposed to be able to access.

To address this issue, we produced a definition of revocable-PRE security.
This requires that a user given a large fraction of a file it has access to, as well
as a re-encryption of this file to a key it does not have access to, will not be able
to learn any information about the plaintext. This captures the notion that a
user may have insufficient bandwidth to download all the files it has access to,
but it may be able to download part of every file. If the scheme is revocable-
PRE secure, the adversary will be unable to combine its partial knowledge of
the original file with the re-encrypted file to produce the original plaintext.

We provided an efficient hybrid PRE scheme that uses a public-key PRE
scheme, a symmetric encryption scheme, and an all-or-nothing transform. The
AONT makes it possible for the proxy re-encryption algorithm to only touch a
small fraction of the total bits of the ciphertext while making the old symmetric
key insufficient for decryption. If the underlying primitives are secure and the
number of re-encrypted bits is high enough compared to the fraction of the
original file that the adversary downloaded, then this scheme is provably secure.

Acknowledgements. This work was supported, in part, by the National Science
Foundation under awards CNS–1111149 and CNS–156375.

References

1. W. Aiello, S. Lodha, and R. Ostrovsky. Fast digital identity revocation. In
CRYPTO ’98, pages 137–152, 1998.

2. Y. Aono, X. Boyen, L. T. Phong, and L. Wang. Key-private proxy re-encryption
under LWE. In INDOCRYPT 2013, pages 1–18, 2013.

41

3. G. Ateniese, K. Benson, and S. Hohenberger. Key-private proxy re-encryption. In
CT-RSA ’09, pages 279–294, 2009.

4. G. Ateniese, K. Fu, M. Green, and S. Hohenberger. Improved proxy re-encryption
schemes with applications to secure distributed storage. ACM Trans. Inf. Syst.
Secur., 9(1):1–30, Feb. 2006.

5. E. Barker. SP 800-57. Recommendation for key management, Part 1: General
(revision 4). Technical report, NIST, Jan. 2016.

6. M. Bellare, D. Kane, and P. Rogaway. Big-key symmetric encryption: Resisting
key exfiltration. In Advances in Cryptology - CRYPTO 2016, pages 373–402, 2016.

7. M. Blaze, G. Bleumer, and M. Strauss. Divertible protocols and atomic proxy
cryptography. In Advances in Cryptology - EUROCRYPT’98, pages 127–144, 1998.

8. A. Boldyreva, V. Goyal, and V. Kumar. Identity-based encryption with efficient
revocation. In CCS ’08, pages 417–426, 2008.

9. D. Boneh and M. Franklin. Identity-based encryption from the Weil pairing. SIAM
Journal on Computing, 32(3):586–615, 2003.

10. D. Boneh, K. Lewi, H. W. Montgomery, and A. Raghunathan. Key homomorphic
PRFs and their applications. In CRYPTO 2013, pages 410–428, 2013.

11. V. Boyko. On the security properties of OAEP as an all-or-nothing transform. In
CRYPTO ’99, pages 503–518, 1999.

12. R. Canetti, Y. Dodis, S. Halevi, E. Kushilevitz, and A. Sahai. Exposure-resilient
functions and all-or-nothing transforms. In EUROCRYPT, pages 453–469, 2000.

13. R. Canetti and S. Hohenberger. Chosen-ciphertext secure proxy re-encryption. In
CCS ’07, pages 185–194, 2007.

14. G. D. Crescenzo, R. J. Lipton, and S. Walfish. Perfectly secure password protocols
in the bounded retrieval model. In TCC, pages 225–244, 2006.

15. Y. Dodis, A. Sahai, and A. Smith. On perfect and adaptive security in exposure-
resilient cryptography. In EUROCRYPT ’01, pages 301–324, 2001.

16. S. Dziembowski. Intrusion-resilience via the bounded-storage model. In Theory of
Cryptography, TCC 2006, pages 207–224, 2006.

17. W. C. Garrison, III, A. Shull, S. Myers, and A. J. Lee. On the practicality of cryp-
tographically enforcing dynamic access control policies in the cloud. Proceedings
of the 37th IEEE Symposium on Security and Privacy, 2016.

18. V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In CCS ’06, pages 89–98, 2006.

19. M. Green and G. Ateniese. Identity-based proxy re-encryption. In ACNS ’07,
pages 288–306, 2007.

20. V. Guruswami and A. Rudra. Explicit codes achieving list decoding capacity:
Error-correction with optimal redundancy. IEEE Transactions on Information
Theory, 54(1):135–150, Jan 2008.

21. W. Hoeffding. Probability inequalities for sums of bounded random variables.
Journal of the American Statistical Association, 58(301):13–30, 1963.

22. A. Ivan and Y. Dodis. Proxy cryptography revisited. In NDSS 2003. The Internet
Society, 2003.

23. M. Jakobsson. On quorum controlled asymmetric proxy re-encryption. In Public
Key Cryptography, pages 112–121, 1999.

24. J. Katz and Y. Lindell. Introduction to Modern Cryptography. Chapman &
Hall/CRC, 2007.

25. X. Liang, Z. Cao, H. Lin, and J. Shao. Attribute based proxy re-encryption with
delegating capabilities. In ASIACCS ’09, pages 276–286, 2009.

26. B. Libert and D. Vergnaud. Unidirectional chosen-ciphertext secure proxy re-
encryption. In PKC’08, pages 360–379, 2008.

42

27. M. Mambo and E. Okamoto. Proxy cryptosystems: Delegation of the power to
decrypt ciphertexts. In IEICE Transactions on Fundamentals of Electronics, Com-
munications and Computer Sciences, 1997.

28. S. Micali. Efficient certificate revocation. Technical report, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1996.

29. M. Naor and K. Nissim. Certificate revocation and certificate update. In USENIX
Security Symposium, SSYM’98, pages 17–17, 1998.

30. Open Web Application Security Project. Cryptographic storage cheat sheet, Aug.
2016.

31. Payment Card Industry Security Standards Council. Payment card industry (PCI)
data security standard, v3.2, Apr. 2016.

32. L. T. Phong, L. Wang, Y. Aono, M. H. Nguyen, and X. Boyen. Proxy re-encryption
schemes with key privacy from LWE. Cryptology ePrint Archive, Report 2016/327,
2016. http://eprint.iacr.org/2016/327.

33. R. L. Rivest. All-or-nothing encryption and the package transform. In In Fast
Software Encryption, LNCS, pages 210–218. Springer-Verlag, 1997.

34. RSA Laboratories. PKCS #1 v2.2: RSA cryptography standard. Technical report,
EMC Corporation, Oct. 2012.

35. A. Sahai, H. Seyalioglu, and B. Waters. Dynamic credentials and ciphertext dele-
gation for attribute-based encryption. In CRYPTO, pages 199–217, 2012.

36. A. Sahai and B. Waters. Fuzzy identity-based encryption. In EUROCRYPT’05,
pages 457–473, 2005.

37. J. Shao and Z. Cao. Multi-use unidirectional identity-based proxy re-encryption
from hierarchical identity-based encryption. Inf. Sci., 206:83–95, Nov. 2012.

38. A. Syalim, T. Nishide, and K. Sakurai. Realizing proxy re-encryption in the sym-
metric world. In Informatics Engineering and Information Science, pages 259–274,
2011.

39. F. Wang, J. Mickens, N. Zeldovich, and V. Vaikuntanathan. Sieve: Cryptographi-
cally enforced access control for user data in untrusted clouds. In NSDI 16, pages
611–626, 2016.

40. H. Wang, Z. Cao, and L. Wang. Multi-use and unidirectional identity-based proxy
re-encryption schemes. Inf. Sci., 180(20):4042–4059, Oct. 2010.

41. D. Watanabe and M. Yoshino. Key update mechanism for network storage of
encrypted data. In CloudCom 2013, pages 493–498, 2013.

A Symmetric-Key Encryption

Definition 18 (Symmetric-Key Encryption)). A symmetric-key encryp-
tion scheme consists of three probabilistic polynomial time algorithms:

– GSym(1λ)→ k. Key generation takes the security parameter and generates a
secret key.

– ESym(k,M)→ C. Encryption takes a secret key and a message and generates
a ciphertext.

– DSym(sk, C) → M . Decryption takes a secret key and a ciphertext, and re-
turns the underlying message or symbol ⊥ that represents an invalid cipher-
text.

The correctness requirement is that given k ← GSym(1λ) and M ∈ {0, 1}, DSym
(
k,ESym(k,M)

)
=

M .

http://eprint.iacr.org/2016/327

43

A.1 CPA-security for symmetric-key encryption

The basic security notion for symmetric-key encryption is indistinguishability
under chosen-plaintext attack (CPA-security):

Definition 19 (Symmetric-Key Encryption CPA-Security Game [24]).
The symmetric-key encryption IND-CPA game is defined in Alg. 11.

Algorithm 11 Symmetric-Key Encryption CPA-Security

experiment IND-CPAA,Πsym (λ)
b← {0, 1}
k ← GSym(λ)
(M0,M1, σ)← AOenc(λ)
C ← ESym(k,Mb)
b′ ← AOenc(σ,C)
Output 1 iff b = b′

end experiment

We refer to (M0,M1) as the challenge query and C as the challenge cipher-
text.

Definition 20. A symmetric-key encryption scheme Πsym is CPA-secure if for
all oracle P.P.T. adversaries A, there exists a negligible function negl s.t.:

Pr[IND-CPAA,Πsym
(λ) = 1] ≤ 1

2
+ negl(λ)

B PRE-CPA-Security of Hybrid Construction

Theorem 10. Assume the existence of a PRE-CPA-secure public-key proxy re-
encryption scheme Π = (G,RG,E,RE,D), a CPA-secure symmetric-key encryp-
tion scheme Πsym =

(
GSym,ESym,DSym

)
, and an AONT T . Then the construction

of Πhyb in Section 6.3 is PRE-CPA-secure.

We show that by the security of the proxy re-encryption scheme, the real
game Gamereal is computationally indistinguishable from a hybrid game Gamehyb
where the challenge ciphertext is

C∗ =
(
E(pki∗ , 0), [], T

(
ESym(k0,Mb)

))
.

Then we show that by the security of the symmetric-key encryption scheme, in
Gamehyb the adversary’s success rate is less than 1

2 + negl for some negligible
function negl.

Lemma 7. Suppose that an adversary A1 for the PRE-CPA security game has
probability of success p0 in Gamereal and probability of success p1 in Gamehyb. If
the underlying proxy re-encryption scheme Π is PRE-CPA-secure, then p1 − p0
is negligible.

44

Proof. Given an adversary A1 as described for the Πhyb construction, we show
how to construct an adversary B1 for the original scheme Π that plays the
PRE-CPA security game. As is typical, B1 simulates A1 and its version of the
PRE-CPA game. First, B1 gives its simulation of A1 the public parameters it
receives. B1 responds to queries from A1 as follows:

– Uncorrupted Key Generation query Oukey: B1 makes an uncorrupted key
generation query to its oracle and receives pki in response, which is sent to
A1.

– Corrupted Key Generation query Ockey: B1 makes a corrupted key generation
query to its oracle and receives (pki, ski) in response, which is sent to A1.

– Re-Encryption Key Generation query Orkey(i, j): B1 queries (i, j) to its re-
encryption key generation oracle, receiving rk′i→j in response. Note that
B1 will have pki from a previous key generation query. B1 sends rki→j =(
pkj , rk

′
i→j
)

to A1.
– Re-Encryption query Orenc(i, j, C): B1 queries (i, j) to its re-encryption key

generation oracle, and receives rk′i→j . B1 then runs REHyb
((
pkj , rk

′
i→j
)
, C
)

from Algorithm 4 and sends the result to A1.
– Challenge queryOchal(M0,M1, i

∗): B1 generates a random bit b and key k0 ←
GSym. B1 then makes its own challenge query (k0, 0, i

∗), receiving ciphertext
C ′ in response. B1 gives A1 the following challenge ciphertext:

C∗ =
(
C ′, [], T

(
ESym(k0,Mb)

))
.

– Guess b′: If b = b′ then B1 guesses that C ′ is an encryption of k0, otherwise
B1 guesses that C ′ is an encryption of 0.

Observe that if C ′ is an encryption of k0, then A1 is executing in a perfect
simulation of Gamereal , and thus has probability of success p0; hence B1 is correct
with probability p0. If C ′ is an encryption of 0 then A1 is simulated in the
Gamehyb and has probability of success p1; thus B1 is correct with probability
1− p1. Therefore B1’s probability of success is 1

2 (p0 + 1− p1) = 1
2 + 1

2 (p0 − p1).
By the PRE-CPA security of Π = (G,RG,E,RE,D), 1

2 (p0 − p1) is negligible, and
so p0 − p1 is negligible. ut

Lemma 8. Suppose that an adversary A2 for the PRE-CPA security game has
probability of success p1 in Gamehyb. If the underlying symmetric-key encryption
scheme Πsym is CPA-secure, then p1 <

1
2 + negl for some negligible function

negl.

Proof. We construct an adversary B2 for Πsym that plays the CPA security game
by simulating adversary A2 in the PRE-CPA game. B2 instantiates the PRE itself
and sends A2 the public parameters. B2 responds to queries from the simulation
of A2 as follows:

– Uncorrupted Key Generation query Oukey: B2 creates a key pair (pki, ski)←
G and sends pki to A2.

45

– Corrupted Key Generation query Ockey: B2 creates a key pair (pki, ski)← G
and sends (pki, ski) to A2.

– Re-Encryption Key Generation query Orkey(i, j): If i = j or if i is un-
corrupted and j is corrupted then B2 sends ⊥; otherwise, B2 computes
rk′i→j ← RG(pki, ski, pkj , skj). B2 sends rki→j =

(
pkj , rk

′
i→j
)

to A2.
– Re-Encryption query Orenc(i, j, C): If i = j or if i is uncorrupted and j is cor-

rupted then B2 sends⊥; otherwise, B2 computes rk′i→j ← RG(pki, ski, pkj , skj).

B2 then runs REHyb
((
pkj , rk

′
i→j
)
, C
)

from Algorithm 4 and sends the result
to A2.

– Challenge query Ochal(M0,M1, i
∗): If i∗ is corrupted then B2 sends ⊥; oth-

erwise, B2 makes challenge query (M0,M1), receiving ciphertext C ′ in re-
sponse. B2 gives A2 challenge ciphertext C∗ = (E(pki∗ , 0), [], T (C ′)).

– Guess b′: B2 receives b′ as A2’s guess and uses the same bit b′ for its guess
as well.

Since A2 is in a perfect simulation of Gamehyb , its probability of success is p1.
B2 is correct when A2 is correct, so its probability of success is also p1. By the
CPA security of Πsym =

(
GSym,ESym,DSym

)
, p1 <

1
2 + negl for some negligible

function negl. ut

Now we use these lemmas to prove Theorem 1.

Proof. By Lemmas 7, we see that the adversary’s probability of success in
Gamereal can only be negligibly greater than its probability of success in Gamehyb .
By Lemma 8, the adversary’s success in Gamehyb can be at most 1

2 + negl for
some negligible function negl. Thus the adversary’s success in Gamereal can be
at most 1

2 + negl′ for some negligible function negl′. ut

C Probabilistic Technical Lemmas

. This appendix contains several useful facts from probability theory. The proofs
use standard techniques.

Lemma 9. Suppose that there are N possible balls. In the first stage, a fraction
ε′ are selected (by any method). In the second stage, exactly `∗ balls are selected
uniformly at random. Let `′ be the number of balls selected in both stages. Then
for any t > 0,

Pr[`′ ≤ `∗(ε′ − t)] ≤ e−2`
∗t2

Proof. This bound is based on Hoeffding’s inequality [21], which applies for
sampling without replacement. Let x1, . . . , xN correspond to the balls, where
xi = 0 if the ith ball is selected in the first stage and xi = 1 otherwise. Then
1
N

∑N
i=1 xi = 1 − ε′. Let {X1, . . . , X`∗} be a subset of {x1, . . . , xN} of size `∗

chosen uniformly at random, representing the `∗ balls selected in the second

stage. Let S`∗ =
∑`∗

i=1Xi be the number of balls selected in the second stage
that were not selected in the first. Then `′ = `∗ − S`∗ is the number of balls
selected in both stages.

46

By Theorem 1 of [21],

Pr[S`∗ − `∗(1− ε′) ≥ `∗t] ≤ e−2`
∗t2

To get a bound on `′, note that

S`∗ − `∗(1− ε′) ≥ `∗t ⇐⇒ `∗ − `′ − `∗(1− ε′) ≥ `∗t ⇐⇒ `′ ≤ `∗(ε′ − t) .

Thus we have Pr[`′ ≤ `∗(ε′ − t)] ≤ e−2`∗t2 . ut

Lemma 10. Let A0, B0 and A1, B1 be events in separate probabilistic experi-
ments, where the probability of Bb ≤ ε. Then, Pr[A0] − Pr[A1] ≤ Pr[A0|B0] −
Pr[A1|B1] + 2ε.

Proof.

Pr[A0]− Pr[A1] = (Pr[A0|B0] Pr[B0] + Pr[A0|B0] Pr[B0])

− (Pr[A1|B1] Pr[B1] + Pr[A1|B1] Pr[B1])

= (Pr[A0|B0](1− Pr[B0]) + Pr[A0|B0] Pr[B0])

− (Pr[A1|B1](1− Pr[B1]) + Pr[A1|B1] Pr[B1])

= (Pr[A0|B0]− Pr[A1|B1]

− Pr[A0|B0] Pr[B0]) + Pr[A1|B1] Pr[B1]

+ Pr[A0|B0] Pr[B0]− Pr[A1|B1] Pr[B1]

≤ (Pr[A0|B0]− Pr[A1|B1]) + Pr[A1|B1] Pr[B1] + Pr[A0|B0] Pr[B0]

< Pr[A0|B0]− Pr[A1|B1] + Pr[B1] + Pr[B0]

< Pr[A0|B0]− Pr[A1|B1] + 2ε.

Lemma 11. Let A0, B0 and A1, B1 be events in separate probabilistic experi-
ments, where the probability of Bb ≤ ε. Then, Pr[A0|B0]−Pr[A1|B1] ≤ Pr[A0]−
Pr[A1] + 2ε.

Proof. Is an immediate result of the following two claims.

Claim.
Pr[A|B] ≤ Pr[A] + Pr[B]]

Proof.

Pr[A] = Pr[A|B] Pr[B] + Pr[A|B] Pr[B]

≥ Pr[A|B] Pr[B]

= Pr[A|B](1− Pr[B])

= Pr[A|B]− Pr[A|B] Pr[B])

≥ Pr[A|B]− Pr[B])

47

Claim.
Pr[A|B] ≥ Pr[A]− Pr[B]

Proof. The law of total probability gives

Pr[A|B] ≥ Pr[A|B] Pr[B]

= Pr[A]− Pr[A|B] Pr[B]

≥ Pr[A]− Pr[B]

D Proof of Static-Revocable-PRE-CPA Security

Theorem 11. Assume the existence of a PRE-CPA-secure public-key proxy re-
encryption scheme Π = (G,RG,E,RE,D) with re-encryption history indepen-
dence, a symmetric-key encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an

`-AONT T . Suppose that for the construction from Section 6.3, CT comprises
at least a fraction 1− δ of the total size of each ciphertext. Then for any ε < 1
with ε > δ and any `∗ > `

ε−δ , this construction is (1− ε)-Stat-Revoke-PRE-CPA-
secure.

Proof. This proof is identical to the proof of Theorem 2, with the exception of
how B2 responds to the challenge queries. In the proofs of Lemmas 2, 3, and
4, the adversary sends bitPos with its challenge query instead of requesting the
bits of {C∗u}0≤u≤r adaptively. In the proof of Lemmma 6 for the static case,
it works as follows: B2 receives challenge query (M0,M1, [i

∗
0, . . . , i

∗
r], j

∗, bitPos).
Let bitPosT be the set of all bit positions of CT0 that correspond to the vth
bit of C∗u for some (u, v) in bitPos. B2 chooses random L ∈

{
N
`∗

}
. If |L ∩ ([N] \

bitPosT)| < ` then B2 aborts the simulation. Otherwise, B2 generates random
symmetric keys k0, k1, . . . , kr+1 ← GSym and random seeds s1, . . . , sr+1. B2 then
constructs Cpk0 , . . . , Cpkr+1 as well as Cbksu,u , . . . , C

bks
u,r+1 for u ∈ {1, . . . , r}, following

the procedure in Lemma 3. B2 makes AONT challenge query(
ESym(k0,M0),ESym(k0,M1), L ∩ ([N] \ bitPosT)

)
,

receiving [
CT
]
L∩([N]\bitPosT)

=
[
T
(
ESym(k0,Mb)

)]
L∩([N]\bitPosT)

in response. B2 produces CT0 ∈ {0, 1}N by taking
[
CT
]
L∩([N]\bitPosT)

and filling

in the bits from L ∩ ([N] \ bitPosT) arbitrarily (these bits will not affect the
challenge ciphertexts), and then it computes

{C∗u =
(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
}0≤u≤r

for
CTu =

[
. . .
[[
CT0
]
Ind(s1,`∗),Ctr(k1,`∗)

]
. . .
]
Ind(su,`∗),Ctr(ku,`∗)

.

48

B2 constructs C̃Tr ∈ {0, 1}N by setting the bits not in L as their correspond-
ing values from CTr and choosing the remaining bits randomly. It gives A4 the
requested (1− ε)|C∗r | bits of {C∗u}0≤u≤r bits as determined by bitPos as well as

C∗∗ =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E

(
pkj∗ , (0, 0)

)]
, C̃Tr

)
.

When considering the probability that B2 aborts when responding to A4’s
challenge query, here we let `′ = |L∩ ([N] \bitPosT)|, which is the number of bit
positions of CT0 that are in L but not in bitPosT . Again, B2 aborts if and only
if `′ < `. The upper bound on `′ is still the same as for the adaptive case by the
exact same argument. Thus the probability that B2 aborts is again negligible as
long as `∗ > `

ε−δ . ut

E Proofs for Identity-Based Proxy Re-Encryption

E.1 IB-PRE-CPA-Security of Hybrid Construction

Theorem 12. Assume the existence of a IB-PRE-CPA-secure identity-based proxy
re-encryption scheme Π = (Setup,G,E,D,RG,RE), a CPA-secure symmetric-key
encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an AONT T . Then the con-

struction of Πhyb in Section 11.4 is IB-PRE-CPA-secure.

We show that by the security of the proxy re-encryption scheme, the real
game Gamereal is computationally indistinguishable from a hybrid game Gamehyb
where the challenge ciphertext is

C∗ =
(
E(id∗, 0), [], T

(
ESym(k0,Mb)

))
.

Then we show that by the security of the symmetric-key encryption scheme, in
Gamehyb the adversary’s success rate is less than 1

2 + negl for some negligible
function negl.

Lemma 12. Suppose that an adversary A1 for the IB-PRE-CPA security game
has probability of success p0 in Gamereal and probability of success p1 in Gamehyb.
If the underlying proxy re-encryption scheme Π is IB-PRE-CPA-secure, then p1−
p0 is negligible.

Proof. Given an adversary A1 as described for the Πhyb construction, we show
how to construct an adversary B1 for the original scheme Π that plays the
IB-PRE-CPA security game. As is typical, B1 simulates A1 and its version of the
IB-PRE-CPA game. First, B1 gives its simulation of A1 the public parameters it
receives. B1 responds to queries from A1 as follows:

– Key Generation query Okey(id): B1 queries id to its key generation oracle and
receives skid in response, which is sent to A1.

– Re-Encryption Key Generation query Orkey(idi, idj): B1 queries (idi, idj) to
its re-encryption key generation oracle and receives rkidi→idj in response,
which is sent to A1.

49

– Challenge query Ochal(M0,M1, id
∗): B1 generates a random bit b and key

k0 ← GSym. B1 then makes its own challenge query (k0, 0, id
∗), receiving

ciphertext C ′ in response. B1 gives A1 the following challenge ciphertext:

C∗ =
(
C ′, [], T

(
ESym(k0,Mb)

))
.

– Guess b′: If b = b′ then B1 guesses that C ′ is an encryption of k0, otherwise
B1 guesses that C ′ is an encryption of 0.

Observe that if C ′ is an encryption of k0, then A1 is executing in a perfect
simulation of Gamereal , and thus has probability of success p0; hence B1 is correct
with probability p0. If C ′ is an encryption of 0 then A1 is simulated in the
Gamehyb and has probability of success p1; thus B1 is correct with probability
1−p1. Therefore B1’s probability of success is 1

2 (p0+1−p1) = 1
2 + 1

2 (p0−p1). By
the IB-PRE-CPA security of Π = (Setup,G,E,D,RG,RE), 1

2 (p0−p1) is negligible,
and so p0 − p1 is negligible. ut

Lemma 13. Suppose that an adversary A2 for the PRE-CPA security game has
probability of success p1 in Gamehyb. If the underlying symmetric-key encryption
scheme Πsym is CPA-secure, then p1 <

1
2 + negl for some negligible function

negl.

Proof. We construct an adversary B2 for Πsym that plays the CPA security game
by simulating adversary A2 in the PRE-CPA game. B2 instantiates the IB-PRE
scheme itself by computing (param,msk) ← Setup(1λ) and sends param to A2.
B2 responds to queries from the simulation of A2 as follows:

– Key Generation query Okey(id): If responding to the query would allow A2

to trivially decrypt the challenge ciphertext (in Phase 2), then B2 sends ⊥;
otherwise, B2 computes skid ← G(msk, id) and sends skid to A2.

– Re-Encryption Key Generation query Orkey(idi, idj): If idi = idj or if re-
sponding to the query would allow A2 to trivially decrypt the challenge ci-
phertext (in Phase 2), then B2 sends ⊥; otherwise, B2 computes rkidi→idj ←
RG(skidi , idi, idj) and sends rkidi→idj to A2.

– Challenge query Ochal(M0,M1, id
∗): If A2 can trivially decrypt ciphertexts

encrypted under id∗ then B2 sends ⊥; otherwise, B2 makes challenge query
(M0,M1), receiving ciphertext C ′ in response. B2 gives A2 challenge cipher-
text C∗ = (E(id∗, 0), [], T (C ′)).

– Guess b′: B2 receives b′ as A2’s guess and uses the same bit b′ for its guess
as well.

Since A2 is in a perfect simulation of Gamehyb , its probability of success is p1.
B2 is correct when A2 is correct, so its probability of success is also p1. By the
CPA security of Πsym =

(
GSym,ESym,DSym

)
, p1 <

1
2 + negl for some negligible

function negl. ut

Now we use these lemmas to prove Theorem 12.

50

Proof. By Lemmas 12, we see that the adversary’s probability of success in
Gamereal can only be negligibly greater than its probability of success in Gamehyb .
By Lemma 13, the adversary’s success in Gamehyb can be at most 1

2 + negl for
some negligible function negl. Thus the adversary’s success in Gamereal can be
at most 1

2 + negl′ for some negligible function negl′. ut

E.2 Adaptive-Revocable-IB-PRE-CPA Security

Theorem 13. Assume the existence of a IB-PRE-CPA-secure identity-based proxy
re-encryption scheme Π = (Setup,G,E,D,RG,RE) with re-encryption history
independence, a symmetric-key encryption scheme Πsym =

(
GSym,ESym,DSym

)
,

and an adaptive `-AONT T . Suppose that for the construction from Section
11.4, CT comprises at least a fraction 1 − δ of the total size of each cipher-
text. Then for any ε < 1 with ε > δ and any `∗ > `

ε−δ , this construction is
(1− ε)-Adap-Revoke-IB-PRE-CPA-secure.

We show the computational indistinguishability of a series of games. Each
game is the same as the real game except in regards to C∗∗. In each game, the
challenge query is (M0,M1, [id

∗
0, . . . , id

∗
r], id

∗∗). We highlight in bold the portions
of C∗∗ that differ from the previous games, in the descriptions of the respective
games that follow:

Game0: This is the real game, where:

C∗∗ =
(
RE
(
rkid∗r→id∗∗ , C

pk
)
,
[
Cbks1 , . . . , Cbksr ,E(id∗∗, (s, k1))

]
,
[
CT
]
Ind(s,`∗),Ctr(k1,`∗)

)
.

Game1: This is identical to Game0 except that we replace E(id∗∗, (s, k1)) with
E(id∗∗, (0, 0)), resulting in:

C∗∗ =
(
RE
(
rkid∗r→id∗∗ , C

pk
)
,
[
Cbks1 , . . . , Cbksr ,E(id∗∗, (0, 0))

]
,
[
CT
]
Ind(s,`∗),Ctr(k1,`∗)

)
.

Game2: This is identical to Game1 except that we replace the pseudorandom
Ind(s, `∗) with truly random rInd(`∗), resulting in:

C∗∗ =
(
RE
(
rkid∗r→id∗∗ , C

pk
)
,
[
Cbks1 , . . . , Cbksr ,E(id∗∗, (0, 0))

]
,
[
CT
]
rInd(`∗),Ctr(k1,`∗)

)
.

Game3: This is identical to Game2 except that we replace the keystream Ctr(k1, `
∗)

we get from counter mode encryption with a random string rStr(`∗), resulting
in:

C∗∗ =
(
RE
(
rkid∗r→id∗∗ , C

pk
)
,
[
Cbks1 , . . . , Cbksr ,E(id∗∗, (0, 0))

]
,
[
CT
]
rInd(`∗),rStr(`∗)

)
.

We now provide a series of lemmas that show that any adverary’s probabili-
ties of success in two successive games are negligibly close. These are presented
in Lemmas 14, 15, and 16. Finally, we show in Lemma 17 that any adversary’s
chance of success in the final game is negligibly close to 1/2.

51

Lemma 14. Suppose that an adversary A1 for the (1−ε)-Adap-Revoke-IB-PRE-CPA
security game has probability of success p0 in Game0 and probability of success
p1 in Game1. If the underlying proxy re-encryption scheme Π is IB-PRE-CPA-
secure, then p1 − p0 is negligible.

Proof. We construct an adversary B1 that plays the IB-PRE-CPA security game
by simulating adversary A1. B1 gives A1 the public parameters it receives. B1
responds to queries from A1 as follows:

– Key Generation query Okey(id): B1 queries id to its key generation oracle and
receives skid in response, which is sent to A1.

– Re-Encryption Key Generation query Orkey(idi, idj): B1 queries (idi, idj) to
its re-encryption key generation oracle and receives rkidi→idj in response,
which is sent to A1.

– Challenge query (M0,M1, [id
∗
0, . . . , id

∗
r], id

∗∗): B1 generates random bit b, ran-
dom symmetric keys k0, k1, . . . , kr+1 ← GSym, and random seeds s1, . . . , sr+1.
B1 also selects r fresh random identities id′0, . . . , id

′
r−1. If these are later used

in queries made by A1, then this may lead to B1 making a prohibited query
in response to a valid query from A1, forcing B1 to abort. However, if I is
the length of each identity, then the probability that a particular identity
chosen by A1 is one of id′0, . . . , id

′
r−1 is at most q2−I . If A1 makes at most q

queries, then since each query involves at most two identities, the probability
that B1 aborts is at most 2rq2−I = rq2−I+1. B1 creates Cpk0 = E(id∗0, k0)

and Ĉpk0 = E
(
id′, k0

)
, and then queries

rkid′0→id∗1
= Orkey

(
id′0, id

∗
1

)
, rkid′0→id′1

= Orkey

(
id′0, id

′
1

)
,

rkid′1→id∗2
= Orkey

(
id′1, id

∗
2

)
, rkid′1→id′2

= Orkey

(
id′1, id

′
2

)
, . . .

rkid′r−1→id∗r
= Orkey

(
id′r−1, id

∗
r

)
, rkid′r−1→id′r

= Orkey

(
id′r−1, id

′
r

)
,

rkid′r→id∗∗ = Orkey

(
id′r, id

∗∗)
and computes

Cpk1 = RE
(
rkid′0→id∗1

, Ĉpk0

)
, Ĉpk1 = RE

(
rkid′0→id′1

, Ĉpk0

)
,

Cpk2 = RE
(
rkid′1→id∗2

, Ĉpk1

)
, Ĉpk2 = RE

(
rkid′1→id′2

, Ĉpk1

)
, . . .

Cpkr = RE
(
rkid′r−1→id∗r

, Ĉpkr−1

)
, Ĉpkr = RE

(
rkid′r−1→id′r

, Ĉpkr−1

)
,

Cpkr+1 = RE
(
rkid′r→id∗∗ , Ĉ

pk
r

)
Note that each Cpku is produced by encrypting k0 under id′0 and then re-
encrypting it through [id′1, id

′
u−1, id

∗
u]. By re-encryption history independence,

this is indistinguishable from a ciphertext produced by encrypting k0 under
i∗0 and then re-encrypting it through [id∗1, id

∗
u−1, id

∗
u].

52

For each u ∈ {1, . . . , r}, B1 creates Cbksu,u = E(id∗u, (su, ku)) and Ĉbksu,u =

E
(
id′u, (su, ku)

)
, and then queries

Cbksu,u+1 = RE
(
rkid′u→id∗u+1

, Ĉbksu,u

)
, Ĉbksu,u+1 = RE

(
rkid′u→id′u+1

, Ĉbksu,u

)
,

Cbksu,u+2 = RE
(
rkid′u+1→id∗u+2

, Ĉbksu,u+1

)
, Ĉbksu,u+2 = RE

(
rkid′u+1→id′u+2

, Ĉbksu,u+1

)
, . . .

Cbksu,r = RE
(
rkid′r−1→id∗r

, Ĉbksu,r−1

)
, Ĉbksu,r = RE

(
rkid′r−1→id′r

, Ĉbksu,r−1

)
,

Cbksu,r+1 = RE
(
rkid′r→id∗r+1

, Ĉbksu,r

)
Note that each Cbksu,v is produced by encrypting (su, ku) under id′u and then

re-encrypting it through [id′u, id
′
v−1, id

∗
v]. By re-encryption history indepen-

dence, this is indistinguishable from a ciphertext produced by encrypting
(su, ku) under id∗u and then re-encrypting it through [id∗u, id

∗
v−1, id

∗
v].

Then B1 creates CT0 = T
(
ESym(k0,Mb)

)
and C∗0 =

(
Cpk0 , [], CT0

)
. For each

u ∈ {1, . . . , r}, B1 creates

CTu =
[
CTu−1

]
Ind(su,`∗),Ctr(ku,`∗)

and
C∗u =

(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
.

B1 makes challenge query ((sr+1, kr+1), (0, 0), j∗), receiving ciphertext C ′

in response. It gives A1 the (1 − ε)|C∗r | bits that it adaptively requests of
{C∗u}0≤u≤r as well as

C∗∗ =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1, C

′], [CTr]Ind(sr+1,`∗),Ctr(kr+1,`∗)

)
.

– Guess b′: If b = b′ then B1 guesses that C ′ is an encryption of (sr+1, kr+1),
otherwise B1 guesses that C ′ is an encryption of (0, 0).

If C ′ is an encryption of (sr+1, kr+1), then A1 is in Game0 (the real game) and
has probability of success p0; thus B1 is correct with probability p0. If C ′ is an
encryption of (0, 0) then A1 is in Game1 and has probability of success p1; thus
B1 is correct with probability 1 − p1. Since B1 aborts with probability at most
rq2−I+1, its probability of success is therefore at least 1

2 (p0+1−p1)−rq2−I+1 =
1
2 + 1

2 (p0−p1)−rq2−I+1. By the IB-PRE-CPA security of (G,RG,E,RE,D), 1
2 (p0−

p1)− rq2−I+1 is negligible, and since rq2−I+1 is negligible, so is p0 − p1. ut

Lemma 15. Suppose that an adversary A2 for the (1−ε)-Adap-Revoke-IB-PRE-CPA
security game has probability of success p1 in Game1 and probability of success
p2 in Game2. If Ind(s, `∗) with random seed s is pseudorandom (indistinguishable
from rInd(`∗)), then p2 − p1 is negligible.

Proof. We construct a distinguisher D1 that receives a set of indices ind—either
ind = Ind(s, `∗) with random seed s or ind = rInd(`∗). D1 simulates adversary A2.
D1 instantiates the IB-PRE scheme itself and sends A2 the public parameters.
D1 responds to queries from A2 as follows:

53

– Key Generation query Okey(id): If responding to the query would allow A2

to trivially decrypt the challenge ciphertext (in Phase 2), then D1 sends ⊥;
otherwise, D1 computes skid ← G(msk, id) and sends skid to A2.

– Re-Encryption Key Generation query Orkey(idi, idj): If idi = idj or if re-
sponding to the query would allow A2 to trivially decrypt the challenge ci-
phertext (in Phase 2), then D1 sends ⊥; otherwise, D1 computes rkidi→idj ←
RG(skidi , idi, idj) and sends rkidi→idj to A2.

– Challenge query (M0,M1, [id
∗
0, . . . , id

∗
r], id

∗∗): If A2 can trivially decrypt ci-
phertexts encrypted under id∗∗ then D1 sends ⊥. Otherwise, D1 generates
random bit b, random symmetric keys k0, k1, . . . , kr+1 ← GSym, and random
seeds s1, . . . , sr+1. D1 creates Cpk0 = E(id∗0, k0) and

Cpk1 = RE
(
rkid∗0→id∗1

, Cpk0

)
, Cpk2 = RE

(
rkid∗1→id∗2

, Cpk1

)
,

. . . , Cpkr = RE
(
rkid∗r−1→id∗r , C

pk
r−1

)
, Cpkr+1 = RE

(
rkid∗r→id∗∗ , C

pk
r

)
For each u ∈ {1, . . . , r}, D1 creates Cbksu,u = E(id∗u, (su, ku)) and computes

Cbksu,u+1 = RE
(
rkid∗u→id∗u+1

, Cbksu,u

)
, Cbksu,u+2 = RE

(
rkid∗u+1→id∗u+2

, Cbksu,u+1

)
,

. . . , Cbksu,r = RE
(
rkid∗r−1→id∗r , C

bks
u,r−1

)
, Cbksu,r+1 = RE

(
rkid∗r→id∗∗ , C

bks
u,r

)
Then D1 creates CT0 = T

(
ESym(k0,Mb)

)
and C∗0 =

(
Cpk0 , [], CT0

)
. For each

u ∈ {1, . . . , r}, D1 creates

CTu =
[
CTu−1

]
Ind(su,`∗),Ctr(ku,`∗)

and
C∗u =

(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
.

D1 gives A2 the (1− ε)|C∗r | bits that it adaptively requests of {C∗u}0≤u≤r as
well as

C∗∗ =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E(id∗∗, (0, 0))

]
,
[
CTr
]
ind,Ctr(kr+1,`∗)

)
.

– Guess b′: If b = b′ then D1 guesses that ind = Ind(s, `∗), otherwise D1 guesses
that ind = rInd(`∗).

If ind = Ind(s, `∗), then A2 is in Game1 and has probability of success p1;
thus D1 is correct with probability p1. If ind = rInd(`∗), then A2 is in Game2
and has probability of success p2; thus D1 is correct with probability 1 − p2.
Therefore D1’s probability of success is 1

2 (p1 + 1 − p2) = 1
2 + 1

2 (p1 − p2). By
the pseudorandomness of Ind(s, `∗), 1

2 (p1 − p2) is negligible, and so p1 − p2 is
negligible. ut

Lemma 16. Suppose that an adversary A3 for the (1−ε)-Adap-Revoke-IB-PRE-CPA
security game has probability of success p2 in Game2 and probability of success p3
in Game3. If Ctr(k1, `

∗) with random key k1 is pseudorandom (indistinguishable
from rStr(`∗)), then p3 − p2 is negligible.

54

Proof. We construct a distinguisher D2 that receives a bitstream str—either
str = Ctr(k1, `

∗) with random key k1 or str = rStr(`∗).D2 simulates adversaryA3.
D2 instantiates the IB-PRE scheme itself and sends A3 the public parameters.
D2 responds to queries from A3 as follows:

– Key Generation query Okey(id): If responding to the query would allow A3

to trivially decrypt the challenge ciphertext (in Phase 2), then D2 sends ⊥;
otherwise, D2 computes skid ← G(msk, id) and sends skid to A3.

– Re-Encryption Key Generation query Orkey(idi, idj): If idi = idj or if re-
sponding to the query would allow A3 to trivially decrypt the challenge ci-
phertext (in Phase 2), then D2 sends ⊥; otherwise, D2 computes rkidi→idj ←
RG(skidi , idi, idj) and sends rkidi→idj to A3.

– Challenge query (M0,M1, [id
∗
0, . . . , id

∗
r], id

∗∗): If A3 can trivially decrypt ci-
phertexts encrypted under id∗∗ then D2 sends ⊥. Otherwise, D2 generates
random bit b, random symmetric keys k0, k1, . . . , kr+1 ← GSym, and random
seeds s1, . . . , sr+1.D2 then constructs C∗0 , . . . , C

∗
r , Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1

]
,

and CTr following the procedure in Lemma 15. D2 gives A3 the (1 − ε)|C∗r |
bits that it adaptively requests of {C∗u}0≤u≤r as well as

C∗∗ =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E(id∗∗, (0, 0))

]
,
[
CTr
]
rInd(`∗),str

)
.

– Guess b′: If b = b′ then D2 guesses that str = Ctr(k1, `
∗), otherwise D2

guesses that str = rStr(`∗).

If str = Ctr(k1, `
∗), then A2 is in Game2 and has probability of success p2;

thus D2 is correct with probability p2. If str = rStr(`∗), then A2 is in Game3
and has probability of success p3; thus D2 is correct with probability 1 − p3.
Therefore D2’s probability of success is 1

2 (p2 + 1 − p3) = 1
2 + 1

2 (p2 − p3). By
the pseudorandomness of Ctr(k1, `

∗), 1
2 (p2 − p3) is negligible, and so p2 − p3 is

negligible. ut

Lemma 17. Suppose that an adversary A4 for the (1−ε)-Adap-Revoke-IB-PRE-CPA
security game has probability of success p3 in Game3. Suppose also that the under-
lying AONT T is a computationally-secure adaptive `-AONT and CT comprises
at least a fraction 1−δ of the total size of each ciphertext. If ε > δ and `∗ > `

ε−δ ,

then p3 <
1
2 + negl for some negligible function negl.

Proof. We construct an adversary B2 that plays the `-AONT security game by
simulating adversary A4. B2 instantiates the IB-PRE scheme itself and sends A4

the public parameters. B2 responds to queries from A4 as follows:

– Key Generation query Okey(id): If responding to the query would allow A4

to trivially decrypt the challenge ciphertext (in Phase 2), then B2 sends ⊥;
otherwise, B2 computes skid ← G(msk, id) and sends skid to A4.

– Re-Encryption Key Generation query Orkey(idi, idj): If idi = idj or if re-
sponding to the query would allow A4 to trivially decrypt the challenge ci-
phertext (in Phase 2), then B2 sends ⊥; otherwise, B2 computes rkidi→idj ←
RG(skidi , idi, idj) and sends rkidi→idj to A4.

55

– Challenge query (M0,M1, [id
∗
0, . . . , id

∗
r], id

∗∗): If A4 can trivially decrypt ci-
phertexts encrypted under id∗∗ then B2 sends ⊥. Otherwise, B2 generates
keys k0, k1, . . . , kr+1 ← GSym, and random seeds s1, . . . , sr+1. B2 then con-
structs Cpk0 , . . . , Cpkr+1 as well as Cbksu,u , . . . , C

bks
u,r+1 for u ∈ {1, . . . , r} following

the procedure in Lemma 15. B2 makes AONT challenge query
(
ESym(k0,M0),ESym(k0,M1)

)
,

receiving oracle access to anyN−` bits of AONT output CT0 = T
(
ESym(k0,Mb

)
in response. B2 responds to A4 by giving it oracle access to

{C∗u =
(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
}0≤u≤r

for
CTu =

[
. . .
[[
CT0
]
Ind(s1,`∗),Ctr(k1,`∗)

]
. . .
]
Ind(su,`∗),Ctr(ku,`∗)

,

with a limit of (1 − ε)|C∗r | total bits queried. Whenever A4 queries a bit
of CTu , B2 queries the corresponding bit of CT0 . For each u′ ∈ {1, . . . , u}, if
the bit is in Ind(su′ , `

∗), B2 XORs it with the corresponding bit of Ctr(ku′).
B2 returns the resulting bit to A4. When A4 finsihes its queries, B2 chooses
random L ∈

{
N
`∗

}
and queries any bits of

[
CT0
]
L

that it hadn’t previously

queried. If this requires more than N − ` bits of CT0 then B2 aborts the

simulation. Otherwise, it produces C̃Tr ∈ {0, 1}N by setting the bits not in L
as their corresponding values from CTr and choosing the bits in L randomly.
B2 then gives A4

C∗∗ =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E(id∗∗, (0, 0))

]
, C̃Tr

)
– Guess b′: B2 receives b′ as A4’s guess and uses the same bit b′ for its guess

as well.

We now look at the probability that B2 aborts when responding to A4’s
challenge query. Let ε′ be the fraction of CT that A4 does not query from C∗;
note that ε′ ≥ ε − δ. Let `′ be the number of bits of CT that are in L but A4

does not query from its oracle. B2 aborts if and only if `′ < `. To get any upper
bound on `′, we apply Lemma 5. We let balls in the lemma correspond to bits
here. Balls selected in the first stage correspond to bits of CT that were not
queried, and balls selected in the second stage correspond to bits in L. Then
`′ here is equivalent to `′ in the lemma. Thus by Lemma 5, for any t > 0,
Pr[`′ ≤ `∗(ε′ − t)] ≤ e−2`∗t2 .

For any fixed t, this probability is negligible for `∗ = ω(log(λ)). Thus as long
as ` < `∗ · ε′, the probability that B2 aborts is negligible. Since ε′ ≥ ε − δ, if
`∗ > `

ε−δ then this will hold.
If B2 does not abort then its probability of success is identical to A4’s prob-

ability of success. Since L was chosen randomly and any string XORed with a

random string is a random string, C̃Tr =
[
CTr
]
rInd(`∗),rStr(`∗)

.

Thus A′4s view here is the same as in Game3, so its probability of success
is p3. Hence B2’s probability of success, when accounting for the probability
that it aborts, is p3 − negl′ for some negligible function negl′. By the `-AONT

56

security of T , p3−negl′ < 1
2 +negl′′ for some negligible function negl′′. Therefore

p3 <
1
2 + negl for negl = negl′ + negl′′. ut

Now we use these lemmas to prove Theorem 13.

Proof. By Lemmas 14, 15, and 16, we see that the adversary’s probability of
success in Game0 can only be negligibly greater than its probability of success in
Game3. By Lemma 17, the adversary’s success in Game3 can be at most 1

2 +negl
for some negligible function negl. Thus the adversary’s success in Game0, which is
the real case, can be at most 1

2+negl′ for some negligible function negl′. Combined
with Theorem 12, this proves that is (1− ε)-Adap-Revoke-IB-PRE-CPA-secure.

ut

E.3 Static-Revocable-IB-PRE-CPA Security

Theorem 14. Assume the existence of a IB-PRE-CPA-secure identity-based proxy
re-encryption scheme Π = (Setup,G,E,D,RG,RE) with re-encryption history
independence, a symmetric-key encryption scheme Πsym =

(
GSym,ESym,DSym

)
,

and an `-AONT T . Suppose that for the construction from Section 11.4, CT com-
prises at least a fraction 1−δ of the total size of each ciphertext. Then for any ε <
1 with ε > δ and any `∗ > `

ε−δ , this construction is (1−ε)-Stat-Revoke-IB-PRE-CPA-
secure.

Proof. This proof is identical to the proof of Theorem 13, with the exception of
how B2 responds to the challenge queries. In the proofs of Lemmas 14, 15, and
16, the adversary requests the bits of {C∗u}0≤u≤r to receive all at once instead
of adaptively. In the proof of Lemmma 17 for the static case, it works as follows:
B2 receives challenge query (M0,M1, [id

∗
0, . . . , id

∗
r], id

∗∗). Let bitPosT be the set
of bit positions requested that correspond to bits of CT . B2 chooses random
L ∈

{
N
`∗

}
. If |L ∩ ([N] \ bitPosT)| < ` then B2 aborts the simulation. Otherwise,

B2 generates random symmetric keys k0, k1, . . . , kr+1 ← GSym and random seeds
s1, . . . , sr+1. B2 then constructs Cpk0 , . . . , Cpkr+1 as well as Cbksu,u , . . . , C

bks
u,r+1 for

u ∈ {1, . . . , r}, following the procedure in Lemma 15. B2 makes AONT challenge
query (

ESym(k0,M0),ESym(k0,M1), L ∩ ([N] \ bitPosT)
)
,

receiving [
CT
]
L∩([N]\bitPosT)

=
[
T
(
ESym(k0,Mb)

)]
L∩([N]\bitPosT)

in response. B2 produces CT0 ∈ {0, 1}N by taking
[
CT
]
L∩([N]\bitPosT)

and filling

in the bits from L ∩ ([N] \ bitPosT) arbitrarily (these bits will not affect the
challenge ciphertexts), and then it computes

{C∗u =
(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
}0≤u≤r

for
CTu =

[
. . .
[[
CT0
]
Ind(s1,`∗),Ctr(k1,`∗)

]
. . .
]
Ind(su,`∗),Ctr(ku,`∗)

.

57

B2 constructs C̃Tr ∈ {0, 1}N by setting the bits not in L as their correspond-
ing values from CTr and choosing the remaining bits randomly. It gives A4 the
requested (1− ε)|C∗r | bits of {C∗u}0≤u≤r as well as

C∗∗ =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E(id∗∗, (0, 0))

]
, C̃Tr

)
.

When considering the probability that B2 aborts when responding to A4’s
challenge query, here we let `′ = |L∩ ([N] \bitPosT)|, which is the number of bit
positions of CT that are in L but not in bitPosT . Again, B2 aborts if and only
if `′ < `. The upper bound on `′ is still the same as for the adaptive case by the
exact same argument. Thus the probability that B2 aborts is again negligible as
long as `∗ > `

ε−δ . ut

F Proofs for Revocable-Storage Attribute-Based
Encryption

F.1 RS-KP-ABE-Security of Hybrid Construction

Theorem 15. Assume the existence of a RS-KP-ABE-secure revocable-storage
attribute-based encryption Π = (Setup,G,E,KU,D,CTU), a CPA-secure symmetric-
key encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an AONT T . Then the

construction of Πhyb in Section 12.4 is RS-KP-ABE-secure.

We show that by the security of the proxy re-encryption scheme, the real
game Gamereal is computationally indistinguishable from a hybrid game Gamehyb
where the challenge ciphertext is

C∗ =
(
E(S, 0, t), [], T

(
ESym(k0,Mb)

))
.

Then we show that by the security of the symmetric-key encryption scheme, in
Gamehyb the adversary’s success rate is less than 1

2 + negl for some negligible
function negl.

Lemma 18. Suppose that an adversary A1 for the RS-KP-ABE security game
has probability of success p0 in Gamereal and probability of success p1 in Gamehyb.
If the underlying proxy re-encryption scheme Π is RS-KP-ABE-secure, then p1−
p0 is negligible.

Proof. Given an adversary A1 as described for the Πhyb construction, we show
how to construct an adversary B1 for the original scheme Π that plays the
RS-KP-ABE security game. As is typical, B1 simulates A1 and its version of
the RS-KP-ABE security game. First, B1 gives its simulation of A1 the public
parameters it receives. B1 responds to queries from A1 as follows:

– Secret Key Generation query Osk(P, id): B1 queries (P, id) to its secret key
generation oracle and receives skP,id in response, which is sent to A1.

58

– Key Update Generation query Oku(t, rl): B1 queries (t, rl) to its key update
generation oracle and receives kut in response, which is sent to A1.

– Challenge query (M0,M1, S
∗, t∗): B1 generates a random bit b and key

k0 ← GSym. B1 then makes its own challenge query (k0, 0, S
∗, t∗), receiving

ciphertext C ′ in response. B1 gives A1 the following challenge ciphertext:

C∗ =
(
C ′, [], T

(
ESym(k0,Mb)

))
.

– Guess b′: If b = b′ then B1 guesses that C ′ is an encryption of k0, otherwise
B1 guesses that C ′ is an encryption of 0.

Observe that if C ′ is an encryption of k0, then A1 is executing in a perfect
simulation of Gamereal , and thus has probability of success p0; hence B1 is correct
with probability p0. If C ′ is an encryption of 0 then A1 is simulated in the
Gamehyb and has probability of success p1; thus B1 is correct with probability
1− p1. Therefore B1’s probability of success is 1

2 (p0 + 1− p1) = 1
2 + 1

2 (p0 − p1).
By the RS-KP-ABE security of Π = (Setup,G,E,KU,D,CTU), 1

2 (p0 − p1) is
negligible, and so p0 − p1 is negligible. ut

Lemma 19. Suppose that an adversary A2 for the RS-KP-ABE security game
has probability of success p1 in Gamehyb. If the underlying symmetric-key en-
cryption scheme Πsym is CPA-secure, then p1 <

1
2 + negl for some negligible

function negl.

Proof. We construct an adversary B2 for Πsym that plays the CPA security game
by simulating adversary A2 in the RS-KP-ABE security game. B2 instantiates the
RS-KP-ABE scheme itself by computing (param,msk) ← Setup(1λ) and sends
param to A2. B2 responds to queries from the simulation of A2 as follows:

– Secret Key Generation query Osk(P, id): If responding to the query would
allow A2 to trivially decrypt the challenge ciphertext (in Phase 2), then B2
sends ⊥; otherwise, B2 computes skP,id ← G(msk, P, id) and sends skP,id to
A2.

– Key Update Generation query Oku(t, rl): If responding to the query would
allow A2 to trivially decrypt the challenge ciphertext (in Phase 2), then B2
sends ⊥; otherwise, B2 computes kut,rl ← RG(msk, t, rl) and sends kut,rl to
A2.

– Challenge query (M0,M1, S
∗, t∗): If A2 can trivially decrypt ciphertexts en-

crypted under §∗ at time t∗ then B2 sends ⊥; otherwise, B2 makes challenge
query (M0,M1), receiving ciphertext C ′ in response. B2 gives A2 challenge
ciphertext C∗ = (E(S∗, 0, t∗), [], T (C ′)).

– Guess b′: B2 receives b′ as A2’s guess and uses the same bit b′ for its guess
as well.

Since A2 is in a perfect simulation of Gamehyb , its probability of success is p1.
B2 is correct when A2 is correct, so its probability of success is also p1. By the
CPA security of Πsym =

(
GSym,ESym,DSym

)
, p1 <

1
2 + negl for some negligible

function negl. ut

59

Now we use these lemmas to prove Theorem 15.

Proof. By Lemmas 18, we see that the adversary’s probability of success in
Gamereal can only be negligibly greater than its probability of success in Gamehyb .
By Lemma 19, the adversary’s success in Gamehyb can be at most 1

2 + negl for
some negligible function negl. Thus the adversary’s success in Gamereal can be
at most 1

2 + negl′ for some negligible function negl′. ut

F.2 Adaptive-Revocable-RS-KP-ABE Security

Theorem 16. Assume the existence of a RS-KP-ABE-secure revocable-storage
attribute-based encryption scheme Π = (Setup,G,E,KU,D,CTU), a symmetric-
key encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an adaptive `-AONT T .

Suppose that for the construction from Section 12.4, CT comprises at least a
fraction 1− δ of the total size of each ciphertext. Then for any ε < 1 with ε > δ
and any `∗ > `

ε−δ , this construction is (1− ε)-Adap-Revoke-RS-KP-ABE-secure.

We show the computational indistinguishability of a series of games. Each
game is the same as the real game except in regards to CS∗,t∗+r+1. In each game,
the challenge query is (M0,M1, S

∗, t∗ + r). We highlight in bold the portions
of CS∗,t∗+r+1 that differ from the previous games, in the descriptions of the
respective games that follow:

Game0: This is the real game, where:

CS∗,t∗+r+1 =
(
CTU

(
Cpk

)
,
[
Cbks1 , . . . , Cbksr ,E(S∗, (s, k1), t∗ + r + 1)

]
,
[
CT
]
Ind(s,`∗),Ctr(k1,`∗)

)
.

Game1: This is identical to Game0 except that we replace E(S∗, (s, k1), t∗ + r + 1)
with E(S∗, (0, 0), t∗ + r + 1), resulting in:

CS∗,t∗+r+1 =
(
CTU

(
Cpk

)
,
[
Cbks1 , . . . , Cbksr ,E(S∗, (0, 0), t∗ + r + 1)

]
,
[
CT
]
Ind(s,`∗),Ctr(k1,`∗)

)
.

Game2: This is identical to Game1 except that we replace the pseudorandom
Ind(s, `∗) with truly random rInd(`∗), resulting in:

CS∗,t∗+r+1 =
(
CTU

(
Cpk

)
,
[
Cbks1 , . . . , Cbksr ,E(S∗, (0, 0), t∗ + r + 1)

]
,
[
CT
]
rInd(`∗),Ctr(k1,`∗)

)
.

Game3: This is identical to Game2 except that we replace the keystream Ctr(k1, `
∗)

we get from counter mode encryption with a random string rStr(`∗), resulting
in:

CS∗,t∗+r+1 =
(
CTU

(
Cpk

)
,
[
Cbks1 , . . . , Cbksr ,E(S∗, (0, 0), t∗ + r + 1)

]
,
[
CT
]
rInd(`∗),rStr(`∗)

)
.

We now provide a series of lemmas that show that any adverary’s probabili-
ties of success in two successive games are negligibly close. These are presented
in Lemmas 20, 21, and 22. Finally, we show in Lemma 23 that any adversary’s
chance of success in the final game is negligibly close to 1/2.

60

Lemma 20. Suppose that an adversary A1 for the (1−ε)-Adap-Revoke-RS-KP-ABE
security game has probability of success p0 in Game0 and probability of success p1
in Game1. If the underlying proxy re-encryption scheme Π is RS-KP-ABE-secure,
then p1 − p0 is negligible.

Proof. We construct an adversary B1 that plays the RS-KP-ABE security game
by simulating adversary A1. B1 gives A1 the public parameters it receives. B1
responds to queries from A1 as follows:

– Secret Key Generation query Osk(P, id): B1 queries (P, id) to its secret key
generation oracle and receives skP,id in response, which is sent to A1.

– Key Update Generation query Oku(t, rl): B1 queries (t, rl) to its key update
generation oracle and receives kut in response, which is sent to A1.

– Challenge query (M0,M1, S
∗, t∗, r): B1 generates random bit b, random sym-

metric keys k0, k1, . . . , kr+1 ← GSym, and random seeds s1, . . . , sr+1. B1 cre-
ates Cpk0 = E(S∗, k0, t

∗), and then computes

Cpk1 = CTU
(
Cpk0

)
, Cpk2 = CTU

(
Cpk1

)
,

. . . , Cpkr = CTU
(
Cpkr−1

)
, Cpkr+1 = CTU

(
Cpkr

)
For each u ∈ {1, . . . , r}, B1 creates Cbksu,u = E(S∗, (su, ku), t∗ + u) and com-
putes

Cbksu,u+1 = CTU
(
Cbksu,u

)
, Cbksu,u+2 = CTU

(
Cbksu,u+1

)
,

. . . , Cbksu,r = CTU
(
Cbksu,r−1

)
, Cbksu,r+1 = CTU

(
Cbksu,r

)
Then B1 creates CT0 = T

(
ESym(k0,Mb)

)
and CS∗,t∗ =

(
Cpk0 , [], CT0

)
. For

each u ∈ {1, . . . , r}, B1 creates

CTu =
[
CTu−1

]
Ind(su,`∗),Ctr(ku,`∗)

and
CS∗,t∗+u =

(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
.

B1 makes challenge query ((sr+1, kr+1), (0, 0), S∗, t∗), receiving ciphertext C ′

in response. It gives A1 the (1− ε)|CS∗,t∗+r| bits that it adaptively requests
of {CS∗,t∗+u}0≤u≤r as well as

CS∗,t∗+r+1 =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1, C

′], [CTr]Ind(sr+1,`∗),Ctr(kr+1,`∗)

)
.

– Guess b′: If b = b′ then B1 guesses that C ′ is an encryption of (sr+1, kr+1),
otherwise B1 guesses that C ′ is an encryption of (0, 0).

If C ′ is an encryption of (sr+1, kr+1), then A1 is in Game0 (the real game)
and has probability of success p0; thus B1 is correct with probability p0. If C ′

61

is an encryption of (0, 0) then A1 is in Game1 and has probability of success
p1; thus B1 is correct with probability 1 − p1. Therefore B1’s probability of
success is 1

2 (p0 + 1 − p1) = 1
2 + 1

2 (p0 − p1). By the RS-KP-ABE security of
(Setup,G,E,KU,D,CTU), 1

2 (p0 − p1) is negligible, and so p0 − p1 is negligible.
ut

Lemma 21. Suppose that an adversary A2 for the (1−ε)-Adap-Revoke-RS-KP-ABE
security game has probability of success p1 in Game1 and probability of success
p2 in Game2. If Ind(s, `∗) with random seed s is pseudorandom (indistinguishable
from rInd(`∗)), then p2 − p1 is negligible.

Proof. We construct a distinguisher D1 that receives a set of indices ind—either
ind = Ind(s, `∗) with random seed s or ind = rInd(`∗). D1 simulates adversary
A2. D1 instantiates the RS-KP-ABE scheme itself and sends A2 the public pa-
rameters. D1 responds to queries from A2 as follows:

– Secret Key Generation query Osk(P, id): If responding to the query would
allow A2 to trivially decrypt the challenge ciphertext (in Phase 2), then D1

sends ⊥; otherwise, D1 computes skP,id ← G(msk, P, id) and sends skP,id to
A2.

– Key Update Generation query Oku(t, rl): If responding to the query would
allow A2 to trivially decrypt the challenge ciphertext (in Phase 2), then D1

sends ⊥; otherwise, D1 computes kut,rl ← RG(msk, t, rl) and sends kut,rl to
A2.

– Challenge query (M0,M1, S
∗, t∗, r): If A2 can trivially decrypt ciphertexts

encrypted under §∗ at time t∗+r then D1 sends ⊥. Otherwise, D1 generates
random bit b, random symmetric keys k0, k1, . . . , kr+1 ← GSym, and random
seeds s1, . . . , sr+1. D1 creates Cpk0 = E(S∗, k0, t

∗), and then computes

Cpk1 = CTU
(
Cpk0

)
, Cpk2 = CTU

(
Cpk1

)
,

. . . , Cpkr = CTU
(
Cpkr−1

)
, Cpkr+1 = CTU

(
Cpkr

)
For each u ∈ {1, . . . , r}, D1 creates Cbksu,u = E(S∗, (su, ku), t∗ + u) and com-
putes

Cbksu,u+1 = CTU
(
Cbksu,u

)
, Cbksu,u+2 = CTU

(
Cbksu,u+1

)
,

. . . , Cbksu,r = CTU
(
Cbksu,r−1

)
, Cbksu,r+1 = CTU

(
Cbksu,r

)
Then D1 creates CT0 = T

(
ESym(k0,Mb)

)
and C∗0 =

(
Cpk0 , [], CT0

)
. For each

u ∈ {1, . . . , r}, D1 creates

CTu =
[
CTu−1

]
Ind(su,`∗),Ctr(ku,`∗)

and
CS∗,t∗+u =

(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
.

62

D1 givesA2 the (1−ε)|CS∗,t∗+r| bits that it adaptively requests of {CS∗,t∗+u}0≤u≤r
as well as

CS∗,t∗+r+1 =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E(S∗, (0, 0), t∗ + r + 1)

]
,
[
CTr
]
ind,Ctr(kr+1,`∗)

)
.

– Guess b′: If b = b′ then D1 guesses that ind = Ind(s, `∗), otherwise D1 guesses
that ind = rInd(`∗).

If ind = Ind(s, `∗), then A2 is in Game1 and has probability of success p1;
thus D1 is correct with probability p1. If ind = rInd(`∗), then A2 is in Game2
and has probability of success p2; thus D1 is correct with probability 1 − p2.
Therefore D1’s probability of success is 1

2 (p1 + 1 − p2) = 1
2 + 1

2 (p1 − p2). By
the pseudorandomness of Ind(s, `∗), 1

2 (p1 − p2) is negligible, and so p1 − p2 is
negligible. ut

Lemma 22. Suppose that an adversary A3 for the (1−ε)-Adap-Revoke-RS-KP-ABE
security game has probability of success p2 in Game2 and probability of success p3
in Game3. If Ctr(k1, `

∗) with random key k1 is pseudorandom (indistinguishable
from rStr(`∗)), then p3 − p2 is negligible.

Proof. We construct a distinguisherD2 that receives a bitstream str—either str =
Ctr(k1, `

∗) with random key k1 or str = rStr(`∗). D2 simulates adversary A3. D2

instantiates the RS-KP-ABE scheme itself and sends A3 the public parameters.
D2 responds to queries from A3 as follows:

– Secret Key Generation query Osk(P, id): If responding to the query would
allow A3 to trivially decrypt the challenge ciphertext (in Phase 2), then D2

sends ⊥; otherwise, D2 computes skP,id ← G(msk, P, id) and sends skP,id to
A3.

– Key Update Generation query Oku(t, rl): If responding to the query would
allow A3 to trivially decrypt the challenge ciphertext (in Phase 2), then D2

sends ⊥; otherwise, D2 computes kut,rl ← RG(msk, t, rl) and sends kut,rl to
A3.

– Challenge query (M0,M1, S
∗, t∗, r): If A3 can trivially decrypt ciphertexts

encrypted under §∗ at time t∗+r then D2 sends ⊥. Otherwise, D2 generates
random bit b, random symmetric keys k0, k1, . . . , kr+1 ← GSym, and random
seeds s1, . . . , sr+1.D2 then constructs C∗0 , . . . , C

∗
r , Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1

]
,

and CTr following the procedure in Lemma 21.D2 givesA3 the (1−ε)|CS∗,t∗+r|
bits that it adaptively requests of {CS∗,t∗+u}0≤u≤r as well as

CS∗,t∗+r+1 =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E(S∗, (0, 0), t∗ + r + 1)

]
,
[
CTr
]
ind,Ctr(kr+1,`∗)

)
.

– Guess b′: If b = b′ then D2 guesses that str = Ctr(k1, `
∗), otherwise D2

guesses that str = rStr(`∗).

If str = Ctr(k1, `
∗), then A2 is in Game2 and has probability of success p2;

thus D2 is correct with probability p2. If str = rStr(`∗), then A2 is in Game3

63

and has probability of success p3; thus D2 is correct with probability 1 − p3.
Therefore D2’s probability of success is 1

2 (p2 + 1 − p3) = 1
2 + 1

2 (p2 − p3). By
the pseudorandomness of Ctr(k1, `

∗), 1
2 (p2 − p3) is negligible, and so p2 − p3 is

negligible. ut

Lemma 23. Suppose that an adversary A4 for the (1−ε)-Adap-Revoke-RS-KP-ABE
security game has probability of success p3 in Game3. Suppose also that the under-
lying AONT T is a computationally-secure adaptive `-AONT and CT comprises
at least a fraction 1−δ of the total size of each ciphertext. If ε > δ and `∗ > `

ε−δ ,

then p3 <
1
2 + negl for some negligible function negl.

Proof. We construct an adversary B2 that plays the `-AONT security game by
simulating adversary A4. B2 instantiates the RS-KP-ABE scheme itself and sends
A4 the public parameters. B2 responds to queries from A4 as follows:

– Secret Key Generation query Osk(P, id): If responding to the query would
allow A4 to trivially decrypt the challenge ciphertext (in Phase 2), then B2
sends ⊥; otherwise, B2 computes skP,id ← G(msk, P, id) and sends skP,id to
A4.

– Key Update Generation query Oku(t, rl): If responding to the query would
allow A4 to trivially decrypt the challenge ciphertext (in Phase 2), then B2
sends ⊥; otherwise, B2 computes kut,rl ← RG(msk, t, rl) and sends kut,rl to
A4.

– Challenge query (M0,M1, S
∗, t∗, r): If A4 can trivially decrypt ciphertexts

encrypted under §∗ at time t ∗ +r then B2 sends ⊥. Otherwise, B2 gen-
erates keys k0, k1, . . . , kr+1 ← GSym, and random seeds s1, . . . , sr+1. B2
then constructs Cpk0 , . . . , Cpkr+1 as well as Cbksu,u , . . . , C

bks
u,r+1 for u ∈ {1, . . . , r}

following the procedure in Lemma 21. B2 makes AONT challenge query(
ESym(k0,M0),ESym(k0,M1)

)
, receiving oracle access to AONT output CT0 =

T
(
ESym(k0,Mb

)
in response. B2 responds to A4 by giving it oracle access to

{CS∗,t∗+u =
(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
}0≤u≤r

for
CTu =

[
. . .
[[
CT0
]
Ind(s1,`∗),Ctr(k1,`∗)

]
. . .
]
Ind(su,`∗),Ctr(ku,`∗)

,

with a limit of (1 − ε)|C∗r | total bits queried. Whenever A4 queries a bit
of CTu , B2 queries the corresponding bit of CT0 . For each u′ ∈ {1, . . . , u}, if
the bit is in Ind(su′ , `

∗), B2 XORs it with the corresponding bit of Ctr(ku′).
B2 returns the resulting bit to A4. When A4 finsihes its queries, B2 chooses
random L ∈

{
N
`∗

}
and queries any bits of

[
CT0
]
L

that it hadn’t previously

queried. If this requires more than N − ` bits of CT0 then B2 aborts the

simulation. Otherwise, it produces C̃Tr ∈ {0, 1}N by setting the bits not in L
as their corresponding values from CTr and choosing the bits in L randomly.
B2 then gives A4

CS∗,t∗+r+1 =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E(S∗, (0, 0), t∗ + r + 1)

]
, C̃Tr

)

64

– Guess b′: B2 receives b′ as A4’s guess and uses the same bit b′ for its guess
as well.

We now look at the probability that B2 aborts when responding to A4’s
challenge query. Let ε′ be the fraction of CT that A4 does not query from C∗;
note that ε′ ≥ ε − δ. Let `′ be the number of bits of CT that are in L but A4

does not query from its oracle. B2 aborts if and only if `′ < `. To get any upper
bound on `′, we apply Lemma 5. We let balls in the lemma correspond to bits
here. Balls selected in the first stage correspond to bits of CT that were not
queried, and balls selected in the second stage correspond to bits in L. Then
`′ here is equivalent to `′ in the lemma. Thus by Lemma 5, for any t > 0,
Pr[`′ ≤ `∗(ε′ − t)] ≤ e−2`∗t2 .

For any fixed t, this probability is negligible for `∗ = ω(log(λ)). Thus as long
as ` < `∗ · ε′, the probability that B2 aborts is negligible. Since ε′ ≥ ε − δ, if
`∗ > `

ε−δ then this will hold.
If B2 does not abort then its probability of success is identical to A4’s prob-

ability of success. Since L was chosen randomly and any string XORed with a

random string is a random string, C̃Tr =
[
CTr
]
rInd(`∗),rStr(`∗)

.

Thus A′4s view here is the same as in Game3, so its probability of success
is p3. Hence B2’s probability of success, when accounting for the probability
that it aborts, is p3 − negl′ for some negligible function negl′. By the `-AONT
security of T , p3−negl′ < 1

2 +negl′′ for some negligible function negl′′. Therefore
p3 <

1
2 + negl for negl = negl′ + negl′′. ut

Now we use these lemmas to prove Theorem 16.

Proof. By Lemmas 20, 21, and 22, we see that the adversary’s probability of
success in Game0 can only be negligibly greater than its probability of success in
Game3. By Lemma 23, the adversary’s success in Game3 can be at most 1

2 +negl
for some negligible function negl. Thus the adversary’s success in Game0, which is
the real case, can be at most 1

2+negl′ for some negligible function negl′. Combined
with Theorem 15, this proves that is (1−ε)-Adap-Revoke-RS-KP-ABE-secure. ut

F.3 Static-Revocable-RS-KP-ABE Security

Theorem 17. Assume the existence of a RS-KP-ABE-secure revocable-storage
attribute-based encryption scheme Π = (Setup,G,E,KU,D,CTU), a symmetric-
key encryption scheme Πsym =

(
GSym,ESym,DSym

)
, and an `-AONT T . Suppose

that for the construction from Section 12.4, CT comprises at least a fraction
1− δ of the total size of each ciphertext. Then for any ε < 1 with ε > δ and any
`∗ > `

ε−δ , this construction is (1− ε)-Stat-Revoke-RS-KP-ABE-secure.

Proof. This proof is identical to the proof of Theorem 16, with the exception
of how B2 responds to the challenge queries. In the proofs of Lemmas 20, 21,
and 22, the adversary requests the bits of {CS∗,t∗+u}0≤u≤r to receive all at once
instead of adaptively. In the proof of Lemmma 23 for the static case, it works
as follows: B2 receives challenge query M0,M1, S

∗, t∗, r). Let bitPosT be the set

65

of bit positions requested that correspond to bits of CT . B2 chooses random
L ∈

{
N
`∗

}
. If |L ∩ ([N] \ bitPosT)| < ` then B2 aborts the simulation. Otherwise,

B2 generates random symmetric keys k0, k1, . . . , kr+1 ← GSym and random seeds
s1, . . . , sr+1. B2 then constructs Cpk0 , . . . , Cpkr+1 as well as Cbksu,u , . . . , C

bks
u,r+1 for

u ∈ {1, . . . , r}, following the procedure in Lemma 21. B2 makes AONT challenge
query (

ESym(k0,M0),ESym(k0,M1), L ∩ ([N] \ bitPosT)
)
,

receiving [
CT
]
L∩([N]\bitPosT)

=
[
T
(
ESym(k0,Mb)

)]
L∩([N]\bitPosT)

in response. B2 produces CT0 ∈ {0, 1}N by taking
[
CT
]
L∩([N]\bitPosT)

and filling

in the bits from L ∩ ([N] \ bitPosT) arbitrarily (these bits will not affect the
challenge ciphertexts), and then it computes

{CS∗,t∗+u =
(
Cpku ,

[
Cbks1,u , . . . , C

bks
u,u

]
, CTu

)
}0≤u≤r

for

CTu =
[
. . .
[[
CT0
]
Ind(s1,`∗),Ctr(k1,`∗)

]
. . .
]
Ind(su,`∗),Ctr(ku,`∗)

.

B2 constructs C̃Tr ∈ {0, 1}N by setting the bits not in L as their corresponding
values from CTr and choosing the remaining bits randomly. B2 gives A4 the
requested (1− ε)|C∗r | bits of {CS∗,t∗+u}0≤u≤r as well as

CS∗,t∗+r+1 =
(
Cpkr+1,

[
Cbks1,r+1, . . . , C

bks
r,r+1,E(S∗, (0, 0), t∗ + r + 1)

]
, C̃Tr

)
.

When considering the probability that B2 aborts when responding to A4’s
challenge query, here we let `′ = |L∩ ([N] \bitPosT)|, which is the number of bit
positions of CT that are in L but not in bitPosT . Again, B2 aborts if and only
if `′ < `. The upper bound on `′ is still the same as for the adaptive case by the
exact same argument. Thus the probability that B2 aborts is again negligible as
long as `∗ > `

ε−δ . ut

G Adaptive AONT Construction

We note that based on the work of Dodis et al. [15], we can construct adaptive
AONT based on the existence of Adaptive Exposure Resistant Functions (ERF).
This work builds on the work of Canetti et al. [12], who show in the non-adaptive
setting how to build AONT from ERFs. Both works strive to prove their results
in the standard model. Since our goal is strict efficiency for a practical problem,
we note that their constructions can be efficiently lifted to the Random Oracle
model. The results provide intuitive constructions based on OAEP similar to
those of Boyko [11], and proofs that are much simpler, but at the expense of
tightness in the security reduction.

66

G.1 Random Oracles as Adaptive `-Exposure Resilient Functions

Exposure resilient functions are to a first approximation efficiently computable
functions where the output appears random, even if some bits of the randomly
chosen input are leaked to the adversary. We give the adaptive definition, as it
is used in out constructions later. We refer the reader to Dodis et al. [15] for
a more thorough discussion of this and related definitions, and constructions of
these funcitons in the standard model.

Definition 21. A PPT (oracle) computable function f : {0, 1}n → {0, 1}k is
an adaptive `−ERF with ε security, if for any PPT oracle adversary A:

Pr
G,r

[A[r]`,G(f(r)) = 1]− Pr
G,r,R

[A[r]`,G(R) = 1] ≤ ε,

where [r]` is an oracle that allows A to query i and receive the ith bit of r, up to
n−` queries; G denotes any applicable Random Oracles, and f may be dependent
on G.

As noted by Canetti et al. [12], random oracles are ERFs. For completeness,
we formalize this in the following claim:

Lemma 24. Let F : {0, 1}n → {0, 1}k be a random oracle. Then f(x) = F (x) is
an adaptive `−ERF, for ` < n with q/2`−1 security against an adversary limited
to q < 2`−1 queries to F .

Proof. Note that for a given x, f(x) = F (x) is a completely random output to
A unless it otherwise queries F (x). Therefore, our problem reduces to bounding
the probability that in the experiment PrG,r[A

[r]`,G(f(r))] = 1 that A queries
F (r) = f(r), given its access to F and [r]` oracles. An adversary that will make
q queries optimizes its probability of querying F (r) by learning as much of r
as possible from [r]` prior to making any direct queries to F , lest it make any
queries that are incompatible with the bits learned about r. The probability of
successfully querying r is now

∑q−1
i=0 1/(2` − i) < q/(2` − q) < q/(2` − 2`−1) =

q/2`−1. ut

G.2 Original OAEP as an Adaptive AONT in the Random Oracle
Model

Canetti et al. [12] present a construction of a secret-only AONT based on OAEP
in the non-adaptive setting. Unfortunately, this construction has the negative
side-effect that it doubles the storage and download bandwidth for a given file.
While storage is effectively free, the increase in access time if files are stored on
disk, and the bandwidth and download effects are undesirable. Here we show that
a slight modification of their arguments allows a traditional OAEP construction,
as originally suggested by Boyko [11], can be proven adaptively secure.

67

Lemma 25. Let G : {0, 1}k → {0, 1}n, and H : {0, 1}n → {0, 1}k be random
oracles. Define the probablistic function f : {0, 1}n → {0, 1}k: f(x; r) = 〈G(r)⊕
x,H(G(r) ⊕ x) ⊕ r)〉, where r ∈R {0, 1}k. Let ` ≤ k, then f is an adaptive
2`-AONT, with security q/2`−2 for an adversary that makes at most q < 2`−1

adaptive queries to G or H.

Proof. We first note that an adaptive adversary A that can make ` queries to
〈G(r)⊕x,H(G(r)⊕x)⊕r)〉 will either make a majority of its queries ` = d2`/2e
to either the bits contained in G(r)⊕x, or H(G(r)⊕x)⊕r. Therefore, it suffices
to prove the result for both cases when ` queries are made to either G(r) ⊕ x
or H(G(r)⊕ x)⊕ r, assuming the adversary would be given the entirety of the
other oracle, after it had finished making its adaptive queries; more information
cannot harm the adversary’s success probability.

We consider the two cases seperately. We then take the minimum of the
security guarantees to prove the lemma.

Case: ` queries to G(r)⊕ x. We need to bound:

Pr
G,H,r

[A[G(r)⊕x0]`,G,H(x0, x1, H(G(r)⊕ x0)⊕ r) = 1]−

Pr
G,H,r

[A[G(r)⊕x1]`,G,H(x0, x1, H(G(r)⊕ x1)⊕ r) = 1] . (1)

With an eye towards using Lemma 24, we define the event that A queries
G(r) as BAD , and bound its probability.

Claim. Pr[BAD] ≤ q/2`

Proof. For an adversary with q queries to query G(r), it has two strategies to
consider: i) try to query H on (G(r) ⊕ xb), as it knows all but ` bits of this
string, and then use its input H(G(r) ⊕ xb) ⊕ r to retrieve r, or ii) brute-force
queries to G in hopes of querying G(r) directly.

The adversary optimizes its probability of querying H(G(r)⊕xb) by learning
as much of G(r) ⊕ xb as possible from [G(r) ⊕ xb]` prior to making any direct
queries to G, lest it make any queries that are incompatible with the bits learned
about G(r) ⊕ xb. Then it will guess the remaining ` bits of G(r) ⊕ xb, query
this to H, and then XOR the response with H(G(r) ⊕ x0) ⊕ r to produce its
guess of r. This procedure will require one query to H and one to G. Thus the

probability of successfully querying G(r) is
∑bq/2c−1
i=0 1/(2` − i) < (q/2)/(2` −

q/2) < (q/2)/(2` − 2`−1) = q/2`−1.
If the adversary tries to brute-force queries to G, then it has to guess the

correct value of r out of 2k possibilities. Thus its probability of success is∑q−1
i=0 1/(2k − i) < q/(2k − q) < q/(2k − 2k−1) = q/2k−1. Since k ≥ `, q/2k−1 ≤

q/2`−1. Thus in either case, Pr[BAD] ≤ q/2`−1. ut
We will use Lemma 10 to achieve our bound for A, so now we look at:

Pr
G,H,r

[A[G(r)⊕x0]`,G,H(x0, x1, H(R⊕ x0)⊕ r) = 1|BAD]−

Pr
G,H,r

[A[G(r)⊕x1]`,G,H(x0, x1, H(R⊕ x1)⊕ r) = 1|BAD] . (2)

68

Conditioned on BAD , G(r) = R for R ∈R {0, 1}n, so the above is equal to:

Pr
G,H,r

[A[R⊕x0]`,G,H(x0, x1, H(R⊕ x0)⊕ r) = 1|BAD]−

Pr
G,H,r

[A[R⊕x1]`,G,H(x0, x1, H(R⊕ x1)⊕ r) = 1|BAD] , (3)

which is equivalent to:

Pr
G,H,r

[A[R0]`,G,H(x0, x1, H(R0)⊕ r) = 1|BAD]−

Pr
G,H,r

[A[R1]`,G,H(x0, x1, H(R1)⊕ r) = 1|BAD] , (4)

where Rb = R ⊕ xb (b ∈ {0, 1}), and is uniformly distributed (given that R is).
Since R0 and R0 are both uniformly random, PrG,H,r[A

[R0]`,G,H(x0, x1, H(R0)⊕
r) = 1|BAD] and PrG,H,r[A

[R1]`,G,H(x0, x1, H(R1)⊕r) = 1|BAD] are equivalent,
so

Pr
G,H,r

[A[G(r)⊕x0]`,G,H(x0, x1, H(R⊕ x0)⊕ r) = 1|BAD]−

Pr
G,H,r

[A[G(r)⊕x1]`,G,H(x0, x1, H(R⊕ x1)⊕ r) = 1|BAD] = 0 . (5)

Applying Lemma 10 we get that:

Pr
G,H,r

[A[G(r)⊕x0]`,G,H(x0, x1, H(G(r)⊕ x0)⊕ r) = 1]−

Pr
G,H,r

[A[G(r)⊕x1]`,G,H(x0, x1, H(G(r)⊕ x1)⊕ r) = 1]

≤ 0 + 2 Pr[BAD] = 2q/2` = q/2`−1. (6)

Case: `′ queries to H(G(r) ⊕ x This is a similar, but simpler case than the
previous one. We need to bound:

Pr
G,H,r

[AH(G(r)⊕x0)⊕r]`,G,H(x0, x1, G(r)⊕ x0) = 1]−

Pr
G,H,r

[A[(H(G(r)⊕x1)⊕r]`,G,H(x0, x1, G(r)⊕ x1)) = 1]. (7)

We note that the adversary, given access to G(r) ⊕ xb as part of its input, can
query H(G(r) ⊕ xb), and the result is that its dynamic oracle is equivalent to
having access to r = H(G(r)⊕xb)⊕r⊕H(G(r)⊕xb). Thus it suffices to bound:

Pr
G,H,r

[A[r]`,G,H(x0, x1, G(r)⊕ x0) = 1]−

Pr
G,H,r

[A[r]`,G,H(x0, x1, G(r)⊕ x1)) = 1]. (8)

69

Noting that G as a random oracle is an `−ERF, and applying Lemma 24 to both
sides of the summand, we have that the above is strictly less than:

Pr
G,H,r,R0

[A[r]`,G,H(x0, x1, R0 ⊕ x0) = 1]−

Pr
G,H,r,R1

[A[r]`,G,H(x0, x1, R1 ⊕ x1)) = 1] + 2q/2`−1. (9)

Since R0 and R1 are uniformly random, PrG,H,r,R0
[A[r]`,G,H(x0, x1, R0⊕x0) = 1]

and PrG,H,r,R1
[A[r]`,G,H(x0, x1, R1 ⊕ x1)) = 1] are clearly equivalent, and thus

the above is bounded by 2q/2`−1 = q/2`−2. ut

	Efficient Hybrid Proxy Re-Encryption for Practical Revocation and Key Rotation
	Introduction
	Related Work
	Notation
	Background Definitions
	All-Or-Nothing Transforms
	Public-Key Proxy Re-Encryption

	Revocation- and Key-Rotation-Friendly Proxy Re-Encryption
	(1-epsilon)-Revocable, Unidirectional, Multi-Hop, PRE CPA-Security

	CPA-Secure Hybrid Public-Key Proxy Re-Encryption Scheme
	Overview of Construction
	Notation
	Proxy Re-Encryption Construction
	Correctness
	Basic PRE-CPA Security
	Adaptive-Revocable-PRE-CPA Security

	Extensions to Proxy IBE and Revocable ABE
	Implementation Issues
	Efficiency
	Bounded Storage Security and Error Correction
	Identity-Based Proxy Re-Encryption
	Correctness
	Unidirectional, Multi-Hop, IB-PRE CPA-Security
	(1-epsilon)-Revocable, Unidirectional, Multi-Hop, IB-PRE CPA-Security
	Identity-Based Proxy Re-Encryption Construction
	Correctness
	Security Theorems

	Revocable-Storage Attribute-Based Encryption
	Correctness
	Revocable Storage KP-ABE Security
	(1-epsilon)-Revocable, Revocable Storage KP-ABE Security
	Revocable-Storage KP-ABE Construction
	Correctness
	Security Theorems

	Conclusions
	Symmetric-Key Encryption
	CPA-security for symmetric-key encryption

	PRE-CPA-Security of Hybrid Construction
	Probabilistic Technical Lemmas
	Proof of Static-Revocable-PRE-CPA Security
	Proofs for Identity-Based Proxy Re-Encryption
	IB-PRE-CPA-Security of Hybrid Construction
	Adaptive-Revocable-IB-PRE-CPA Security
	Static-Revocable-IB-PRE-CPA Security

	Proofs for Revocable-Storage Attribute-Based Encryption
	RS-KP-ABE-Security of Hybrid Construction
	Adaptive-Revocable-RS-KP-ABE Security
	Static-Revocable-RS-KP-ABE Security

	Adaptive AONT Construction
	Random Oracles as Adaptive l-Exposure Resilient Functions
	Original OAEP as an Adaptive AONT in the Random Oracle Model

