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Abstract. JAMBU is an AEAD mode of operation which entered the
third round of CAESAR competition. However, it does not have a securi-
ty proof like other modes of operation do, and there was a cryptanalysis
result that has overthrown the security claim under nonce misuse case by
the designers. In this paper, we complement the shortage of the scheme
by giving security proofs of JAMBU both under nonce respecting case
and nonce misuse case. We prove that JAMBU under nonce respecting
case has a slightly lower security than the birthday bound of n bits, and
JAMBU under nonce misuse case has a tight security bound of n/2 bits.
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1 Introduction

Authenticated encryption or usually known as authenticated encryption with
associated data (AE or AEAD for short), which was formalized in [7, 23], is
a cryptographic primitive that can protect confidentiality and integrity at the
same time. AEAD takes as input a public nonce IV , public associated data AD,
plaintext P , and a key K, outputs the ciphertext C and a tag T while encryption,
and while decryption, K, IV , AD, C and T are inputs, if the tag T is valid,
returns P , otherwise an error symbol ⊥.

In 2013, the international cryptologic research community announced a new
competition for authenticated encryption called CAESAR, and in August 2016,
15 candidates were elected into the third round, including JAMBU by Wu and
Huang [31]. JAMBU (originally AES-JAMBU) is a block-cipher mode of oper-
ation, which is a primary method for implementing authenticated encryption.
Among other AEAD schemes using modes of operation in CAESAR, JAMBU
is designed for lightweight applications. It is not as fast as the parallelizable
schemes such as OCB [26] and OTR [17], but it is inverse-free, using only X-
OR operations, and has a lower state size in the cost of a shorter nonce and
tag length [31]. JAMBU adopts an underlying block-cipher with 2n-bit block
length and k-bit key length, along with n-bit nonce, and outputs n-bit tag. It
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has only 3n-bit state, which memory requirement is among the least of CAESAR
candidates.

Initial vector (IV), or usually called nonce to show its non-repeatedness, has
been important in symmetric key cryptography since the invention of CBC mode.
The importance of nonce has been discussed by earlier researchers, especially in
the terms of AEAD [8, 24]. Each nonce was supposed to be used only once, but
due to various reasons including incorrect implementation, resource limitation,
loss of stored nonce data, etc, it is possible that an encryption algorithm returns
two ciphertexts with a same nonce, which is often called nonce misuse. Most
earlier AEAD modes of operation were not designed to support nonce misuse.
For example, in GCM mode of operation which is widely adopted as a standard
[20], the security would be completely broken if nonce could be reused. But later,
especially as the CAESAR competition went on, the community and AEAD
designers were divided into two groups: some of them believe nonce should never
be reused, and others believe that nonce misuse is inevitable, so an AEAD scheme
should at least provide some security when the user repeats a nonce.

The idea of AE with nonce misuse security, has first been introduced with
the term deterministic AE [28] or misuse-resistance AE [27]. Researchers also
provided some modes of operation which support nonce misuse resistance, such
as [15, 29, 12]. However, such security notion requires that there is no information
leakage even when nonce is reused, which is sometimes too strong. So a weaker
notion of online AE has been studied, often called online nonce misuse resistance
AE [11, 1, 13]. An AE scheme is called online, if each output block is only related
to its previous input blocks. A perfectly secure online scheme should only leak
the common prefix of the message. In the CAESAR competition, there are also
some online nonce misuse resistance schemes, for example COLM [2] that has
entered the third round.

Although the necessity of nonce misuse security is still under controversy, it
is indeed useful for lightweight applications. For protecting confidentiality and
integrity in a resource restrained device such as IoT, RFID card, etc, it is not
always possible for storing and managing fresh nonce, and sometimes it requires
additional synchronous protocol which might be costly. But if the scheme is
nonce-misuse resistance, even only to a small degree, then any random number
could be used as a nonce, which will simplify the implementation a lot.

In the first version of JAMBU proposal [30], the designers claimed that JAM-
BU leaks only the common prefix of the message when nonce is reused. However,
JAMBU with nonce misuse had later been analyzed by Peyrin et al [22], and
they showed that there is an attack with O(2n/2) queries on JAMBU with nonce
misuse. The designers acknowledged their work. In their latest document [31],
the designers gave a proof on the authenticity of JAMBU, but there are still no
results on privacy. However, they believe that JAMBU can achieve some security
under nonce misuse, although not as they originally claimed. If JAMBU could
be proved to have an n/2-bit security under nonce misuse case, although not
full security, it could still bring great advantage since JAMBU is designed for
lightweight usage.
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Provable security is an important method in the research of both public
key and symmetric key cryptography. In symmetric key cryptography, provable
security is usually applied to modes of operation, which security is reduced to
the security of the underlying block cipher. The examples are security proofs
to OCB [25] and GCM [21]. Although not necessary, a security proof is often
considered a great advantage when evaluating a mode of operation. Most of the
CAESAR submissions which are modes of operation had given their security
proofs. However, the designers did not give their security proof on JAMBU,
and this devaluate their security claims compared to other schemes such as
CLOC/SILC [14], which shares the same lightweight feature with JAMBU. In
this paper, we shall give security proofs for JAMBU under both nonce respecting
and nonce misuse cases, so that the security of JAMBU could be further ensured.

Unlike nonce respecting security, there is no common way to define nonce
misuse security. In [13], the authors list out various security notions for AEAD
schemes in CAESAR competition. One of them (OAE1d) is as follows: “Leaks
equality of block-aligned prefixes and the XOR of the block directly following
this prefix. E.g., if C, C ′ arise from 4-block plaintexts P = A‖B‖C‖D and P ′ =
A‖B‖E‖F , we always have C1 = C ′1, C2 = C ′2, and C3⊕C ′3 = C⊕E. Ciphertexts
C, C ′ arising from 4-block plaintexts P = A‖B‖C‖D and P ′ = E‖F‖G‖H will
have C1 ⊕ C ′1 = A⊕ E.” The authors also pointed out that JAMBU, as well as
sponge based schemes such as Keyak[6] or Norx[4], satisfied such security notion
for nonce misuse.

In this paper, we shall point out that in these schemes, the i+1-th ciphertext
block is obtained from the XOR of the i+1-th plaintext block and a “keystream”
block which is generated by the first i plaintext blocks. So that if the first i
plaintext blocks are the same for two different inputs, the first i + 1 keystream
blocks are the same as well, which leads to the insecurity of the first i + 1
ciphertext blocks.

It is hence clear that the security of the AEAD scheme can be derived from
the security of all keystream blocks, which can be considered as a certain type of
pseudorandom number generator (PRNG), we call it online block-wise PRNG.
We shall give out its definition and security notion in this paper. An online
block-wise PRNG is not an AE scheme, but it can be used for construction
of AE schemes, and we prove the relationship between the confidentiality and
integrity of AE scheme and the security of the online block-wise PRNG. We
further show that the scheme JAMBU can be constructed from a certain type of
online blockwise PRNG, which we called JAMBU-like online blockwise PRNG.
Then, we use the game-playing proof method [9] to prove the security of JAMBU-
like online blockwise PRNG, hence the security of JAMBU is assured. Since
the integrity result has been given by the designers, we mainly focus on the
confidentiality result. We show that JAMBU indeed can be proven to have an
n− log n-bit security under nonce respecting case, which is close to its birthday
bound, and for nonce-misuse case, the security is n/2-bit under our model.

Related Works. Our construction of online blockwise PRNG partly covers the
notion of sponge-based constructions, which security has been widely discussed
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before. The provably security of sponge functions has been given in [5], and
there are also provable security results on sponge-based AE constructions [19,
3]. Most recently, Daemon et al [10] has given the security result for the full-
state keyed duplex construction used in Keyak. We claim that, although there are
some similarities, ours is an individual work from these sponge-based provable
security results.

The paper organized as follows. In section 2, we simply introduce the JAMBU
scheme. In section 3, we define online blockwise PRNG and how to construct
AEAD schemes from it. In section 4, we prove the security of JAMBU-like online
blockwise PRNG, which leads to the security of JAMBU, under both nonce
respecting case and nonce misuse case. And finally in section 5 we draw the
conclusion.

2 The JAMBU AE Scheme

Notations. We shall use ‖ as the operator for concatenation of two strings, for
example, 0‖1 is the string 01. ε denotes an empty string. For a string s, we write
s|i,j to be the substring of s from the i-th bit to the j − 1-th bit, for example,
01100|2,4 = 10. If i = 0, we also write it as s|j , which is the first j bits of s. We
also let s[i] = s|ni,n(i+1) be the i-th block of s, n is the block size of JAMBU.

x
$←− X means that x is randomly chosen from a set X.
Before we go on to the security proof, we first introduce the structure of

JAMBU. As a block cipher mode of operation, JAMBU uses an underlying block-
cipher with k-bit key and 2n-bit block length, takes n-bit nonce IV , arbitrary
length of associated data AD and plaintext P as input, generates ciphertext C
of the same length as P , and n-bit authentication tag T . JAMBU has 3n-bit
internal states U , V and R, each of n-bit. In their submission, the designers
denote the states before a block-cipher call by U , V , R and after a block-cipher
call by X, Y , R, we adopt this notation in our discussion. We write EK as the
underlying block cipher.

A JAMBU encryption consists of five steps:
(1) Padding. AD and P are done with a 10∗ padding. For associated data, a

‘1’ bit is padded followed by the least number of ‘0’ bits to make the length of
padded associated data a multiple of n-bit. Then the same padding method is
applied to the plaintext.

(2) Initialization. For the n-bit nonce IV , the state U−1‖V−1 is set to 0n‖IV ,
and R−1 is set to 0n. Then, set X−1‖Y−1 ← EK(U−1‖V−1), U0‖V0 ← X−1‖Y−1⊕
5, R0 ← U0. Note that 5 is written as a binary string 02n−3101, so are other
numbers below.

(3) Processing of the associated data. For the padded associated data (note
that if there is no associated data, padding made it into at least 1 block), it is
divided into h blocks AD[0], ..., AD[h− 1], and processed as follows:

For i = 0 to h− 1, update the states:
Xi‖Yi ← EK(Ui‖Vi), Ui+1 ← Xi ⊕ AD[i], Vi+1 ← Yi ⊕ Ri ⊕ 1, Ri+1 ←

Ri ⊕ Ui+1, AD[i] is the i-th AD block.
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The initialization and processing of the associated data step is shown in figure
1.

Fig. 1: Initialization and AD processing

(4) Processing of the plaintext. For the padded plaintext, it is divided into p
blocks P [0], ..., P [p− 1], and processed as follows:

For i = 0 to p − 1 (note that we reset i to 0, and Uh‖Vh in (3) becomes
U0‖V0), update the states:

Xi‖Yi ← EK(Ui‖Vi), Ui+1 ← Xi ⊕ P [i], Vi+1 ← Yi ⊕Ri, Ri+1 ← Ri ⊕ Ui+1,
output C[i]← P [i]⊕ Vi+1, P [i] is the i-th plaintext block.

For the last ciphertext block C[p−1], truncate it into the same length as the
last plaintext block before padding. For example, if plaintext length is a multiple
of n (in this case, a full padding block is added), then the last ciphertext block
is simply ignored.

The processing of the plaintext step is shown in figure 2.

Fig. 2: Plaintext processing

(5) Finalization and tag generation. It process as follows:
Xp‖Yp ← EK(Up‖Vp), Up+1 ← Xp, Vp+1 ← Yp⊕Rp⊕ 3, Rp+1 ← Rp⊕Up+1,

Xp+1‖Yp+1 ← EK(Up+1‖Vp+1), output T ← Xp+1 ⊕ Yp+1 ⊕Rp+1.
The finalization and tag generation step is shown in figure 3.
In a JAMBU decryption, first do the padding, initialization and AD process-

ing step. Then, generate the state V1, use it to recover P [0], and use P [0] the
same way as the plaintext processing step to generate V2, then recover P [1], etc.
After generate a tag T ′, compare T ′ with T , if T ′ = T , output the plaintext,
otherwise output ⊥.
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Fig. 3: Finalization and tag generation

3 Online Blockwise PRNG

3.1 Definition and Security Model

Definition 3.1. Let I = N ∪M∪{eoi}, where N ∩M = ∅ and eoi is a special
element which eoi 6∈ N ∪M. N is called the nonce base and M is the set of
input blocks.

Let len :M∪{eoi} 7→ {0, 1, ..., b}, b is any fixed integer, and let g : N×M∗ 7→
{0, 1}b be any function.

Then, an online block-wise PRNG (OBP for short) GgN ,M,len : N ×M∗ ×
{eoi} 7→ {0, 1}∗ is defined as:

GgN ,M,len(N,M1, ...,Mm, eoi)

=g(N)|len(M1)‖g(N,M1)|len(M2)‖...‖g(N,M1, ...,Mm)|len(eoi).

We denote g(N, ...,Mi−1)|len(Mi) by Oi, and g(N, ...,Mm)|len(eoi) by T , so
the output can be written as O1‖...‖Om‖T , and Oi is only related to N and the
first i− 1 input blocks and len(Mi). Sometimes, we can simply write Gg instead
of GgN ,M,len if there is no confusion.

Specifically, if we replace g by a random oracle $, then G$N ,M,len is called a
random online block-wise oracle.

For the simplicity of further discussion, for any input (N,M1, ...,Mm, eoi),
we also write Mm+1 = eoi and Om+1 = T .

The theorem below shows that any output of a random online blockwise
oracle can be divided into two parts: the first part is a prefix of some former
output, the second par is a uniformly random string.

Theorem 3.1. Suppose that a random online block-wise oracle G$N ,M,len has

been queried q times, and the j-th query is Qj = (N j ,M j
1 , ...,M

j
mj ,M

j
mj+1),

1 ≤ j ≤ q. (Note that M j
mj+1 = eoi.) We write Len = Σmj+1

i=1 len(M j
i ). Then

for each query Qj, either:

(1) For any j∗ < j, N j∗ 6= N j. In this case, we have G$(Qj)
$←− {0, 1}Len;

Or
(2) There exists j′ < j, 1 ≤ k ≤ mj which N j = N j′ , M j

i = M j′

i for any
i < k, such that for any j∗ < j which N j∗ = N j, either there is some i∗ < k such



Security Proof of JAMBU under Nonce Respecting and Nonce Misuse Cases 7

that M j
i∗ 6= M j∗

i∗ ; or M j
k 6= M j∗

k and len(M j∗

k ) ≤ len(M j′

k ). In this case, let pf =

Σk−1
i=1 len(M j

i ) + min{len(M j′

k ), len(M j
k)}, then we have G$(Qj) = G$(Qj

′
)|pf‖x,

x
$←− {0, 1}Len−pf .

Proof. We use O to denote the random oracle used in G$N ,M,len. If for any j∗ < j,

N j∗ 6= N j , then O(N j ,M j
1 , ...,M

j
i ) was never queried before, so the output is

uniformly random, and G$(Qj) is also a uniformly random string.

Otherwise, we find k and j′ such that (N j′ ,M j′

1 , ...,M
j′

k−1) = (N j ,M j
1 , ...,M

j
k−1)},

len(M j′

k ) = max{len(M j∗

k )|(N j∗ ,M j∗

1 , ...,M j∗

k−1) = (N j ,M j
1 , ...,M

j
k−1)}; and

there is no j∗ < j where (N j∗ ,M j∗

1 , ...,M j∗

k−1,M
j∗

k ) = (N j ,M j
1 , ...,M

j
k−1,M

j
k).

So for 1 ≤ i ≤ k−1,Oji = O(N j , ...,M j
i−1)|len(Mj

i )
= O(N j′ , ...,M j′

i−1)|
len(Mj′

i )
=

Oj
′

i ; for k + 1 ≤ i ≤ mj + 1, Oji = O(N j , ...,M j
i−1)|len(Mj

i )
has never been

queried before, and is uniformly random. For i = k, we can see that although

O(N j , ...,M j
k−1) has been queried before, but only its first len(M j′

k ) bits has
been output, and its other bits can be viewed as uniformly random. So if

len(M j
k) ≤ len(M j′

k ), Ojk = O(N j , ...,M j
k−1)|len(Mj

k)
= Oj

′

k |len(Mj
k)

, otherwise,

the first len(M j′

k ) bits of Ojk is Oj
′

k , and the rest is uniformly random.

By our discussion above, the first pf = Σk−1
i=1 len(M j

i )+min{len(M j′

k ), len(M j
k)}

bits of G$(Qj) is the same as the first pf bits of G$(Qj
′
), and the rest bits are

uniformly random. ut

Random online block-wise oracle can be used as the ideal security model,
and the security of an online block-wise PRNG is defined as the distinguishing
advantage between it and random online block-wise oracle. We call it the obp-
security, which is defined as:

Definition 3.2. The obp-security of an online block-wise PRNG where g is
randomly chosen from a set G is defined as:

Advobp
GN ,M,len(G)(A) = |Pr[g $←− G : AG

g
N ,M,len ⇒ 1]− Pr[AG

$
N ,M,len ⇒ 1]|.

Also we write Advobp
GN ,M,len(G) = maxAAdvobp

GN ,M,len(G)(A), which is the

maximal advantage over all possible adversaries.

Here, G is the set of all possible functions of g. For example, g is a keyed
function which can be written as gK , and K is the key space, we can take
G = {gK |K ∈ K}.

Lemma 3.1. Suppose that adversary A queries GgN ,M,len with {Qj = (N j ,M j
1 ,

...,M j
mj , eoi)|1 ≤ j ≤ q}. If for each 1 ≤ j ≤ q, 0 ≤ i ≤ mj, g

$←− G :

g(N j , ...,M j
i ) is uniformly random, then Advobp

GN ,M,len(G)(A) is negligible.
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Proof. If A queries GgN ,M,len with {Qj = (N j ,M j
1 , ...,M

j
mj , eoi)|1 ≤ i ≤ q}, then

it queries g with {(N j , ...,M j
i )|1 ≤ j ≤ q, 0 ≤ i ≤ mj}, which returns the same

as $. By definition of obp-security, the advantage for A is negligible. ut

In some AEAD schemes, the unique nonce security can be extended to unique
nonce-AD pair security, where the security of the scheme is granted when there
are no inputs with same nonce and same associated data. This is because that
there is no output when processing associated data. In the terms of online block-
wise PRNG, we can also define such kind of security. We use the term header
for input blocks at the head of the sequence with no output, and formalize it as
below:

Definition 3.3. Let G be an online bit-wise PRNG. For any query (N,M1, ...,
Mm, eoi) we define its header H(N,M1, ...,Mm, eoi) = (N,M1, ...,Mk) where
len(Ii) = 0 for i ≤ k, and len(Mk+1) > 0.

When consider the unique header security, the obp-security degenerates into
the classical prf -security (non-online).

Definition 3.4. The unique header security of an online block-wise PRNG where
g is randomly chosen from a set G is defined as the classical prf-security, which
is:

Advprf
GN ,M,len(G)(A) = |Pr[g $←− G : AG

g
N ,M,len ⇒ 1]− Pr[A$ ⇒ 1]|.

Also we write Advprf
GN ,M,len(G) = maxAAdvprf

GI,len(G)(A), where A is chosen

from the set of all adversaries which never queries G with two inputs of same
header.

Corollary 3.1. If A queries with unique header, then Advobp
GN ,M,len(G)(A) =

Advprf
GN ,M,len(G)(A).

Proof. We only need to show that G$N ,M,len always returns a random string if the

adversary never queries it with same header. For any query Qj = (N j ,M j
1 , ...,

M j
mj , eoi), if there is no previous query j∗ < j such that N j∗ = N j , then the

output is uniformly random.

Otherwise, we find k and j′ that satisfies Theorem 3.1. Suppose thatH(N j , ...,
M j
mj , eoi) = (N j , ...,M j

k′). We see that k′ ≥ k − 1, otherwise, (N j , ...,M j
k′) =

(N j′ , , ...,M j′

k′ ) and len(M j′

k′+1) = len(M j′

k′+1) > 0, thenH(Qj
′
) = (N j , ...,M j

k) =

H(Qj), and that makes a contradiction. If k′ > k−1, by Theorem 3.1, G$N ,M,len

(N j , ...,M j
mj , eoi) is uniformly random. If k′ = k− 1, then len(M j′

k ) = 0, other-

wise H(Qj
′
) = (N j , ...,M j

k−1) = H(Qj). By Theorem 3.1, we see that G$I,len(Qj)
is also uniformly random. ut
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3.2 AEAD from Online Blockwise PRNG

Now, we build a connection between a nonce-based AEAD scheme and our def-
inition of online blockwise PRNG. First, we define an encoding from an AEAD
input to an online blockwise PRNG input.

Definition 3.5. For an AEAD scheme, let its nonce base be N , and tag length
be τ . We construct an online blockwise PRNG GgN ,M,len where len(eoi) = τ .
Now we build a connection between the AEAD scheme and the online blockwise
PRNG by defining an encoding function enc : N × {0, 1}∗ × {0, 1}∗ 7→ N ×M∗
which maps any AEAD input (N,AD,P ) into the online blockwise PRNG input
(N,M1, ...,Mm, eoi).

We define a partition function par : N×N 7→ N∗. For each AEAD encryption
input (N,AD,P ), N ∈ N and AD,P ∈ {0, 1}∗, suppose that par(|AD|, |P |) =
(len1, ..., lenm), which satisfies Σm

i=1leni = |P |. Then, (N,AD,P ) can be writ-
ten as (N,AD,P1, ..., Pm), where P = P1‖...‖Pm and |Pi| = leni. Similarly,
for the decryption input (N,AD,C, T ), where |C| = |P |, it can be written as
(N,AD,C1, ..., Cm, T ), C = C1‖...‖Cm and |Ci| = leni, |Pi| = |Ci| for any
1 ≤ i ≤ m.

Then, an encoding function enc0 : N × {0, 1}∗ × ({0, 1}∗)∗ 7→ N ×M∗ is
valid, if given any AEAD input (N,AD,P1, ..., Pm), enc0 satisfies:

1) For any AEAD input (N ′, AD′, P ′1, ..., P
′
m′), enc0(N,AD,P1, ..., Pm) =

enc0(N ′, AD′, P ′1, ..., P
′
m′) only if (N,AD,P1, ..., Pm) = (N ′, AD′, P ′1, ..., P

′
m′);

2) Let enc0(N,AD,P1, ..., Pm) = (N ′,M1, ...,Mm′), then N ′ = N , m′ = m,
and len(Mi) = |Pi|;

3) Let enc0(N,AD,P1, ..., Pm) = (N,M1, ...,Mm), then for any 0 ≤ i ≤ m,
enc0(N,AD,P1, ..., Pi) = (N,M1, ...,Mi).

Given a valid encoding enc0, enc is defined as:

enc(N,AD,P ) = (enc0(N,AD,P1, ..., Pm), eoi)

where (N,AD,P1, ..., Pm) is generated from (N,AD,P ) using par as above.

An example of valid encoding is the encoding used in Keyak [6], which maps
any (AD,P ) pair into a sequence of b-bit blocks that fit into the inner structure
of the scheme. In fact, most AEAD scheme contains such an encoding, although
sometimes implicitly.

We can see that while encoding an AEAD input (N,AD,P ), P is divided
into blocks, and each input block Mi is only determined by AD and the first i
input blocks (in most cases, it is only related to the i-th input block Pi itself).
This definition links the input plaintext blocks of an AEAD scheme with the
input blocks of an online block-wise PRNG.

For any online block-wise PRNG and a valid encoding, we can build an
AEAD encryption scheme: for the encryption input (N,AD,P ), use par to get
(N,AD,P1, ..., Pm), feed the nonce and every input block in enc(N,AD,P1, ..., Pm)
into the OBP scheme; for each output block Oi which length is len(Mi) = |Pi|,
XOR it onto the plaintext block Pi to get the ciphertext block Ci; finally feed
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the symbol eoi and take the output as the authentication tag T . The decryption
procedure is a bit more tricky. We give the formal definition of an OBP-based
AEAD below:

Definition 3.6. Let GgN ,M,len be an online block-wise PRNG, and enc is a valid
encoding. We suppose that N is also the nonce base of the AEAD scheme, and
len(eoi) = t is the tag length. The AEAD scheme (EgN ,M,len,enc,D

g
N ,M,len,enc)

is defined by:

For encryption input (N,AD,P ), EgN ,M,len,enc(N,AD,P ) is generated by:

EgN ,M,len,enc(N,AD,P ) =

(GgN ,M,len(enc(N,AD,P ))||P | ⊕ P,GgN ,M,len(enc(N,AD,P ))||P |,|P |+t).

For decryption input (N,AD,C, T ), the output DgN ,M,len,enc(N,AD,C, T ) is
generated by the following procedure:

1) First we use par to get (N,AD,C1, ..., Cm, T ), let P ′ ← ε, i← 1;

2) P ′i ← g(enc0(N,AD,P ′1, ..., P
′
i−1))||Ci| ⊕ Ci, P ′ ← P ′‖P ′i , i← i+ 1;

3) If i ≤ m, returns to 2). Let T ′ = g(enc0(N,AD,P ′1, ..., P
′
m))|τ , if T ′ = T ,

returns P ′, otherwise returns ⊥.

Theorem 3.2. The AEAD scheme defined above is a correct encryption scheme.

Proof. For an encryption input (N,AD,P ) and its output (C, T ), we use par
and enc to get input blocks (P1, ..., Pm) and (M1, ...,Mm), correspondingly.
By the definition of online block-wise oracle, we have that C = (g(N)||P1| ⊕
P1)‖(g(N,M1)||P2|⊕P2)‖...‖(g(N,M1, ...,Mm−1)||Pm|⊕Pm), and T = g(N,M1,
...,Mm)|t.

While (N,AD,C, T ) is used as decryption input, we can see that |Ci| = |Pi|
and Ci = g(N,M1, ...,Mi−1)||Pi| = g(enc0(N,AD,P1, ..., Pi−1))||Pi|⊕Pi. For i =
1, we have that P ′1 = g(N)||P1|⊕P1⊕g(N)||C1| = P1. Suppose that for all i < k,
we have P ′i = Pi. Then for i = k, we have P ′k = g(enc0(N,P1, ..., Pk−1))||Ck| ⊕
Ck = Pk. So P ′i = Pi for all 1 ≤ i ≤ m, then P ′ = P . Also, we have T ′ =
g(enc0(N,AD,P1, ..., Pm))|τ = T . Then the decryption function outputs P ′ =
P , which is the correct decryption result. ut

3.3 Security of OBP-based AEAD Schemes

As we mentioned above, for those AEAD schemes which are covered by our
definition of OBP-based schemes, if there is a previous query which has a com-
mon prefix with the current query, then the output blocks of the common prefix
and its next block are insecure. So for the nonce misuse security of OBP-based
AEAD schemes, we discard the common prefix blocks and the next block, only
discuss the security of other blocks. We define the nonce misuse security by the
following definition:
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Definition 3.7. Let OAE = (EgN ,M,len,enc,D
g
N ,M,len,enc) be an OBP-based en-

cryption scheme. Then, the oracle E ′gN ,M,len,enc is defined as:
For any input query (N,AD,P ), if the nonce N has never been used before,

E ′gN ,M,len,enc(N,AD,P ) = EgN ,M,len,enc(N,AD,P ). Otherwise, let enc(N,AD,P ) =
(N,M1, ...,Mm, eoi). Among all previous queries, we find the greatest number k
such that there exists a previous query (N,AD′, P ′) satisfies enc(N,AD′, P ′) =
(N,M ′1, ...,M

′
m′ , eoi) and Mi = M ′i for i < k. Let p = len(M1) + ...+ len(Mk).

Then if EgN ,M,len,enc(N,AD,P ) = (C, T ), we have E ′gN ,M,len,enc(N,AD,P ) =
(C|p,|P |, T ).

The confidentiality of OAE, where g chosen randomly from G is defined as:

Advpriv
OAE(G)(A) = |Pr[g $←− G : AE

′g
N ,M,len,enc(.,.,.) ⇒ 1]− Pr[A$(.,.,.) ⇒ 1]|.

Here $(., ., .) outputs a pair of uniformly random strings of the same length
with the output of E ′gN ,M,len,enc(., ., .), and A is any adversary.

If the adversary is nonce-respecting, which means A never queries E ′ or $
twice with a same N , then E ′ is the same as E. Then the confidentiality definition
can be also written by:

Advpriv
OAE(G)(A) = |Pr[g $←− G : AE

g
N ,M,len,enc(.,.,.) ⇒ 1]− Pr[A$(.,.,.) ⇒ 1]|.

The two definitions can be considered as nonce-misuse security and nonce-
respecting security, respectively. As we already mentioned, the nonce misuse
security only consider outputs begin from the i + 2-th block if there exists a
previous query with the same nonce and a common prefix of i blocks.

Theorem 3.3. Let OAE = (EgN ,M,len,enc,D
g
N ,M,len,enc) be an OBP-based en-

cryption scheme, where g chosen randomly from G. Then:
a) Advpriv

OAE(G)(A) ≤ Advobp
GN ,M,len(G);

b) Advpriv
OAE(G)(A) ≤ Advprf

GN ,M,len(G) for nonce respecting adversary A which

queries EgN ,M,len,enc with unique nonce.

Proof. For any adversary A that attacks the confidentiality of OAE, we con-
struct an adversary A′ that distinguishes between GgN ,M,len and G$N ,M,len.
A′ acts the same as A except when A gets the returned value from oracle

calls E ′ or $, A′ gets the returned value by:
For E ′(IV,AD,P ) = (C ′, T ′), suppose that |C ′| = c′ bits. A′ first call

GgN ,M,len(enc(N,AD,P )) or G$N ,M,len(enc(N,AD,P )) and gets an output O
of |P |+ t bits, then returns (O||P |−c′,|P |⊕P ||P |−c′,|P |, O||P |,|P |+t). We show that
the probabilities of A′ and A returns 1 are the same by proving that the returned
value defined above for A′ shares the same distribution with the returned value
for A from E ′ or $.

In the real world where A calls E ′gN ,M,len,enc and A′ calls GgN ,M,len, by the

definition of E , E(IV,AD,P ) = (C, T ) which (C⊕P )‖T = GgN ,M,len(enc(N,AD,
P )). For A, E ′ returns the last c′ bits of C and T , which is also O||P |−c′,|P | ⊕
P ||P |−c′,|P | and O||P |,|P |+t, the returned value for A′.
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In the ideal world where A calls $ and A′ calls G$N ,M,len, by Theorem 2.1,

the last c′ + t = len(Mk+1) + ... + len(Mm) + len(eoi) bits of G$N ,M,len, say,
Ok+1, ..., Om, T are uniformly random. ForA′, it returns (Ok+1⊕Pk+1)‖...‖(Om⊕
Pm)‖T . By the definition of online block-wise PRNG, Mi must be determined
before the output of Oi, so is Pi. Then Pi is independent with Oi, which means
that Oi ⊕ Pi, i = k + 1, ...,m and T = Om+1 are all uniformly random and
independent with previous outputs. Then the return values share the same dis-
tribution with $(., ., .).

So for each adversaryA, we have that Advpriv
OAE(G)(A) = Advobp

GN ,M,len(G)(A
′) ≤

Advobp
GN ,M,len(G).

For the nonce respecting case, from Definition 3.3, A′ always queries G with
unique header. So Advprf

GN ,M,len(G)(A
′) is the same as Advobp

GN ,M,len(G)(A
′), and

b) can be directly derived from a). ut

We shall not discuss the integrity for JAMBU in this paper. However, we still
show that our framework of online blockwise PRNG can also be used to analyse
the integrity of AEAD schemes.

Definition 3.8. The integrity of an AE scheme OAE = (EgN ,M,len,enc,D
g
N ,M,len,enc)

where g is chosen randomly from G is defined as:

Advauth
OAE(G)(A) = Pr[g

$←− G : AE
g
N ,M,len,enc(.,.,.),D

g
N ,M,len,enc(.,.,.,.) forges.].

The restriction on A is that A never queries D with a reply from E.

Definition 3.9. We say that enc is a prefix encoding, if for any (N,AD,P ),
enc(N,AD,P ) = (N,M1, ...,Mm, eoi), there is no (N,AD′, P ′) 6= (N,AD,P )
such that enc(N,AD′, P ′) = (N,M1, ...,Mm′ , eoi), m

′ < m.

Theorem 3.4. Suppose that enc is a prefix encoding, τ is the tag length.

Then, Advauth
OAE(G)(A) ≤ Advobp

GN ,M,len(G) + qd/2
t, qd is the number of de-

cryption queries.

Proof. By Definition 3.6, the tag T is the last t-bit of GgN ,M,len(enc(N,AD,P )),

and since enc is a prefix encoding, by Theorem 3.1, the last t-bit of G$N ,M,len

(enc(N,AD,P )) is a uniformly random string. So if A can distinguish between
T and a uniformly random t-bit string, it can also distinguish between GgN ,M,len

and G$N ,M,len, which probability is no more than Advobp
GN ,M,len(G) by definition.

And if the adversary failed to distinguish between T and a random string, then
for each decryption query, the probability of forgery is only the random guessing
of 1/2t, and for total qd queries, the probability is no more than qd/2

t. So the

total distinguishing probability is no more than Advobp
GN ,M,len(G) + qd/2

t. ut
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4 Security of JAMBU-like Online Blockwise PRNG

In this section, we consider JAMBU as an AEAD scheme deduced from an online
blockwise PRNG, and prove its security. By our results in the previous section,
given the security of this online blockwise PRNG, we can immediately get the
security of JAMBU itself.

Compared with the description of the JAMBU mode of operation in section
2, we define a JAMBU-like online blockwise PRNG as follows:

Definition 4.1. Let N ,M be the nonce space and message block space, b = 2n,
len(eoi) = n and for any M ∈ M, len(M) ≤ n. Let ν : N 7→ {0, 1}b and µ :
M 7→ {0, 1}b be two injective functions that maps nonce and message block into
binary strings. Given any function f : {0, 1}b 7→ {0, 1}b, the function ρf , σf , χf

is recursively defined as:

(1) σf = ν(N), ρf (N) = ν(N)|n,2n, χf (N) = f(σf (N));

(2) σf (N,M1, ...,Mi) = χf (N,M1, ...,Mi−1) ⊕ (ρf (N,M1, ...,Mi−1)‖0n) ⊕
µ(Mi), ρf (N,M1, ...,Mi) = ρf (N,M1, ...,Mi−1)⊕ σf (N,M1, ...,Mi−1)|n,2n,
χf (N,M1, ...,Mi) = f(σf (N,M1, ...,Mi)) for 1 ≤ i ≤ m.

We assume a prefix encoding, so that for any query (N,M1, ...,Mm, eoi),
there is no query (N,M1, ...,Mm′ , eoi) such that m′ < m. Then we can define

the keystream function γfo and authentication tag function γft separately. We
let γfo (N,M1, ...,Mi) = χf (N,M1, ...,Mi) ⊕ (ρf (N,M1, ...,Mi)‖0n) for 1 ≤ i ≤
m−1 and γft (N,M1, ...,Mm) = χf (N,M1, ...,Mi)⊕(χf (N,M1, ...,Mi)n,2n‖0n)⊕
(ρf (N,M1, ...,Mi)‖0n), and γf = γfo ∪ γ

f
t .

We say that Gγ
f

N ,M,len is a JAMBU-like online blockwise oracle deduced from

f , written as and Γ f .

Above we construct an online blockwise PRNG which match the definition
for JAMBU, where ρf is the state R, χf is the state Y ‖X, σf is the state V ‖U .
Note that we swap the first n bits and last n bits of each EK input and output
in JAMBU. This does not change the pseudorandomness of EK (or f in the
definition above).

If the function f in Definition 4.1 is a random oracle, then then any interac-
tion between an adversary A and the JAMBU-like online blockwise PRNG can
be simulated by the following interactive game Game 1 (⊥(.) is a function that
always returns ⊥). We write X instead of Y ‖X for simplification, and write V
as the intermediate value Y ⊕R‖X (which is also γfo in the definition above).

Since bad = true if and only if there exists i, j such that bad0ji = true and

bad1ji = false, it is clear that when bad = false, for every i, j such that bad1ji =

false, we have bad0ji = false. We also write badji as the intermediate value of

bad, which is defined as: badji = true if and only if there exists (i′, j′) < (i, j),

there is bad0j
′

i′ = true and bad1j
′

i′ = false.

Now, we give some lemmas on Game 1, which are useful for our security
proof.
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Game 1
1: π, π′ ← ⊥(.); bad← false;
2: for j = 1 to q do
3: Sj

0 ← ν(N j); Rj
0 ← Sj

0|n,2n;
4: for i = 0 to mj do
5: if π(Sj

i ) = ⊥ then π(Sj
i )

$←− {0, 1}b; bad0j
i ← false; else bad0j

i ← true;
6: Xj

i ← π(Sj
i );

7: if π′(N j ,M j
1 , ...,M

j
i ) = ⊥ then π′(N j ,M j

1 , ...,M
j
i ) ← Xj

i ; bad1j
i ← false;

else bad1j
i ← true;

8: if bad0j
i = true and bad1j

i = false then bad← true;
9: V j

i = Xj
i ⊕ (Rj

i‖0
n);

10: if i 6= mj then
11: Sj

i+1 = V j
i ⊕ µ(M j

i+1);

12: output Oj
i+1 ← V j

i |len(M
j
i+1)

;

13: Rj
i+1 = Rj

i ⊕ S
j
i+1|n,2n;

14: else output T j ← V j
i |n ⊕ V

j
i |n,2n;

15: end if
16: end for
17: end for

Lemma 4.1. In Game 1, we have:
a) Xj

i = π(Sji ) = π′(N j ,M j
1 , ...,M

j
i ). Similarly, each value of Sji , R

j
i , V

j
i are

uniquely determined by (N j ,M j
1 , ...,M

j
i ).

b) If bad1ji = true, then bad0ji = true.

Proof. In Game 1, if bad1ji = false, π′(N j ,M j
1 , ...,M

j
i ) is set to Xj

i = π(Sji ). If

bad1ji = true, then there is a j′ < j such that (N j ,M j
1 , ...,M

j
i ) = (N j′ ,M j′

1 , ...,M
j′

i ),

π′(N j ,M j
1 , ...,M

j
i ) = π′(N j′ ,M j′

1 , ...,M
j′

i ) = Xj′

i , and bad1j
′

i = false, which is

the first time that (N j ,M j
1 , ...,M

j
i ) occurs in a query. We first prove that for all

k ≤ i, Rjk−1 = Rj
′

k−1 and Sjk = Sj
′

k .

We prove it by induction. First, we have Sj0 = ν(N j) = ν(N j′) = Sj
′

0 ,

also Rj0 = Rj
′

0 . Now suppose that Rjk−1 = Rj
′

k−1 and Sjk = Sj
′

k . Then Rjk =

Rjk−1 ⊕ Sjk|n,2n = Rj
′

k−1 ⊕ Sj
′

k |n,2n = Rj
′

k ; Xj
k = π(Sjk) = π(Sj

′

k ) = Xj′

k ; and

Sjk+1 = Xj
k ⊕ (Rjk‖0n)⊕ µ(M j

k+1) = Xj′

k ⊕ (Rj
′

k ‖0n)⊕ µ(M j′

k+1) = Sj
′

k+1 if k < i.

So Sji = Sj
′

i is already in the domain of π, then Xj
i = π(Sji ) = π(Sj

′

i ) = Xj′

i =

π′(N j ,M j
1 , ...,M

j
i ), and bad0ji = true. Also we have Rji = Rj

′

i and V ji = V j
′

i . So

for any j and j∗ such that j 6= j∗ and (N j ,M j
1 , ...,M

j
i ) = (N j∗ ,M j∗

1 , ...,M j∗

i ),

there is Sji = Sj
′

i = Sj
∗

i , Xj
i = Xj′

i = Xj∗

i , Rji = Rj
′

i = Rj
∗

i , V ji = V j
′

i = V j
∗

i .
ut

Lemma 4.1 showed that if we use Game 1 to simulate the function Xj
i =

χf (N j ,M j
1 , ...,M

j
i ) in Definition 4.1, then the function χf is well defined, and

σf , ρf , γfo are all well-defined functions.
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Lemma 4.2. In Game 1, we have:

a) If bad0ji = false, Xj
i , V

j
i , S

j
i+1, O

j
i+1(or T j for i = mj) are uniformly

random, and independent with Xj′

i′ , V
j′

i′ , S
j′

i′+1, O
j′

i′+1(or T j
′

for i′ = mj′),M j′

i′+1

for all (i′, j′) < (i, j), and N j′ , Sj
′

0 for all j′ ≤ j.
b) Suppose that badji+1 = false. Then Xj

i , V
j
i , O

j
i+1(or T j for i = mj) are

uniformly random and independent with Xj′

i′ , V
j′

i′ , O
j′

i′+1(or T j
′

for i′ = mj′) for

(i′, j′) < (i, j) such that (N j ,M j
1 , ...,M

j
i ) 6= (N j′ ,M j′

1 , ...,M
j′

i′ ).

Proof. Proof of a): If bad0ji = true, then Xj
i is assigned as a uniformly ran-

dom string, which is independent with all previous states and outputs, including

Xj′

i′ , V
j′

i′ , S
j′

i′+1, O
j′

i′+1(or T j
′
), also Rji and M j

i (since M j
i is chosen by the ad-

versary who knows only all previous outputs, which are independent with Xj
i ).

Then, using basic results in the probability theory, we have V ji = Xj
i ⊕ Rji

and Sji+1 = Xj
i ⊕ Rji ⊕ µ(M j

i ) are uniformly random and independent with

Xj′

i′ , V
j′

i′ , S
j′

i′+1, O
j′

i′+1, hence Oji+1 = V ji |len(Mj
i+1)

or T j = V ji |n ⊕ V
j
i |n,2n is also

uniformly random and independent with Xj′

i′ , V
j′

i′ , S
j′

i′+1, O
j′

i′+1(or T j
′
).

Also, M j′

i′+1 and N j′ are chosen by the adversary, and only related to the pre-

vious outputs. We already shown that Xj
i , V

j
i , S

j
i+1, O

j
i+1(or T j) are independent

with all previous outputsOj
∗

i∗+1(or T j
∗
), (i∗, j∗) < (i, j). SoXj

i , V
j
i , S

j
i+1, O

j
i+1(or

T j) are independent with M j′

i′+1 and N j′ , hence also independent with Sj
′

0 =

ν(N j′). ut
Proof of b): We find a j∗ ≤ j such that (N j ,M j

0 , ...,M
j
i ) = (N j∗ ,M j∗

0 , ...,M j∗

i )

and bad1j
∗

i = false. By our assumption, we have bad0j
∗

i = false, so using Lem-

ma 4.1, we have Xj
i = Xj∗

i , V ji = V j
∗

i . Similarly, we can find j′∗ ≤ j′ such

that bad0j
′∗

i′ = false and Xj′

i′ = Xj′∗

i′ , V j
′

i′ = V j
′∗

i′ . As it was proven in a),

Xj∗

i , V
j∗

i are uniformly random and independent with Xj′∗

i′ , V
j′∗

i′ if j∗ 6= j′∗,

which means so are Xj
i , V

j
i and Xj′

i′ , V
j′

i′ . We can see that if (N j ,M j
1 , ...,M

j
i ) 6=

(N j′ ,M j′

1 , ...,M
j′

i′ ), then (N j∗ ,M j∗

1 , ...,M j∗

i ) 6= (N j′∗ ,M j′∗

1 , ...,M j′∗

i′ ), so j∗ 6=
j′∗. Then Xj

i , V
j
i , O

j
i+1(or T j) are independent with Xj

i′ , V
j′

i′ , O
j′

i′+1(or T j
′
) when

(N j ,M j
1 , ...,M

j
i ) 6= (N j ,M j′

1 , ...,M
j′

i′ ). ut

Using Lemma 4.2, we show the independency of Sji , i ≥ 1, Xj
i , i ≥ 0, V ji , i ≥

0. The only thing left is the relationship between Sj0 and others.We now estimate

the probability that Sj0 = Sj
′

i′ , i
′ > 0. First we need to define a new function.

Definition 4.2. Let r1, ..., ry ∈ {1, 2, ..., x} be uniformly random and indepen-
dent variables, and λi = |{rj |rj = i}| be the number of variables taken value i.
We define Λ(x, y) = max1≤i≤x λi, and EΛ(x, y) be the mathematical expectation
of Λ(x, y).
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Lemma 4.3. Let s1, ..., sm be uniformly random and independent b-bit strings,
s is a b-bit string. Suppose that si|r,b, the last b − r bits of si, 1 ≤ i ≤ m are
independent with s. Then: Pr(s ∈ {s1, ..., sm}) ≤ EΛ(2r,m)/2b−r.

Proof. We have Pr(s = si) = Pr(s|r = si|r)Pr(s|r,b = si|r,b) = 2−(b−r)Pr(s|r =
si|r). By Definition 4.2, Pr(s|r = si|r) ≤ Λ(2r,m)/m. Then Pr(s ∈ {s1, ..., sm}) ≤
EΛ(2r,m)/2b−r. ut

Now we are ready to prove the security bounds.

Definition 4.3. Let Γ f = Gγ
f

N ,M,len be a JAMBU-like online blockwise oracle.

Then the obp-security of Γ with a random function is defined as: Advobp
Γ f (A) =

Advobp
GN ,M,len({γf |f∈Rand(2n)})(A), where Rand(2n) is the set of functions with

2n-bit input and 2n-bit output.

Theorem 4.1. a) For the non-unique header case, Advobp
Γ f (A) ≤ q2f/2

2n+1 +
qEΛ(2n, qf )/2n + qqf/2

n;

b) For the unique header case, Advobp
Γ f (A) ≤ q2f/22n+1 + qEΛ(2n, qf )/2n;

Here qf = m1 + ... + mq + q is the total number of input blocks including
nonce blocks (excluding eoi).

Proof. By Lemma 4.2, if bad = false, we have V ji is uniformly random for any

i, j. So for i < mj , γf (N j ,M j
1 , ...,M

j
i ) = V ji is uniformly random, and for i =

mj , γf (N j ,M j
1 , ...,M

j
mj ) = V jmj ⊕ (V jmj |n,2n‖0n) is also uniformly random (this

is because that P (V ) = V ⊕ (V |n,2n‖0n) is a permutation for all 2n-bit strings).
By Lemma 3.1, we have that the distinguishing advantage is negligible when
bad = false, so we only need to calculate the probability of bad = true. Now we
find an upper bound for it. We can see that Pr(bad = true) ≤ Σi,jPr(bad0ji =

true, bad1ji = false|badji = false). So we only need to calculate Pr(bad0ji =

true, bad1ji = false|badji = false) for each i, j.

Since Pr(bad0ji = true, bad1ji = false|badji = false) ≤ Pr(bad0ji = true|bad1ji =

false, badji = false), we can use the latter probability for estimation instead.

By the description of Game 1, we can see that Pr(bad0ji = true|bad1ji =

false, badji = false) ≤ Σ(i′,j′)<(i,j)Pr(S
j
i = Sj

′

i′ |bad1ji = false, badji = false).

We divide all Sji which bad1ji = false and badji = false into three sets: S1 =

{Sji |i > 0 ∧ bad0ji−1 = false}; S2 = {Sji |i > 0 ∧ bad0ji−1 = true}; S3 = {Sj0},
and discuss the probability by three cases:

a) Sji ∈ S1, so bad0ji−1 = false. By Lemma 4.2, Sji is uniformly random and

independent with any Sj
′

i′ , (i′, j′) < (i, j). Then Pr(Sji = Sj
′

i′ ) = 1/22n.

b) Sji ∈ S2, so bad0ji−1 = true. Since badji = false, we have bad1ji−1 = true.

For (i′, j′) < (i, j), if (N j ,M j
1 , ...,M

j
i−1) = (N j′ ,M j′

1 , ...,M
j′

i′−1), then V ji−1 =

V j
′

i′−1. But since bad1ji = false, we have M j
i 6= M j′

i′ , so Sji 6= Sj
′

i′ .

Otherwise, (N j ,M j
1 , ...,M

j
i−1) 6= (N j′ ,M j′

1 , ...,M
j′

i′−1), by Lemma 4.2, V ji−1

is independent with V j
′

i′−1. Because Sji = V ji−1 ⊕ µ(M j
i ), also M j

i is chosen by
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the adversary and could be written as a function of all previous output. Note
that M j

i must be determined before the output of Oji , so M j
i is related only

with outputs from O1
1 to Oji−1. We only need to give the independency results

between V ji−1 and Oj
∗

i∗ (or T j
∗
) for all (i∗, j∗) < (i, j).

If (N j ,M j
1 , ...,M

j
i−1) 6= (N j∗ ,M j∗

1 , ...,M j∗

i∗−1), by Lemma 4.2, V ji−1 is inde-

pendent with Oj
∗

i∗ (or T j
∗
). If (N j ,M j

1 , ...,M
j
i−1) = (N j∗ ,M j∗

1 , ...,M j∗

i∗−1), we

have V ji−1 = V j
∗

i∗−1, and by our assumption, this output block cannot be the

authentication tag. So Oj
∗

i∗ is the first len(M j∗

i∗ )-bit substring of V j
∗

i∗−1 = V ji−1. If

len(M j∗

i∗ ) = 0, then Oj
∗

i∗ = ε, then V ji−1 is independent with Oj
∗

i∗ . Otherwise, we

still have len(M j∗

i∗ ) ≤ n. Because V ji−1 is uniformly random, we have that the last

n-bit substring of V ji−1, which is V ji−1|n,2n is uniformly random and independent

with the first len(M j∗

i∗ )-bit substring of V j
∗

i∗−1, which is Oj
∗

i∗ .

If the adversary always queries with unique header, then len(M j∗

i∗ ) = 0 for

all (N j ,M j
1 , ...,M

j
i−1) = (N j∗ ,M j∗

1 , ...,M j∗

i∗−1). So V ji−1 is independent with all

previous outputs (from O1
1 to Oji−1), hence V ji−1 is independent with M j

i . So

Sji = V ji−1⊕µ(M j
i ) is uniformly random and independent with Sj

′

i′ , and Pr(Sji =

Sj
′

i′ ) = 1/22n.

If the adversary does not query with unique header, we still have V ji−1|n,2n
is independent with all previous outputs, hence independent with M j

i . Then

Sji |n,2n = V ji−1|n,2n ⊕ µ(M j
i )|n,2n is uniformly random and independent with all

previous states. So Pr(Sji |n,2n = Sj
′

i′ |n,2n) ≤ 1/2n, which means Pr(Sji = Sj
′

i′ ) ≤
1/2n for all (i′, j′) < (i, j).

c) Sji ∈ S3, so i = 0. Since bad1j0 = false, N j 6= N j′ for all j′ < j, we

have Sj0 6= Sj
′

0 . If the adversary always queries with unique header, then Sj
′

i′ is

uniformly random for i′ > 0. Like we discussed in case b), Sj
′

i′ |n,2n is independent

with all outputs, hence independent with N j and Sj0 = ν(N j). By Lemma 4.3,

we have Pr(Sj0 ∈ S1 ∪ S2) ≤ EΛ(2n, |S1 ∪ S2|)/2n ≤ EΛ(2n, qf )/2n.

If the adversary does not query with unique header, Sj
′

i′ is still uniformly

random if Sj
′

i′ ∈ S1, so by Lemma 4.3, we have Pr(Sj0 ∈ S1) ≤ EΛ(2n, |S1|)/2n ≤
EΛ(2n, qf )/2n. Also, Sj

′

i′ |n,2n is uniformly random if Sj
′

i′ ∈ S2, as we discussed

in case b), also independent with Sj0. So Pr(Sj
′

i′ = Sj0) ≤ 1/2n.

Now we calculate the probability. We have Pr(bad = true) ≤ Σi,jPr(bad0ji =

true, bad1ji = false|badji = false) = Σi,jPr(S
j
i ∈ {S

j′

i′ |(i′, j′) < (i, j)}). If

we consider the unique header security, then Pr(Sji = Sj
′

i′ ) ≤ 1/2n holds for

i > 0, and Pr(bad = true) ≤ Σi>0,jPr(S
j
i ∈ {S

j′

i′ |(i′, j′) < (i, j)}) +ΣjPr(S
j
0 ∈

{Sj
′

i′ |(i′, j′) < (i, j)}) ≤ q2f/22n+1 + qEΛ(2n, qf )/2n.

For non-unique header security, we have that Pr(Sji = Sj
′

i′ ) = 1/22n, (i′, j′) <

(i, j) except the following cases: (1) Sji ∈ S2 or Sji ∈ S3, S
j′

i′ ∈ S2. This occurs
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only when Sji ∈ S2 or Sj
′

i′ ∈ S2, and the total count is no more than qf |S2|.
For each query (N j ,M j

1 , ...,M
j
mj , eoi), if bad1jk = true, there exists j′ < j such

that (N j ,M j
0 , ...,M

j
k) = (N j′ ,M j′

1 , ...,M
j′

k ), so for all k′ < k, bad1jk′ = true.

Then, there is at most one Sji for each j such that bad1ji−1 = true and bad1ji =

false, which means for each j there is at most one Sji ∈ S2. Then |S2| ≤ q.

In this case, Pr(Sji = Sj
′

i′ ) ≤ 1/2n, and the total probability is no more than

qqf/2
n. (2) Pr(Sj0 ∈ S1) ≤ EΛ(2n, qf )/2n for each 1 ≤ j ≤ q, and the total

probability is no more than qEΛ(2n, qf )/2n. Then, Pr(bad = true) ≤ q2f/22n+1+
qEΛ(2n, qf )/2n + qqf/2

n. ut

Now we discuss the cases where the random function f in Γ f is replaced by a
block cipher (which is supposed to be a pseudorandom permutation), and define
its security as:

Definition 4.4. Let Γ be a JAMBU-like online blockwise PRNG, Perm(2n) is
the set of 2n-bit permutations. Then the obp-security of Γ with a secret random
permutation is defined as:

Advobp
Γp (A) = Advobp

GN ,M,len({γp|p∈Perm(2n)})(A).

Theorem 4.2. Advobp
Γp (A) ≤ Advobp

Γ f (A) + q2f/2
2n+1.

Proof. See the PRP-PRF transformation lemma [9]. ut

Corollary 4.1. Suppose that EK in JAMBU can be considered as a pseudoran-
dom permutation. Let q be the total queries, p be the total number of plaintext
blocks, h be the total number of AD blocks. Let M = p+ h+ 3q. Then:

a) Advpriv
JAMBU(A) ≤ M2

22n + qEΛ(2n,M)
2n + qM

2n for A with non-unique nonce-AD
pair;

b) Advpriv
JAMBU(A) ≤ M2

22n + qEΛ(2n,M)
2n for A with unique nonce-AD pair.

Proof. For the j-th query (IV j , ADj , P j), we suppose thatADj = ADj
0‖...‖AD

j
hj−1,

P j = P j0 ‖...‖P
j
pj−1, each ADj

i or P ji is an n-bit block. We let N ∈ {0, 1}n,M∈
{0, 1}n×{1, 2, 3, 4}, enc be defined as: enc(IV j , ADj , P j) = (IV j , (0n, 1), (ADj

0, 2), ...,

(ADj
hj−1, 2), (P j0 , 3), ..., (P jpj−1, 3), (0n, 4)). It can be simply verified that enc is

valid, and is a prefix encoding, since (0n, 4) only appears as its last element.
We let ν(IV j) = IV j‖0n, µ(0n, 1) = 0n−3‖101‖0n, µ(ADj

i , 2) = 0n−1‖1‖ADj
i ,

µ(P ji , 3) = 0n‖P ji , µ(0n, 4) = 0n−2‖11‖0n, len(I) = n for I = (P ji , 3) or
I = eoi, and len(I) = 0 for others. So for each (IV j , ADj , P j), there is a
total of hj + pj + 3 input blocks excluding eoi, then for all encryption queries,
the number of total input blocks is h+ p+ 3q = M . Also, we construct E′K as:
E′K(X) = EK(X|n,2n‖X|n)|n,2n‖EK(X|n,2n‖X|n)|n, which means that we swap
the first n-bit and the last n-bit for both input and output. It is obvious that
E′K is still a pseudorandom permutation.

Now we can see that the definition above fits our definition for JAMBU-
like online blockwise PRNG perfectly, and the JAMBU scheme can be viewed
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as an AEAD scheme based on online blockwise PRNG, the JAMBU-like online
blockwise PRNG has unique header if and only if JAMBU has unique nonce-AD
pair. So we use Theorem 4.1, Theorem 4.2 and Theorem 3.3 to get the security
result of JAMBU. ut

The exact value for EΛ(x, y) is hard to calculate. But it has been proven in
[16, 18], if y/x = c is a constant, then limx→∞EΛ(x, y) = dlog x/ log log xe. So
we suggest that EΛ(2r, qf ) ≈ r/ log r. Although it is not a strict bound, it can
still be used to estimate the security result.

We can see that, for nonce misuse case, JAMBU has confidentiality of n/2-
bit. Since a distinguisher for JAMBU with complexity O(2n/2) has been given

[22], our security bound is tight. For nonce respecting case, Advpriv
JAMBU(A) ≤

M2

22n + qEΛ(M,2n)
2n ≈ M2

22n + qn/ logn
2n , which means its confidentiality is at about

n− log n-bit.

5 Conclusion

In this paper, we presented a new cryptographic model called online block-wise
PRNG, and used it to define a new online nonce misuse security notion for
authenticated encryption, which is weaker than the existing online AE security,
and use it to prove the security of JAMBU under both nonce respecting and
nonce misuse cases. Since the designers did not give the security proof in their
submission, we believe that our work is an important complement, especially in
the nonce misuse case, where the original security claim of designers has been
overthrown by other researchers.

In the nonce misuse case, we show that the security is n/2 bits, and since
there is an attack with O(2n/2) queries, this security bound is tight. However
for the nonce respecting case, by using standard provable security method, we
can only prove a security up to its birthday bound. That does not necessarily
mean that there exists an attack with O(2n) queries. We believe that JAMBU
does have a beyond-birthday-bound security for more than n-bit, and this shall
be our future work.

We also hope that, by giving security proofs on JAMBU under both nonce
respecting and nonce misuse case, we can help the designers of JAMBU, and
bring the scheme further to practical use.
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