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Abstract

Program obfuscation is a powerful security primitive with many applications. White-box
cryptography studies a particular subset of program obfuscation targeting keyed pseudoran-
dom functions (PRFs), a core component of systems such as mobile payment and digital rights
management. Although the white-box obfuscators currently used in practice do not come with
security proofs and are thus routinely broken, recent years have seen an explosion of crypto-
graphic techniques for obfuscation, with the goal of avoiding this build-and-break cycle.

In this work, we explore in detail cryptographic program obfuscation and the related primi-
tive of multi-input functional encryption (MIFE). In particular, we extend the 5Gen framework
(CCS 2016) to support circuit-based MIFE and program obfuscation, implementing both exist-
ing and new constructions. We then evaluate and compare the efficiency of these constructions
in the context of PRF obfuscation.

As part of this work we (1) introduce a novel instantiation of MIFE that works directly
on functions represented as arithmetic circuits, (2) use a known transformation from MIFE
to obfuscation to give us an obfuscator that performs better than all prior constructions, and
(3) develop a compiler for generating circuits optimized for our schemes. Finally, we provide
detailed experiments, demonstrating, among other things, the ability to obfuscate a PRF with
a 64-bit key and 12 bits of input (containing 62k gates) in under 4 hours, with evaluation taking
around 1 hour. This is by far the most complex function obfuscated to date.

1 Introduction

The goal of program obfuscation is to hide secrets in the implementation of a program, where the
secrets can be used to evaluate the program but are guaranteed to remain hidden beyond what can
be deduced from the output. Program obfuscation is a powerful technique with a wide range of
applications, as is evident from the large number of (heuristic) obfuscators used in practice [e.g.,
7, 1, 5].

One of the most prominent applications of program obfuscation is white-box cryptography [23],
where the goal is to hide the key of a pseudorandom function (PRF), but nothing else. Payment
processing, digital rights management, and many other systems use white-box cryptography to
secure data, with a large number of companies offering such products [e.g., 4, 6, 2]. Unfortunately,
all white-box cryptography schemes have been broken, and thus there is a need for constructions
based on a rigorous cryptographic foundation. In a breakthrough result, Garg et al. [29] presented
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the first such candidate construction for general program obfuscation, spawning a large amount of
followup work in both the underlying security claims and the overall efficiency.

A closely related primitive to program obfuscation is multi-input functional encryption (MIFE),
where decryption takes a key associated with an n-input function F, as well as n independently
generated ciphertexts Enc(x1), . . . ,Enc(xn), and outputs F(x1, . . . , xn). Program obfuscation and
MIFE are known to imply one another [33].

All existing constructions of (cryptographic) program obfuscation and MIFE use multilinear
maps (mmaps) [20], which extend the idea of bilinear maps to arbitrary polynomials. In order
to build applications on top of and experiment with mmaps, Lewi et al. [36] introduced the 5Gen
framework. This framework implements two mmap constructions [26, 28] and provides implemen-
tations of MIFE and program obfuscation based on (matrix) branching programs, which provide
a way to view arbitrary functions as sequences of matrix multiplications. For simple functions,
this approach is sufficient. However, the mapping from function to branching program is exponen-
tial, and thus this approach quickly becomes infeasible as function complexity grows. Due to this
blow-up, Lewi et al. were limited to obfuscating an 80-bit point function.

However, branching programs are not the only approach for realizing program obfuscation. Both
Zimmerman [49] and Applebaum and Brakerski [12] showed how to build obfuscators that operate
directly on the circuit representation of a function. This has several advantages over the branching
program approach, not least of which is that one no longer needs to “compile” the function into
a branching program. When Lewi et al. [36] implemented the Zimmerman construction, they
found the branching program approach superior for the simple functions they considered (e.g.,
point functions). This is because the simple structure of these functions is better tailored to the
branching program representation. However, for more complex functions, the circuit representation
and corresponding circuit obfuscators become more efficient. Thus, extending the 5Gen framework
with circuit obfuscators — and also developing MIFE for circuits — would substantially enhance
the framework, provide a basis for comparison, and push (cryptographic) program obfuscation
further towards practicality.

1.1 Our Contributions

In this work, we explore in detail MIFE and program obfuscation for circuits. We implement
and evaluate existing constructions as well as develop new schemes in the context of PRF obfus-
cation. Our implementation extends the 5Gen framework introduced by Lewi et al. [36], which
previously included only MIFE and program obfuscation for branching programs. This enhances
the functionality of 5Gen and makes our constructions available for use and experimentation.

Towards this goal, we introduce a new MIFE construction that works directly on (arithmetic)
circuits. Using Goldwasser et al.’s transformation [33], this gives us an obfuscation scheme which
avoids the extra n multilinearity overhead inherent in prior circuit obfuscators [49, 12], where
n is the number of inputs. To fully compare our new approach with existing constructions, we
implement all known circuit obfuscation approaches, including the optimization of Applebaum and
Brakerski’s scheme [12] for low-depth PRFs by Lin [38] and our own adaptation of this optimization
to Zimmerman’s scheme [49].

Since our constructions work over arithmetic circuits, we develop a compiler for constructing
circuits from high-level program descriptions. This compiler includes optimizations to reduce the
multiplicative degree of the resulting circuits — a metric not targeted by any existing circuit
compilers — which has a huge impact on which functions are obfuscatable using existing mmaps.
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Figure 1.1: The 5Gen framework architecture, with new components introduced in this work in bold and
gray boxes. The original 5Gen architecture takes as input a cryptol program (here given by prog.cry),
which is fed into a compiler, cryfsm, to produce a matrix branching program. This is then fed into either
an obfuscator or multi-input functional encryption implementation, which uses a multilinear map backend
(libmmap) that supports both the CLT (libclt) and GGHLite (libgghlite) multilinear maps. In this work,
we introduce four new components: (1) cxs, an arithmetic circuit compiler suite which takes as input either
a cryptol program as before or a program written in a domain-specific language (here given by dsl.hs), (2)
libacirc, a language for describing arithmetic circuits, and (3) mio, an implementation of circuit obfuscation
and multi-input functional encryption.

Finally, given our implementation and compiler suite, we experiment with obfuscating a PRF.
In particular, we look at obfuscating both AES and the Goldreich-Goldwasser-Micali (GGM) PRF.
While we are still far from obfuscating the complete AES algorithm, we are able to demonstrate
some surprising results, such as the obfuscation of the GGM PRF with a 64-bit key and 12 in-
put/output bits with 80 bits of security for the underlying mmap.

To summarize, our contributions are as follows:

1. An instantiation of multi-input functional encryption (MIFE) for circuits (cf. §5). Prior MIFE
constructions [19, 36] required that the function be compiled as a branching program, which
becomes infeasible for complex functions, whereas our approach works directly on the arithmetic
circuit representation of a function. Additionally, using the Goldwasser et al. [33] transformation
from MIFE to obfuscation, this gives us a new obfuscator which performs better than all existing
obfuscators.

2. A new circuit compiler which provides optimizations for generating low degree arithmetic circuits
starting from a high-level specification of the functionality (cf. §6). This tool is of independent
interest, as it produces function representations which can be used in the context of multi-party
secure computation or fully homomorphic encryption.

3. Implementations of our new MIFE construction, an obfuscator based on our MIFE construction,
and all existing circuit-based obfuscators from the literature (cf. §7). As part of this, we intro-
duce three new components to the 5Gen framework introduced by Lewi et al. [36]: (1) libacirc,
a language and library for building and computing over arithmetic circuits; (2) mio, an imple-
mentation of circuit-based multi-input functional encryption and program obfuscation; and (3)
cxs, a toolkit for compiling and (x) synthesizing arithmetic circuits optimized for minimizing
circuit degree. See Figure 1.1 for the enhanced 5Gen architecture.
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4. A thorough exploration of the performance of the various obfuscators, with a focus on obfuscating
a PRF (cf. §8).

In addition, in §3 we review circuit obfuscation and compare it to the approach using constant-
degree mmaps, and in §4 we review existing circuit obfuscators.

As part of our exploration, we developed a modification of Zimmerman’s construction [49] that
adapted ideas from Lin [38] to support “Σ-vectors”, which are used for more efficient obfuscation
of low depth PRFs (cf. §4). While this new construction performed significantly better than all
existing obfuscators for a specific class of GGM PRFs, we found that our MIFE transformation
described in §5 resulted in even better performance, and thus focus on that construction throughout
this paper. However, for completeness we describe our “Linnerman” construction in Appendix B.

1.2 Why PRFs?

One of the most popular algorithms to obfuscate in practice has been AES, due to its widespread
use in payment systems, digital rights management, etc. While there have been a plethora of con-
structions for obfuscating AES, the majority of them have been quickly broken, and for the rest of
them it remains unclear what security guarantees they provide. Indeed, there is an ongoing compe-
tition for a secure white-box implementation of AES-128 [3]. Therefore, cryptographic obfuscation
of a keyed PRF would have a significant impact.

Obfuscation of a PRF is also a central building block in “bootstrapping” program obfuscation
for larger function classes [11, 38]. Another interesting property related to PRF obfuscation is
that existing attacks on obfuscation constructions leveraging weaknesses in the underlying mmaps
are not known to break obfuscations of PRFs1. In fact, the most recent obfuscation schemes that
provide security against all known attacks embed a PRF that is evaluated in parallel with the
obfuscated function, and leverage the PRF hardness to prove security [30].

In light of these facts, we view PRFs as both a primary candidate for which we should aim to
obtain efficient obfuscation and a useful benchmark for evaluating the efficiency of new approaches.

2 Preliminaries

We let λ denote the security parameter, and let κ denote the multilinearity of the underlying
multilinear map (mmap) used in our constructions. In this section we review (composite-order)
mmaps (§2.1), multi-input functional encryption (§2.2), and program obfuscation (§2.3).

2.1 Composite-order Multilinear Maps

An mmap provides a way to add and multiply secret encoded values up to a certain point, at which
a given encoding can be “zero-tested” to determine whether its secret value is zero or non-zero.
This can be thought of in some sense as fully homomorphic encryption with a “broken” decryption
procedure that allows anyone to test the top-level value for zero. In particular, mmaps provide
an Encode operation that maps a value into its encoded form, and Add and Mult operations that
allow adding and multiplying encoded values. At a certain point, the ZeroTest operation can be run

1Such attacks rely on specific properties of the obfuscated function and do not work for all functions.
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deg(g : Gate):

if g = add(x, y)
return max(deg(x), deg(y))

if g = mul(x, y)
return deg(x) + deg(y)

else:
return 1

Figure 2.1: Function to compute the multiplicative degree of an arithmetic circuit consisting of add, mul,
and input gates, with a single output gate. The degree of a circuit with multiple outputs is the maximum
of the degrees of its outputs considered individually.

to test equality with zero. Composite-order mmaps allow using multiple slots of encoded values,
where now ZeroTest outputs zero if and only if all values in all slots are zero.

Most obfuscation constructions are proven secure in an mmap generic model, which provides
oracle access to the various mmap operations, returning “handles” to encoded values rather than
the encoded values themselves. The composite-order mmap generic model is a slight strengthening
of this to allow encoding values across all of the mmap slots. We define this formally below.

Definition 2.1. The composite-order mmap generic model [49] is defined by the operations Setup,
Encode, Add, Mult, and ZeroTest, defined as follows.

• Setup(U , λ,N)→ (pp, sp, p1, . . . , pN ): Takes as input a top-level index set U , security parameter
λ, and the number of slots N , and produces public parameter pp, secret parameter sp, and primes
p1, . . . , pN .

• Encode(sp, x1, . . . , xN ,S)→ h: Takes as input secret parameter sp, scalars x1, . . . , xN , and index

set S ⊆ U , and returns “encoding” [x1, . . . , xN ]S , which is a fresh “handle” h
$← {0, 1}λ. An

entry h 7→ (x1, . . . , xN ,S) is added to the (internal) table T , and h is returned.

• Add(pp, h1, h2) → {h,⊥}: Takes as input public parameter pp and handles h1 and h2. If h1 7→
(x1,1, . . . , x1,N ,S1) and h2 7→ (x2,1, . . . , x2,N ,S2) are in T , and S1 = S2 ⊆ U , then compute a
fresh “handle” h and add h 7→ (x1,1 + x2,1, . . . , x1,N + x2,N ,S1) to T , returning h; otherwise,
return ⊥.

• Mult(pp, h1, h2) → {h,⊥}: Takes as input public parameter pp and handles h1 and h2. If
h1 7→ (x1,1, . . . , x1,N ,S1) and h2 7→ (x2,1, . . . , x2,N ,S2) are in T , and S1 ∪ S2 ⊆ U , then compute
a fresh “handle” h and add h 7→ (x1,1 · x2,1, . . . , x1,N · x2,N ,S1 ∪S2) to T , returning h; otherwise,
return ⊥.

• ZeroTest(pp, n)→ {“zero”, “non-zero”,⊥}: Takes as input public parameter pp and handle h. If
h 7→ (x,S) is in T and S = U , then return “zero” if x1 ≡ 0 (mod p1), . . . , xN ≡ 0 (mod pN ), else
“non-zero”; otherwise return ⊥.

The multilinearity, κ, of the mmap is defined as the multiplicative degree (defined by Figure 2.1)
required to reach the top-level index set.
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2.2 Multi-input Functional Encryption

Multi-input functional encryption (MIFE) [33] provides a way to compute a function over multiple
ciphertexts such that the “decryptor” only learns that function of the ciphertexts and nothing else.
In this work we utilize the secret-key variant of MIFE introduced by Boneh et al. [19].

Definition 2.2. A single-key secret-key multi-input functional encryption (1SK-MIFE) scheme is
a tuple of algorithms (1SK-MIFE.Setup, 1SK-MIFE.Enc, 1SK-MIFE.Dec) defined as follows:

• 1SK-MIFE.Setup(λ,C) → (sk, ek): Takes as input the security parameter λ and an arithmetic
circuit C : {0, 1}d1 × · · · × {0, 1}dn → {0, 1}m and returns a secret key sk and an evaluation key
ek.

• 1SK-MIFE.Enc(sk, i,x) → ct: Takes as input secret key sk, index i, and input x, and outputs a
ciphertext ct.

• 1SK-MIFE.Dec(ek, ct(1), . . . , ct(n))→ y: Takes as input evaluation key ek and ciphertexts ct(1), . . . ,
ct(n), and outputs a bitstring y.

Definition 2.3 (1SK-MIFE Correctness). A 1SK-MIFE scheme Π is correct if for any multi-input
circuit C, and any inputs x(1) ∈ {0, 1}d1 , . . . , x(n) ∈ {0, 1}dn , if (ek, sk) ← 1SK-MIFE.Setup(1λ, C)
and for each i ∈ [n], ct(i) ← 1SK-MIFE.Enc(sk, i, x(i)), then,

1SK-MIFE.Dec(ek, ct(1), . . . , ct(m))→ C(x(1), . . . , x(m)).

Towards defining security, we introduce the following security game. Given a circuit C, adver-
sary A, and bit b ∈ {0, 1}, we define the experiment Expt1SK-MIFE

C,Q,b (A), parameterized over a number
of queries Q:

Experiment Expt1SK-MIFE
C,Q,b (A):

1. Compute (sk, ek)← 1SK-MIFE.Setup(1λ, C) and send ek to A.

2. For q ∈ [Q], A sends (iq, xq,0, xq,1) and is given ciphertext ctq ← 1SK-MIFE.Enc(sk, iq, xq,b).

3. A outputs bit b′ ∈ {0, 1}.

We define security for a 1SK-MIFE scheme in the composite-order mmap generic model. For this
we use the notion of admissible execution traces [19]. An execution trace includes the sequence of
queries from A to both its oracle and the mmap. An execution trace is admissible if for any tuple
of queries {(iqj , xqj ,0, xqj ,1)}j∈[n] where iqj = j for all j ∈ [n], we have that C(xq1,0, . . . , xqn,0) =
C(xq1,1, . . . , xqn,1).

Definition 2.4 (IND-security for 1SK-MIFE). A 1SK-MIFE scheme is Q-IND-secure if, for all
circuits C and all efficient adversaries A, the quantity

Adv1SK-MIFE
C,Q (A) := |W0 −W1|

is negligible, where

Wb = Pr

[
Expt1SK-MIFE

C,Q,b (A) outputs 1 and yields

an admissible execution trace

]
.
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2.3 Program Obfuscation

Intuitively, program obfuscation allows one party to obfuscate a program in such a way that any
other party cannot learn anything about the internal workings of the program besides what can be
deduced from input/output relationships.

Definition 2.5. A program obfuscator is a tuple of algorithms (Obfuscate,Evaluate) defined as
follows:

• Obfuscate(λ,C) → Obf: Takes as input the security parameter λ and an arithmetic circuit
C : {0, 1}n → {0, 1}m, and returns an obfuscation Obf.

• Evaluate(Obf,x) → z: On input obfuscation Obf and bitstring x ∈ {0, 1}n, output bitstring
z ∈ {0, 1}m.

Definition 2.6 (Correctness). A program obfuscator is correct for circuit C if for all x ∈ {0, 1}n,
it holds that

Evaluate(Obfuscate(λ,C),x) = C(x).

Definition 2.7 (Efficiency). A program obfuscator is efficient for circuit C if there exists polyno-
mial p(·) such that |Obfuscate(λ,C)| < p(λ).

Regarding security, the two key notions are virtual black-box (VBB) obfuscation and indistin-
guishability obfuscation. While all of our constructions are secure for the weaker indistinguishability
notion, we heuristically assume that they provide VBB security.2

Definition 2.8. A program obfuscator is an indistinguishability obfuscator for circuit class {Cλ}
if for all λ ∈ N and for every pair of circuits C0, C1 ∈ Cλ such that |C0| = |C1| and C0(x) = C1(x)
for all inputs x, then

{C0, C1,Obfuscate(λ,C0)} ≈ {C0, C1,Obfuscate(λ,C1)}.

Definition 2.9. A program obfuscator is a virtual black-box obfuscator for circuit class {Cλ} if for
every efficient adversary A, there exists a simulator S such that for every λ ∈ N and C ∈ Cλ it
holds that

Pr[A(Obfuscate(λ,C)) = 1] ≈ Pr[SC(λ) = 1],

where SC denotes that the simulator has black-box access to circuit C.

3 Overview of Existing Techniques

In this section, we briefly describe the high-level idea behind circuit obfuscation (§3.1) and compare
it with the approach of obfuscation from constant-degree mmaps (§3.2).

2Although VBB obfuscation is impossible in general [17], there is no attack that we are aware of that breaks
indistinguishability obfuscators when viewed (heuristically) as VBB obfuscators for the functions we consider.
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3.1 Circuit Obfuscation

The main idea behind circuit obfuscation is to run the circuit itself directly on inputs encoded by
the mmap. While this does not hide the circuit itself (as the circuit is needed by the evaluator
to know which encodings to add and multiply), this can be solved by having the circuit itself be
a universal circuit, taking the particular function to hide as input. However, in this work we are
interested in obfuscating PRFs, where the PRF functionality is public but the (embedded) key
should be hidden from the evaluator, and thus making the PRF functionality public is not an issue.

In order to prevent the evaluator from computing something other than the specified circuit,
these obfuscators encode a “check computation” in the encoded inputs, so that a valid result will be
computed if and only if the evaluator correctly computes the circuit. This is done using composite-
order mmaps. These mmaps have multiple “slots”, where computation occurs in parallel across all
the slots. The idea is then to use one of the slots to embed the check computation so that it only
cancels out if the circuit was correctly computed. Otherwise, a random value will appear in the
resulting top-level encoding, and thus the ZeroTest operation will return “non-zero”. Another slot
encodes the main computation, which only returns a valid result if the check computation succeeds.

In circuit obfuscators, every encoded element is indexed by a (multi-)set of special symbols,
called the index set. Only encodings with the same index set can be added together, resulting in a
new encoding at that same index set. Any encodings can be multiplied together, resulting in a new
encoding at the product of the index sets. For instance, suppose we have encodings [x]AB at index
set {A,B} and [y]AB also at index set {A,B}. These encodings can be both added and multiplied.
If we add the encodings, the result [x+ y]AB has the same index set. If we multiply the encodings,
however, the result [xy]AABB has index set {A,A,B,B}. The idea then is that as we compute the
arithmetic circuit, we add and multiply encodings, increasing the size of the index set. Eventually,
we reach an output wire, with the resulting index set viewed as the “top-level” index set (i.e., the
index set at which we can successfully zero-test).

As mentioned above, as we evaluate the circuit we multiply and add encodings. Each time we
multiply encodings, we increase the noise level of the encoding. Thus, we must generate encodings
to support enough noise such that they still retain fidelity upon reaching the top-level. Put another
way, in the underlying mmap we must know what the maximum multiplicative degree will be in
order to generate encodings with the appropriate noise tolerance.

3.2 Comparison with Obfuscation from Constant-degree Multilinear Maps

Starting with the work of Lin [38], a recent and concurrent line of work has looked at building
obfuscation from constant-degree mmaps [42, 10, 39, 41]. All of these approaches utilize the “boot-
strapping” approach for building obfuscation from (succinct) functional encryption (FE) [18, 9];
namely, the authors design the FE scheme using constant-degree mmaps, and then use that scheme
as the underlying FE scheme in the bootstrapping procedure. Thus, the efficiency bottleneck of
these schemes becomes the bootstrapping procedure: even if the necessary FE construction can be
built using very efficient tools, if the bootstrapping is prohibitively expensive then this approach
will not outperform the circuit approach for many functions.

We focus here on the bootstrapping approach of Bitansky and Vaikuntanathan [18], who build
obfuscation from succinct public-key FE (the approaches of Ananth and Jain [9] and Lin et al. [40]
are similar). The (simplified) idea is that, given circuit C(x) : {0, 1}n → {0, 1}m, the Obfuscate
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procedure constructs a functional key FSKC∗ for circuit C∗ defined as

C∗(SK, x) := Sym.Dec(SK,CT)(x),

where SK is a symmetric key, CT = Sym.Enc(SK, C), and (Sym.Enc, Sym.Dec) defines a symmetric
key scheme. Namely, C∗ decrypts a ciphertext, interprets the decrypted object as a circuit, and
evaluates it on the input x.

Next, the procedure computes (PKC∗ ,FSKC∗)← FE.Setup(C∗), and then recurses by computing

Obfn−1 :=
(
Obfuscate(λ,FE.Enc(PKC∗ , x1, . . . , xn−1, 0,SK)),

Obfuscate(λ,FE.Enc(PKC∗ , x1, . . . , xn−1, 1,SK))
)
.

The obfuscation is then (Obfn−1,FSKC∗).
It is important to note in this construction that when we recurse, we view the FE.Enc operation

as the circuit to embed in the functional secret key. Thus, if FE.Enc is a complex operation, it
quickly becomes infeasible to even just view it as a circuit; for example, a single 1024-bit modular
exponentiation requires over four billion gates [47]. The best current FE construction uses trilinear
maps [41], and thus the circuit representations would have to include such trilinear map operations,
resulting in a circuit of infeasible size. Thus, we conclude that the approach to obfuscation utilizing
bootstrapping in its current form is much more expensive than the circuit approach we investigate
in this work (and we also note that the non-black-box use of constant-degree mmaps seems inher-
ent [45]). However, efficiency improvements to either the bootstrapping step or the underlying FE
primitive could change this, and are interesting open problems.

4 Circuit Obfuscators

In this section we review the three existing circuit obfuscators in the literature: the Zimmerman
obfuscator [49], denoted by Zim, the Applebaum-Brakerski obfuscator [12], denoted by AB, and the
Lin obfuscator [38], denoted by Lin.

4.1 Obfuscation using Zim

In Zim, each “public” input bit xi is encoded under symbol Xi,b; namely, the obfuscation contains
encodings x̂i,b := [b, αi]Xi,b , where b ∈ {0, 1} and αi denotes the check value associated with that
input. For each “secret” input yj , the obfuscation contains encoding ŷj := [yj , βj ]Y , where βj
denotes the check value associated with that input and Y is a common symbol for all secret inputs.

For a multiplication gate with inputs [x]X and [y]Y , the index set of the output [xy]X∪Y is the
union of the input index sets X and Y. For addition gates, when two inputs with equal index sets
are added the encodings can be added directly. To support additions for inputs with unequal index
sets, encodings of one are provided. These encodings are associated with a particular (public) input
through its index set; namely, ûi,b := [1, 1]Xi,b . When an addition gate has input wires with unequal
index sets, the evaluator multiplies each input the minimum number of times with the appropriate
encodings of one to bring them into alignment.

The best case for an addition gate is when the index set of one input is a subset of the other.
Then, the evaluator “raises” that input up the minimum amount, and the degree of the output
encoding is not more than the highest degree input. For instance, suppose the inputs are [x]A and
[y]AB. Then the evaluator computes [x]A[1]B + [y]AB = [x+ y]AB and the output degree is two.
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AB/Lin Zim/LZ MO

Circuit # Enc κ # Enc κ # Enc κ

aes1r 66,691 22,999 66,307 239 33,669 128
ggm 1 32 690 250 594 17 399 14
ggm 1 128 2,706 250 2,322 17 1,551 14
ggm 2 32 1,218 34,706 1,122 81 667 74
ggm 2 128 4,770 34,706 4,386 81 2,587 74
ggm 3 32 1,746 5.0e+06 1,650 385 935 374
ggm 3 128 6,834 5.0e+06 6,450 385 3,623 374
ggm 4 32 2,274 7.2e+08 2,178 1,889 1,203 1,874
ggm 4 128 8,898 7.2e+08 8,514 1,889 4,659 1,874

Table 1: Number of encodings (# Enc) and multilinearity values (κ) for several circuits across the circuit-
based program obfuscators considered in this work. See Appendix A for circuit details.

The worst case for an addition gate is when the input arguments have completely disjoint index
sets. Then, the evaluator must “multiply in” the entire index set of the other for both arguments.
After multiplying by each encoding of one, the output degree is then equivalent to a multiplication.

For instance, suppose we wish to add [x]A and [y]B. Each input has degree two already. In
order to add, we must calculate [x]A[1]B + [y]B[1]A = [x + y]AB, resulting in output degree two,
and thus the same degree as multiplying [x] and [y] would have given. Fortunately, addition gates
with entirely disjoint index sets occur rarely in the circuits we consider. For instance, while a single
round of AES has thousands of addition gates, only one has completely disjoint indices.

Computing κ. Let n be the number of inputs to the circuit C, and let deg(·) denote the multi-
plicative degree of its input. Besides the evaluation of C, there are an additional n multiplications
to construct the straddling sets in order to prevent “mix-and-match” attacks. Thus, we have

κZim ≤ n+
∑
i∈[n]

deg(xi).

Results. See Table 1 for κ values across various circuits. Note that the above formula is exact
only when the circuit has a single output bit. However, for circuits with multiple output bits this
formula may result in a large over-approximation of the actual value of κ needed. To calculate the
“real” κ, we use a “dummy” mmap which tracks the degree of each encoded element. We can then
take the maximum degree over all of the output encodings as the “real” κ. This can often make
a huge difference in practice. For example, for aes1r, the above formula gives κ = 567, whereas
using the dummy mmap approach gives κ = 239, a 2.5× improvement.

4.2 Obfuscation using AB

The AB approach is similar to Zim in that it uses a “check slot” to enforce that the circuit is
correctly computed. However, the particular details differ. In AB, every element is a pair (R,Z)
where R contains some randomness and Z contains a secret masked by that randomness. For
example, each “public” input bit xi is encoded as Rxi,b := [ri,b,1, ri,b,2] and Zxi,b := [ri,b,1 · b, ri,b,2 ·αi],
where ri,b,1, ri,b,2, and αi are random. Likewise, “secret” inputs yj are encoded as Ryj := [rj,1, rj,2]
and Zyj := [rj,1 · yj , rj,2 · βj ] where rj,1, rj,2, and βj are random.
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This “El-Gamal”-style encoding directly supports both addition and multiplication: Suppose we
have two pairs of encodings (R1, Z1) and (R2, Z2). An addition gate results in the pair of encodings
(R1R2, Z1R2 +R1Z2) and a multiplication gate results in the pair of encodings (R1R2, Z1Z2). The
downside to this is of course that both addition and multiplication now require multiplication of
encodings, and thus an (often substantial) increase in the overall degree.

To contrast this approach to Zim, consider the following (simplified) example. We wish to add
two encodings [x]A and [y]AB. In AB, these values are represented as (Rx, Zx) = ([rx]A, [rxx]A) and
(Ry, Zy) = ([ry]AB, [ryy]AB), with addition producing

(RxRy, ZxRy + ZyRx) = ([rxry]AAB, [rxryx+ rxryy]AAB).

In Zim, these values are represented directly by [x]A and [y]AB, and the addition can be computed
by raising x by the appropriate encoding of 1 and then adding the resulting encoding to [y]AB.
Thus, in AB we increase the degree, whereas in Zim the degree stays the same.

Computing κ. Let n be the input length and d the multiplicative degree of the circuit. Lin [38]
defines the notion of type-degree, which captures the growth of the degree given the El-Gamal-
style encodings of AB. Let typedeg(i) be the type-degree of the ith input. Lin upper-bounds the
multilinearity of this construction as

κAB ≤ 3 + 2n+ d+
∑

i∈[n+1]

typedeg(i) ≤ 5(t+ n),

where t is the maximum type-degree of all the inputs, which Lin proves is < 2depth.

Results. See Table 1. As in Zim, we calculated these κ values using a dummy mmap. Note how
much worse the κ values are for AB versus Zim. This is because all addition gates in AB require
multiplying encodings; as κ is a function of the multiplicative degree of the top-level encodings,
needing multiplication for both addition and multiplication quickly blows up κ.

4.3 Obfuscation using Lin

In a breakthrough result, Lin showed how to construct obfuscation from constant-degree mmaps [38].
To do so, Lin designed a “bootstrap” circuit with constant degree which uses a polynomial-size
input domain PRF. Lin’s PRF is a variant of the “GGM” PRF of Goldreich, Goldwasser, and
Micali [32], which constructs a PRF directly from a PRG. While the particular details for now are
not important (see §8 for more details on Lin’s variant of the GGM PRF), we note that the core
technique is to split the input into “Σ-vectors”. A Σ-vector is a vector of bits, where to represent
the integer i (mod n) we have a “1” in the ith position and “0” elsewhere:[

0 . . . 0︸ ︷︷ ︸
i−1

1 0 . . . 0︸ ︷︷ ︸
n−i

]
.

That is, a Σ-vector can be viewed as a unary encoding of a value in the domain {0, . . . , |Σ|−1}. For
example, a Σ-vector of length |Σ| = 16 can encode log2(16) = 4 possible “real” inputs. Put another
way, a 16-bit input can be viewed as four Σ-vectors each of length |Σ| = 16, or alternatively, two
Σ-vectors each of length |Σ| = 256 (since 16 = 4 · log2(16) = 2 · log2(256)).

11



n k κAB κZim κLin κLZ κMO

4 128 250 17 17 7 7
8 128 34,706 81 123 34 33

12 128 5.0e+06 385 977 163 161
16 128 7.2e+08 1,889 8,163 797 794

Table 2: Multilinearity values (κ) for the GGM PRF using AB, Zim, Lin, LZ, and MO for various input
lengths (n) and key lengths (k), in bits. For the Lin, LZ, and MO obfuscators the inputs are treated as
Σ-vectors with |Σ| = 16.

The advantage of Σ-vectors is that sub-string selection only requires multiplicative degree two.
This works by multiplying the string pairwise with the appropriate Σ-vector and summing up the
result. For instance, to get the jth bit of string x ∈ {0, 1}n, compute

∑
i∈[n] eixi, where e is a

Σ-vector encoding of j. This approach also generalizes to strings composed of longer sub-strings
than single bits. Let ` be the length of the sub-string you wish to obtain and let x ∈ {0, 1}`n.
Then, to use e to select a sub-string, compute∑

i∈[n]

eixi`+1‖
∑
i∈[n]

eixi`+2‖ · · · ‖
∑
i∈[n]

eixi`+`. (1)

Lin introduced a variant of the Applebaum-Brakerski obfuscator that supports Σ-vectors. We
denote this obfuscator as Lin. Note that when Σ-vectors are not used, Lin reduces to (a slight
variant of) the AB scheme.

Computing κ. The computation of κLin is the same as in AB.

Results. As mentioned above, Lin performs the same as AB when Σ-vectors are not in use; see
Table 1. However, for certain functions, using Σ-vectors can have a huge improvement. In Table 2
we show the effect on κ when using Σ-vectors for the GGM PRF (cf. §8.2). We can see huge
improvements going from κAB to κLin, and κLin is competitive with κZim, at least for smaller input
lengths.

Basing Lin on Zim. As Lin builds on AB, which has much worse multilinearity than Zim, this
leaves open the question whether the techniques in Lin could be applied directly to Zim. In Ap-
pendix B, we present the “Linnerman” obfuscator, denoted by LZ, which does exactly this. And
we indeed realize the expected improvement. For example, obfuscating the GGM PRF with 16
“real” input bits and a 128-bit key results in κLin = 8,163 versus κLZ = 797, a ten-fold improvement
(cf. Table 2). Looking ahead, however, we find that our MIFE-based construction presented in §5
results in even better multilinearity than our “Linnerman” construction.

5 Multi-input Functional Encryption from Circuits

In this section we present our new construction for (single-key) multi-input functional encryption
(MIFE). We begin with some high-level intuition before describing the scheme in detail in §5.1. In
§5.2 we present a security proof, in §5.3 we describe some optimizations, and in §5.4 we show how
to build an obfuscator from our MIFE construction.
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Our MIFE construction expands the functionality of the scheme presented by Boneh et al. [19],
which supports a single key represented as a branching program. Our construction allows the
functional key to be described as an (arithmetic) circuit. To do so, we leverage techniques from
the circuit obfuscation construction of Zimmerman [49].

Program obfuscators provide the capability to evaluate the (obfuscated) function on any possible
input. Thus, existing obfuscators (both for branching programs and circuits) provide encodings for
both zero and one for each input bit. On the other hand, in the MIFE setting we need to enforce
that the only inputs on which the functionality can be evaluated should correspond to the inputs
encrypted in valid ciphertexts. That is, one should not be able to mix-and-match input bit values
from different ciphertexts for the same slot.

A possible approach for achieving the above in the circuit setting would be to adapt ideas from
Boneh et al.’s branching program construction. There, the authors introduced the notion of an
exclusive partition family, which allows one to generate “straddling sets” for the bits in each MIFE
ciphertext with the property that any evaluation that uses encodings from different ciphertexts
can obtain an encoding at the zero-testing level only with negligible probability. However, these
techniques crucially rely on the way branching programs are evaluated as a sequence of matrix
multiplications. This property is no longer true for circuit evaluations and thus poses substantial
challenges to extending the straddling techniques to work with circuits. Instead, we develop a
different approach, inspired by the check value idea from circuit obfuscation constructions.

As discussed in §3 and §4, circuit obfuscators employ two main techniques: (1) they enforce
that an evaluation can reach the zero-testing level if and only if it uses consistent assignment to
each input bit, and (2) they ensure that the function evaluated is the intended function by using
an additional check slot in the mmap encodings.

The first technique is not easily amenable to changes that could help prevent mix-and-match
attacks across MIFE ciphertexts for the same MIFE slot. Instead, we propose a way to extend
the check value technique to enforce that all encodings from a ciphertext are used consistently.
Recall that in Zimmerman’s construction, each input bit encoding has two slots, where the first
slot contains the actual bit value and the second slot has a fixed value; for example, the encodings
for input bits zero and one for the ith input bit encode the pairs [0, αi] and [1, αi]. Thus, any
honest evaluation of the obfuscated function f on n input bits should be an encoding at the zero-
testing level with value f(α1, . . . , αn) in the second slot. The obfuscation provides an encoding
of [0, f(α1, . . . , αn)] at the zero-testing level, which can be subtracted and enables zero-testing
encodings obtained with honest evaluation of the obfuscated function. The proof of security uses
the Schwartz-Zippel lemma to show that the probability of an adversary obtaining an encoding
at the zero-testing level with a zero value in the second slot in any other way than the honest
evaluation is negligible.

We adapt this technique to the setting where we want to guarantee that a subset of the input bits
are used consistently together. In particular, in the MIFE setting these subsets of bits correspond
to the MIFE ciphertext for a particular MIFE slot. We handle this by using a designated mmap
slot for each MIFE slot. The first mmap slot corresponds to the actual circuit evaluation, whereas
the other n slots (for an n-input MIFE) correspond to a “check slot” for each MIFE slot.

Let C : {0, 1}d1 × · · · × {0, 1}dn → {0, 1}m be our n-input MIFE circuit, with the ith input
being of length di, and for simplicity assume m = 1 for now. A ciphertext for MIFE slot i contains
a set of di encodings, where encoding j ∈ [di] has random value αj in the (i+ 1)th mmap slot. For
a ciphertext in MIFE slot k 6= i, the (i + 1)th mmap slot has value 1. The ciphertext for MIFE
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slot i also provides an encoding ŵi that has value 1 in all of its mmap slots, except in its (i+ 1)th
mmap slot it has the value

C(1, . . . , 1︸ ︷︷ ︸
d1

, . . . , 1, . . . , 1︸ ︷︷ ︸
di−1

, α1, . . . , αdi , 1, . . . , 1︸ ︷︷ ︸
di+1

, . . . , 1, . . . , 1︸ ︷︷ ︸
dn

).

That is, the (i+ 1)th mmap slot contains the output of circuit C evaluated on all ones except for
the ith MIFE slot which contains its associated α values.

On decryption, the ŵi values are multiplied in to reach the zero-testing level and then subtracted,
thus guaranteeing that an evaluator can obtain an encoding at the zero-testing level with zero in
its (i + 1)th mmap slot if and only if it has used the bits of a ciphertext for the ith MIFE slot
consistently.

Thus, on honest decryption, the resulting zero-testing encoding is [C(ct(1), . . . , ct(n)), 0, . . . , 0],
where ct(i) denotes the ith ciphertext. On dishonest decryption, the resulting encoding is [C∗, C∗1 , . . . ,
C∗n], where C∗ denotes the output of the maliciously evaluated circuit, and C∗i denotes the output
of that same circuit on the ith check slot. By the Schwartz-Zippel lemma, these C∗i values are
non-zero with overwhelming probability.

We note that the increased number of mmap slots required in our construction only affects
performance if this is more slots than available in the underlying mmap. However, for the CLT
mmap [26] which we use in our implementation, this does not occur when using reasonable security
settings and input lengths. In particular, the number of slots in the CLT mmap is a function
of both the security parameter and multilinearity. As an example, for a single gate circuit with
security parameter 80, the CLT scheme requires 9,632 slots, and the 12-bit PRF we obfuscate (cf.
§8) requires 13,111 slots, well above the number of inputs of these two circuits.

5.1 Construction

Let C : {0, 1}d1 × · · · × {0, 1}dn → {0, 1}m be an arithmetic circuit on boolean inputs, let deg(x(i))

denote the maximum degree of the bits of the ith MIFE slot across all output bits, and let deg(x
(i)
o )

denote the maximum degree of the bits of the ith MIFE slot for output bit o ∈ [m]. Our 1SK-MIFE
construction works as follows:

1SK-MIFE.Setup(1λ, C):

1. Define top-level index set

U := Z
∏
i∈[n]

W (i)(X(i))deg(x(i)).

2. Compute (pp, sp, pev, pchk1, . . . , pchkn)← Setup(U , λ, 1 + n).

3. Generate the following encoding:

Ĉ∗ := [0, 1, . . . , 1︸ ︷︷ ︸
n

]
Z
∏
i∈[n](X

(i))deg(x(i))

4. For i ∈ [n], generate the following encoding:

ûi := [1, 1, . . . , 1︸ ︷︷ ︸
n

]X(i) .

14



5. For o ∈ [m], generate the following encoding:

ẑo := [δo, 1, . . . , 1︸ ︷︷ ︸
n

]
Z
∏
i∈[n] W

(i)(X(i))deg(x(i))−deg(x
(i)
o )
,

where δo ← Zpev .

6. Set sk := (sp, C) and ek :=
(
pp, C, {ẑo}o∈[m], {ûi}i∈[n], Ĉ

∗
)

.

1SK-MIFE.Enc(sk, i,x ∈ {0, 1}di):

1. For j ∈ [di], generate the following encoding:

x̂j := [xj , 1, . . . , 1︸ ︷︷ ︸
i−1

, αj , 1, . . . , 1︸ ︷︷ ︸
n−i

]X(i) ,

where αj ← Zpchki
.

2. For o ∈ [m], generate the following encoding:

ŵo := [0, 1, . . . , 1︸ ︷︷ ︸
i−1

, C†o , 1, . . . , 1︸ ︷︷ ︸
n−i

]W (i) ,

where
C†o := C(1, . . . , 1︸ ︷︷ ︸

d1

, . . . , 1, . . . , 1︸ ︷︷ ︸
di−1

, {αj}, 1, . . . , 1︸ ︷︷ ︸
di+1

, . . . , 1, . . . , 1︸ ︷︷ ︸
dn

)o ∈ Zpchki
.

3. Output ciphertext ct :=
(
{x̂j}j∈[di], {ŵo}o∈[m]

)
.

1SK-MIFE.Dec(ek, ct(1), . . . , ct(n)):

1. Parse ek as
(
pp, C, {ẑo}o∈[m], {ûi}i∈[n], Ĉ

∗
)

.

2. For i ∈ [n], parse ct(i) as
(
{x̂(i)

j }j∈[di], {ŵ
(i)
o }o∈[m]

)
.

3. For o ∈ [m], evaluate the oth output of circuit C on inputs x̂
(1)
1 , . . . , x̂

(1)
d1
, . . . , x̂

(n)
1 , . . . , x̂

(n)
dn

, using
{ûi} as needed (as is done in Zimmerman [49, §3]). Denote the final term as

Ĉo := [C(x(1), . . . ,x(n))o, (C
†
o)

(1), . . . , (C†o)
(n)]∏

i∈[n] (X(i))
deg(x

(i)
o )

4. For o ∈ [m], compute

t̂o := ẑoĈo − Ĉ∗
∏
i∈[n]

ŵ(i)
o .

5. Output the bitstring resulting from running ZeroTest(t̂o) for o ∈ [m].
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5.2 Proof of Security

Theorem 5.1. The construction in §5.1 is correct according to Definition 2.3.

Proof. Correctness follows directly by inspection. �

Theorem 5.2. The construction in §5.1 is secure according to Definition 2.4.

Proof. In the generic mmap model the distributions of the encodings obtained during the encryption
oracle queries are independent of the bit b. Thus, we need to argue that the answers obtained from
successful zero testing queries in Expt1SK-MIFE

C,Q,0 (A) and Expt1SK-MIFE
C,Q,1 (A) are negligibly close.

The zero-testing returns a value different from ⊥ only on encodings at the top-level index set
U . We consider the two main ways to obtain an encoding at the zero testing level: either using Ĉ∗

or not using it.

1. Using Ĉ∗: The only way to obtain encoding at the zero testing level from Ĉ∗ is by multiplying
it with

∏
i∈[n] ŵ

(i).

2. Not using Ĉ∗: Monomials that represent encodings at level U are of the form ∏
j∈[di]

(x̂
(i)
j )mi(û

(i)
j )deg(x̂

(i)
j )−mi

 ẑ (2)

where x̂
(i)
j , û

(i)
j , ẑ belong to ciphertexts for MIFE slot i.

Therefore, valid zero-testing queries will be linear combinations of monomials of the form either
Ĉ∗
∏
i∈[n] ŵ

(i) or Equation 2. An encoding successfully zero-tests if and only if the values in all
of its mmap slots are zero. By the Computational Schwartz-Zippel Lemma [49, Lemma 3.12], the
values in the mmap slots are zero with non-negligible probability if and only if the polynomial over
the encoded values evaluates to zero.

We consider mmap slot j for j ∈ [2, . . . , n+ 1]. Since each encoding in the ciphertext for MIFE
slot i = j − 1 contains a random value at mmap slot j and the encoding ŵ from the ciphertext
at MIFE slot i has value C† := C(1, . . . , 1, {αj}j∈[di], 1, . . . , 1) at mmap slot j, in order to obtain
a polynomial that evaluates identically to zero, this polynomial needs to have as a divisor the

polynomial C(1, . . . , 1, {x̂(i)
j }j∈[di], 1, . . . , 1)ẑ− Ĉ∗ŵ(i) ·? · · · ?︸ ︷︷ ︸, where ? denotes an encoding that has

value one in mmap slot j (for clarity, we have omitted the multiplications with encodings û
(i)
j ).

In other words, this means that all monomials can use encodings only from a single ciphertext at
MIFE slot i. Applying this reasoning to all MIFE slots we conclude that the polynomials that

evaluate to zero must be of the form C({x̂(i)
j }i∈[n],j∈[di])− Ĉ∗

∏
i∈[n] ŵ

(i) (again omitting encodings

û
(i)
j ), except with negligible probability.

However, since for all admissible tuples of queries in the MIFE security game the circuit C
evaluates to the same value independent of the challenge bit b, it follows that the encodings that
successfully zero-test will also be independent of the challenge bit b, completing the proof. �
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5.3 Optimizations

We note an optimization that can help reduce the overall multilinearity by two for certain func-
tions. When using MIFE on a circuit with constants, the naive approach is to utilize one slot to
encode the constants. However, this slot can instead be “rolled into” the encodings generated in
1SK-MIFE.Setup, as follows. Suppose the (n + 1)th MIFE slot contains the constants. Instead of
computing Ĉ∗ := [0, 1, . . . , 1]

Z
∏
i∈[n+1](X

(i))deg(x(i)) , we directly compute the combination of Ĉ∗ and

ŵ
(n+1)
o ; that is, we replace Ĉ∗ with ŵ

(n+1)
o := [0, 1, . . . , 1︸ ︷︷ ︸

n

, C†o ]ZW (n+1)
∏
i∈[n+1](X

(i))deg(x(i)) for o ∈ [m].

Now, the right-hand-side computation in Step (4) of 1SK-MIFE.Dec is just
∏
i∈[n+1] ŵ

(i)
o . This re-

duces the multilinearity by one for functions with constants where the number of inputs is larger
than the overall degree of the circuit.

We can reduce this computation further by combining ŵ
(i)
o with, say, the ŵ

(1)
o values correspond-

ing to the first MIFE slot. Thus, the final right-hand-side product becomes
∏
i∈[n] ŵ

(i), reducing
the multilinearity by two versus the naive approach.

Computing κ. The main cost of our construction is the computation of C, plus one additional
multiplication to reach the top-level index set. However, if the multilinearity from computing C
is less than the number of inputs, the right-hand-side computation of Step (4) of 1SK-MIFE.Dec
dominates. Thus, we get the following:

κ ≤ max{1 +
∑
i∈[n]

deg(x(i)), n}.

5.4 Obfuscation from MIFE

Our MIFE construction immediately gives us an obfuscation scheme using the transformation of
Goldwasser et al. [33]: set each MIFE slot to be a single bit, with the obfuscation being the 2n
encryptions corresponding to the zero and one values in each MIFE slot, and evaluation being the
MIFE decryption operation. We denote this construction by MO. Note that we can also directly
support Σ-vectors by encrypting each σ ∈ Σ for each MIFE slot.

MO.Obfuscate(1λ, C):

1. Compute (sk, ek)← 1SK-MIFE.Setup(1λ, C).

2. For i ∈ [n], b ∈ {0, 1}, compute cti,b ← 1SK-MIFE.Enc(sk, i, b).

3. Output the following as the obfuscated program(
ek, {cti,0, cti,1}i∈[n]

)
.

MO.Evaluate(Obf,x):

1. Parse Obf as
(
ek, {cti,0, cti,1}i∈[n]

)
.

2. Output 1SK-MIFE.Dec(ek, ct1,x1 , . . . , ctn,xn).
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Computing κ. This approach gives us the same κ values as our MIFE construction. We also
note that MO requires many fewer encodings than existing approaches, as we are in some sense
trading the use of encodings with mmap slots to enforce security. See Table 1 for some examples;
roughly, MO requires up to 2× fewer encodings than all existing approaches, which directly impacts
the obfuscation time and size.

Results. See Table 1 and Table 2 for results. We can see that MO is better than all existing
schemes, both in terms of κ values as well as the number of encodings needed.

6 Compiling Circuits for Obfuscation

The running time of circuit obfuscation is directly related to the multilinearity of the underlying
mmap: the larger the multilinearity, the longer the running time and resulting size. Indeed, for
existing mmaps, the running time is exponential in the multilinearity. As the multilinearity is
always greater than or equal to the multiplicative degree, reducing the multiplicative degree often
has a direct impact on the multilinearity. In this section we focus on the (multiplicative) degree,
whereas throughout the rest of the paper the focus is on multilinearity.

The degree is calculated as follows. As we evaluate an arithmetic circuit, the degree of an
addition gate is the maximum degree of its inputs, whereas the degree of a multiplication gate is
the sum of the degree of its inputs (see Figure 2.1). Thus, in the worst case the degree of the whole
circuit is exponential in its depth — this occurs when a circuit contains only multiplication gates.
However, in the best case the degree can be much lower — this occurs when the multiplication
gates are “spread out” effectively in the circuit. The primary goal when compiling circuits is in
reducing the degree required, even at the cost of increasing the total number of gates.

Existing circuit compilers for secure computation either minimize the number of gates [35, 43]
or the depth [22]. As an early attempt, we took a similar approach using off-the-shelf tools: taking
a Cryptol3 function as input, we used the Software Analysis Workbench [27] to generate circuits
composed of and and not gates, optimized them using either ABC [21], a tool for synthesizing
and optimizing binary sequential logic circuits, or Yosys [48], a tool for synthesizing and optimizing
Verilog scripts, and then finally translated the outputs to an arithmetic circuit. These tools were
somewhat effective, but they did not provide the ability to use custom optimizations to reduce the
degree and thus often produced poorly performing circuits. Thus, we built our own circuit compiler
to address this gap. As an example, for 1-round AES we were able to reduce the degree from 14,900
to 33 when using our compiler.

The compiler itself is an embedded domain specific language (DSL) in Haskell which directly
constructs arithmetic circuits from addition, multiplication, and subtraction gates. This is less
a limitation than it seems, since we can use the full power of Haskell to construct circuits. For
example, access to low-level representations allows for clever circuit optimizations, such as replacing
a subroutine with a lookup table. The DSL can also compose circuits, which allows us to use heavily
optimized sub-circuits as subroutines. Finally, the DSL provides generic optimizations specifically
tailored to reduce the degree.

In §6.1 we discuss circuit optimizations. This includes improvements to the way a circuit is
initially constructed, as well as optimizations we apply after the circuit is created. Then, in §6.2
we show how well the optimizations perform on a circuit that computes a single round of AES.

3Cryptol is a domain-specific language designed for writing programs over streams of bits [37].
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6.1 Circuit Optimizations

In this section we describe each of our circuit optimization approaches: using off-the-shelf optimizers
(§6.1.1), using a DSL (§6.1.2), encoding lookup tables (§6.1.3), folding constants (§6.1.4), and circuit
flattening (§6.1.5).

6.1.1 Off-the-Shelf Boolean Circuit Optimizers

Our early compiler generated boolean circuits which could then be fed into off-the-shelf optimizers.
We were inspired by TinyGarble [46] to use ABC [21] and Yosys [48], tools which are used by
hardware engineers for optimizing circuits. We then converted the optimized (boolean) circuit to
arithmetic. The advantage of this approach is that existing optimizers are well developed, easy to
use, and effective. Using this method, if we compile the AES S-Box directly as an arithmetic circuit,
it has degree 283. Optimizing with ABC takes the degree down to 250, and further optimization
with Yosys takes the degree down to 220. However, these tools optimize for size, not degree, and
the resulting degrees are well beyond values that we could hope to obfuscate in a reasonable amount
of time.

6.1.2 Using a Domain-specific Language

In order to take advantage of low-level circuit optimizations that are not captured by existing off-
the-shelf tools, we developed our own DSL for building circuits. The basic idea is to build a circuit
directly from gates in Haskell. The user primarily interacts with “Refs”, which are indices into
an array of wires. We provide functions for addition, subtraction, multiplication, etc., based on
Refs. There is also a mechanism for avoiding duplicate gates. The user can use Haskell functions
to create their circuits, dynamically passing Refs around, and existing circuits can be imported as
sub-circuits. This allows us to take the best compilation method for every circuit, or to pre-compute
sub-circuits that have a long optimization step. Finally, the DSL provides tools for exploring new
optimization techniques (both during and after compilation), as described below.

6.1.3 Encoding a Lookup Table as a Circuit

One simple but effective optimization we can do is to replace an n-input circuit with a lookup table
of degree n. The cost is an exponential blowup in the number of gates in the circuit, corresponding
to every possible input. However, since size is not the limiting factor for our obfuscation schemes,
we apply this optimization whenever we can.

As an example, consider the circuit corresponding to a truth table with single-bit entries[
0 1 1 0

]
, where on input i the circuit returns the ith bit of the table. We can convert this

circuit to the formula
((1− i1) · i0) + (i1 · (1− i0)),

where i1i0 corresponds to the base-2 representation of i, giving us a circuit of degree two.
Using the DSL and the above lookup table encoding reduces the degree of the AES S-Box from

220 to 8, a 27× improvement.
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Circuit Opt. Level # Gates # Muls Degree

-O0 22,368 5,600 57
-O1 22,368 5,600 57aes1r

-O2 80,564 9,203 33

-O0 1,101 569 41
-O1 820 420 26aes1r 64 1

-O2 1,324 614 18

Table 3: Comparison of DSL optimizations. Comparison of DSL optimizations. ‘Opt. Level’ denotes the
optimization level used (‘-O0’ denotes no optimizations; ‘-O1’ denotes constant folding; and ‘-O2’ denotes
constant folding and sub-circuit flattening); ‘# Gates’ denotes the total number of gates in the circuit; ‘#
Muls’ denotes the total number of multiplication gates; and ‘Degree’ denotes the multiplicative degree.

6.1.4 Folding Constants

Another simple optimization which is surprisingly effective is “constant folding”. Namely, we scan
the circuit for gates that add or multiply constants and replace such gates with new constants. We
can also remove gates that add or subtract zero or multiply by one. Our circuits often contain
these gates since we use 1 − x to simulate not(x). Such gates also occur if we fix input bits to a
constant.

6.1.5 Circuit Flattening

This optimization uses the fact that our arithmetic circuits emulate boolean circuits in that every
wire only ever carries zero or one. We can take advantage of this to reduce the circuit degree
as follows: (1) convert the circuit to a polynomial; (2) “expand” the polynomial by converting it
from a product of sums to a sum of products; (3) remove all exponentiations, possible because the
variables in the polynomial are boolean; and (4) simplify and convert back to circuit form.

As an example, consider the circuit represented by the polynomial (1−x1)(1−x1x2). Expansion
produces the polynomial (1 − x1 − x1x2 + x2

1x2). Since the inputs are bits we can remove all
exponents from the polynomial. Simplifying, we get the polynomial (1−x1), which has degree one,
in comparison to the original which has degree three.

Polynomial expansion has exponential blow-up, so this optimization only works for sufficiently
small circuits (experimentally, we found around depth 14 to be the limit). We thus locate high-
degree sub-circuits, flatten these independently, and then use the DSL to stitch them back in,
repeating until a fixed-point is reached. This method takes the degree of 1-round AES-128 from 57
to 33.

6.2 Optimization Results

See Table 3 for a comparison of the various DSL optimization approaches on two variants of one-
round of AES-128: aes1r denotes one-round of AES-128, and aes1r 64 1 denotes one-round of
AES-128 with 64-bits of the input fixed and only one output bit. We can see that in both cases, we
see benefits to using our circuit flattening optimization, reducing the degree from 57 to 33 in the
case of aes1r and reducing the degree from 26 to 18 in the case of aes1r 64 1. Constant folding
only sees a benefit for aes1r 64 1; this is because in that circuit 64 input bits are fixed, and thus
can be folded into the computation, reducing the degree from 41 to 26.
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Note that the circuit flattening optimization often increases both the total number of gates and
the number of multiplication gates. For example, using sub-circuit flattening increases the number
of gates in the aes1r circuit by almost 4× and the number of multiplication gates by almost 2×.
However, as mentioned before, degree is the main efficiency bottleneck, and thus this extra increase
is largely irrelevant from an efficiency standpoint given the reduction in degree.

7 Implementation

We implemented the MIFE scheme described in §5 and all of the obfuscators discussed in §4, §5,
and Appendix B. We have packaged these into a program, mio, containing around 20,000 lines of
C code and using libmmap as the underlying mmap library (and in particular, the instantiation of
the CLT mmap [26] available as part of libmmap). We also developed a language and associated
library, libacirc, for describing arithmetic circuits. All the code is available at https://github.

com/5GenCrypto/.

Attacks on CLT While our MIFE and obfuscation schemes are secure in the composite-order
mmap generic model, in our implementation we instantiate this generic model using the CLT
mmap [26]. Unfortunately, the CLT mmap is prone to several attacks. Most relevant to our
constructions, Coron et al. [24] demonstrated an attack on the Zimmerman construction for the
specific circuit comprised of the product of an odd number of inputs. However, it is not clear how
to extend their attack to arbitrary circuits, and in particular, to PRFs. Intuitively, it appears that
any successful partitioning of the input space needed in their attack would lead to an attack on the
underlying PRF, although this remains to be formalized.

More recently, Coron et al. [25] demonstrated attacks on matrix branching program construc-
tions using the CLT mmap, but again, we are not aware of how to map this attack to the more
general circuit approach. Existing attacks rely on some inherent structure of the computation, be
it matrix multiplication using branching programs or multiplications when attacking the product
circuit in Zimmerman’s construction. In addition, embedding PRFs in obfuscation constructions
based on the GGH mmap [28] has been used to eliminate all known attacks [30], albeit in the
branching program context. This seems to suggest that when obfuscating PRFs themselves, the
“lack of structure” provided by the PRF prevents existing attacks from working. Thus, while we do
not have a proof that our construction circumvents all known attack techniques, we believe existing
attacks do not affect our construction when applied to obfuscating PRFs.

8 Performance Results

We found that for functions that can be mapped efficiently to finite automata, the matrix branching
program approach of 5Gen is superior. In particular, for order-revealing encryption and point
function obfuscation we were unable to produce circuits with smaller κ than 5Gen. However, as the
complexity of the circuit grows, the circuit-based approach quickly becomes superior. Indeed, we
were unable to even compile branching program representations for any of the circuits considered
below.

We investigate two function classes to obfuscate: AES (cf. §8.1) and the Goldreich, Goldwasser,
Micali (GGM) PRF (cf. §8.2). We explored a number of other PRF constructions, including
MiMC [8] and the PRF of Applebaum and Raykov [14]. However, both approaches require finite
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field operations resulting in circuits of very high degree. For example, we found the Applebaum-
Raykov PRF with 8-bit input and 24-bit key to have multiplicative degree greater than 1026.

We note that all of the obfuscators we implemented only satisfy the weaker indistinguishability
obfuscation definition; thus, we assume heuristically that our constructions are virtual black-box
obfuscators for the specific functions considered below. Due to its efficiency over the other obfus-
cators, both in terms of multilinearity and number of encodings, all of the below experiments are
done using our MIFE-based construction from §5.

8.1 AES

Obfuscating AES can be seen as the “holy-grail” of program obfuscation due to its wide-spread use
in industry. Unfortunately, obfuscating the entire 10-round AES-128 construction is well beyond
our capabilities at the moment. For a single round of AES we can achieve κ = 128, but for even
two rounds of AES this balloons to over 2,000.

Recall from Table 3 that the multiplicative degree of our circuit is 33, yet the resulting multilin-
earity is 128. This is due to the fact that our obfuscator has a minimal multilinearity equal to the
number of inputs, and thus in some sense we cannot take advantage of the low multiplicative degree
in this case. Thus, an interesting open problem is constructing a circuit obfuscation scheme that
has multilinearity independent of the number of inputs, while also making only black-box queries
to the underlying mmap to avoid the efficiency bottleneck of using mmaps in a non-black-box way
(cf. §3.2).

8.2 Goldreich-Goldwasser-Micali PRF

AES is not particularly suited to our program obfuscation approach due to its many rounds,
and thus high degree. As mentioned above, we explored other PRFs but found the Goldreich,
Goldwasser, and Micali (GGM) PRF [32] as the most feasible approach.

Let Fk : {0, 1}n → {0, 1}n denote a PRF. GGM introduced a way to construct Fk directly
from a stretch-two4 PRG G : {0, 1}n → {0, 1}2n as follows. Let G(k) = G0(k)‖G1(k), where
Gi : {0, 1}n → {0, 1}n denotes the ith n-bit block of output of G. The idea is to repeatedly apply
G, using the input bits of the PRF as an index into which half of the output of G to return. Namely,
letting x := x1 · · ·xn, we define Fk(x) := Gxn(Gxn−1(· · · (Gx1(k)))).

Lin [38] used a variant of the GGM PRF in her construction of obfuscation from constant-
degree mmaps (cf. §3.2). Her variant uses a PRG with polynomial stretch (as opposed to the GGM
construction, which only requires stretch two), which allows for minimization of the depth and thus
degree of the resulting circuit. In particular, Lin showed that by using a special unary “Σ-vector”
encoding of the input (cf. §4.3) and a polynomial stretch PRG we can minimize the depth of the
resulting PRF.

More formally, let x := σ1 · · ·σn, where σi ∈ Σ, and let |Σ| denote the length of Σ. Using a

PRG G : {0, 1}n → {0, 1}|Σ|n, our PRF becomes Fk(x) := Gσn(Gσn−1(· · · (Gσ1(k)))). Note that the
“real” length of x (i.e., the number of bits of input that x can encode) corresponds to n · log2(|Σ|),
since a Σ-vector of length |Σ| corresponds to a unary encoding of a value in the set {0, . . . , |Σ|−1}.
In particular, this approach reduces the number of PRG evaluations by log2(|Σ|).

Thus, the main “cost” (in terms of degree) of the PRF becomes the particular PRG it is
instantiated with. To measure this, we calculated the depth, degree, and multilinearity of the

4We define a stretch-t PRG to be one that on n-bit input, produces a tn-bit output.
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GGM PRF with the PRG instantiated by an identity function. When using four Σ-vector inputs
each of length 16 (corresponding to 64 bits of “real” input) and a key length of 128, we get a depth
of 20, a degree of 5, and a multilinearity of 6. On the other hand, instantiating the PRF with an
actual PRG (in this case, Goldreich’s PRG as discussed below), we get a depth of 48, degree of
781, and multilinearity of 1,126.

8.2.1 Selecting a PRG for the GGM PRF

As the PRG choice greatly effects the overall degree of the circuit, and thus the required multi-
linearity when obfuscating, choosing an appropriate PRG is of vital importance to efficiency. In
particular, we would like a polynomial-stretch PRG in NC0 (the class of boolean circuits with
constant depth) due to its low depth, and thus low degree. One of the main candidate PRGs in
this space is by Goldreich [31]: letting G : {0, 1}n → {0, 1}m be our PRG, for some fixed k take
m random k-tuples of the n input bits and apply a predicate P : {0, 1}k → {0, 1} to each tuple,
producing m bits of output. Due to the parallelizability of this approach, the degree of G is simply
the degree of the predicate P .

There are various possible choices of both the predicate P and its input size k. Goldreich [31]
suggested choosing P at random. O’Donnell and Witmer [44] suggested the xor-and predicate

P (x1, x2, x3, x4, x5) = x1 ⊕ x2 ⊕ x3 ⊕ x4x5 (mod 2).

Finally, Applebaum and Lovett [13] suggested the xor-maj predicate

P (x1, . . . , xd) = x1 ⊕ · · · ⊕ xbd/2c ⊕Majority(xbd/2c+1, . . . , xd).

In order to choose the most efficient predicate, we compare xor-maj and xor-and, along with
the (completely insecure) linear predicate P (x1, . . . , x5) =

⊕
xi to get an idea of the “simplest”

predicate we could hope for. See Table 4 for the results.
We found that all three predicates have roughly the same multilinearity, with xor-and and

linear being slightly better than xor-maj. This is due to the fact that we are computing
boolean operators using arithmetic circuits. In particular, the XOR operation is no longer cheap:
XOR(x, y) := x + y − 2xy, thus requiring one multiplication and three linear operations, whereas
AND(x, y) := xy, costing one multiplication but no linear operations. Since the main cost is the
multiplicative degree, we can ignore the cost of the linear operations and thus XOR and AND end
up costing the same.

We also experimented with the block-local PRG of Barak et al. [15], but found its performance
worse than the above instantiations. Thus, we chose to instantiate our PRG in the GGM PRF
construction using the xor-and predicate.

8.2.2 Implementing the GGM PRF

We implemented the GGM PRF within our DSL for both “standard” (boolean) inputs and Σ-vector
inputs; see Table 5 for the results. We found that Σ-vector inputs produced much smaller κs than
their boolean input counterparts. This is due to two reasons: (1) we require fewer applications of
the PRG, reducing the overall depth and thus degree of the circuit, and (2) we can produce very
small lookup tables by directly using the Σ-vector as the index (i.e., the e value in Equation (1)).
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Predicate n m # Gates # Muls Depth Degree κ

linear 32 32 504 126 9 5 33
linear 32 128 1,904 476 9 5 33
linear 64 64 1,024 256 9 5 65
linear 64 128 2,028 507 9 5 65
linear 128 128 2,028 507 9 5 129

xor-and 32 32 414 126 7 5 33
xor-and 32 128 1,609 484 7 5 33
xor-and 64 64 827 254 7 5 65
xor-and 64 128 1,645 502 7 5 65
xor-and 128 128 1,656 510 7 5 129

xor-maj 32 32 829 414 9 5 32
xor-maj 32 128 3,159 1,622 9 5 32
xor-maj 64 64 1,914 895 9 6 64
xor-maj 64 128 3,756 1,783 9 6 64
xor-maj 128 128 5,350 2,794 10 7 128

Table 4: Circuits computing Goldreich’s PRG for various choices of predicate. linear denotes the predicate
P (x1, . . . , x5) :=

⊕
xi; xor-and denotes the predicate P (x1, . . . , x5) := x1⊕x2⊕x3⊕x4x5; xor-maj denotes

the predicate P (x1, . . . , xd) := x1⊕· · ·⊕xbd/2c⊕Majority(xbd/2c+1, . . . , xd), where d is set to log n; ‘n’ denotes
the number of input bits; ‘m’ denotes the number of output bits; ‘# Gates’ denotes the total number of gates;
‘#Muls’ denotes the number of multiplication gates; ‘Depth’ denotes the depth of the circuit; ‘Degree’ denotes
the multiplicative degree of the circuit; and ‘κ’ denotes the best multilinearity achieved.

8.2.3 Performance Results

See Table 6 for performance results. All results were run on a machine with 2 TB of RAM and
four Xeon CPUs running at 2.1 GHz, with sixteen cores per processor and two threads per core
(resulting in 128 “virtual” cores). We used λ = 80 throughout. Due to the long running time, the
numbers correspond to a single execution.

The largest circuit we were able to obfuscate and evaluate was a 12-bit GGM PRF with a 64-bit
key5. This took 3.7 hours to obfuscate, resulting in an obfuscation of 120 GB and an evaluation time
of 67 minutes. While still far from practical, this is by far the most complex function obfuscated to
date that we are aware of. In particular, Lewi et al. [36] obfuscated an 80-bit point function, and
Halevi et al. [34] obfuscated a 100-state non-deterministic finite automaton with 68 input bits. On
the other hand, our obfuscated circuit contains 48 input bits (albeit in Σ-vector form), 12 output
bits, and 62,227 gates.

We also compared the tradeoff of Σ-vector length versus number of PRG applications. As the
number of PRG applications increases, the overall multilinearity does as well. Indeed, for a single
PRG application, we can achieve κ = 7, whereas with two applications this jumps to 33, and with
three applications we reach 161, outside the realm of runnability. Thus, playing with the Σ-vector
length, we compared the running time of an 8-bit PRF with |Σ| = 256 (resulting in one application
of the PRG and thus κ = 7) versus |Σ| = 16 (resulting in two applications of the PRG and thus
κ = 33). Interestingly, the PRF with the lower κ ended up taking much longer to obfuscate and
resulted in a much larger obfuscation. This is due in a large part to the huge number of encodings
needed when using |Σ| = 256. As an example, for key length 128 we need 67,872 encodings for

5We successfully obfuscating a 12-bit GGM PRF with a 128-bit key, but evaluation ran out of memory.
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κ

n k Boolean Σ

4 128 14 7
8 128 74 33

12 128 374 161
16 128 1,874 794

Table 5: Multilinearity values for the GGM PRF obfuscated using MO for both boolean and Σ-vector
inputs with |Σ| = 16. ‘κ’ denote the multilinearity; ‘n’ denotes the number of “real” input bits; ‘k’ denotes
the key length; ‘Boolean’ denotes that the inputs are represented as bits; and ‘Σ’ denotes that the inputs are
represented as Σ-vectors. As an example, for n = 16 and using the Σ vector representation, we have four
Σ-vectors and thus 4 · 16 = 64 input bits, which corresponds to 4 · log2(16) = 16 “real” input bits.

n |Σ| # PRGs k # Gates # Enc κ Obf time Obf size Obf RAM Eval time Eval RAM

8 256 1 32 23,710 67,680 7 10 h 121 GB 268 GB 4.4 m 143 GB
8 256 1 64 27,692 67,744 7 10 h 121 GB 270 GB 4.7 m 155 GB
8 256 1 128 29,889 67,872 7 10 h 121 GB 268 GB 4.9 m 152 GB
8 16 2 32 8,580 872 33 127 m 11 GB 44 GB 11 m 15 GB
8 16 2 64 16,138 936 33 127 m 12 GB 41 GB 17 m 18 GB
8 16 2 128 31,431 1,064 33 130 m 13 GB 49 GB 29 m 21 GB

12 64 2 32 32,998 9,840 33 3.7 h 119 GB 267 GB 42 m 125 GB
12 64 2 64 62,227 9,904 33 3.7 h 120 GB 270 GB 67 m 128 GB
12 64 2 128 121,798 10,032 33 3.7 h 122 GB 274 GB — —

Table 6: Obfuscation details for various GGM PRF circuits. ‘n’ denotes both the number of “real” input
bits (i.e., n = #PRGs · log2(|Σ|)) and the number of output bits of the circuit; ‘|Σ|’ denotes the size of
the Σ-vectors; ‘# PRGs’ denotes the number of applications of the PRG; ‘k’ denotes the key length; ‘#
Gates’ denotes the number of gates in the circuit; ‘# Enc’ denotes the number of mmap encodings required
for obfuscation; ‘κ’ denotes the required multilinearity of the mmap; ‘Obf time’ denotes the obfuscation
time; ‘Obf size’ denotes the obfuscation size; ‘Obf RAM’ denotes the maximum amount of RAM used during
obfuscation; ‘Eval time’ denotes the evaluation time; and ‘Eval RAM’ denotes the maximum amount of RAM
used during evaluation. ‘—’ denotes that we ran out of memory.

|Σ| = 256 versus 1,064 encodings for |Σ| = 16. Thus, even though κ is around 4× larger in the
latter case, we need to encode 64× fewer values, reducing the obfuscation time (10 hours versus
130 minutes) and size (121 GB versus 13 GB). However, we do note that the evaluation time is
much faster for |Σ| = 256: 4.9 minutes versus 29 minutes using our previous example. This presents
an interesting tradeoff of obfuscation time/size versus evaluation time.

9 Conclusion

In this work, we present a thorough investigation of circuit-based multi-input functional encryp-
tion (MIFE) and program obfuscation, introducing a new MIFE scheme and associated program
obfuscator that performs better than all existing approaches when obfuscating pseudorandom func-
tions (PRFs). This allowed us to obfuscate the Goldreich-Goldwasser-Micali (GGM) PRF for a
small number of inputs; however, the multilinearity quickly increases as we increase the input size,
preventing us from being able to obfuscate “real-world” input sizes.

This work motivates several interesting research questions. The running time of obfuscating the
GGM PRF depends heavily on the pseudorandom generator (PRG) used within the PRF; can one
construct a more “obfuscation-efficient” PRG for this use case? Can one construct a lower degree
PRF than the GGM PRF? More generally, can one construct a more efficient circuit obfuscator
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than our MIFE construction, and in particular, one that has multilinearity independent of the input
length while still being black-box in the mmap? Finally, as all of these constructions rely heavily on
the efficiency of the underlying mmap, a major open question is the construction of more efficient
(composite-order) mmaps.
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A Circuit Information

In Table 7, we list the circuits we consider in this work, as well as attributes about those circuits
relevant to obfuscation. We describe each circuit below.

• aes1r: One-round AES.

• aes1r x y: One-round AES with x input bits and y output bits.

• ggm x y: The GGM PRF using x applications of Goldreich’s PRG, using the xor-and predi-
cate, and y bits of output.

• ggm sigma x y: The GGM PRF using Σ-vectors with x applications of Goldreich’s PRG,
using the xor-and predicate, and y bits of output.

B The Linnerman Obfuscator

In this section we introduce the “Linnerman” obfuscator, denoted by LZ, which combines Zim and
Lin. Lin is based off AB, which as noted in §4 results in very large values for κ. We thus adapt Lin
to be based off Zim, resulting in much smaller values for κ. Our approach is similar to that taken
by Lin [38] (cf. §4.3) by adapting Zim to support Σ-vectors. In what follows, we give the high-level
intuition of our construction; full details are in §B.1.

Supporting Σ-vectors. Recall from §4.3 that a Σ-vector is a symbol represented in unary as
follows: if s ∈ Σ represents the “ith” symbol, we encode s as a `-length vector (where ` = |Σ|) of
all zeros except the ith, which is set to one. The main challenge is thus enforcing that an evaluator
inputs s “as a whole”, and cannot mix-and-match bits from s with bits from some other Σ-vector
s′. For example, if s := 0b01 and s′ := 0b10, we must enforce that the evaluator cannot input
s′′ := 0b11.

We do this by assigning an index set Sk,s to each Σ-vector input k ∈ [c] and each Σ-vector
s ∈ Σ. Then, for each j ∈ [`], we place a random value αk,j in the check slot. For example, the
input encoding of s := 0b01 for the kth input is {[0, αk,1]Sk,s , [1, αk,2]Sk,s}; likewise, the encoding of
s′ := 0b10 for the kth input is {[1, αk,1]Sk,s′ , [0, αk,2]Sk,s′}. Note that αk,j is common across these
two encodings. Now, suppose the evaluator wants to input (invalid) symbol 0b11. It can try to use
{[1, αk,1]Sk,s′ , [1, αk,2]Sk,s}; however, these are each encoded under different index sets, and thus the
evaluator will be unable to produce a valid encoding at the top-level. Likewise, the check elements
αk,j enforce that the evaluator cannot mix-and-match encoded elements within an encoding of a
single Σ-vector. For example, {[1, αk,2]Sk,s , [1, αk,2]Sk,s} would fail due to the top-level check slot
not canceling out.

B.1 Construction

Let C : Σc × {0, 1}m → {0, 1}γ . Let q = |Σ| and let ` be the bitlength of elements in Σ. Let
Sk,6=s :=

∏
s′ 6=s∈Σ Sk,s′ , and Sk,Σ :=

∏
s∈Σ Sk,s. Let deg(xko) denote the degree of xk for output bit

o ∈ [γ]. We construct our obfuscator as follows:

LZ.Obfuscate(1λ, C,y):
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Circuit n m # Gates # Muls Depth Degree κ

aes1r∗ 128 128 80,564 9,203 25 33 128
aes1r 2 1∗∗ 2 1 4 1 3 2 3
aes1r 4 1∗∗ 4 1 44 17 7 5 6
aes1r 8 1∗∗ 8 1 1,282 389 15 9 10
aes1r 16 1∗∗ 16 1 1,282 389 15 9 16
aes1r 32 1∗∗ 32 1 1,282 389 15 9 32
aes1r 64 1∗ 64 1 1,324 614 23 18 64
aes1r 128 1∗ 128 1 1,951 967 23 33 128
ggm 1 32 4 32 7,031 2,212 12 9 14
ggm 1 64 4 64 14,453 4,690 12 9 14
ggm 1 128 4 128 29,696 9,775 12 9 14
ggm 2 32 8 32 13,647 4,348 24 49 74
ggm 2 64 8 64 28,727 9,315 24 49 74
ggm 2 128 8 128 59,247 19,519 24 49 74
ggm 3 32 12 32 20,188 6,391 36 249 374
ggm 3 64 12 64 43,063 14,002 36 249 374
ggm 3 128 12 128 88,905 29,244 36 249 374
ggm 4 32 16 32 27,102 8,570 48 1,249 1,874
ggm 4 64 16 64 57,538 18,600 48 1,249 1,874
ggm 4 128 16 128 118,315 38,916 48 1,249 1,874
ggm sigma 1 16 32 16 4 937 310 12 6 7
ggm sigma 1 16 64 16 4 954 318 12 6 7
ggm sigma 1 16 128 16 4 956 320 12 6 7
ggm sigma 1 32 32 32 5 2,326 758 13 6 7
ggm sigma 1 32 64 32 5 2,375 786 13 6 7
ggm sigma 1 32 128 32 5 2,393 798 13 6 7
ggm sigma 1 64 32 64 6 5,309 1,676 14 6 7
ggm sigma 1 64 64 64 6 5,629 1,855 14 6 7
ggm sigma 1 64 128 64 6 5,726 1,904 14 6 7
ggm sigma 1 256 32 256 8 23,710 7,021 16 6 7
ggm sigma 1 256 64 256 8 27,692 8,666 16 6 7
ggm sigma 1 256 128 256 8 29,889 9,780 16 6 7
ggm sigma 2 16 32 32 8 8,580 2,730 24 31 33
ggm sigma 2 16 64 32 8 16,138 5,224 24 31 33
ggm sigma 2 16 128 32 8 31,431 10,332 24 31 33
ggm sigma 2 32 32 64 10 17,022 5,227 26 31 33
ggm sigma 2 32 64 64 10 31,997 10,099 26 31 33
ggm sigma 2 32 128 64 10 62,416 20,171 26 31 33
ggm sigma 2 64 32 128 12 32,998 9,913 28 31 33
ggm sigma 2 64 64 128 12 62,227 19,090 28 31 33
ggm sigma 2 64 128 128 12 121,798 38,383 28 31 33
ggm sigma 3 16 32 48 12 16,173 5,064 36 156 161
ggm sigma 3 16 64 48 12 31,259 10,085 36 156 161
ggm sigma 3 16 128 48 12 61,989 20,400 36 156 161
ggm sigma 4 16 32 64 16 23,682 7,461 48 781 794
ggm sigma 4 16 64 64 16 46,418 15,050 48 781 794
ggm sigma 4 16 128 64 16 92,394 30,324 48 781 794

Table 7: Circuits and their associated attributes. All of these circuits were compiled with constant folding
(-O1), with ∗ denoting those run through the sub-circuit flattener optimization (-O2) and ∗∗ denoting those
run through the full-circuit flattener (-O3). ‘n’ denotes the number of input bits; ‘m’ denotes the number
of output bits; ‘# Gates’ denotes the total number of gates; ‘# Muls’ denotes the number of multiplication
gates; ‘Depth’ denotes the multiplicative depth of the circuit; ‘Degree’ denotes the multiplicative degree of
the circuit; and ‘κ’ denotes the multilinearity value computed using MO.
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1. Construct top-level index-set

U = Y deg(y)
∏
k∈[c]

(Sk,Σ)deg(xk)ZkWk.

2. Compute (pp, sp, pev, pchk)← Setup(U , 1λ, 2).

3. For k ∈ [c], j ∈ [`], compute αk,j ← Zpev .

For k ∈ [c], s ∈ Σ, o ∈ [γ], compute γk,s,o ← Zpev , δk,s,o ← Zpchk
.

For i ∈ [m], compute βi ← Zpchk
.

4. For o ∈ [γ], compute

C∗o := C((α1,j)j∈[`], . . . , (αc,j)j∈[`], β1, . . . , βm)o ∈ Zpchk
.

5. For k ∈ [c], s ∈ Σ, j ∈ [`], generate the following encoded elements:

ŝk,s,j := [sj , αk,j ]Sk,s ûk,s := [1, 1]Sk,s .

For k = 1, s ∈ Σ, o ∈ [γ], generate the following encoded elements:

ẑ1,s,o := [δ1,s,o, γ1,s,o]Y deg(y)−deg(yo)(Sk,s)deg(xk)−deg(xko )(Sk,r 6=s)deg(xk)ZkWk
.

For k ∈ {2, . . . , c}, s ∈ Σ, o ∈ [γ], generate the following encoded elements:

ẑk,s,o := [δk,s,o, γk,s,o](Sk,s)deg(xk)−deg(xko )(Sk,r 6=s)deg(xk)ZkWk

For k ∈ [c], s ∈ Σ, o ∈ [γ], generate the following encoded elements:

ŵk,s,o := [0, γk,s,o]Wk
.

For i ∈ [m], generate the following encoded elements:

ŷi := [yi, βi]Y .

For o ∈ [γ], generate the following encoded elements:

Ĉ∗o := [0, C∗o ]
Y deg(y)

∏
k∈[c] (Sk,Σ)deg(xk)Zk

.

Finally, generate the following encoded element:

v̂ := [1, 1]Y

6. Output the following as the obfuscated program:(
pp, {ŝk,s,j}k∈[c],s∈Σ,j∈[`], {ûk,s}k∈[c],s∈Σ, {ẑk,s,o, ŵk,s,o}k∈[c],s∈Σ,o∈[γ], {ŷi}i∈[m], v̂, {Ĉ

∗
o}o∈[γ]

)
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LZ.Evaluate(Obf,x):

1. For o ∈ [γ], use Add and Mult (as is done in Zimmerman’s construction [49, §3]) to compute

Ĉo := [C(s1, . . . , s`, y1, . . . , ym)o, C((α1,j)j∈[`], . . . , (αc,j)j∈[`], β1, . . . , βm)o]Y deg(y)
∏
k∈[c](Sk,Σ)deg(xk) .

2. For o ∈ [γ], use Add and Mult to compute

ẑo := Ĉo
∏
k∈[c]

ẑk,sym(k),o − Ĉ∗o
∏
k∈[c]

ŵk,sym(k),o,

where sym(k) returns the symbol s ∈ Σ that corresponds to input k.

3. Output the bitstring resulting from running ZeroTest(ẑo) for o ∈ [γ].

B.2 Proof of Security

Theorem B.1. The construction in Appendix B.1 achieves indistinguishability obfuscation for NC1

in the noisy composite-order multilinear map generic model.

Proof. For simplicity, we assume that there is only a single output bit (i.e., o = 1), and let
Ĉ∗ := Ĉ∗1 . We can generalize the proof to multiple output bits using a similar approach as is done
by Zimmerman [49, Remark 3.18].

Our proof follows the same framework as Zimmerman’s proof. We begin by proving a “structural
lemma” on the index sets.

Lemma B.2. Let A be an efficient adversary in the composite-order multilinear map generic model,
and let z be a formal polynomial produced by A at the top-level index-set U . Then any monomial t
occurring in the formal expansion of z has one of the following two forms:

1. For values x1, . . . , xc ∈ Σ and for constant a ∈ Z:

t = aĈ∗

∏
k∈[c]

ŵk,xk


2. For values x1, . . . , xc ∈ Σ and for monomial function h:

t = h
(

(ŝ1,x1,j , û1,x1,j)j∈[`]
, . . . , (ŝc,xc,j , ûc,xc,j)j∈[`], (ŷi)i∈[m], v̂

)∏
k∈[c]

ẑk,xk

 .

Proof. Consider monomial t with index-set U . Note that t must contain encodings with the Zk
indices, and thus must contain either encoding Ĉ∗, or encodings ẑk,s.

1. Suppose t contains Ĉ∗. Then the only missing indices are the Wks, which are contained in the
encodings ŵk,s. Thus, t must contain one of (ŵk,s)s∈Σ for each k ∈ [c]. For k ∈ [c], define xk = s
such that t contains ŵk,s. Thus, form (1) is satisfied.
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2. Suppose t does not contain Ĉ∗. Then it must contain one of (ẑk,s)s∈Σ for each k ∈ [c]. For

k ∈ [c], define xk = s such that t contains ẑk,s. As ẑk,xk contains indices (Sk,6=xk)deg(xk), we

conclude that t cannot contain encodings ŝk,s,j and ûk,s,j for s 6= xk and j ∈ [σ]. Thus, form (2)
is satisfied. �

We use the notion of an input profile used by Barak et al. [16] and Zimmerman [49], and refer
to those works for its formal definition.

Lemma B.3. Let A be an efficient adversary in the composite-order multilinear map generic model.
For all valid toplevel polynomials z generated by A in the above construction, (1) the input profile
prof(z) is a set of strings in {0, 1}n, of which none are partial, and (2) prof(z) can be computed
(inefficiently) given z.

Proof. Part (1) follows from Lemma B.2. Part (2) follows from the definition of prof: we can
directly apply the algorithm for computing prof(z) given z. �

We now utilize these lemmas to prove Theorem B.1. Let A be an efficient adversary. We con-
struct a simulator S as follows. On input circuit C : Σc×{0, 1}m → {0, 1}, S runs Obfuscate(1λ, C, 0m),
using the generic multilinear map oracleM for the Setup and Encode operations, and forwards the
output obfuscated program to A. The simulator S forwards all queries made by A to Add and Mult
to M. On a ZeroTest query on some handle h, S proceeds as follows. If, based on the internals
of M, h is not a formal polynomial at index set U , then S returns ⊥. Otherwise, it follows the
algorithm in Figure B.1. When A terminates, S forwards the output of A to the distinguisher.

Correctness follows using the same argument as used by Zimmerman [49]. Thus, we need to
show that for any valid zero-test query z, the response made by S is indistinguishable from that
made in the real world.

By Lemma B.2, any zero-test query z must be of the form z =
∑

x∈prof(z) fx, where:

fx = hx

(
(ŝ1,x1,j , û1,x1,j)j∈[`]

, . . . , (ŝc,xc,j , ûc,xc,j)j∈[`], (ŷi)i∈[m], v̂
) ∏
k∈[c]

ẑk,xk + axĈ
∗
∏
k∈[c]

ŵk,xk

for multivariant polynomial hx and constant ax ∈ Z. As the encodings ûk,s,j and v̂ encode 1, they
can be ignored, and thus we can consider the simplified expressions f ′x and h′x, where:

f ′x = h′x

(
(ŝ1,x1,j)j∈[`]

, . . . , (ŝc,xc,j)j∈[`], (ŷi)i∈[m]

) ∏
k∈[c]

ẑk,xk + axĈ
∗
∏
k∈[c]

ŵk,xk .

Note that in the real world, the first component takes the form:

f ′x = h′x

(
(ŝ1,x1,j)j∈[`]

, . . . , (ŝc,xc,j)j∈[`], (ŷi)i∈[m]

) ∏
k∈[c]

δk,xk (mod pev)

and the second component takes the form:

f ′x = (h′x + axC)((α1,j)j∈[σ], . . . , (αc,j)j∈[σ], β1, . . . , βm)
∏
k∈[c]

γk,xk (mod pchk).

Now consider the simulator’s zero-test decision procedure. We do a case analysis.
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On input formal polynomial z, proceed as follows:

1. Compute prof(z).

2. For each x := x1 · · ·xk ∈ prof(z), proceed as follows.

(a) Compute z′x ∈ Z[ŝk,x1,1, . . . , ŝk,x1,σ, . . . , ŝk,xc,1, . . . , ŝk,xc,σ, ŷ1, . . . , ŷm] as z with its vari-
ables substituted as follows:

ẑk,xk , ŵk,xk 7→ 1 ẑk,6=xk , ŵk,6=xk 7→ 1

Ĉ∗ 7→ C((ŝ1,x1,j)j∈[σ], · · · , (ŝc,xc,j)j∈[σ], ŷ1, · · · , ŷm) ûk,s,j , v̂ 7→ 1

(b) Compute z′′x ∈ Z as z with its variables substituted as follows:

Ĉ∗, ŵk,xk 7→ 1 ŵk,6=xk 7→ 0 ŝk,s,j , ŷi, ẑk,s 7→ 0 ûk,s,j , v̂ 7→ 1

Next, do the following:

• If z′x 6≡ 0, return “non-zero”.

• If z′x ≡ 0:

– If z′′x = 0, continue to next x ∈ prof(z).

– If z′′x 6= 0, query the oracle on C(x,y).

∗ If C(x,y) 6= 0, return “non-zero”.

∗ If C(x,y) = 0, continue to next x ∈ prof(z).

3. Return “zero”.

Figure B.1: Simulator’s decision procedure to handle a valid ZeroTest query made by A.

1. There exists some x ∈ prof(z) such that z′x(= h′x + axC) 6≡ 0. This case captures the setting
where the check slot results in non-zero. Let x∗ = x1, . . . , xc be the lexicographically first such
x. We need to show that with high probability

(h′x∗ + ax∗C)((α1,j)j∈[σ], . . . , (αc,j)j∈[σ], β1, . . . , βm)
∏
k∈[c]

γk,xk 6≡ 0 (mod pchk).

We first consider the expression h′x∗ + ax∗C. Note that the total degree is bounded by 2d Thus,
we can apply the Schwartz-Zippel lemma to conclude that the probability h′x∗ + ax∗C evaluates
to zero is negligible.

Now consider the entire query z. From the above we know that the coefficient of
∏
k∈[c] γk,xk is

non-zero with high probability, and thus we conclude that z is non-zero with high probability.
Thus, the simulator’s response of “non-zero” is correct (with all but negligible probability).

2. For every x ∈ prof(z) we have z′x ≡ 0, but there exists at least one x ∈ prof(z) such that z′′x 6= 0
and C(x,y) 6= 0. This case captures the setting where the correct evaluation of C is non-zero.
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Let x∗ be the lexicographically first such x. We need to show that

f ′x = h′x(x1, . . . , xc)
∏
k∈[c]

δk,xk 6≡ 0 (mod pev).

We have that h′x∗ + ax∗C ≡ 0 and thus h′x∗(x
∗,y) = −ax∗C(x∗,y) 6= 0.

Now consider the entire query z. From the above we know that the coefficient of
∏
k∈[c] δk,xk is

non-zero with high probability, and thus we conclude that z is non-zero with high probability.
Thus, the simulator’s response of “non-zero” is correct.

3. For every x ∈ prof(z) we have z′x ≡ 0 and either z′′x = 0 or C(x,y) = 0. This case captures the
setting where the correct evaluation of C is zero. We need to show that

f ′x = h′x(x1, . . . , xc)
∏
k∈[c]

δk,xk ≡ 0 (mod pev).

Since h′x ≡ −axC it holds that h′x(x,y) = −axC(x,y), and since either ax = 0 or C(x,y) = 0
we conclude that h′x(x,y) = 0. Thus, the simulator’s response of “zero” is correct. �

Computing κ. Instead of providing a closed form formula for determining κ for a given circuit,
we instead compute it directly using a dummy multilinear map. This gives an exact value for κ as
opposed to a potential over-approximation, as we found for the formulas for Zim, AB, and Lin.
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