
Concurrency and Privacy with Payment-Channel Networks∗

Giulio Malavolta†

Friedrich-Alexander-University Erlangen-Nürnberg
malavolta@cs.fau.de

Pedro Moreno-Sanchez†

Purdue University
pmorenos@purdue.edu

Aniket Kate
Purdue University
aniket@purdue.edu

Matteo Maffei
TU Wien

matteo.maffei@tuwien.ac.at

Srivatsan Ravi
University of Southern California

srivatsr@usc.edu

Abstract

Permissionless blockchains protocols such as Bitcoin are inherently limited in transaction throughput
and latency. Current efforts to address this key issue focus on off-chain payment channels that can be
combined in a Payment-Channel Network (PCN) to enable an unlimited number of payments without
requiring to access the blockchain other than to register the initial and final capacity of each channel.
While this approach paves the way for low latency and high throughput of payments, its deployment in
practice raises several privacy concerns as well as technical challenges related to the inherently concurrent
nature of payments that have not been sufficiently studied so far.

In this work, we lay the foundations for privacy and concurrency in PCNs, presenting a formal definition
in the Universal Composability framework as well as practical and provably secure solutions. In particular,
we present Fulgor and Rayo. Fulgor is the first payment protocol for PCNs that provides provable
privacy guarantees for PCNs and is fully compatible with the Bitcoin scripting system. However, Fulgor
is a blocking protocol and therefore prone to deadlocks of concurrent payments as in currently available
PCNs. Instead, Rayo is the first protocol for PCNs that enforces non-blocking progress (i.e., at least one
of the concurrent payments terminates). We show through a new impossibility result that non-blocking
progress necessarily comes at the cost of weaker privacy. At the core of Fulgor and Rayo is Multi-Hop
HTLC, a new smart contract, compatible with the Bitcoin scripting system, that provides conditional
payments while reducing running time and communication overhead with respect to previous approaches.
Our performance evaluation of Fulgor and Rayo shows that a payment with 10 intermediate users takes
as few as 5 seconds, thereby demonstrating their feasibility to be deployed in practice.

1 Introduction

Bitcoin [57] is a fully decentralized digital cryp-
tocurrency network that is widely adopted today
as an alternative monetary payment system. In-
stead of accounting payments in a ledger locally
maintained by a trusted financial institute, these are
logged in the Bitcoin blockchain, a database repli-
cated among mutually distrusted users around the
world who update it by means of a global consensus
algorithm based on proof-of-work. Nevertheless, the
permissionless nature of this consensus algorithm

∗This is the revision 6 September 2017. The most recent
version is available at https://eprint.iacr.org/2017/820
†Both authors contributed equally and are considered to

be co-first authors.

limits the transaction rate to tens of transactions
per second whereas other payment networks such
as Visa support peaks of up to 47,000 transactions
per second [18].

In the forethought of a growing number of Bitcoin
users and most importantly payments about them,
scalability is considered today an important concern
among the Bitcoin community [67, 3]. Several re-
search and industry efforts are dedicated today to
overcome this important burden [3, 62, 60, 32, 4, 2].

The use of Bitcoin payment channels [6, 32] to re-
alize off-chain payments has flourished as a promis-
ing approach to overcome the Bitcoin scalability
issue. In a nutshell, a pair of users open a pay-
ment channel by adding a single transaction to the
blockchain where they lock their bitcoins in a de-

1

https://eprint.iacr.org/2017/820

posit secured by a Bitcoin smart contract. Several
off-chain payments can be then performed by locally
agreeing on the new distribution of the deposit bal-
ance. Finally, the users sharing the payment chan-
nel perform another Bitcoin transaction to add the
final balances in the blockchain, effectively closing
the payment channel.

In this manner, the blockchain is required to open
and close a payment channel but not for any of the
(possibly many) payments between users, thereby
reducing the load on the blockchain and improving
the transaction throughput. However, this simple
approach is limited to direct payments between two
users sharing an open channel. Interestingly, it is in
principle possible to leverage a path of opened pay-
ment channels from the sender to the receiver with
enough capacity to settle their payments, effectively
creating a payment-channel network (PCN) [60].

Many challenges must be overcome so that such
a PCN caters a wide deployment with a growing
number of users and payments. In particular, to-
day we know from similar payment systems such as
credit networks [36, 37, 15, 17] that a fully-fledged
PCN must offer a solution to several issues, such
as liquidity [29, 55], network formation [30], rout-
ing scalability [61, 71], concurrency [49], and pri-
vacy [56, 54, 49] among others.

The Bitcoin community has started to identify
these challenges [47, 41, 40, 48, 43, 22, 3, 67]. Nev-
ertheless, current PCNs are still immature and these
challenges require to be thoroughly studied. In this
work, we lay the foundations for privacy and con-
currency in PCNs. Interestingly, we show that these
two properties are connected to each other and that
there exists an inherent trade-off between them.

The Privacy Challenge. It seems that pay-
ment channels necessarily improve the privacy of
Bitcoin payments as they are no longer logged in
the blockchain. However, such pervading idea has
started to be questioned by the community and it
is not clear at this point whether a PCN can of-
fer sufficient privacy guarantees [68, 22, 43]. Recent
research works [47, 41, 40] propose privacy preserv-
ing protocols for payment hub networks, where all
users perform off-chain payments through a unique
intermediary. Unfortunately, it is not clear how to
extend these solutions to multi-hop PCNs.

Currently, there exist some efforts in order to de-
fine a fully-fledged PCN [19, 60, 13, 10]. Among

them, the Lightning Network [60] has emerged as
the most prominent PCN among the Bitcoin com-
munity [1]. However, its current operations do not
provide all the privacy guarantees of interest in a
PCN. For instance, the computation of the max-
imum possible value to be routed through a pay-
ment path requires that intermediate users reveal
the current capacity of their payment channels to
the sender [62, Section 3.6], thereby leaking sensi-
tive information. Additionally, the Bitcoin smart-
contract used in the Lightning Network to enforce
atomicity of updates for payment channels included
in the payment path, requires to reveal a common
hash value among each user in the path that can be
used by intermediate users to derive who is paying
to whom [60]. As a matter of fact, while a plethora
of academic papers have studied the privacy guar-
antees offered by current Bitcoin payments on the
Bitcoin blockchain [52, 25, 66, 45, 64, 21, 51], there
exists at present no rigorous analysis of the pri-
vacy guarantees offered by or desirable in PCNs.
The lack of rigorous definitions for their protocols,
threat model and privacy notions, hinders a formal
security and privacy analysis of ongoing attempts,
let alone the development of provably secure and
privacy-preserving solutions.

The Concurrency Challenge. The consensus
algorithm, e.g., proof-of work in Bitcoin, eases the
serialization of concurrent on-chain payments. A
miner with access to all concurrent payments at a
given time can easily serialize them following a set
of predefined rules (e.g., sort them by payment fee)
before they are added to the blockchain. However,
this is no longer the case in a PCN: The bulk of off-
chain payments are not added to the blockchain and
they cannot be serialized during consensus. More-
over, individual users cannot avoid concurrency is-
sues easily either as a payment might involve several
other users apart from payer and payee.

In current PCNs such as the Lightning Network,
a payment is aborted as soon as a payment channel
in the path does not have enough capacity (possi-
bly allocated for another in-flight payment concur-
rently). This, however, leads to deadlock (and star-
vation) situations where none of the in-flight pay-
ments terminates. In summary, although concur-
rent payments are likely to happen when current
PCNs scale to a large number of users and off-chain
payments, the inherent concurrency issues have not

2

been thoroughly investigated yet.

Our Contribution. This work makes the follow-
ing contributions:

First, we formalize for the first time the security
and privacy notions of interest for a PCN, namely
balance security, value privacy and sender/receiver
anonymity, following the universal composability
(UC) framework [27].

Second, we study for the first time the concur-
rency issues in PCNs and present two protocols Ful-
gor and Rayo that tackle this issue with different
strategies. Fulgor is a blocking protocol in line with
concurrency solutions proposed in somewhat similar
payment networks such as credit networks [49, 15]
that can lead to deadlocks where none of the concur-
rent payments go through. Overcoming this chal-
lenge, Rayo is the first protocol for PCNs guaran-
teeing non-blocking progress [42, 20]. In doing so,
Rayo ensures that at least one of the concurrent
payments terminates.

Third, we characterize an arguably surprising
tradeoff between privacy and concurrency in PCNs.
In particular, we demonstrate that any PCN that
enforces non-blocking progress inevitably reduces
the anonymity set for sender and receiver of a pay-
ment, thereby weakening the privacy guarantees.

Fourth, we formally describe the Multi-Hop Hash
Time-Lock Contract (Multi-Hop HTLC), a smart
contract that lies at the core of Fulgor and Rayo
and which, in contrast to the Lightning Network,
ensures privacy properties even against users in the
payment path from payer to payee. We formally
define the Multi-Hop HTLC contract and provide
an efficient instantiation based on the recently pro-
posed zero-knowledge proof system ZK-Boo [38],
that improves on previous proposals [69] by reduc-
ing the data required from 650 MB to 17 MB, the
running time for the prover from 600 ms to 309 ms
and the running time for verifying from 500 ms to
130 ms. Moreover, Multi-Hop HTLC does not re-
quire changes to the current Bitcoin scripting sys-
tem, can thereby be seamlessly deployed in current
PCNs, and is thus of independent interest.

Finally, we have implemented a prototype of Ful-
gor and Rayo in Python and evaluated the running
time and communication cost to perform a pay-
ment. Our results show that a privacy-preserving
payment in a path with 10 intermediate users can
be carried out in as few as 5 seconds and incurs

on 17 MB of communication overhead. This shows
that our protocols for PCN are in line with with
other privacy-preserving payment systems [54, 49].
Additionally, our evaluation shows that Fulgor and
Rayo can scale to cater a growing number of users
with a reasonably small overhead that can be fur-
ther reduced with an optimized implementation.

Organization. Section 2 overviews the required
background. Section 3 defines the problem we
tackle in this work and overviews Fulgor and Rayo,
our privacy preserving solution for PCNs. Section 4
details the Fulgor protocol. Section 5 describes our
study of concurrency in PCNs and details the Rayo
protocol. Section 6 describes our implementation
and the evaluation results. Section 7 discusses the
related work and Section 8 concludes this paper.

2 Background

In this section, we first overview the notion of
payment channels and we then describe payment-
channel networks.

2.1 Payment Channels

A payment channel enables several Bitcoin pay-
ments between two users without committing ev-
ery single payment to the Bitcoin blockchain. The
cornerstone of payment channels is depositing bit-
coins into a multi-signature address controlled by
both users and having the guarantee that all bit-
coins are refunded at a mutually agreed time if the
channel expires. In the following, we overview the
basics of payment channels and we refer the reader
to [60, 32, 50] for further details.

In the illustrative example depicted in Figure 1,
Alice opens a payment channel with Bob with an
initial capacity of 5 bitcoins. This opening trans-
action makes sure that Alice gets the money back
after a certain timeout if the payment channel is not
used. Now, Alice can pay off-chain to Bob by ad-
justing the balance of the deposit in favor of Bob.
Each off-chain payment augments the balance for
Bob and reduces it for Alice. When no more off-
chain payments are needed (or the capacity of the
payment channel is exhausted), the payment chan-
nel is closed with a closing transaction included
in the blockchain. This transaction sends the de-
posited bitcoins to each user according the most re-
cent balance in the payment channel.

3

Figure 1: Illustrative example of payment chan-
nel. White solid boxes denote Bitcoin addresses and
their current balance, dashed boxes represent Bitcoin
transactions, the clock denotes a time lock contract [7],
a user name along a tick denotes her signature to vali-
date the transaction and colored boxes denote the state
of the payment channel. Dashed arrows denote tempo-
ral sequence. Alice first deposits 5 bitcoins opening a
payment channel with Bob, then uses it to pay Bob off-
chain. Finally, the payment channel is closed with the
most recent balance.

The payment channel depicted in Figure 1 is an
example of unidirectional channel: it can be used
only for payments from Alice to Bob. Bidirectional
channels are defined to overcome this limitation as
off-chain payments in both directions are possible.
Bidirectional payment channels operate in essence
as the unidirectional version.1 The major techni-
cal challenge consists in changing the direction of
the channel. In the running example, assume that
the current payment channel balance bal is {Alice:
4, Bob: 1} and further assume that Bob pays off-
chain one bitcoin back to Alice. The new payment
channel balance bal′ is {Alice: 5, Bob: 0}. At this
point, Alice benefits from bal′ balance while Bob
benefits from bal. The solution to this discrepancy
consists on that Bob and Alice make sure that any
previous balance has been invalidated in favor of
the most recent one. Different “invalidation” tech-
niques have been proposed and we refer the reader
to [60, 32, 65] for details.

The Bitcoin protocol has been updated recently
to fully support payment channels. In particular,
transaction malleability [8], along with a set of other
interesting new features, have been added to the
Bitcoin protocol with the recent adoption of Segre-

1Technically, a bidirectional channel might require that
both users contribute funds to the deposit in the opening
transaction. However, current proposals [39] allow bidirec-
tional channels with single deposit funder.

Figure 2: Illustrative example of a payment in a
PCN. Non-bold (bold) numbers represent the capacity
of the channels before (after) the payment from Alice to
Bob. Alice wants to pay 2 bitcoins to Bob via Carol,
Edward and Fabi. Therefore, she starts the payment
with 3 bitcoins (i.e., payment amount plus fees).

gated Witness [16]. This event paves the way to the
implementation and testing of PCNs on the main
Bitcoin blockchain as of today [70].

2.2 A Payment Channel Network (PCN)

A PCN can be represented as a directed graph
G = (V,E), where the set V of vertices repre-
sents the Bitcoin accounts and the set E of weighted
edges represents the payment channels. Every ver-
tex u ∈ V has associated a non-negative number
that denotes the fee it charges for forwarding pay-
ments. The weight on a directed edge (u1, u2) ∈ E
denotes the amount of remaining bitcoins that u1
can pay to u2. For ease of explanation, in the rest
of the paper we represent a bidirectional channel be-
tween u1 and u2 as two directed edges, one in each
direction.2 Such a network can be used then to per-
form off-chain payments between two users that do
not have an open channel between them but are
connected by a path of open payment channels.

The success of a payment between two users de-
pends on the capacity available along a path con-
necting the two users and the fees charged by the
users in such path. Assume that s wants to pay α
bitcoins to r and that they are connected through
a path s → u1 → . . . → un → r. For their pay-
ment to be successful, every link must have a ca-

2In practice, there is a subtle difference: In a bidirectional
channel between Alice and Bob, Bob can always return to
Alice the bitcoins that she has already paid to him. However,
if two unidirectional channels are used, Bob is limited to pay
to Alice the capacity of the edge Bob → Alice, independently
of the bitcoins that he has received from Alice. Nevertheless,
our simplification greatly ease the understanding of the rest
of the paper and proposed algorithms can be easily extended
to support bidirectional channels.

4

pacity γi ≥ α′i, where α′i = α −
∑i−1

j=1 fee(uj) (i.e.,
the initial payment value minus the fees charged by
intermediate users in the path). At the end of a
successful payment, every edge in the path from s
to r is decreased by α′i. To ensure that r receives
exactly α bitcoins, s must start the payment with
a value α∗ = α+

∑n
j=1 fee(uj).

In the illustrative example of payment shown
in Figure 2, assume that Alice wants to pay Bob
2 bitcoins. For that she needs to start a payment
for a value of 3 bitcoins (2 bitcoins plus 1 bitcoin
for the fees charged by users in the path). Then the
payment is settled as follows: capacity in the link
Alice → Carol is reduced by 3. Additionally, Carol
charges a fee if 0.25 bitcoins by reducing the capac-
ity of the link Carol → Edward by 2.75 instead of
3 bitcoins. Following the same reasoning, the link
Edward → Fabi is set to capacity 3.75 and the link
Fabi → Bob is set to 5.

2.3 State-of-the-Art PCNs

The concepts of payment channels [41, 47, 32] and
PCNs [50] have already attracted attention from the
research community. In practice, there exist several
ongoing implementations for a PCN in Bitcoin [11,
12, 10, 19]. Among them, the Lightning Network
has emerged as the most prominent example in the
Bitcoin community and an alpha implementation
has been released recently [1]. The idea of a PCN
has been proposed to improve scalability issues not
only in Bitcoin, but also in other blockchain-based
payment systems such as Ethereum [13].

2.3.1 Routing in PCNs

An important task in PCNs is to find paths with
enough capacity between sender and receiver. In
our setting, the network topology is known to ev-
ery user. This is the case since the opening of each
payment channel is logged in the publicly available
blockchain. Additionally, a gossip protocol between
users can be carried out to broadcast the existence
of any payment channel [62]. Furthermore, the fees
charged by every user can be made public by similar
means. Under these conditions, the sender can lo-
cally calculate the paths between the sender and the
receiver. In the rest of the paper, we assume that
the sender chooses the path according to her own
criteria. Nevertheless, we consider path selection as

an interesting but orthogonal problem.

2.3.2 Payments in PCNs

A payment along a path of payment channels is
carried out by updating the capacity of each pay-
ment channel in the path according to the payment
amount and the associated fees (see Section 2.2).
Such an operation rises the important challenge of
atomicity : either the capacity of all channels in the
path is updated or none of the channels is changed.
Allowing changes in only some of the channels in
the path can lead to the loss of bitcoins for a user
(e.g., a user could pay certain bitcoins to the next
user in the path but never receive the corresponding
bitcoins from the previous neighbor).

The current proposal in the Lightning Network
consists of a smart contract called Hash Time-Lock
Contract (HTLC) [60]. This contract locks x bit-
coins that can be released only if the contract is
fulfilled. The contract is defined, in terms of a hash
value y := H(R) where R is chosen uniformly at
random, the amount of bitcoins x and a timeout t,
as follows:

HTLC (Alice, Bob, y, x, t):
1. If Bob produces the condition R∗ such that
H(R∗) = y before t days,3Alice pays Bob x
bitcoins.
2. If t days elapse, Alice gets back x bitcoins.

An illustrative example of the use of HTLC in a
payment is depicted in Figure 3. For simplicity, we

3We use days here as in the original description [60]. In-
stead, recent proposals use the sequence numbers of blocks
as they appear in the Bitcoin blockchain [35].

Figure 3: Illustrative example of a payment from
Alice to Fabi for value 1 using HTLC contract.
First, the condition is sent from Fabi to Alice. The
condition is then forwarded among users in the path to
hold 1 bitcoin at each payment channel. Finally, the
receiver shows R, releasing the held bitcoin at each pay-
ment channel. For simplicity, we assume that there are
no payment fees in this example.

5

assume that there are not payment fees in this ex-
ample. First, the payment amount (i.e., 1 bitcoin)
is set on hold from the sender to the receiver and
then released from the receiver to the sender. In a
bit more detail, after the receiver (Fabi) sends the
condition to the sender (Alice), Alice sets an HTLC
with her neighbor, effectively setting the payment
value (i.e., 1 bitcoin) on hold. Such HTLC is then
set at each payment channel in the path to the re-
ceiver. At this point, the receiver knows that the
payment value is on hold at each payment channel
and thus she reveals the value R, that allows her to
fulfill the contract and to settle the new capacity at
each payment channel in the path.

It is important to note that every user in the path
sets the HTLC in the outgoing payment channel
with a timeout smaller than the HTLC in the in-
coming payment channel. In this manner, the user
makes sure that she can pull bitcoins from her pre-
decessor after her bitcoins have been pulled from her
successor. An offline user can outsource the moni-
toring of fulfillments corresponding to open HTLC
contracts associated to her payment channels [33].

Although HTLC is fully compatible with Bitcoin,
its use in practice leads to important privacy leaks:
It is easy to see that the value of the hash H(R)
uniquely identifies the users that took part in a
specific transaction. This fact has two main im-
plications. First, any two colluding users in a path
can trivially derive the fact that they took part in
the same payment and this can be leveraged to re-
construct the identity of sender and receiver.4 Sec-
ond, if the HTLC statements are uploaded to the
blockchain (e.g., due to uncollaborative intermedi-
ate users in the payment path), an observer can eas-
ily track the complete path used to route the pay-
ment, even if she is not part of the payment. In this
work, we propose a novel Multi-Hop HTLC smart
contract that avoids this privacy problem while en-
suring that no intermediate user loses her bitcoins.

An important issue largely understudied in cur-
rent PCNs is the handling of concurrent payments
that require a shared payment channel in their
paths. Current proposals simply abort a payment
if the balance at the shared payment channel in the
path is not enough. However, as we show in Sec-
tion 3.3, this approach can lead to a deadlock sit-

4 As noted in [40], in a path A → I1 → I2 → I3 → B,
only I1 and I3 must collude to recover the identities of A and
B as all the contracts in the path share the same H(R).

uation where none of simultaneous payments ter-
minates. We propose a payment protocol that en-
sure non-blocking progress, that is, at least one of
the concurrent payments terminates. Moreover, we
show an inherent tradeoff between concurrency and
privacy for any fully distributed payment network.

3 Problem Definition

In this section, we first formalize a PCN and un-
derlying operations, and discuss the attacker model
and our security and privacy goals. We then de-
scribe an ideal world functionality for our proposal,
and present a system overview. Throughout the fol-
lowing description we implicitly assume that every
algorithm takes as input the blockchain, which is
publicly known to all users.

Definition 1 (Payment Channel Network (PCN)).
A PCN is defined as graph G := (V,E), where V is
the set of Bitcoin accounts and E is the set of cur-
rently open payment channels. A PCN is defined
with respect to a blockchain B and is equipped with
the three operations (openChannel, closeChannel,
pay) described below:

• openChannel(u1, u2, β, t, f) → {1, 0}. On input
two Bitcoin addresses u1, u2 ∈ V, an initial channel
capacity β, a timeout t, and a fee value f , if the op-
eration is authorized by u1, and u1 owns at least β
bitcoins, openChannel creates a new payment chan-
nel (c〈u1,u2〉, β, f, t) ∈ E, where c〈u1,u2〉 is a fresh
channel identifier. Then it uploads it to B and re-
turns 1. Otherwise, it returns 0.

• closeChannel(c〈u1,u2〉, v) → {1, 0}. On input a
channel identifier c〈u1,u2〉 and a balance v (i.e., the
distribution of bitcoins locked in the channel between
u1 and u2), if the operation is authorized by both
u1 and u2, closeChannel removes the corresponding
channel from G, includes the balance v in B and
returns 1. Otherwise, it returns 0.

• pay((c〈s,u1〉, . . . , c〈un,r〉), v) → {1, 0}. On input
a list of channel identifiers (c〈s,u1〉, . . . , c〈un,r〉) and
a payment value v, if the payment channels form
a path from the sender (s) to the receiver (r) and
each payment channel c〈ui,ui+1〉 in the path has at
least a current balance γi ≥ v′i, where v′i = v −∑i−1

j=1 fee(uj), the pay operation decreases the cur-
rent balance for each payment channel c〈ui,ui+1〉 by
v′i and returns 1. Otherwise, none of the balances

6

at the payment channels is modified and the pay op-
eration returns 0.

3.1 Attacker Model, and Security and
Privacy Goals

We consider a computationally efficient attacker
that can shape the network at her will by spawning
users and corrupting an arbitrary subset of them
in an adaptive fashion. Once a user is corrupted,
its internal state is given to the attacker and all
of the following messages for that user are handed
over to the attacker. On the other hand, we as-
sume that the communication between two non-
compromised users sharing a payment channel is
confidential (e.g., through TLS). Finally, the at-
tacker can send arbitrary messages on behalf of cor-
rupted users.

Against the above adversary, we identify the fol-
lowing security and privacy notions of interest:

• Balance security. Intuitively, balance secu-
rity guarantees that any honest intermediate user
taking part in a pay operation (as specified in Def-
inition 1) does not lose coins even when all other
users involved in the pay operation are corrupted.

• Serializability. We require that the execu-
tions of PCN are serializable [58], i.e., for every con-
current execution of pay operations, there exists an
equivalent sequential execution.

• (Off-path) Value Privacy. Intuitively, value
privacy guarantees that for a pay operation involv-
ing only honest users, corrupted users outside the
payment path learn no information about the pay-
ment value.

• (On-path) Relationship Anonymity [59,
24]. Relationship anonymity requires that, given
two simultaneous successful pay operations of the
form

{
payi((c〈si,u1〉, . . . , c〈un,ri〉), v)

}
i∈[0,1] with at

least one honest intermediate user uj∈[1,n], cor-
rupted intermediate users cannot determine the pair
(si, ri) for a given payi with probability better than
1/2.

3.2 Ideal World Functionality

Our Model. The users of the network are mod-
eled as interactive Turing machines that communi-
cate with a trusted functionality F via secure and
authenticated channels. We model the attacker A
as a probabilistic polynomial-time machine that is

given additional interfaces to add users to the sys-
tem and corrupt them. A can query those interfaces
adaptively and at any time. Upon corruption of a
user u, the attacker is provided with the internal
state of u and the incoming and outgoing commu-
nication of u is routed thorough A.

Assumptions. We model anonymous communi-
cation between any two users of the network as an
ideal functionality Fanon, as proposed in [26]. Fur-
thermore, we assume the existence of a blockchain
B that we model as a trusted append-only bulletin
board (such as [72]): The corresponding ideal func-
tionality FB maintains B locally and updates it ac-
cording to the transactions between users. At any
point in the execution, any user u of the PCN can
send a distinguished message read to FB, who sends
the whole transcript of B to u. We denote the num-
ber of entries of B by |B|. In our model, time cor-
responds to the number of entries of the blockchain
B, i.e., time t is whenever |B| = t. Our idealized
process F uses Fanon and FB as subroutines, i.e.,
our protocol is specified in the (Fanon,FB)-hybrid
model. Note that our model for a blockchain is a
coarse grained abstraction of the reality and that
more accurate formalizations are known in the lit-
erature, see [44]. For ease of exposition we stick to
this simplistic view, but one can easily extend our
model to incorporate more sophisticated abstrac-
tions.

Notation. Payment channels in the Blockchain
B are of the form (c〈u,u′〉, v, t, f), where c〈u,u′〉 is a
unique channel identifier, v is the capacity of the
channel, t is the expiration time of the channel,
and f is the associated fee. For ease of notation
we assume that the identifiers of the users (u, u′)
are also encoded in c〈u,u′〉. We stress that any two
users may have multiple channels open simultane-
ously. The functionality maintains two additional
internal lists C and L. The former is used to keep
track of the closed channels, while the latter records
the off-chain payments. Entries in L are of the
form (c〈u,u′〉, v, t, h), where c〈u,u′〉 is the correspond-
ing channel, v is the amount of credit used, t is the
expiration time of the payment, and h is the iden-
tifier for this entry.

Operations. In Figure 4 we describe the inter-
actions between F and the users of the PCN. For
simplicity, we only model unidirectional channels,
although our functionality can be easily extended to

7

Open channel: On input (open, c〈u,u′〉, v, u
′, t, f) from a user u, the F checks whether c〈u,u′〉 is

well-formed (contains valid identifiers and it is not a duplicate) and eventually sends (c〈u,u′〉, v, t, f)
to u′, who can either abort or authorize the operation. In the latter case, F appends the tuple
(c〈u,u′〉, v, t, f) to B and the tuple (c〈u,u′〉, v, t, h) to L, for some random h. F returns h to u and u′.

Close channel: On input (close, c〈u,u′〉, h) from a user ∈ {u′, u} the ideal functionality F parses B
for an entry (c〈u,u′〉, v, t, f) and L for an entry (c〈u,u′〉, v

′, t′, h), for h 6= ⊥. If c〈u,u′〉 ∈ C or t > |B| or
t′ > |B| the functionality aborts. Otherwise, F adds the entry (c〈u,u′〉, u

′, v′, t′) to B and adds c〈u,u′〉
to C. F then notifies both users involved with a message (c〈u,u′〉,⊥, h).

Payment: On input (pay, v, (c〈u0,u1〉, . . . , c〈un,un+1〉), (t0, . . . , tn)) from a user u0, F executes the
following interactive protocol:

1. For all i ∈ {1, . . . , (n + 1)} F samples a random hi and parses B for an entry of the form
(c〈ui−1,u′i〉, vi, t

′
i, fi). If such an entry does exist F sends the tuple (hi, hi+1, c〈ui−1,ui〉, c〈ui,ui+1〉, v−∑n

j=i fj , ti−1, ti) to the user ui via an anonymous channel (for the specific case of the receiver
the tuple is only (hn+1, c〈un,un+1〉, v, tn)). Then F checks whether for all entries of the form

(c〈ui−1,ui〉, v
′
i, ·, ·) ∈ L it holds that v′i ≥

(
v−

∑n
j=i fj

)
and that ti−1 ≥ ti. If this is the case F

adds di = (c〈ui−1,ui〉, (v
′
i − (v −

∑n
j=i fj)), ti,⊥) to L, where (c〈ui−1,ui〉, v

′
i, ·, ·) ∈ L is the entry

with the lowest v′i. If any of the conditions above is not met, F removes from L all the entries
di added in this phase and aborts.

2. For all i ∈ {(n+1), . . . , 1} F queries all ui with (hi, hi+1), through an anonymous channel. Each
user can reply with either > or ⊥. Let j be the index of the user that returns ⊥ such that for
all i > j : ui returned >. If no user returned ⊥ we set j = 0.

3. For all i ∈ {j + 1, . . . , n} the ideal functionality F updates di ∈ L (defined as above) to
(−,−,−, hi) and notifies the user of the success of the operation with with some distinguished
message (success, hi, hi+1). For all i ∈ {0, . . . , j} (if j 6= 0) F removes di from L and notifies the
user with the message (⊥, hi, hi+1).

Figure 4: Ideal world functionality for PCNs.

support also bidirectional channels. The execution
of our simulation starts with F initializing a pair of
local empty lists (L, C). Users of a PCN can query F
to open channels and close them to any valid state in
L. On input a value v and a set of payment channels
(c〈u0,u1〉, . . . , c〈un,un+1〉) from some user u0, F checks
whether the path has enough capacity (step 1) and
initiates the payment. Each intermediate user can
either allow the payment or deny it. Once the pay-
ment has reached the receiver, each user can again
decide to interrupt the flow of the payment (step 2),
i.e., pay instead of the sender. Finally F informs
the involved nodes of the success of the operation
(step 3) and adds the updated state to L for the
corresponding channels.

Discussion. Here, we show that our ideal func-
tionality captures the security and privacy proper-

ties of interest for a PCN.

• Balance security. Let ui be any intermediate
hop in a payment pay((c〈s,u1〉, . . . , c〈un,r〉), v). F lo-
cally updates in L the channels corresponding to the
incoming and outgoing edges of ui such that the to-
tal balance of ui is increased by the coins she sets
as a fee, unless the user actively prevents it (step
2). Since F is trusted, balance security follows.

• Serializability. Consider for the moment only
single-hop payments. It is easy to see that the ideal
functionality executes them serially, i.e., any two
concurrent payments can only happen on different
links. Therefore one can trivially find a scheduler
that performs the same operation in a serial order
(i.e., in any order). By balance security, any pay-
ment can be represented as a set of atomic single-
hop payments and thus serializability holds.

8

• Value Privacy. In the ideal world, users that
do not lie in the payment path are not contacted
by F and therefore they learn nothing about the
transacted value (for the off-chain payments).

• Relationship Anonymity. Let ui be an interme-
diate hop in a payment. In the interaction with the
ideal functionality, ui is only provided with a unique
identifier for each payment. In particular, such an
identifier is completely independent from the iden-
tifiers of other users involved in the same payment.
It follows that, as long as at least one honest user ui
lies in a payment path, any two simultaneous pay-
ments over the same path for the same value v are
indistinguishable to the eyes of the user ui+1. This
implies that any proper subset of corrupted interme-
diate hops, for any two successful concurrent pay-
ments traversing all of the corrupted nodes, cannot
distinguish in which order an honest ui forwarded
the payments. Therefore such a set of corrupted
nodes cannot determine the correct sender-receiver
pair with probability better than 1/2.

UC-Security. Let EXECτ,A,E be the ensemble of
the outputs of the environment E when interacting
with the adversary A and parties running the pro-
tocol τ (over the random coins of all the involved
machines).

Definition 2 (UC-Security). A protocol τ UC-
realizes an ideal functionality F if for any adversary
A there exists a simulator S such that for any envi-
ronment E the ensembles EXECτ,A,E and EXECF ,S,E
are computationally indistinguishable.

Lower bound on byzantine users in PCN. We
observe that in PCNs that contain channels in which
both the users are byzantine (à la malicious) [46],
there is an inherent cost to concurrency. Specif-
ically, in such a PCN, if we are providing non-
blocking progress, i.e., at least one of the concur-
rent payments terminates, then it is impossible to
provide serializability in PCNs (cf. Figure 11 in Ap-
pendix D). Thus, henceforth, all results and claims
in this paper assume that in any PCN execution,
there does not exist a channel in which both its
users are byzantine.

Lemma 1. There does not exist any serializable
protocol for the PCN problem that provides non-
blocking progress if there exists a payment channel
in which both users are byzantine.

3.3 Key Ideas and System Overview

In the following, we give a high-level overview on
how we achieve private and concurrent payments in
PCNs.

3.3.1 Payment Privacy

The payment operation must ensure the security
and privacy properties of interest in a PCN, namely
balance security, value privacy and relationship
anonymity. A näıve approach towards achieving
balance security would be to use HTLC-based pay-
ments (see Section 2.3.2). This solution is however
in inherent conflict with anonymity: It is easy to
see that contracts belonging to the same transac-
tions are linkable among each other, since they en-
code the same condition (h) to release the payment.
Our proposal, called Multi-Hop HTLC, aims to re-
move this link among hops while maintaining the
full compatibility with the Bitcoin network.

The idea underlying Multi-Hop HTLC is the fol-
lowing: At the beginning of an n-hop transac-
tion the sender samples n-many independent strings
(x1, . . . , xn). Then, for all i ∈ 1, . . . , n, she sets

yi = H
(⊕n

j=i xj

)
, where H is an arbitrary hash

function. That is, each yi is the result of apply-
ing the function H to all of the input values xj for
j ≥ i in an XOR combiner. The sender then pro-
vides the receiver with (yn, xn) and the i-th node
with the tuple (yi+1, yi, xi). In order to preserve
anonymity, the sender communicates those values
to the intermediate nodes over an anonymous chan-
nel. Starting from the sender, each pair of neighbor-
ing nodes (ui+1, ui) defines a standard HTLC on in-
puts (ui, ui+1, yi, b, t), where b and t are the amount
of bitcoin and the timeout parameter, respectively.
Note that the release conditions of the contracts
are uniformly distributed in the range of the func-
tion H and therefore the HTLCs of a single trans-
action are independent from each other. Clearly,
the mechanism described above works fine as long
as the sender chooses each value yi according to the
specification of the protocol. We can enforce an
honest behavior by including non-interactive zero-
knowledge proofs [38].

3.3.2 Concurrent Payments

It is possible that two (or more) simultaneous pay-
ments share a payment channel in their payment

9

Figure 5: Illustrative example of two blocking pay-
ments: Alice to Gabriel (red) and Bob to Edward
(blue). For simplicity, assume each payment pays 1 bit-
coin and each payment channel has capacity 1 bitcoin.
Each payment channel is colored with the payment that
has reached it first. In this deadlock situation, none of
the payments can continue further in the path and can-
not be trivially completed.

paths in such a manner that none of the payments
goes through. In the example depicted in Figure 5,
the payment from Alice to Gabriel cannot be carried
out as the capacity in the payment channel between
Fabi and Gabriel is already locked for the payment
from Bob to Edward. Moreover, this second pay-
ment cannot be carried out either as the capacity on
the payment channel between Carol and Edward is
already locked. This deadlock situation is a generic
problem of PCNs, where a payment is aborted as
soon as there exists a payment channel in the path
without enough capacity.

Blocking Payments (Fulgor). A best-effort so-
lution for avoiding this deadlock consists on letting
both payments fail. Aborted payments do not af-
fect the balance of the involved users as the re-
ceiver would not disclose the release condition for
the locked payment channels. Therefore, involved
payment channels would get unlocked only after the
corresponding timeout and bitcoins are sent back to
the original owner.

The sender of an aborted payment can then ran-
domly choose a waiting period to reissue the pay-
ment. Although the blocking mechanism closely re-
sembles the practice of users in others payment net-
works such as Ripple [14] or SilentWhispers [49], it
might degrade transaction throughput in a fully de-
centralized PCN.

Non-blocking Payments (Rayo). An alter-
native solution consists on a non-blocking solution
where at least one out of a set of concurrent pay-
ments completes. Our approach to achieve it as-
sumes that there exists a global ordering of pay-

ments (e.g., by a global payment identifier). In
a nutshell, users can queue payments with higher
identifier than the current one “in-flight”, and abort
payments with lower identifiers. This ensures that
either the current in-flight payment completes or
one of the queued payments would do, as their iden-
tifiers are higher.

4 Fulgor: Our Construction

In this section, we introduce the cryptographic
building blocks required for our construction (Sec-
tion 4.1), we describe the details for the Multi-Hop
HTLC contract (Section 4.2), we detail the con-
structions for PCN operations (Section 4.3), analyze
its security and privacy (Section 4.4) and conclude
with a few remarks (Section 4.5).

Notation. We denote by λ the security param-
eter of our system and we use the standard defini-
tion for a negligible function. We denote by decision
the possible events in a payment channel due to a
payment. The decision forward signals to lock the
balance in the payment channel corresponding to
the payment value. The decision abort signals the
release of locked funds in the payment channel due
to the abortion of a payment. Correspondingly, the
decision accept signals the confirmation of a pay-
ment accepted by the receiver.

For ease of notation, we assume that users iden-
tifiers (ui, ui+1) can be extracted from the channel
identifier c〈ui,ui+1〉.

System Assumptions. We assume that every
user in the PCN is aware of the complete network
topology, that is, the set of all users and the exis-
tence of a payment channel between every pair of
users. We further assume that the sender of a pay-
ment chooses a payment path to the receiver ac-
cording to her own criteria. The current value on
each payment channel is not published but instead
kept locally by the users sharing a payment channel
as otherwise privacy is trivially broken. We further
assume that every user is aware of the payment fees
charged by each other user in the PCN.

This can be accomplished in practice. The open-
ing of a payment channel between two users requires
to add a transaction in the blockchain that includes
both user identifiers. Therefore, the topology of the
PCN is trivially leaked. Moreover, the transaction
used to open a payment channel can contain user-

10

defined data [5] so that each user can embed her
own payment fee. In this manner, each user can
proactively gather updated information about the
network topology and fees from the blockchain it-
self or be disseminated by a gossip protocol [62, 48].

We further assume that pairs of users sharing
a payment channel communicate through secure
and authenticated channels (such as TLS), which is
easy to implement given that every user is uniquely
identified by a public key. Also we assume that
the sender and the receiver of a (possibly indirect)
transaction can communicate through a secure and
direct channel. Finally, we assume that the sender
of a payment can create an anonymous payment
channel with each intermediate user. The IP ad-
dress where to reach each user could be encoded
in the channel creation transaction and therefore
logged in the blockchain. We note that our pro-
tocol is completely parametric with respect to the
routing, therefore any onion routing-like techniques
would work in this context.

We consider the bounded synchronous communi-
cation setting [23]. In such communication model,
time is divided into fixed communication rounds
and it is assumed that all messages sent by a user
in a round are available to the intended recipi-
ent within a bounded number of steps in an exe-
cution. Consequently, absence of a message indi-
cates absence of communication from a user during
the round. In practice, this can be achieved with
loosely synchronized clocks among the users in the
PCN [28].

Finally, we assume that there is a total order
among the users (e.g., lexicographically sorted by
their public verification keys).

4.1 Building Blocks

Non-Interactive Zero-Knowledge. Let R :
{0, 1}∗ × {0, 1}∗ → {0, 1} be an NP relation, and
let L be the set of positive instances for R, i.e.,
L = {x | ∃w s.t. R(x,w) = 1}. A non-interactive
zero-knowledge proof for R consists of a single mes-
sage from a prover P to a verifier V. The prover
P wants to compute a proof π that convinces the
verifier V that a certain statement x ∈ L. We allow
the prover to run on an extra private input w such
that R(x,w) = 1. The verifier can either accept or
reject, depending on π. A NIZK is complete if the
V always accepts honestly computed π for a state-

ment x ∈ L and it is sound if V always rejects any
π for all x 6∈ L, except with negligible probability.
Loosely speaking, a NIZK proof is zero knowledge if
the verifier learns nothing from π beyond the fact
that x ∈ L. Efficient NIZK protocols are known to
exist in the random oracle model [38].

Two Users Agreement. Two users ui and uj
sharing a payment channel, locally maintain the
state of the payment channel defined as a scalar
channel-state := cap(c〈ui,uj〉) that denotes the cur-
rent capacity of their payment channel. We require
a two party agreement protocol that ensures that
both users agree on the current value of cap(c〈ui,uj〉)
at each point in time. We describe the details of
such protocol in Appendix B. For readability, in the
rest we implicitly assume that two users sharing a
payment channel satisfactorily agree on its current
state.

4.2 Multi-Hop HTLC

We consider the standard scenario of an indirect
payment from a sender Sdr to a receiver Rvr for a
certain value v through a path of users (u1, . . . , un),
where un = Rvr. All users belonging to the same
network share the description of a hash function
H : {0, 1}∗ → {0, 1}λ that we model as a random
oracle.

Let L be the following language: L =
{(H, y′, y, x) | ∃(w) s.t. y′ = H(w)∧y = H(w⊕x)}
where w⊕x denotes the bitwise XOR of the two bit-
strings. Before the payment starts, the sender Sdr
locally executes the following SetupHTLC algorithm
described in Figure 6.

SetupHTLC(n) :

∀i ∈ [n] :

xi ∈ {0, 1}λ; yi ← H

 n⊕
j=i

xj

∀i ∈ [n− 1] :

πi ← P

(H, yi+1, yi, xi),

 n⊕
j=i+1

xj

return ((x1, y1, π1), . . . , (xn, yn))

Figure 6: Setup operation for the Multi-Hop HTLC con-
tract.

11

Intuitively, the sender samples n-many random

strings xi and defines yi as H
(⊕n

j=i xj

)
which is

the XOR combination of all xj such that j ≥ i.
Then, Sdr computes the proofs π to guarantee that
each yi is well-formed, without revealing all of the
xi. The receiver is provided with (xn, yn) and she
simply checks that yn = H(xn). Sdr then sends
(xi, yi, πi) to each intermediate user ui, through
a direct communication channel. Each ui runs
V((H, yi+1, yi, xi), πi) and aborts the payment if the
verification algorithm rejects the proof.

Starting from the user u0 = Sdr, each pair of
users (ui, ui+1) check whether both users received
the same values of (yi+1, v). This can be done by
simply exchanging and comparing the two values.
If this is the case, they establish HTLC (ui, ui+1,
yi+1, v, ti) as described in Section 2.3, where ti
defines some timespan such that for all i ∈ [n] :
ti−1 = ti + ∆, for some positive value ∆. Once
the contract between (un−1, un) is settled, the user
un (the receiver) can then pull v bitcoins by releas-
ing the xn, which by definition satisfies the con-
straint H(xn) = yn. Once the value of xn is pub-
lished, un−1 can also release a valid condition for the
contract between (un−2, un−1) by simply outputting
xn−1 ⊕ xn. In fact, this mechanism propagates for
every intermediate user of the payment path, un-
til Sdr: For each node ui it holds that, whenever
the condition for the contract between (ui, ui+1) is
released, i.e., somebody publishes a string r such
that H(r) = yi+1, then ui immediately learns xi⊕r
such that H(xi⊕ r) = yi, which is a valid condition
for the contract between (ui−1, ui). It follows that
each intermediate user whose outgoing contract has
been pulled is able to release a valid condition for
the incoming contract.

4.3 Construction Details

In the following, we describe the details of the three
operations (openChannel, closeChannel, pay) that
compose Fulgor.

• openChannel(u1, u2, β, t, f): The purpose of
this operation is to open a payment channel be-
tween users u1 and u2. For that, they create an
initial Bitcoin deposit that includes the following
information: their Bitcoin addresses, the initial ca-
pacity of the channel (β), the channel timeout (t),
the fee charged to use the channel (f) and a channel
identifier (c〈u1,u2〉) agreed beforehand between both

payu0(m) :

(Txid,
{
c〈u0,u1〉

}
∪
{
c〈ui,ui+1〉

}
i∈[n] , v)← m

v1 := v +

n∑
i

fee(ui)

if v1 ≤ cap(c〈u0,u1〉) then

cap(c〈u0,u1〉) := cap(c〈u0,u1〉)− v1

t0 := tnow + ∆ · n
∀i ∈ [n] :

vi := v1 −
i−1∑
j=1

fee(uj)

ti := ti−1 −∆

{(xi, yi, πi)}i∈[n+1] ← SetupHTLC(n+ 1)

Send(ui, ((Txid, xi, yi, yi+1,

πi, c〈ui−1,ui〉, c〈ui,ui+1〉, vi+1, ti, ti+1), forward))

HTLC(u0, u1, y1, v1, t1)

Send(un+1, (Txid, xn+1, yn+1, c〈un,un+1〉,

vn+1, tn+1))

else

abort

Figure 7: The pay routine in Fulgor for the sender. The
light blue pseudocode shows additional steps required in
Rayo.

users. After the Bitcoin deposit has been success-
fully added to the blockchain, the operation returns
1. If any of the previous steps is not carried out as
defined, the operation returns 0.

• closeChannel(c〈u1,u2〉, v): This operation is used
by two users (u1, u2) sharing an open payment chan-
nel (c〈u1,u2〉) to close it at the state defined by v
and accordingly update their bitcoin balances in
the Bitcoin blockchain. This operation in Fulgor
is performed as defined in the original proposal of
payment channels (see Section 2.1), additionally re-
turning 1 if and only if the corresponding Bitcoin
transaction is added to the Bitcoin blockchain.

• pay((c〈u0,u1〉, . . . , c〈un,un+1〉), v): A payment op-
eration transfers a value v from a sender (u0) to a re-
ceiver (un+1) through a path of open payment chan-
nels between them (c〈u0,u1〉, . . . , c〈un,un+1〉). Here,
we describe a blocking version of the payment oper-
ation (see Section 3.3). We discuss the non-blocking
version of the payment operation in Section 5.

As shown in Figure 7 (black pseudocode), the

12

payun+1
(m) :

(Txid, xn+1, yn+1, c〈n,n+1〉, vn+1, tn+1)← m

if H(xn+1) = yn+1 and tn+1 > tnow + ∆ then

store (xn+1, yn+1, c〈n,n+1〉, tn+1)

Send(un, ((Txid, xn+1, yn+1, c〈n,n+1〉), accept))

else

Send(un, ((Txid, yn+1, c〈n,n+1〉, vn+1), abort))

payui(m) :

(m∗, decision)← m

if decision = forward then

(Txid, xi, yi, yi+1, πi, c〈i−1,i〉, c〈i,i+1〉,

vi+1, ti, ti+1)← m∗

if vi+1 ≤ cap(c〈ui,ui+1〉) and V((H, yi+1, yi, xi), πi)

and ti+1 = ti −∆ then

cap(c〈ui,ui+1〉) := cap(c〈ui,ui+1〉)− vi+1

HTLC(ui, ui+1, yi+1, vi+1, ti+1)

cur(c〈ui,ui+1〉).append(m∗)

else if ∃k | Txid > cur(c〈ui,ui+1〉)[k].Txid then

Q(c〈ui,ui+1〉).append(m∗)

else

Send(ui−1, ((Txid, yi, c〈i−1,i〉, vi), abort))

else if decision = abort then

(Txid, yi+1, c〈i,i+1〉, vi+1)← m∗

cap(c〈ui,ui+1〉) := cap(c〈ui,ui+1〉) + vi+1

Send(ui−1, ((Txid, yi, c〈i−1,i〉, vi), abort))

cur(c〈ui,ui+1〉).delete(m∗.Txid)

m′ := max(Q(c〈ui,ui+1〉))

payui
((m′, forward))

else if decision = accept then

(Txid, xi+1, yi+1, c〈i,i+1〉, vi+1)← m∗

store (xi+1 ⊕ xi, yi, c〈i−1,i〉, ti)
Send(ui−1, ((Txid, xi+1 ⊕ xi, yi, c〈i−1,i〉, vi), accept))
cur(c〈ui,ui+1〉).delete(m∗.Txid)

Figure 8: The pay routine in Fulgor for the receiver and
each intermediate user. The light blue pseudocode shows
additional steps in Rayo. max(Q) returns the informa-
tion for the payment with highest identifier among those
in Q.

sender first calculates the cost of sending v bit-
coins to Rvr as v1 := v +

∑
i fee(ui), and the cor-

responding cost at each of the intermediate hops
in the payment path. If the sender does not have
enough bitcoins, she aborts the payment. Other-
wise, the sender sets up the contract for each inter-
mediate payment channel following the mechanism
described in Section 4.2 and sends the information
to the corresponding users.

Every intermediate user verifies that the incoming
HTLC has an associated value smaller or equal than
the capacity of the payment channel with her suces-
sor in the path. Additionally, every intermediate
user verifies that the zero-knowledge proof associ-
ated to the HTLC for incoming and outgoing pay-
ment channels correctly verifies and that the time-
out for the incoming HTLC is bigger than the time-
out for the outgoing HTLC by a difference of ∆.
If so, she generates the corresponding HTLC for
the same associate value (possibly minus the fees)
with the successor user in the path; otherwise, she
aborts by triggering the abort event to the prede-
cessor user in the path. These operations have been
shown in Figure 8 (black pseudocode).

If every user in the path accepts the payment, it
eventually reaches the receiver who in turn releases
the information required to fulfill the HTLC con-
tracts in the path (see Figure 8 (black pseudocode)).
Interestingly, if any intermediate user aborts the
payment, the receiver does not release the condi-
tion as she does not receive any payment. More-
over, payment channels already set in the previous
hops of the path are voided after the timeout set in
the corresponding HTLC.

4.4 Security and Privacy Analysis

In the following, we state the security and privacy
results for Fulgor. We prove our results in the
(Fanon,FB)-hybrid model. In other words, Theo-
rem 1 holds for any UC-secure realization of Fanon

and FB. We show the proof of Theorem 1 in Ap-
pendix A.

Theorem 1 (UC-Security). Let H : {0, 1}∗ →
{0, 1}λ be a hash function modelled as a random
oracle, and let (P,V) a zero-knowledge proof sys-
tem, then Fulgor UC-realizes the ideal functional-
ity F defined in Figure 5 in the (Fanon,FB)-hybrid
model.

13

4.5 System Discussion

Compatibility with Bitcoin. We note that all
of the non-standard cryptographic operations (such
as NIZK proofs) happen off-chain, while the only al-
gorithm required to be executed in the verification
of the blockchain is the hash function H, which can
be instantiated with SHA-256. Therefore our Multi-
Hop HTLC scheme and Fulgor as a whole is fully
compatible with the current Bitcoin script. More-
over, as mentioned in Section 2.1, the addition of
SegWit or similar solution for the malleability is-
sue in Bitcoin fully enables payment channels in the
Bitcoin system [70].

Generality. Fulgor is general to PCNs (and not
only tied to Bitcoin). Fulgor requires that: (i)
openChannel allows to embed custom data (e.g.,
fee); (ii) conditional updates of the balance in the
payment channel. As arbitrary data can be included
in cryptocurrency transactions [5] and most PCNs
support, among others, the HTLC contract, Fulgor
can be used in many other PCNs such as Raiden, a
PCN for Ethereum [13].

Support for Bidirectional Channels. Fulgor
can be easily extended to support bidirectional pay-
ment channels and only two minor changes are re-
quired. First, the payment information must in-
clude the direction requested at each payment chan-
nel. Second, the capacity of a channel c〈uL,uR〉 is a
tuple of values (L,R, T) where L denotes the cur-
rent balance for uL, R is the current balance of uR
and T is the total capacity of the channel. A pay-
ment from left to right for value v is possible if L ≥ v
and R + v ≤ T . In such case, the tuple is updated
to (L− v, R+ v, T). A payment from right to left is
handled correspondingly.

5 Non-blocking Payments in
PCNs

In this section, we discuss how to handle concur-
rent payments in a non-blocking manner. In other
words, how to guarantee that at least one payment
out of a set of concurrent payments terminates.

In the following, we start with an impossibility re-
sult that dictates the design of Rayo, our protocol
for non-blocking payments. Then, we describe the
modifications required in the ideal world functional-
ity and Fulgor to achieve them. Finally, we discuss

the implications of these modifications in terms of
privacy properties.

5.1 Concurrency vs Privacy

We show that achieving non-blocking progress re-
quires a global state associated to each of the
payments. Specifically, we show that we can-
not provide disjoint-access parallelism and non-
blocking progress for PCNs. Formally, a PCN im-
plementation is disjoint-access parallel if for any
two payments channels ei, ej , channel-state (ei) ∩
channel-state (ej) =∅.

Lemma 2. There does not exist any strictly seri-
alizable disjoint-access parallel implementation for
the payment channels problem that provides non-
blocking progress.

We defer to Appendix D for a proof sketch. Hav-
ing established this inherent cost to concurrency
and privacy, we model global state by a Txid field
attached to each of the payments. We remark that
this Txid, however, allows an adversary to reduce
the set of possible senders and receivers for the
payment, therefore inevitably reducing the privacy
guarantees, as we discuss in Section 5.2.

5.2 Ideal World Functionality

Here, we show how to modify the ideal functional-
ity F , as described in Section 3.2, to account for
the changes to achieve non-blocking progress in any
PCN. First, a single identifier Txid (as opposed to
independently sampled hi) is used for all the pay-
ment channels in the path (c〈u0,u1〉, . . . , c〈un,un+1〉).
Second, F no longer aborts a payment simply when
no capacity is left in a payment channel. Instead,
F queues the payment if its Txid is higher than the
current in-flight payment, or aborts it the Txid is
lower. We detail the modified ideal functionality
in Appendix C.

Discussion. Here, we discuss how the modified
ideal world definition captures the security and pri-
vacy notions of interest as described in Section 3.1.
In particular, it is easy to see that the notions of bal-
ance security and value privacy are enforced along
the same lines. However, the leakage of the same
payment identifier among all intermediate users in
the payment path, reduces the possible set of sender
and receivers to the actual sender and receiver

14

Figure 9: Illustrative example of tradeoff between con-
currency and privacy. Each node represents a user: black
nodes are honest and red are byzantine. In both cases,
we assume two concurrent payments: S1 pays R1 and S2

pays R2 through the path U1, U2, U3. The color of the
arrow denotes the payment identifier. Dashed ellipses
denote the anonymity set for each case.

for such payment, thereby breaking relationship
anonymity. Therefore, there is an inherent tradeoff
between how to handle concurrent payments (block-
ing or non-blocking) and the anonymity guarantees.

An illustrative example of this tradeoff is shown
in Figure 9. It shows how two simultaneous pay-
ments pay1((c〈S1,U1〉, c〈U1,U2〉, c〈U2,U3〉, c〈U3,R1〉), v)
and pay2((c〈S2,U1〉, c〈U1,U2〉, c〈U2,,U3〉, c〈U3,R2〉), v) are
handled depending on whether concurrent pay-
ments are handled in a blocking or non-blocking
fashion. We assume that both payments can suc-
cessfully finish in the current PCN and that both
payments transfer the same payment amount v, as
otherwise relationship anonymity is trivially broken.

For the case of blocking payments, each inter-
mediate user uj observes an independently chosen
identifier Txidij for each payment payi. There-
fore, the attacker is not able to correlate the pair
(Txid11,Txid21) (i.e., view of U1) with the pair
(Txid13,Txid23) (i.e., view of U3). It follows that
for a pay operation issued by any node, say S1, the
set of possible receivers that the adversary observes
is {R1, R2}.

However, when the concurrent payments are han-
dled in a non-blocking manner, the adversary ob-
serves for pay1 that Txid11 = Txid13. Therefore, the
adversary can trivially derive that the only possible
receiver for a pay initiated by S1 is R1.

5.3 Rayo: Our Construction

Building Blocks. We require the same building
blocks as described in Section 4.1 and Section 4.2.
The only difference is that the channel’s state be-
tween two users is now defined as channel-state :=
(cur(ui,uj)[], Q(ui,uj)[], cap(ui,uj)), where cur denotes
an array of payments currently using (part of) the
capacity available at the payment channel; Q de-
notes the array of payments waiting for enough ca-
pacity at the payment channel, and cap denotes the
current capacity value of the payment channel.

Operations. The openChannel and closeChannel
operations remain as described in Section 4.3. How-
ever, the pay operation has to be augmented to en-
sure non-blocking payments. We have described the
additional actions in light blue pseudocode in Fig-
ures 7 and 8.

In the following, we informally describe these ad-
ditional actions required for the pay operation. In a
nutshell, when a payment reaches an intermediate
user in the path, several events can be triggered.
The simplest case is when the corresponding pay-
ment channel is not saturated yet (i.e., enough ca-
pacity is left for the payment to succeed). The user
accepts the payment and simply stores its informa-
tion in cur as an in-flight payment.

The somewhat more interesting case occurs when
the payment channel is saturated. This means that
(possibly several) payments have been already gone
through the payment channel. In this case, the sim-
plest solution is to abort the new payment, but this
leads to deadlock situations. Instead, we ensure
that deadlocks do not occur by leveraging the total
order of payment identifiers: If the new payment
identifier (Txid) is higher than any of the payment
identifiers currently active in the payment channel
(i.e., included in cur []), the payment identified by
Txid is stored in Q. In this manner, if any of the cur-
rently active payments are aborted, a queued pay-
ment (Txid∗) can be recovered from Q and reissued
towards the receiver. On the other hand, if Txid is
lower than every identifier for currently active pay-
ments, the payment identified by Txid is directly
aborted as it would not get to complete in the pres-
ence of a concurrent payment with higher identifier
in the PCN.

15

5.4 Analysis and System Discussion

Security and Privacy Analysis. In the follow-
ing, we state the security and privacy results for
Rayo when handling payments in a non-blocking
manner. We prove our results in the (Fanon,FB)-
hybrid model. In other words, Theorem 2 holds for
any UC-secure realization of Fanon and FB (analysis
in Appendix A).

Theorem 2 (UC-Security). Let H : {0, 1}∗ →
{0, 1}λ be a hash function modelled as a random
oracle, and let (P,V) a zero-knowledge proof sys-
tem, then Rayo UC-realizes the ideal functionality
F described in Figure 10 in the (Fanon,FB)-hybrid
model.

System Discussion. Rayo is compatible with
Bitcoin, can be generally applicable to PCN and
supports bidirectional payment channels similar to
Fulgor. Moreover, the Rayo protocol provides non-
blocking progress. Specifically, Rayo ensures that
some payment successfully terminates in every exe-
cution. Intuitively, this is because any two conflict-
ing payments can necessarily be ordered by their
respective unique identifier: the highest payment
identifier is deterministically identified and termi-
nates successfully while the lower priority payment
aborts.

5.5 Fulgor vs Rayo

In this work, we characterize the tradeoff between
the two protocols presented in this work. As shown
in Table 1, both protocols guarantee crucial secu-
rity and correctness properties such as balance secu-
rity and serializability. By design, Rayo is the only
protocol that ensures non-blocking progress. Fi-
nally, regarding privacy, we aimed at achieving the
strongest privacy possible. However, although both
protocols guarantee value privacy, we have shown

Table 1: Comparison between Fulgor and Rayo.

Fulgor Rayo

Balance security
Serializability

Non-blocking progress #
Value Privacy

Anonymity G#

that it is impossible to simultaneously achieve non-
blocking progress and strong anonymity. There-
fore, Fulgor achieves strong anonymity while Rayo
achieves non-blocking progress at the cost of weak-
ening the anonymity guarantees. We note never-
theless that Rayo provides relationship anonymity
only if none of the intermediate nodes is compro-
mised. Intuitively, Rayo provides this (weaker)
privacy guarantee because it still uses Multi-Hop
HTLC as Fulgor.

6 Performance Analysis

In this section, we first evaluate the performance of
Fulgor. Finally, we describe the overhead required
for Rayo.

We have developed a proof-of-concept implemen-
tation in Python to evaluate the performance of
Fulgor. We interact with the API of lnd [1], the re-
cently released Lightning Network implementation,
We use listchannels to extract the current capacity
of an open payment channel, listpeers to extract the
list of public keys from other users in the network,
and getinfo to extract the user’s own public key. We
have instantiated the hash function with SHA-256.
We have implemented the Multi-Hop HTLC using
a python-based implementation of ZK-Boo [63] to
create the zero-knowledge proofs. We set ZK-Boo
to use SHA-256, 136 rounds to achieve a soundness
error of the proofs of 2−80, and a witness of 32 bytes
as in [69].

Implementation-level Optimizations. Dur-
ing the protocol description, we have assumed that
the sender creates a different anonymous commu-
nication channel with each intermediate user. In
our implementation, however, we use Sphinx [31]
to create a single anonymous communication chan-
nel between sender and receiver, where intermedi-
ate nodes are the intermediate users in the path.
Sphinx allows to send the required payment infor-
mation to each intermediate user while obfuscating
the information intended for other users in the path
and the actual length of the path by padding the for-
warded data. This optimization has been discussed
in the bitcoin community and implemented in the
current release of lnd [9].

Testbed. We have simulated five users and created
a linear structure of payment channels: user i has
payment channels open only with user i−1 and user

16

i+ 1, user 0 is the sender, and user 4 is the receiver
of the pay operation. We run each of the users in a
separated virtual machine with an Intel Core i7 3.1
GHz processor and 2 GB RAM. The machines are
connected in a local network with a mean latency of
111.5 milliseconds. For our experiments, we assume
that each user has already opened the corresponding
payment channels and got the public verification
key of each other user in the PCN. As this is a one
time setup operation, we do not account for it in
our experiments.

Performance. We have first executed the pay-
ment operation available in the lnd software, which
uses the HTLC-based payment as the contract for
conditional updates in a payment channel. We ob-
serve that a (non-private) pay operation over a path
with 5 users takes 609 ms and so needs Fulgor. Ad-
ditionally, the Sdr must run the SetupHTLC(n + 1)
protocol, increasing thereby her computation time.
Moreover, the Sdr must send the additional in-
formation corresponding to the Multi-Hop HTLC
contract (i.e., (xi, yi, yi+1, πi)) to each intermediate
user, which adds communication complexity.

The sender requires 309 ms to compute the proof
πi for each of the intermediate users. Each proof
is of size 1.65 MB. Finally, each intermediate user
requires 130 ms to verify πi. We focus on the zero-
knowledge proofs as they are the most expensive
operation.

Therefore, the total computation overhead is 1.32
seconds (lnd pay and Multi-Hop HTLC) and the to-
tal communication overhead is less than 5 MB (3
zero-knowledge proofs plus the tuple of small-size
values (xi, yi, yi+1) per intermediate user). We ob-
serve that previous proposal [69] required around
10 seconds to compute only a single zero-knowledge
proof. In contrast, the pay operation in Fulgor re-
quires less than 2 seconds of computation and to
communicate less than 5 MB among the users in
the path for the complete payment operation, which
demonstrates the practicality of Fulgor.

Scalability. In order to test the scalability of the
pay operation in Fulgor, we have studied the run-
ning time and communication overhead required by
each of the roles in a payment (i.e., sender, receiver,
and intermediate user). Here, we take into account
that Sphinx requires to pad the forwarded messages
to the maximum path length. In the absence of
widespread PCN in practice, we set the maximum

path length to 10 in our test, as suggested for simi-
lar payment networks such as the Ripple credit net-
work [49].

Regarding the computation time, the sender re-
quires 3.09 seconds to create πi for each interme-
diate user. However, this computation time can
be improved if different πi are calculated in paral-
lel taking advantage of current multi-core systems.
Each intermediate user requires 130 ms as only has
to check the contract for payment channels with
successor and predecessor user in the path. Finally,
the receiver incurs in few ms as she only has to check
whether a given value is the correct pre-image of a
given hash value.

Regarding communication overhead, the sender
must create a message with 10 proofs of knowledge
and other few bytes associated to the contract for
each intermediate payment channel. So in total,
the sender must forward 17MB approximately. As
Sphinx requires padded messages at each node to
ensure anonymity, every intermediate user must for-
ward a message of the same size.

In summary, these results show that even with
an unoptimized implementation, a payment with 10
intermediate users takes less than 5 seconds and re-
quire a communication overhead of approximately
17MB at each intermediate user. Therefore, Fulgor
induces a relatively small overhead while enabling
payments between any two users in the PCN and
has the potential to be deployed as a PCN with
a growing base of users performing payments with
even 10 intermediate users in a matter of few sec-
onds, a result in line with other privacy preserving
payment systems [54, 49].

Non-blocking payments (Rayo). Given their
similar definitions, the performance evaluation for
Fulgor carries over to Rayo. Additionally, the man-
agement of non-blocking payments requires that in-
termediate users maintain a list (cur) of current
in-flight payments and a queue (Q) of payments
waiting to be forwarded when capacity is available.
The management of these data structures requires
a fairly small computation overhead. Moreover,
the number of messages to be stored in these data
structures according to the specification of Rayo is
clearly linear in the length of the path. Specifically,
a payment involving a path of length k ∈ N incurs
O(c·k) message complexity, where c is bounded by
the total of concurrent conflicting payments.

17

7 Related Work

Payment channels were first introduced by the Bit-
coin community [2] and since then, several ex-
tensions have been proposed. Decker and Wat-
tenhofer [32] describe bidirectional payment chan-
nels [32]. Lind et al. [47] leverage trusted platform
modules to use a payment channel without hin-
dering compatibility with Bitcoin. However, these
works focus on a single payment channel and their
extension to support PCNs remain an open chal-
lenge.

TumbleBit [41] and Bolt [40] propose off-chain
path-based payments while achieving sender/re-
ceiver anonymity in Tumblebit and payment
anonymity in Bolt. However, these approaches are
restricted to single hop payments, and it is not clear
how to extend them to account for generic multi-hop
PCNs and provide the privacy notions of interest,
as achieved by Fulgor and Rayo.

The Lightning Network [60] has emerged as the
most prominent proposal for a PCN in Bitcoin.
Other PCNs such as Thunder [19] and Eclair [10] for
Bitcoin and Raiden [13] for Ethereum are being pro-
posed as slight modifications of the Lightning Net-
work. Nevertheless, their use of HTLC leaks a com-
mon identifier per payment, thereby reducing the
anonymity guarantees as we described in this work.
Moreover, current proposals lack a non-blocking so-
lution for concurrent payments. Fulgor and Rayo,
instead, rely on Multi-Hop HTLC to overcome the
linkability issue with HTLC. They provide a trade-
off between non-blocking progress and anonymity.

Recent works [54, 49] propose privacy definitions
for credit networks, a payment system that sup-
ports multi-hop payments similar to PCNs. More-
over, privacy preserving protocols are described for
both centralized [54] and decentralized credit net-
works [49]. However, credit networks differ from
PCNs in that they do not require to ensure ac-
countability against an underlying blockchain. This
requirement reduces the set of cryptographic oper-
ations available to design a PCN. Nevertheless, Ful-
gor and Rayo provide similar privacy guarantees as
credit networks even under those restrictions.

Miller et al [53] propose a construction for pay-
ment channels to reduce the time that funds are
locked at intermediate payment channels (i.e., col-
lateral cost), an interesting problem but orthogonal
to our work. Moreover, they formalize their con-

struction for multi-hop payments as an ideal func-
tionality. However, they focus on collateral cost and
do not discuss privacy guarantees, concurrent pay-
ments are handled in a blocking manner only, and
their construction relies on smart contracts avail-
able on Ethereum that are incompatible with the
current Bitcoin scripting system.

Towns proposed [69] a variation of the HTLC
contract, based on zk-SNARKs, to avoid its link-
ability problem among payment channels in a path.
However, the Bitcoin community has not adopted
this approach due to its inefficiency. In this work,
we revisit this solution with a formal protocol with
provable security and give an efficient instantiation
based on ZK-Boo [38].

8 Conclusion

Permisionless blockchains governed on global con-
sensus protocols face, among others, scalability
issues in catering a growing base of users and
payments. A burgeoning approach to overcome
this challenge consists of PCNs and recent efforts
have derived in the first yet alpha implementa-
tions such as the Lightning Network [60] in Bit-
coin or Raiden [13] in Ethereum. We are, however,
only scratching the surface as many challenges such
as liquidity, network formation, routing scalability,
concurrency or privacy are yet to be thoroughly
studied.

In this work, we lay the foundations for privacy
and concurrency in PCNs. In particular, we for-
mally define in the Universal Composability frame-
work two modes of operation for PCNs attending
to how concurrent payments are handled (blocking
versus non-blocking). We provide formally proven
instantiations (Fulgor and Rayo) for each, offer-
ing a tradeoff between non-blocking progress and
anonymity. Our evaluation results demonstrate
that is feasible to deploy Fulgor and Rayo in prac-
tice and can scale to cater a growing number of
users.

Acknowledgments. We thank the anonymous re-
viewers for their helpful reviews, and Ivan Pryvalov
for providing his python-based implementation of
ZK-Boo.

This work is partially supported by a Intel/CE-
RIAS research assistantship, and by the National
Science Foundation under grant CNS-1719196.

18

This research is based upon work supported by the
German research foundation (DFG) through the
collaborative research center 1223 and by the state
of Bavaria at the Nuremberg Campus of Technology
(NCT). NCT is a research cooperation between the
Friedrich-Alexander-University Erlangen-Nürnberg
(FAU) and the Technische Hochschule Nürnberg
Georg Simon Ohm (THN).

References

[1] Alpha release of the lightning network daemon.
Blog entry. http://lightning.community/

release/software/lnd/lightning/2017/

01/10/lightning-network-daemon-alpha-

release/.

[2] Bitcoin wiki: Bitcoin contract. https://en.

bitcoin.it/wiki/Contract.

[3] Bitcoin wiki: Bitcoin scalability faq. https:

//en.bitcoin.it/wiki/Scalability_FAQ.

[4] Bitcoin wiki: Block size limit contro-
versy. https://en.bitcoin.it/wiki/Block_

size_limit_controversy.

[5] Bitcoin wiki: Op return. https://en.

bitcoin.it/wiki/OP_RETURN.

[6] Bitcoin wiki: Payment channels. https://en.
bitcoin.it/wiki/Payment_channels.

[7] Bitcoin wiki: Timelock. https://en.

bitcoin.it/wiki/Timelock.

[8] Bitcoin wiki: Transaction malleabil-
ity. https://en.bitcoin.it/wiki/

Transaction_Malleability.

[9] Bolt #4: Onion routing protocols. https://

github.com/lightningnetwork/lightning-

rfc/blob/master/04-onion-routing.md.

[10] Eclair implementation of the lightning net-
work. https://github.com/ACINQ/eclair.

[11] Lightning network daemon. Github im-
plementation. https://github.com/

LightningNetwork/lnd.

[12] Lightning protocol reference implementation.
Github implementation. https://github.

com/ElementsProject/lightning.

[13] Raiden network. Project’s website. http://

raiden.network/.

[14] Reliable transaction submission. Rip-
ple protocol’s documentation. https://

ripple.com/build/reliable-transaction-

submission/.

[15] Ripple protocol. Project’s website. https://

ripple.com/.

[16] Segregated witness adoption. Blog en-
try. https://bitcoincore.org/en/segwit_

adoption/.

[17] Stellar protocol. Project’s website. https://

www.stellar.org/.

[18] Stress test prepares visanet for the most
wonderful time of the year. Blog entry.
http://www.visa.com/blogarchives/

us/2013/10/10/stress-test-prepares-

visanet-for-the-most-wonderful-time-

of-the-year/index.html.

[19] Thunder network. Project’s website. https:

//github.com/blockchain/thunder.

[20] Alpern, B., and Schneider, F. B. Defining
liveness. Inf. Process. Lett. 21, 4 (Oct. 1985),
181–185.

[21] Androulaki, E., Karame, G. O.,
Roeschlin, M., Scherer, T., and Cap-
kun, S. Evaluating user privacy in bitcoin.
Financial Cryptography and Data Security
2013.

[22] Atlas, K. The inevitability of pri-
vacy in lightning networks. Blog entry.
https://www.kristovatlas.com/the-

inevitability-of-privacy-in-lightning-

networks/.

[23] Attiya, H., and Welch, J. Distributed
Computing. Fundamentals, Simulations, and
Advanced Topics. John Wiley & Sons, 2004.

[24] Backes, M., Kate, A., Manoharan, P.,
Meiser, S., and Mohammadi, E. Anoa: A
framework for analyzing anonymous communi-
cation protocols. In IEEE 26th Computer Se-
curity Foundations Symposium (2013).

19

http://lightning.community/release/software/lnd/lightning/2017/01/10/lightning-network-daemon-alpha-release/
http://lightning.community/release/software/lnd/lightning/2017/01/10/lightning-network-daemon-alpha-release/
http://lightning.community/release/software/lnd/lightning/2017/01/10/lightning-network-daemon-alpha-release/
http://lightning.community/release/software/lnd/lightning/2017/01/10/lightning-network-daemon-alpha-release/
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Contract
https://en.bitcoin.it/wiki/Scalability_FAQ
https://en.bitcoin.it/wiki/Scalability_FAQ
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/Block_size_limit_controversy
https://en.bitcoin.it/wiki/OP_RETURN
https://en.bitcoin.it/wiki/OP_RETURN
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Payment_channels
https://en.bitcoin.it/wiki/Timelock
https://en.bitcoin.it/wiki/Timelock
https://en.bitcoin.it/wiki/Transaction_Malleability
https://en.bitcoin.it/wiki/Transaction_Malleability
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/lightningnetwork/lightning-rfc/blob/master/04-onion-routing.md
https://github.com/ACINQ/eclair
https://github.com/LightningNetwork/lnd
https://github.com/LightningNetwork/lnd
https://github.com/ElementsProject/lightning
https://github.com/ElementsProject/lightning
http://raiden.network/
http://raiden.network/
https://ripple.com/build/reliable-transaction-submission/
https://ripple.com/build/reliable-transaction-submission/
https://ripple.com/build/reliable-transaction-submission/
https://ripple.com/
https://ripple.com/
https://bitcoincore.org/en/segwit_adoption/
https://bitcoincore.org/en/segwit_adoption/
https://www.stellar.org/
https://www.stellar.org/
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
http://www.visa.com/blogarchives/us/2013/10/10/stress-test-prepares-visanet-for-the-most-wonderful-time-of-the-year/index.html
https://github.com/blockchain/thunder
https://github.com/blockchain/thunder
https://www.kristovatlas.com/the-inevitability-of-privacy-in-lightning-networks/
https://www.kristovatlas.com/the-inevitability-of-privacy-in-lightning-networks/
https://www.kristovatlas.com/the-inevitability-of-privacy-in-lightning-networks/

[25] Barber, S., Boyen, X., Shi, E., and Uzun,
E. Bitter to better. how to make Bitcoin a
better currency. Financial Cryptography and
Data Security 2012.

[26] Camenisch, J., and Lysyanskaya, A. A
formal treatment of onion routing. In Advances
in Cryptology—CRYPTO (2005).

[27] Canetti, R. Universally composable security:
A new paradigm for cryptographic protocols.
In ”FOCS’01”.

[28] Cristian, F., Aghili, H., and Strong,
H. R. Approximate clock synchronization de-
spite omission and performance faults and pro-
cessor joins. In Proceedings of the 16th Interna-
tional Symposium on Fault-Tolerant Comput-
ing (July 1986).

[29] Dandekar, P., Goel, A., Govindan, R.,
and Post, I. Liquidity in credit networks: a
little trust goes a long way. In ACM Conference
on Electronic Commerce (2011).

[30] Dandekar, P., Goel, A., Wellman,
M. P., and Wiedenbeck, B. Strategic for-
mation of credit networks. In WWW (2012).

[31] Danezis, G., and Goldberg, I. Sphinx: A
compact and provably secure mix format. In
30th IEEE Symposium on Security and Privacy
(S&P 2009).

[32] Decker, C., and Wattenhofer, R. A
fast and scalable payment network with bit-
coin duplex micropayment channels. In Sta-
bilization, Safety, and Security of Distributed
Systems (2015).

[33] Dryja, T. Unlinkable outsourced
channel monitoring. (Talk transcript)
https://diyhpl.us/wiki/transcripts/

scalingbitcoin/milan/unlinkable-

outsourced-channel-monitoring/.

[34] Fischer, M. J., Lynch, N. A., and Pater-
son, M. S. Impossibility of distributed con-
sensus with one faulty process. J. ACM 32, 2
(Apr. 1985), 374–382.

[35] Friedenbach, M., BtcDrak, Dorier, N.,
and kinoshitajona. Bip 68: Relative lock-

time using consensus-enforced sequence num-
bers. https://github.com/bitcoin/bips/

blob/master/bip-0068.mediawiki.

[36] Fugger, R. Money as ious in social
trust networks & a proposal for a decen-
tralized currency network protocol. Techni-
cal Report, 2004. http://archive.ripple-

project.org/decentralizedcurrency.pdf.

[37] Ghosh, A., Mahdian, M., Reeves, D. M.,
Pennock, D. M., and Fugger, R. Mecha-
nism design on trust networks. In WINE’07.

[38] Giacomelli, I., Madsen, J., and Orlandi,
C. Zkboo: Faster zero-knowledge for boolean
circuits. In USENIX Security (2016).

[39] go1111111 (pseudonym). Idea to im-
prove lightning network. Forum post.
https://bitcointalk.org/index.php?

topic=1134319.0.

[40] Green, M., and Miers, I. Bolt: Anonymous
payment channels for decentralized currencies.
In CCS (2017).

[41] Heilman, E., Alshenibr, L., Baldimtsi,
F., Scafuro, A., and Goldberg, S.
TumbleBit: An untrusted bitcoin-compatible
anonymous payment hub. In NDSS (2017).

[42] Herlihy, M., and Shavit, N. On the nature
of progress. In OPODIS (2011), pp. 313–328.

[43] Herrera-Joancomart́ı, J., and Pérez-
Solà, C. Privacy in bitcoin transactions:
New challenges from blockchain scalability so-
lutions. In Modeling Decisions for Artificial
Intelligence (2016).

[44] Kosba, A., Miller, A., Shi, E., Wen,
Z., and Papamanthou, C. Hawk: The
blockchain model of cryptography and privacy-
preserving smart contracts. In IEEE S&P
(2016).

[45] Koshy, P., Koshy, D., and McDaniel, P.
An analysis of anonymity in bitcoin using p2p
network traffic. In Financial Cryptography and
Data Security (2014).

20

https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://diyhpl.us/wiki/transcripts/scalingbitcoin/milan/unlinkable-outsourced-channel-monitoring/
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0068.mediawiki
http://archive.ripple-project.org/decentralizedcurrency.pdf
http://archive.ripple-project.org/decentralizedcurrency.pdf
https://bitcointalk.org/index.php?topic=1134319.0
https://bitcointalk.org/index.php?topic=1134319.0

[46] Lamport, L., and Fischer, M. Byzan-
tine generals and transaction commit proto-
cols. Tech. Rep. 62, SRI International, Apr.
1982.

[47] Lind, J., Eyal, I., Pietzuch, P. R., and
Sirer, E. G. Teechan: Payment channels
using trusted execution environments. http:

//arxiv.org/abs/1612.07766.

[48] Lopp, J. Lightning’s balancing act: Chal-
lenges face bitcoin’s scalability savior. Blog en-
try. http://www.coindesk.com/lightning-

technical-challenges-bitcoin-

scalability/.

[49] Malavolta, G., Moreno-Sanchez, P.,
Kate, A., and Maffei, M. SilentWhispers:
Enforcing security and privacy in credit net-
works. In NDSS (2017).

[50] McCorry, P., Möser, M., Shahandashti,
S. F., and Hao, F. Towards bitcoin payment
networks. In Australasian Conference Informa-
tion Security and Privacy (2016).

[51] Meiklejohn, S., and Orlandi, C. Privacy-
enhancing overlays in bitcoin. In BITCOIN
(2015).

[52] Meiklejohn, S., Pomarole, M., Jordan,
G., Levchenko, K., McCoy, D., Voelker,
G. M., and Savage, S. A fistful of bitcoins:
Characterizing payments among men with no
names. In IMC (2013).

[53] Miller, A., Bentov, I., Kumaresan, R.,
and McCorry, P. Sprites: Payment chan-
nels that go faster than lightning. CoRR
abs/1702.05812 (2017).

[54] Moreno-Sanchez, P., Kate, A., Maffei,
M., and Pecina, K. Privacy preserving pay-
ments in credit networks. In NDSS (2015).

[55] Moreno-Sanchez, P., Modi, N.,
Songhela, R., Kate, A., and Fahmy, S.
Mind your credit: Assessing the health of the
ripple credit network. CoRR abs/1706.02358
(2017).

[56] Moreno-Sanchez, P., Zafar, M. B., and
Kate, A. Listening to whispers of ripple:

Linking wallets and deanonymizing transac-
tions in the ripple network. In PETS (2016).

[57] Nakamoto, S. Bitcoin: A peer-to-peer elec-
tronic cash system. https://bitcoin.org/

bitcoin.pdf, 2008.

[58] Papadimitriou, C. H. The serializability
of concurrent database updates. J. ACM 26
(1979), 631–653.

[59] Pfitzmann, A., and Hansen, M.
Anonymity, unlinkability, undetectability,
unobservability, pseudonymity, and identity
management – a consolidated proposal for
terminology, 2008.

[60] Poon, J., and Dryja, T. The bit-
coin lightning network: Scalable off-chain
instant payments. Technical Report.
https://lightning.network/lightning-

network-paper.pdf.

[61] Post, A., Shah, V., and Mislove, A.
Bazaar: Strengthening user reputations in on-
line marketplaces. In NSDI (2011).

[62] Prihodko, P., Zhigulin, S., Sahno,
M., and Ostrovskiy, A. Flare: An
approach to routing in lightning network.
http://bitfury.com/content/5-white-

papers-research/whitepaper_flare_

an_approach_to_routing_in_lightning_

network_7_7_2016.pdf.

[63] Pryvalov, I. pyZKBoo++ implementation.
Project’s website. https://sites.google.

com/view/pyzkboopp/home.

[64] Reid, F., and Harrigan, M. An analysis of
anonymity in the bitcoin system. In Security
and Privacy in Social Networks (2013).

[65] Russell, R. Reaching the ground with light-
ning. Technical Report. http://ozlabs.org/

~rusty/ln-deploy-draft-01.pdf.

[66] Spagnuolo, M., Maggi, F., and Zanero,
S. BitIodine: Extracting intelligence from the
bitcoin network. In Financial Cryptography
and Data Security (2014).

[67] Torpey, K. Brock pierce: Bitcoin’s scalabil-
ity issues are a sign of its success. Blog entry.

21

http://arxiv.org/abs/1612.07766
http://arxiv.org/abs/1612.07766
http://www.coindesk.com/lightning-technical-challenges-bitcoin-scalability/
http://www.coindesk.com/lightning-technical-challenges-bitcoin-scalability/
http://www.coindesk.com/lightning-technical-challenges-bitcoin-scalability/
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://lightning.network/lightning-network-paper.pdf
https://lightning.network/lightning-network-paper.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
http://bitfury.com/content/5-white-papers-research/whitepaper_flare_an_approach_to_routing_in_lightning_network_7_7_2016.pdf
https://sites.google.com/view/pyzkboopp/home
https://sites.google.com/view/pyzkboopp/home
http://ozlabs.org/~rusty/ln-deploy-draft-01.pdf
http://ozlabs.org/~rusty/ln-deploy-draft-01.pdf

https://bitcoinmagazine.com/articles/

brock-pierce-bitcoin-s-scalability-

issues-are-a-sign-of-its-success-

1459867433/.

[68] Torpey, K. Does the lightning network
threaten bitcoin?s censorship resistance?
Blog entry. https://bitcoinmagazine.

com/articles/does-the-lightning-

network-threaten-bitcoin-s-censorship-

resistance-1461953131/.

[69] Towns, A. Better privacy with
SNARKs. Mailing List. https:

//lists.linuxfoundation.org/pipermail/

lightning-dev/2015-November/000309.

html.

[70] van Wirdum, A. Segwit or not, bitfury
is getting ready for lightning with suc-
cessful bitcoin main net test. Blog entry.
https://bitcoinmagazine.com/articles/

segwit-or-not-bitfury-ready-lightning-

successful-bitcoin-main-net-test/.

[71] Viswanath, B., Mondal, M., Gummadi,
K. P., Mislove, A., and Post, A. Canal:
Scaling social network-based sybil tolerance
schemes. In EuroSys (2012).

[72] Wikström, D. A universally composable mix-
net. In Theory of Cryptography Conference
(2004), M. Naor, Ed.

A Security Analysis

Our proof strategy consists of the description of a
simulator S that handles users corrupted by the at-
tacker and simulates the real world execution pro-
tocol while interacting with the ideal functionality
F . The simulator S spawns honest users at adver-
sarial will and impersonates them until the envi-
ronment E makes a corruption query on one of the
users: At this point S hands over to A the inter-
nal state of the target user and routes all of the
subsequent communications to A, who can reply
arbitrarily. For operations exclusively among cor-
rupted users, the environment does not expect any
interaction with the simulator. Similarly, commu-
nications exclusively among honest nodes happen
through secure channels and therefore the attacker

does not gather any additional information other
than the fact that the communication took place.
For simplicity, we omit these operations in the de-
scription of our simulator. The random oracle H is
simulated by S via lazy-sampling. The operations
to be simulated for a PCN are described in the fol-
lowing.

openChannel(c〈u1,u2〉, β, t, f): Let u1 be the user that
initiates the request. We analyze two possible cases:

1. Corrupted u1: S receives a (c〈u1,u2〉, β, t, f) re-
quest from the adversary on behalf of u1 and
initiates a two-user agreement protocol with A
to convey upon a local fresh channel identifier
c〈u1,u2〉. If the protocol successfully terminates,
S sends (open, c〈u1,u2〉, β, t, f) to F , which even-
tually returns (c〈u1,u2〉, h).

2. Corrupted u2: S receives a message
(c〈u1,u2〉, v, t, f) from F engages A in a
two-user agreement protocol on behalf of u1
for the opening of the channel. If the execution
is successful, S sends an accepting message
to F which returns (c〈u1,u2〉, h), otherwise it
outputs ⊥.

If the opening was successful the simulator initial-
izes an empty list Lc〈u1,u2〉 and appends the value
(h, v,⊥,⊥).

closeChannel(c〈u1,u2〉, v): Let u1 be the user that ini-
tiates the request. We distinguish two possible sce-
narios:

1. Corrupted u1: S receives a closing request from
the adversary on behalf of u1, then it fetches
Lc〈u1,u2〉 for some value (h, v, x, y). If such a
value does not exist then it aborts. Otherwise
it sends (close, c〈u1,u2〉, h) to F .

2. Corrupted u2: S receives (c〈u1,u2〉, h,⊥) from
F and simply notifies A of the closing of the
channel c〈u1,u2〉.

pay((c〈u0,u1〉, . . . , c〈un,un+1〉), v): Since the specifica-
tions of the protocol differ depending on whether a
user is a sender, a receiver or an intermediate node
of a payment, we consider the cases separately.

1. Sender: In order to initiate a payment, the
adversary must provide each honest user ui
involved with a message mi that the simu-
lator parses as (c〈ui−1,ui〉, c〈ui,ui−1〉, xi, yi, yi+1,

22

https://bitcoinmagazine.com/articles/brock-pierce-bitcoin-s-scalability-issues-are-a-sign-of-its-success-1459867433/
https://bitcoinmagazine.com/articles/brock-pierce-bitcoin-s-scalability-issues-are-a-sign-of-its-success-1459867433/
https://bitcoinmagazine.com/articles/brock-pierce-bitcoin-s-scalability-issues-are-a-sign-of-its-success-1459867433/
https://bitcoinmagazine.com/articles/brock-pierce-bitcoin-s-scalability-issues-are-a-sign-of-its-success-1459867433/
https://bitcoinmagazine.com/articles/does-the-lightning-network-threaten-bitcoin-s-censorship-resistance-1461953131/
https://bitcoinmagazine.com/articles/does-the-lightning-network-threaten-bitcoin-s-censorship-resistance-1461953131/
https://bitcoinmagazine.com/articles/does-the-lightning-network-threaten-bitcoin-s-censorship-resistance-1461953131/
https://bitcoinmagazine.com/articles/does-the-lightning-network-threaten-bitcoin-s-censorship-resistance-1461953131/
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-November/000309.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-November/000309.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-November/000309.html
https://lists.linuxfoundation.org/pipermail/lightning-dev/2015-November/000309.html
https://bitcoinmagazine.com/articles/segwit-or-not-bitfury-ready-lightning-successful-bitcoin-main-net-test/
https://bitcoinmagazine.com/articles/segwit-or-not-bitfury-ready-lightning-successful-bitcoin-main-net-test/
https://bitcoinmagazine.com/articles/segwit-or-not-bitfury-ready-lightning-successful-bitcoin-main-net-test/

πi, vi, ti, ti+1), also the receiver of the pay-
ment un+1 (in case it is not corrupted)
is notified with some message (c〈un,un+1〉, xn,
yn, v, tn). For each intermediate honest user
ui, the simulator checks whether ti ≥ ti+1 and
V((H, yi, yi+1, xi), πi) = 1. If the conditions
hold, S sends to F the tuple (pay, vi, (c〈ui−1,ui〉,
c〈ui,ui+1〉), ti−1, ti), whereas for the receiver (in
case it is honest) sends (pay, v, c〈un,un+1〉, tn) if
yn = H(xn), otherwise it aborts. For each in-
termediate user ui the simulator confirms the
payment only when receives from the user ui+1

an x such that H(xi ⊕ x) = yi. If A out-
puts a value x∗ such that H(x∗) = yi+1 but
H(xi ⊕ x∗) 6= yi then S aborts the simula-
tion. If the receiver is honest then the sim-
ulator confirms the payment if the amount v
corresponds to what agreed with the sender
and if H(xn) = yn. If the payment is con-
firmed the entry (hi, v

∗− vi, xi⊕x, yi) is added
to Lc〈ui−1,ui〉

, where (h∗i , v
∗, ·, ·) is the entry of

Lc〈ui−1,ui〉
with the lowest v∗, and the same hap-

pens for the receiver.

2. Receiver: S receives some (h, c〈un,un+1〉, v, tn)

from F , then it samples a random x ∈ {0, 1}λ
and returns to A the tuple (x,H(x), v). If A
returns a string x′ = x, then S returns > to F ,
otherwise it sends ⊥.

3. Intermediate user: S is notified that a
corrupted user is involved in a payment
with a message of the form (hi, hi+1,
c〈ui−1,ui〉, c〈ui,ui+1〉, v, ti−1, ti) by F . S samples

an x ∈ {0, 1}λ and an x′ ∈ {0, 1}λ and runs the
simulator of the zero-knowledge scheme to ob-
tain the proof π over the statement (H,H(x⊕
x′), H(x′), x). The adversary is provided
with the tuple (c〈ui−1,ui〉, c〈ui,ui−1〉, x,H(x ⊕
x′), H(x′), π, v, ti−1, ti) via an anonymous chan-
nel. If A outputs a string x′′ = x ⊕ x′, then
S aborts the simulation. At some point of
the execution the simulator is queried again on
(hi, hi+1), then it sends x′ to A on behalf of
ui+1. If A outputs a string z = x ⊕ x′ the
simulator sends > to F and appends (hi, v

∗ −
v, z,H(z)) to Lc〈ui−1,ui〉

, where (h∗i , v
∗, ·, ·) is the

entry of Lc〈ui−1,ui〉
with the lowest v∗. The sim-

ulator sends ⊥ otherwise. Note that we con-
sider the simpler case where a single node in

the payment is corrupted. However this can
be easily extended to the more generic case by
book-keeping the values of hi and choosing the
corresponding the pre-images x and x′ consis-
tently. The rest of the simulation is unchanged.

Analysis. Since the simulation runs only
polynomially-bounded algorithms it is easy to see
that the simulation is efficient. We now argue that
the view of the environment in the simulation is in-
distinguishable from the execution of the real-world
protocol. For the moment, we assume that the sim-
ulation never aborts, then we separately argue that
the probability of the simulator to abort is negli-
gible. For the openChannel and closeChannel algo-
rithms the indistinguishability argument is trivial.
On the other hand for the payment we need a more
sophisticated reasoning. Consider first the scenario
where the sender is corrupted: In this case the sim-
ulation diverges form the the original protocol since
each multi-hop payment is broke down into sepa-
rate single-hop payments. Note that the off-chain
communication mimics exactly the real-world pro-
tocol (as long as S does not abort): Each node ui
that is not the receiver confirms the transaction to
F only if it learns a valid pre-image of its yi. Since
we assume that the simulation does not abort, it fol-
lows that the simulation is consistent with the fact
that each honest node always returns > at this stage
of the execution (i.e., the payment chain does not
stop at a honest node, other than the sender). How-
ever, the values published in the blockchain could
in principle diverge from what the adversary is ex-
pecting in the real execution. In fact, an entry of
the real blockchain contains the values of (x,H(x))
corresponding to a particular payment, in addition
to the information that is leaked by the ideal func-
tionality. Therefore we have to show that the values
of (x, y) that the simulator appends to A’s view of
B (in the closeChannel simulation) have the same
distribution as in the real world. Note that those
values are either selected by the adversary if the
sender is corrupted (there the argument is trivial)
or chosen to be (x,H(x)) by the simulator, for some
randomly chosen x ∈ {0, 1}λ. For the latter case it
is enough to observe that the following distributions
are statistically close((

n⊕
i=1

xi, y1

)
, . . . , (xn, yn)

)
≈ ((r1, s1), . . . , (rn, sn)),

23

where for all i : (xi, ri) ← {0, 1}2·λ, yi ← H(xi),
and si ← H(ri). Note that on the left hand side of
the equation the values are distributed accordingly
to the real-world protocol, while on the right hand
side the distribution corresponds to the simulated
values. The indistinguishability follows. For the
simulation of the receiver and of the intermediate
users one can use a similar argument. We only need
to make sure that A cannot interrupt a payment
chain before it reaches the receiver, which is not
allowed in the ideal world. It is easy to see that in
that case (A outputs x′′ such that H(x′′) = H(x⊕
x′) before receiving x′) the simulation aborts.

What is left to be shown is that the simula-
tion aborts with at most negligible probability. Let
aborts the event that S aborts in the simulation
of the sender and let aborti be the event that S
aborts in the simulation of the intermediate user.
By the union bound we have that Pr [abort] ≤
Pr [aborts] + Pr [aborti].

We note that in case aborts happens than the ad-
versary was able to output a valid proof πi over
(H, yi, yi+1, xi) and an x∗ such that H(x∗) = yi+1

and H(x∗ ⊕ xi) 6= yi. Let w be a bitstring such
that H(w) = yi+1 and H(w ⊕ xi) = yi, by the
soundness of the proof πi such a string is guar-
anteed to exists. It follows that H(x∗ ⊕ xi) 6=
H(w ⊕ xi) which implies that w 6= x∗, since H
is a deterministic function. However we have that
H(x∗) = H(w), which implies that w = x∗, since A
can query the random oracle at most polynomially-
many times. This is a contradiction and therefore
it must be the case that for all PPT adversaries
the probability of aborts to happen is 0. We can
now rewrite Pr [abort] ≤ Pr [aborti]. Consider the
event aborti: In this case we have that A, on in-
put (H(x ⊕ x′), H(x′), x), is able to output some
x′′ = x⊕x′. Note that x′ is a freshly sampled value
and therefore the values H(x ⊕ x′) and H(x′) are
uniformly distributed over the range of H. Thus the
probability that A is able to output the pre-image
of H(x ⊕ x′) without knowing x′ is bounded by a
negligible function in the security parameter. It fol-
lows that Pr [abort] ≤ negl(λ). And this concludes
our proof.

Non-Blocking Solution. The security proof for
our non-blocking solution is identical to what de-
scribed above, with the only exception that the ideal
functionality leaks the identifier of a payment to the

intermediate users. Therefore the simulator must
make sure to choose the transaction identifier con-
sistently for all of the corrupted users involved in
the same payment. In addition to that, the sim-
ulator must also implement the non-blocking logic
for the queueing of the payments. The rest of the
argument is unchanged.

B Agreement between Two Users

In this section, we describe the protocol run by
two users, u0 and u1, sharing a payment channel
to reach agreement [34] on the channel’s state at
each point in time.

Notation and Assumptions. In this section,
we follow the notation we introduced in Section 4.
We assume that there is a total order between the
events received by the users at a payment chan-
nel (e.g., lexicographically sorted by the hash of the
corresponding payment data) and the users (e.g.,
lexicographically sorted by their public verification
keys). Moreover, we assume that users perform the
operations associated to each event as defined in
our construction (see Section 4.3). Therefore, in
this section we only describe the additional steps
required by users to handle concurrent payments.
Finally, we assume that two users sharing a pay-
ment channel, locally maintain the state of the pay-
ment channel (channel-state). The actual defini-
tion of channel-state depends on whether concur-
rent payments are handled in a blocking or non-
blocking manner. For blocking, channel-state is de-
fined as cap(c〈u0,u1〉), where cap denotes the current
capacity in the payment channel. For non-blocking,
channel-state is defined as a tuple {cur[],Q[], cap},
where cur denotes an array of payments currently
using (part of) the capacity available at the pay-
ment channel; Q denotes the array of payments
waiting for enough capacity at the payment chan-
nel.

The agreement on channel-state between the cor-
responding two users u0 and u1 is performed in two
communication rounds. In the first round, both
users exchange the set of events {decisionb} to be
applied into the channel-state. At the end of this
first round, each user comes up with the aggregated
set of events {decision} := {decision}0∪{decision}1
deterministically sorted according to the following
criteria. First, the events proposed by the user

24

with the highest identifier are included first. Sec-
ond, if several events are included in {decision}b,
they are sorted according to the following sequence:
accept, abort, forward.5 Finally, events of the same
type are sorted in decreasing order by the corre-
sponding payment identifier. These set of rules en-
sure that the both users can deterministically com-
pute the same sorted version of the set {decisioni}.

Before starting the second communication round,
each user applies the changes related to each event
in {decisioni} to the current channel-state. The
mapping between each event and the correspond-
ing actions is defined as a function {(decisionj ,mj)}
← f({decisioni}). This function returns a set of tu-
ples that indicate what events must be forwarded to
which user in the payment path. Then, in the sec-
ond communication round, each event decisionj is
sent to the corresponding user uj (encoded in mj).
The actual implementation of the function f deter-
mines how the concurrent payments are handled. In
Fulgor, we implement the function f as described
in Figures 7 and 8 (black pseudocode) for blocking
approach and as described in Figures 7 and 8 (light
blue pseudocode) for non-blocking approach.

In the following, we denote the complete
agreement protocol between two users by
2ProcCons(u0, u1, {decisioni}).

Lemma 3. 2ProcCons(u0, u1,{decisioni}) ensures
agreement on the channel-state given the set of
events {decision}.

Proof. Assume that channel-state is consis-
tent between two users ui and uj before
2ProcCons(u0, u1,{decisioni}) is invoked. It is
easy to see that both users come with the same
sorted version of {decisioni} since the sorting rules
are deterministic. Moreover, for each event, the
function f deterministically updates channel-state
and returns a tuple (m, decision). As the events are
applied in the same order by both users, they reach
agreement on the same updated channel-state and
the same set of tuples {(uk, decisionk)}.

5Although other sequences are possible, we fix this one to
ensure that the sorting is deterministic.

C Ideal World Functionality for
Non-Blocking Payments

In this section, we detail the ideal world functional-
ity for a PCN that handles concurrent payments in
a non-blocking manner. We highlight in light blue
the changes with respect to the ideal world function-
ality presented in Section 3.2 that correspond to a
PCN that handles concurrent payments in a block-
ing manner. Moreover, we assume the same model,
perform the same assumptions and use the same
notation as described in Section 3.2. Additionally,
we use the variable queued to track at which inter-
mediate user the payment is queued if there is not
enough capacity in her channel and the payment
identifier is higher than those in-flight. Moreover,
we use a list W to keep track of remaining hops
for queued payments. Entries in W are of the form
((c〈u1,u2〉, . . . , c〈uk,uk+1〉), v, (t1, . . . , tk)) and contain
the remaining list of payment channels (c〈u1,u2〉, . . . ,
c〈uk,uk+1〉), their associated timeouts (t1, . . . , tk) and
the remaining payment value v.

For simplicity we only model unidirectional chan-
nels, although our functionality can be easily ex-
tended to support also bidirectional channels. The
execution of our simulation starts with F querying
FB to initialize it and F initializing itself the locally
stored empty lists L, C,W.

D Proof for Concurrency Lem-
mas

Figure 11: Execution depicting two payments:payment
Txidi from Alice to Edward and payment Txidj from
Alice to Fabi. If Alice and Bob are byzantine, they can
allow both payments to be successful (while losing funds
themselves).

Proof for Lemma 1. Consider an execution of two
payments depicted in Figure 11: payment Txidi
from Alice to Edward and payment Txidj from Al-
ice to Fabi. The payment channel between Alice
and Bob is a contending bottleneck for both Txidi

25

Open channel: On input (open, c〈u,u′〉, v, u
′, t, f) from a user u, F checks whether c〈u,u′〉 is well-

formed (contains valid identifiers and it is not a duplicate) and eventually sends (c〈u,u′〉, v, t, f) to u′,
who can either abort or authorize the operation. In the latter case, F appends the tuple (c〈u,u′〉, v, t, f)
to B and the tuple (c〈u,u′〉, v, t, h) to L, for some random h. F returns h to u and u′.

Close channel: On input (close, c〈u,u′〉, h) from a user ∈ {u′, u} the ideal functionality F parses B
for an entry (c〈u,u′〉, v, t, f) and L for an entry (c〈u,u′〉, v

′, t′, h), for h 6= ⊥. If c〈u,u′〉 ∈ C or or t > |B| or
t′ > |B|, the functionality aborts. Otherwise, F adds the entry (c〈u,u′〉, v

′, t′, f) to B and adds c〈u,u′〉
to C. F then notifies both users involved with a message (c〈u,u′〉,⊥, h).

Payment: On input (pay, v, (c〈u0,u1〉, . . . , c〈un,un+1〉), (t0, . . . , tn),Txid) from a user u0, F executes the
following interactive protocol:

1. For all i ∈ {1, . . . , (n + 1)}, F parses B for an entry of the form ((c〈ui−1,u′i〉, vi, t
′
i, fi)). If such

an entry does exist, F sends the tuple (Txid,Txid, c〈ui−1,ui〉, c〈ui,ui+1〉, v −
∑n

j=i fj , ti−1, ti) to
the user ui via an anonymous channel (for the specific case of the receiver the tuple is only
(Txid, c〈un,un+1〉, v, tn)). Then, F checks whether for all entries of the form (c〈ui−1,ui〉, v

′
i, ·, ·) ∈ L

it holds that v′i ≥
(

v−
∑n

j=i fj

)
and that ti−1 ≥ ti. If this is the case, F adds di = (c〈ui−1,ui〉, v

′
i−

(v −
∑n

j=i fj), ti,⊥) to L, where (c〈ui−1,ui〉, v
′
i, ·, ·) ∈ L is the entry with the lowest v′i and sets

queued = n+ 1. Otherwise, F performs the following steps:

• If there exists an entry of the form (c〈uk,uk+1〉,−,−,Txid
∗) ∈ L such that Txid > Txid∗, then

F adds dl = (c〈ul−1,ul〉, v
′
l−(v+

∑n
j=l fj), tl,⊥) to L, for l ∈ {1, . . . , k} . Additionally, F adds

(Txid, (c〈uk,uk+1〉, . . . , c〈un,un+1〉), v−
∑n

j=k fj , (tk, . . . , tn)) ∈ W. Finally, F sets queued = k.

• Otherwise, F removes from L all the entries di added in this phase. Additionally, F looks
for entries of the form (Txid′, (c〈i,i+1〉, . . . , c〈ñ,ñ+1〉), ṽ, (ti, . . . , t̃n)) ∈ W, deletes them and
execute (pay, ṽ, (c〈i,i+1〉, . . . , c〈ñ,ñ+1〉), (ti, . . . , t̃n)).

2. For all i ∈ {queued, . . . , 1} F queries all ui with (hi, hi+1), through an anonymous channel. Each
user can reply with either > or ⊥. Let j be the index of the user that returns ⊥ such that for
all i > j : ui returned >. If no user returned ⊥ we set j = 0.

3. For all i ∈ {j + 1, . . . , queued} the ideal functionality F updates di ∈ L (defined as above) to
(−,−,−,Txid) and notifies the user of the success of the operation with with some distinguished
message (success,Txid,Txid). For all i ∈ {0, . . . , j} (if j 6= 0) F performs the following steps:

• Removes di from L and notifies the user with the message (⊥,Txid,Txid).

• F looks for entries of the form (Txid′, (c〈i,i+1〉, . . . , c〈ñ,ñ+1〉), ṽ, (ti, . . . , t̃n)) ∈ W, removes
them from W and execute (pay, ṽ, (c〈i,i+1〉, . . . , c〈ñ,ñ+1〉), (ti, . . . , t̃n)).

Figure 10: Ideal world functionality for PCNs for non-blocking progress.

26

and Txidj , however, only one of the payments can
be successfully executed since the payment channel
between Alice and Bob has the capacity for only
one of the two to be successful. Suppose by contra-
diction that both Txidi and Txidj are successfully
completed. Indeed, this is possible since byzan-
tine users Alice and Bob can respond with an in-
correct payment channel capacity to users Edward
and Fabi. However, the payment channel between
Alice and Bob does not have sufficient capacity for
both transactions to be successful—contradiction
since there does not exist any equivalence to the
sequential specification of payments channels.

Proof for Lemma 2. Suppose by contradiction that
there exists a strictly serializable disjoint-access
implementation providing non-blocking progress.
Consider the following payment network: u1 → u2
→ u3 → u4 → u5 → u1. Consider two concur-
rent pay operations of the form pay1(c〈u1,u2〉, c〈u2,u3〉,
c〈u3,u4〉, c〈u4,u5〉, v) and pay2(c〈u4,u5〉, c〈u5,u1〉, c〈u1,u2〉,
c〈u2,u3〉, v). Consider the execution E in which pay1
and pay2 run concurrently up to the following step:
pay1 executes from u1 → . . . u4 and pay2 executes
from u4 → u5 → u1. Let E1 (and resp. E2) be
the extensions of E in which pay1 (and resp. pay2)
terminates successfully and pay2 (and resp. pay1)
terminates unsuccessfully. By assumption of non-
blocking progress, there exists such a finite exten-
sion of this execution in which both pay1 and pay2
must terminate (though they may not be successful
since this depends on the available channel capac-
ity).

Since the implementation is disjoint-access paral-
lel, execution E1 is indistinguishable to (u1, . . . , u5)
(and resp. (u4, . . . , u3)) from the execution Ē, an
extension of E, in which only pay1 (and resp. pay2)
is successful and matches the sequential specifica-
tion of PCN. Note that analogous arguments applies
for the case of E2.

However, E1 (and resp. E2) is not a correct ex-
ecution since it lacks the all-or-nothing semantics:
only a proper subset of the channels from the ex-
ecution E involved in pay1 (and resp. pay2) have
their capacities decreased by v (and resp. v′). This
is a contradiction to the assumption of strict serial-
izability, thus completing the proof.

27

	Introduction
	Background
	Payment Channels
	A Payment Channel Network (PCN)
	State-of-the-Art PCNs
	Routing in PCNs
	Payments in PCNs

	Problem Definition
	Attacker Model, and Security and Privacy Goals
	Ideal World Functionality
	 Key Ideas and System Overview
	Payment Privacy
	Concurrent Payments

	Fulgor: Our Construction
	Building Blocks
	Multi-Hop HTLC
	Construction Details
	Security and Privacy Analysis
	System Discussion

	Non-blocking Payments in PCNs
	Concurrency vs Privacy
	Ideal World Functionality
	Rayo: Our Construction
	Analysis and System Discussion
	Fulgor vs Rayo

	Performance Analysis
	Related Work
	Conclusion
	Security Analysis
	Agreement between Two Users
	Ideal World Functionality for Non-Blocking Payments
	Proof for Concurrency Lemmas

