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Abstract. Reducing the Learning with Errors problem (LWE) to the
Unique-SVP problem and then applying lattice reduction is a commonly
relied-upon strategy for estimating the cost of solving LWE-based con-
structions. In the literature, two different conditions are formulated under
which this strategy is successful. One, widely used, going back to Gama
& Nguyen’s work on predicting lattice reduction (Eurocrypt 2008) and
the other recently outlined by Alkim et al. (USENIX 2016). Since these
two estimates predict significantly different costs for solving LWE pa-
rameter sets from the literature, we revisit the Unique-SVP strategy. We
present empirical evidence from lattice-reduction experiments exhibiting
a behaviour in line with the latter estimate. However, we also observe
that in some situations lattice-reduction behaves somewhat better than
expected from Alkim et al.’s work and explain this behaviour under
standard assumptions. Finally, we show that the security estimates of
some LWE-based constructions from the literature need to be revised
and give refined expected solving costs.
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1 Introduction

The Learning with Errors problem (LWE) has attained a central role in cryptogra-
phy as a key hard problem for building cryptographic constructions, e.g. quantum-
safe public-key encryption/key exchange and signatures schemes [Reg09, LP11,
ADPS16, BG14a], fully homomorphic encryption [BV11, GSW13] and obfuscation
of some families of circuits [BVWW16].

Informally, LWE asks to recover a secret vector s ∈ Znq , given a matrix
A ∈ Zm×nq and a vector c ∈ Zmq such that As + e = c mod q for a short
error vector e ∈ Zmq sampled coordinate-wise from an error distribution χ. The
decision variant of LWE asks to distinguish between an LWE instance (A, c) and
uniformly random (A, c) ∈ Zm×nq × Zmq . To assess the security provided by a
given set of parameters n, χ, q, two strategies are typically considered: the dual
strategy finds short vectors in the lattice

qΛ∗ =
{
x ∈ Zmq | x ·A ≡ 0 mod q

}
,

i.e. it solves the Short Integer Solutions problem (SIS). Given such a short
vector v, we can decide if an instance is LWE by computing 〈v, c〉 = 〈v, e〉
which is short whenever v and e are sufficiently short [MR09]. This strategy was
recently revisited for small, sparse secret instances of LWE [Alb17]. The primal
strategy finds the closest vector to c in the integral span of columns of A mod
q [LP11], i.e. it solves the corresponding Bounded Distance Decoding problem
(BDD) directly. Writing [In|A′] for the reduced row echelon form of AT ∈ Zn×mq

(with high probability and after appropriate permutation of columns), this task
can be reformulated as solving the unique Shortest Vector Problem (uSVP) in
the m+ 1 dimensional q-ary lattice

Λ = Zm+1 ·

 In A′ 0
0 q Im−n 0
cT t

 (1)

by Kannan’s embedding [Kan87] with embedding factor t.4 Indeed, BDD and
uSVP are polynomial-time equivalent for small approximation factors up to√
n/ log n [LM09]. The lattice Λ has volume t · qm−n and contains a vector of

norm
√
‖e‖2 + t2 which is unusually short, i.e. the gap between the first and

second Minkowski minimum λ2(Λ)/λ1(Λ) is large.

Alternatively, if the secret vector s is also short, there is a second established
embedding reducing LWE to uSVP (cf. Equation (4)). When the LWE instance
under consideration is in normal form, i.e. the secret s follows the noise distri-
bution, the geometries of the lattices in (1) and (4) are the same, which is why
without loss of generality we only consider (1) in this work save for Section 5.

4 Alternatively, we can perform lattice reduction on the q-ary lattice spanned by AT ,
i.e. the lattice spanned by the first m rows of (1), followed by an enumeration to find
the closest (projected) lattice point to (the projection of) c [LP11, LN13].
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To find short vectors, lattice reduction [LLL82, Sch87, GN08a, HPS11, CN11,
MW16] can be applied. Thus, to establish the cost of solving an LWE instance,
we may consider the cost of lattice reduction for solving uSVP.

Two conflicting estimates for the success of lattice reduction in solving uSVP
are available in the literature. The first is going back to [GN08b] and was developed
in [AFG14, APS15, Gö16, HKM17] for LWE. This estimate is commonly relied
upon by designers in the literature, e.g. [BG14a, CHK+17, CKLS16a, CLP17,
ABB+17]. The second estimate was recently outlined in [ADPS16] and is relied
upon in [BCD+16, BDK+17]. We will use the shorthand 2008 estimate for the
former and 2016 estimate for the latter. As illustrated in Figure 1, the predicted
costs under these two estimates differ greatly. For example, considering n = 1024,
q ≈ 215 and χ a discrete Gaussian with standard deviation σ = 3.2, the former
predicts a cost of ≈ 2355 operations, whereas the latter predicts a cost of ≈ 2287

operations in the same cost model for lattice reduction.5
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Fig. 1: Required block size β according to the estimates given in [AFG14]
and [ADPS16] for modulus q = 215, standard deviation σ = 3.2 and increasing n;
for [AFG14] we set τ = 0.3 and t = 1. Lattice-reduction runs in time 2Ω(β).

Our Contribution. Relying on recent progress in publicly available lattice-
reduction libraries [FPL17, FPY17], we revisit the embedding approach for
solving LWE resp. BDD under some reasonable assumptions about the LWE
error distribution. After some preliminaries in Section 2, we recall the two
competing estimates from the literature in Section 3. Then, in Section 4, we
expand on the exposition from [ADPS16] followed by presenting the results of

5 Assuming that an SVP oracle call in dimension β costs 20.292 β+16.4 [BDGL16, APS15],
where +16.4 takes the place of o(β) from the asymptotic formula and is based on
experiments in [Laa14]
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running 23,000 core hours worth of lattice-reduction experiments in medium to
larger block sizes β. Our results confirm that lattice-reduction largely follows
the behaviour expected from the 2016 estimate [ADPS16]. However, we also find
that in our experiments the attack behaves somewhat better than expected.6 In
Section 4.3, we then explain the observed behaviour of the BKZ algorithm under
the Geometric Series Assumption (GSA, see below) and under the assumption
that the unique shortest vector is distributed in a random direction relative to the
rest of the basis. Finally, using the 2016 estimate, we show that some proposed
parameters from the literature need to be updated to maintain the currently
claimed level of security in Section 5. In particular, we give reduced costs for
solving the LWE instances underlying TESLA [ABB+17] and the somewhat
homomorphic encryption scheme in [BCIV17]. We also show that under the
revised, corrected estimate, the primal attack performs about as well on SEAL
v2.1 parameter sets as the dual attack from [Alb17].

2 Preliminaries

We write vectors in lower-case bold, e.g. a, and matrices in upper-case bold, e.g.
A. We write 〈·, ·〉 for the inner products and · for matrix-vector products. By
abuse of notation we consider vectors to be row resp. column vectors depending
on context, such that v ·A and A ·v are meaningful. We write Im for the m×m
identity matrix over whichever base ring is implied from context. We write 0m×n
for the m× n all zero matrix. If the dimensions are clear from the context, we
may omit the subscripts.

2.1 Learning with Errors

The Learning with Errors (LWE) problem is defined as follows.

Definition 1 (LWE [Reg09]). Let n, q be positive integers, χ be a probability
distribution on Z and s be a secret vector in Znq . We denote by Ls,χ the probability
distribution on Znq × Zq obtained by choosing a ∈ Znq uniformly at random,
choosing e ∈ Z according to χ and considering it in Zq, and returning (a, c) =
(a, 〈a, s〉+ e) ∈ Znq × Zq.
Decision-LWE is the problem of deciding whether pairs (a, c) ∈ Znq × Zq are
sampled according to Ls,χ or the uniform distribution on Znq × Zq.
Search-LWE is the problem of recovering s from (a, c) = (a, 〈a, s〉+ e) ∈ Znq ×Zq
sampled according to Ls,χ.

We may write LWE instances in matrix form (A, c), where rows correspond to
samples (ai, ci). In many instantiations, χ is a discrete Gaussian distribution
with standard deviation σ. Throughout, we denote the number of LWE samples
considered as m. Writing e for the vector of error terms, we expect ‖e‖ ≈

√
mσ.

6 We note that this deviation from the expectation has a negligible impact on security
estimates for cryptographic parameters.

4



2.2 Lattices

A lattice is a discrete subgroup of Rd. Throughout, d denotes the dimension of
the lattice under consideration and we only consider full rank lattices, i.e., lattices
Λ ⊂ Rd such that spanR(Λ) = Rd. A lattice Λ ⊂ Rd can be represented by a basis
B = {b1, . . . ,bk}, i.e., B is linearly independent and Λ = Zb1 + · · ·+ Zbk. We
write bi for basis vectors and b∗i for the corresponding Gram-Schmidt vectors. We
write Λ(B) for the lattice generated by the rows of the matrix B, i.e. all integer-
linear combinations of the rows of B. The volume of a lattice Vol(Λ) is the absolute

value of the determinant of any basis and it holds that Vol(Λ) =
∏d
i=1 ‖b∗i ‖. We

write λi(Λ) for Minkowski’s successive minima, i.e. the radius of the smallest
ball centred around zero containing i linearly independent lattice vectors. The
Gaussian Heuristic predicts

λ1(Λ) ≈
√

d

2πe
Vol(Λ)

1/d
.

For a lattice basis B = {b1, . . . ,bd} and for i ∈ {1, . . . , d} let πB,i(v) denote
the orthogonal projection of v onto {b1, . . . ,bi−1}, where πB,1 is the identity.
We extend the notation to sets of vectors in the natural way. Since usually the
basis B is clear from the context, we omit it in the notation and simply write πi
instead of πB,i. Since Section 4.3 relies heavily on size reduction, we recall its
definition and reproduce the algorithm in Algorithm 1.

Definition 2. Let B be a basis, b∗i its Gram-Schmidt vectors and

µi,j =
〈
bi,b

∗
j

〉
/
〈
b∗j ,b

∗
j

〉
,

then B basis is size reduced if |µi,j | ≤ 1/2 for 1 ≤ j ≤ i ≤ n.

Data: lattice basis B
Data: top index i
Data: start index 1 ≤ s < i

1 for j from i− 1 to s do
2 µij ←

〈
bi,b

∗
j

〉
/
〈
b∗j ,b

∗
j

〉
;

3 bi ← bi − bµijebj ;
4 end

Algorithm 1: Size reduction

2.3 Lattice Reduction

Informally, lattice reduction is the process of improving the quality of a lattice
basis. To express the output quality of a lattice reduction, we may relate the
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shortest vector in the output basis to the volume of the lattice in the Hermite-
factor regime or to the shortest vector in the lattice, in the approximation-factor
regime. Note that any algorithm finding a vector with approximation-factor α
can be used to solve Unique-SVP with a gap λ2(Λ)/λ1(Λ) > α.

The best known theoretical bound for lattice reduction is attained by Slide
reduction [GN08a]. In this work, however, we consider the BKZ algorithm (more
precisely: BKZ 2.0 [Che13], cf. Section 4.2) which performs better in practice.
The BKZ-β algorithm repeatedly calls an SVP oracle for finding (approximate)
shortest vectors in dimension or block size β. It has been shown that after
polynomially many calls to the SVP oracle, the basis does not change much
more [HPS11]. After BKZ-β reduction, we call the basis BKZ-β reduced and in
the Hermite-factor regime assume [Che13] that this basis contains a vector of

length ‖b1‖ = δd0 ·Vol(L)
1/d

where

δ0 = (((πβ)
1/β

β)/(2πe))
1/(2(β−1))

.

Furthermore, we generally assume that for a BKZ-β reduced basis of Λ(B) the
Geometric Series Assumption holds.

Definition 3 (Geometric Series Assumption [Sch03]). The norms of the
Gram-Schmidt vectors after lattice reduction satisfy

‖b∗i ‖ = αi−1 · ‖b1‖ for some 0 < α < 1.

Combining the GSA with the root-Hermite factor ‖b1‖ = δd0 · Vol(Λ)
1/d

and

Vol(Λ) =
∏d
i=1 ‖b∗i ‖, we get α = δ

−2d/(d−1)
0 ≈ δ−20 for the GSA.

3 Estimates

As highlighted above, two competing estimates exist in the literature for when
block-wise lattice reduction will succeed in solving uSVP instances such as (1).

3.1 2008 Estimate

A first systematic experimental investigation into the behavior of lattice reduction
algorithms LLL, DEEP and BKZ was provided in [GN08b]. In particular, [GN08b]
investigates the behavior of these algorithms for solving Hermite-SVP, Approx-
SVP and Unique-SVP for families of lattices used in cryptography.

For Unique-SVP, the authors performed experiments in small block sizes on
two classes of semi-orthogonal lattices and on Lagarias-Odlyzko lattices [LO83],
which permit to estimate the gap λ2(Λ)/λ1(Λ) between the first and second
minimum of the lattice. For all three families, [GN08b] observed that LLL and
BKZ seem to recover a unique shortest vector with high probability whenever
λ2(Λ)/λ1(Λ) ≥ τδd0 , where τ < 1 is an empirically determined constant that
depends on the lattice family and algorithm used.
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In [AFG14] an experimental analysis of solving LWE based on the same
estimate was carried out for lattices of the form (1). As mentioned above, this

lattice contains an unusually short vector v = (e | t) of squared norm λ1(Λ)
2

=

‖v‖2 = ‖e‖2 + t2. Thus, when t = ‖e‖ resp. t = 1 this implies λ1(Λ) ≈
√

2mσ
resp. λ1(Λ) ≈

√
mσ, with σ the standard deviation of ei←$χ. The second

minimum λ2(Λ) is assumed to correspond to the Gaussian Heuristic for the
lattice. Experiments in [AFG14] using LLL and BKZ (with block sizes 5 and 10)
confirmed the 2008 estimate, providing constant values for τ for lattices of the
form (1), depending on the chosen algorithm, for a 10% success rate. Overall, τ
was found to lie between 0.3 and 0.4 when using BKZ.

Still focusing on LWE, in [APS15] a closed formula for δ0 is given in function
of n, σ, q, τ , which implicitly assumes t = ‖e‖. In [Gö16] a bound for δ0 in
the [GN08b] model for the case of t = 1, which is always used in practice, is given.
In [HKM17], a related closed formula is given, directly expressing the asymptotic
running time for solving LWE using this approach.

3.2 2016 Estimate

In [ADPS16] an alternative estimate is outlined. The estimate predicts that e
can be found if7 √

β/d ‖(e | 1)‖ ≈
√
βσ ≤ δ2β−d0 Vol(Λ(B))

1/d
, (2)

under the assumption that the Geometric Series Assumption holds (until a
projection of the unusually short vector is found). The brief justification for this
estimate given in [ADPS16] notes that this condition ensures that the projection
of e orthogonally to the first d− β (Gram-Schmidt) vectors is shorter than the
expectation for b∗d−β+1 under the GSA and thus would be found by the SVP
oracle when called on the last block of size β. Hence, for any β satisfying (2),
the actual behaviour would deviate from that predicted by the GSA. Finally,
the argument can be completed by appealing to the intuition that a deviation
from expected behaviour on random instances — such as the GSA — leads to a
revelation of the underlying structural, secret information.8

4 Solving uSVP

Given the significant differences in expected solving time under the two estimates,
cf. Figure 1, and recent progress in publicly available lattice-reduction libraries
enabling experiments in larger block sizes [FPL17, FPY17], we conduct a more
detailed examination of BKZ’s behaviour on uSVP instances. For this, we first
explicate the outline from [ADPS16] to establish the expected behaviour, which
we then experimentally investigate in Section 4.2. Overall, our experiments

7 [ADPS16] has 2β − d− 1 in the exponent, which seems to be an error.
8 We note that observing such a deviation implies solving Decision-LWE.

7



confirm the expectation. However, the algorithm behaves somewhat better than
expected, which we then explain in Section 4.3.

For the rest of this section, let v be a unique shortest vector in some lattice
Λ ⊂ Rd, i.e. in case of (1) we have v = (e | t) where we pick t = 1.

4.1 Prediction

Projected norm. In what follows, we assume the unique shortest vector v is
drawn from a spherical distribution or is at least “not too skewed” with respect
to the current basis. As a consequence, following [ADPS16], we assume that all
orthogonal projections of v onto a k-dimensional subspace of Rd have expected
norm (

√
k/
√
d) ‖v‖. Note that this assumption can be dropped by adapting (2)

to ‖v‖ ≤ δ2β−d0 Vol(Λ)
1
d since ‖πd−β+1(v)‖ ≤ ‖v‖.

Finding a projection of the short vector. Assume that β is chosen minimally
such that (2) holds. When running BKZ the length of the Gram-Schmidt basis
vectors of the current basis converge to the lengths predicted by the GSA.
Therefore, at some point BKZ will find a basis B = {b1, . . . ,bd} of Λ for which
we can assume that the GSA holds with root Hermite factor δ0. Now, consider
the stage of BKZ where the SVP oracle is called on the last full projected block
of size β with respect to B. Note that the projection πd−β+1(v) of the shortest
vector is contained in the lattice

Λd−β+1 := Λ (πd−β+1(bd−β+1), . . . , πd−β+1(bd)) ,

since

πd−β+1(v) =

d∑
i=d−β+1

νiπd−β+1(bi) ∈ Λd−β+1, where νi ∈ Z with v =

d∑
i=1

νibi.

By (2), the projection πd−β+1(v) is in fact expected to be the shortest non-zero
vector in Λd−β+1, since it is shorter than the GSA’s estimate for λ1(Λd−β+1), i.e.

‖πd−β+1(v)‖ ≈
√
β√
d
‖v‖ ≤ δ−2(d−β)+d0 Vol(Λ)

1
d .

Hence the SVP oracle will find ±πd−β+1(v) and BKZ inserts

bnew
d−β+1 = ±

d∑
i=d−β+1

νibi

into the basis B at position d− β + 1, as already outlined in [ADPS16]. In other
words, by finding ±πd−β+1(v), BKZ recovers the last β coefficients νd−β+1, . . . , νd
of v with respect to the basis B.
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Finding the short vector. The above argument can be extended to an argu-
ment for the full recovery of v. Consider the case that in some tour of BKZ-β,
a projection of v was found at index d− β + 1. Then in the following tour, by
arguments analogous to the ones above, a projection of v will likely be found at
index d− 2β + 2, since now it holds that

πd−2β+2(v) ∈ Λd−2β+2 := Λ
(
πd−2β+2(bd−2β+2), . . . , πd−2β+2(bnew

d−β+1)
)
.

Repeating this argument for smaller indices shows that after a few tours v will
be recovered. Furthermore, noting that BKZ calls LLL which in turn calls size
reduction, i.e. Babai’s nearest plane [Bab86], at some index i > 1 size reduction
will recover v from πi(v). In particular, it is well-known that size reduction
(Algorithm 1) will succeed in recovering v whenever

v ∈ bnew
d−β+1 +

{
d−β∑
i=1

ci · b∗i : ci ∈
[
−1

2
,

1

2

]}
. (3)

4.2 Observation

The above discussion naturally suggests a strategy to verify the expected be-
haviour. We have to verify that the projected norms ‖πi(v)‖ = ‖πi(e | 1)‖
do indeed behave as expected and that πd−β+1(v) is recovered by BKZ-β for
the minimal β ∈ N satisfying (2). Finally, we have to measure when and how
v = (e | 1) is eventually recovered.

Thus, we ran lattice-reduction on many lattices constructed from LWE in-
stances using Kannan’s embedding. In particular, we picked the entries of s
and A uniformly at random from Zq, the entries of e from a discrete Gaussian
distribution with standard deviation σ = 8/

√
2π, and we constructed our basis as

in (1) with embedding factor t = 1. For parameters (n, q, σ), we then estimated
the minimal pair (in lexicographical order) (β,m) to satisfy (2).

Implementation. To perform our experiments, we used SageMath 7.5.1 [S+17]
in combination with the fplll 5.1.0 [FPL17] and fpylll 0.2.4dev [FPY17]
libraries. All experiments were run on a machine with Intel(R) Xeon(R) CPU
E5-2667 v2 @ 3.30GHz cores (“strombenzin”) resp. Intel(R) Xeon(R) CPU
E5-2690 v4 @ 2.60GHz (“atomkohle”). Each instance was reduced on a single
core, with no parallelisation.

Our BKZ implementation inherits from the implementation in fplll and
fpylll of BKZ 2.0 [Che13] algorithm. As in BKZ 2.0, we restricted the enu-
meration radius to be approximately the size of the Gaussian Heuristic for the
projected sublattice, apply recursive BKZ-β′ preprocessing with a block size
β′ < β, make use of extreme pruning [GNR10] and terminate the algorithm
when it stops making significant progress. We give simplified pseudo-code of our
implementation in Algorithm 2. We ran BKZ for at most 20 tours using fplll’s
default pruning and preprocessing strategies and, using fplll’s default auto
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abort strategy, terminated the algorithm whenever the slope of the Gram Schmidt
vectors did not improve for five consecutive tours. Additionally, we aborted if a
vector of length ≈ ‖v‖ was found in the basis (in line 15 of Algorithm 2).

Data: LLL-reduced lattice basis B
Data: block size β, preprocessing block size β′

1 repeat // tour

2 for κ← 1 to d do // stepκ
3 size reduction from index 1 to κ (inclusive);
4 `← ‖b∗κ‖;

// extreme pruning + recursive preprocessing

5 repeat until termination condition met
6 rerandomise πκ(bκ+1, . . . ,bκ+β−1);
7 LLL on πκ(bκ, . . . ,bκ+β−1);
8 BKZ-β′ on πκ(bκ, . . . ,bκ+β−1);
9 v← SVP on πκ(bκ, . . . ,bκ+β−1);

10 if v 6= ⊥ then
11 extend B by inserting v into B at index κ+ β;
12 LLL on πκ(bκ, . . . ,bκ+β) to remove linear dependencies;
13 drop row with all zero entries;

14 end

15 size reduction from index 1 to κ (inclusive);
16 if ` = ‖b∗κ‖ then
17 yield >;
18 else
19 yield ⊥;
20 end

21 end
22 if > for all κ then
23 return;
24 end

Algorithm 2: Simplified BKZ 2.0 Algorithm

Implementations of block-wise lattice reduction algorithms such as BKZ
make heavy use of LLL [LLL82] and size reduction. This is to remove linear
dependencies introduced during the algorithm, to avoid numerical stability issues
and to improve the performance of the algorithm by moving short vectors to the
front earlier. The main modification in our implementation is that calls to LLL
during preprocessing and postprocessing are restricted to the current block, not
touching any other vector, to aid analysis. That is, in Algorithm 2, LLL is called
in lines 7 and 12 and we modified these LLL calls not to touch any row with
index smaller than κ, not even to perform size reduction.

As a consequence, we only make use of vectors with index smaller than κ in
lines 3 and 15. Following the implementations in [FPL17, FPY17], we call size
reduction from index 1 to κ before (line 3) and after (line 15) the innermost loop
with calls to the SVP oracle. These calls do not appear in the original description
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of BKZ. However, since the innermost loop re-randomises the basis when using
extreme pruning, the success condition of the original BKZ algorithm needs to
be altered. That is, the algorithm cannot break the outer loop once it makes
no more changes as originally specified. Instead, the algorithm terminates if it
does not find a shorter vector at any index κ. Now, the calls to size reduction
ensure that the comparison at the beginning and end of each step κ is meaningful
even when the Gram-Schmidt vectors are only updated lazily in the underlying
implementation. That is, the call to size reduction triggers an internal update of
the underlying Gram-Schmidt vectors and are hence implementation artefacts.
The reader may think of these size reduction calls as explicating calls otherwise
hidden behind calls to LLL and we stress that our analysis applies to BKZ as
commonly implemented, our changes merely enable us to more easily predict and
experimentally verify the behaviour.

We note that the break condition for the innermost loop at line 5 depends
on the pruning parameters chosen, which control the success probability of
enumeration. Since it does not play a material role in our analysis, we simply
state that some condition will lead to a termination of the innermost loop.

Finally, we recorded the following information. At the end of each step κ
during lattice reduction, we recorded the minimal index i such that πi(v) is in
span(b1, . . . ,bi) and whether ±v itself is in the basis. In particular, to find the
index i in the basis B of πi(v) given v, we compute the coefficients of v in basis
B (at the current step) and pick the first index i such that all coefficients with
larger indices are zero. Then, we have πi(bi) = c · πi(v) for some c ∈ R. From
the algorithm, we expect to have found ±πi(bi) = πi(v) and call i the index of
the projection of v.

Results. In Figure 2, we plot the average norms of πi(v) against the expecta-

tion
√
d− i+ 1σ ≈

√
d−i+1
d

√
m · σ2 + 1, indicating that

√
d− i+ 1σ is a close

approximation of the expected lengths except perhaps for the last few indices.
Recall that, as illustrated in Figure 3, we expect to find the projection

πd−β+1(v) when (β, d) satisfy (2), eventually leading to a recovery of v, say, by
an extension of the argument for the recovery of πd−β+1(v). Our experiments,
summarised in Table 1, show a related, albeit not identical behaviour. Defining a
cut-off index c = d− 0.9β + 1 and considering πκ(v) for κ < c, we observe that
the BKZ algorithm typically first recovers πκ(v) which is immediately followed
by the recovery of v in the same step. In more detail, in Figure 4 we show the
measured probability distribution of the index κ such that v is recovered from
πκ(v) in the same step. Note that the mean of this distribution is smaller than
d− β + 1. We explain this bias in Section 4.3.

The recovery of v from πκ(v) can be effected by one of three subroutines:
either by a call to LLL, by a call to size reduction, or by a call to enumeration that
recovers v directly. Since LLL itself contains many calls to size reduction, and
enumeration being lucky is rather unlikely, size reduction is a good place to start
the investigation. Indeed, restricting the LLL calls in Algorithm 2 as outlined in
Section 2.3, identifies that size reduction suffices. That is, to measure the success
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and volume qm−n after BKZ-β reduction for LWE parameters n = 65,m =
182, q = 521 and standard deviation σ = 8/
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√
2π, reduced using β = 56.

The mean of the distribution is ≈ 124.76 while d− β + 1 = 128.

rate of size reduction recovering v from πκ(v), we observe size reduction acting
on πκ(v). Here, we consider size reduction to fail in recovering v if it does not
recover v given πκ(v) for κ < c with c = d− 0.9β + 1, regardless of whether v is
finally recovered at a later point either by size reduction on a new projection,
or by some other call in the algorithm such as an SVP oracle call at a smaller
index. As shown in Table 1, size reduction’s success rate is close to 1. Note that
the cut-off index c serves to limit underestimating the success rate: intuitively
we do not expect size reduction to succeed when starting from a projection with
larger index, such as πd−γ+1(v) with γ < 10. We discuss this in Section 4.3.

Overall, Table 1 confirms the prediction from [ADPS16]: picking β = β2016 to
be the block size predicted by the 2016 estimate leads to a successful recovery of
v with high probability.

4.3 Explaining Observation

As noted above, our experiments indicate that the algorithm behaves better
than expected by (2). Firstly, the BKZ algorithm does not necessarily recover a
projection of v at index d− β + 1. Instead, the index κ at which we recover a
projection πκ(v) follows a distribution with a centre below d−β+ 1, cf. Figure 4.
Secondly, size reduction usually immediately recovers v from πκ(v). This is
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n q β2016 m2016 β # v same step time
κ < c κ = d− β + 1

65 521 56 182 56 10000 93.3% 99.7% 99.7% 1,131.4
51 52.8% 98.8% 97.3% 1,359.3
46 4.8% 96.4% 85.7% 1,541.2

80 1031 60 204 60 1000 94.2% 99.6% 100.0% 2,929.0
55 60.6% 99.3% 96.5% 2,458.5
50 8.9% 97.6% 100.0% 1,955.0
45 0.2% 100.0% — 1,568.1

100 2053 67 243 67 500 88.8% 99.8% 100.0% 28,803.7
62 39.6% 99.5% 100.0% 19,341.9
57 5.8% 100.0% 100.0% 7,882.2
52 0.2% 0.0% — 3,227.0

108 2053 77 261 77 5 100.0% 100.0% 100.0% 351,094.2

110 2053 78 272 78 5 100.0% 100.0% 100.0% 1,012,634.8

Table 1: Overall success rate (“v”) and success rate of size reduction (“same
step”) for solving LWE instances characterised by n, σ, q with m samples,
standard deviation σ = 8/

√
2π, minimal (β2016,m2016) such that

√
b2016 σ ≤

δ
2β2016−(m2016+1)
0 q(m2016−n)/(m2016+1) with δ0 in function of β2016. The column “β”

gives the actual block size used in experiments. The “same step” rate is calculated
over all successful instances where v is found before the cut-off point c and for
the instances where exactly πd−b+1(v) is found (if no such instance is found, we
do not report a value). In the second case, the sample size is smaller, since not all
instances recover v from exactly κ = d− β + 1. The column “time” lists average
solving CPU time for one instance, in seconds. Note that our changes to the
algorithm and our extensive record keeping lead to an increased running time of
the BKZ algorithm compared to [FPL17, FPY17]. Furthermore, the occasional
longer running time for smaller block sizes is explained by the absence of early
termination when v is found.
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somewhat unexpected, since we do not have the guarantee that |ci| ≤ 1/2 as
required in the success condition of size reduction given in (3).

Finding the projection. To explain the bias towards a recovery of πκ(v) for
some κ < d − β + 1, note that if (2) holds then for the parameter sets in our
experiments the lines for ‖πi(v)‖ and ‖b∗i ‖ intersect twice (cf. Figure 3). Let
d− γ + 1 be the index of the second intersection. Thus, there is a good chance
that ‖πd−γ+1(v)‖ is a shortest vector in the lattice spanned by the last projected
block of some small rank γ and will be placed at index d−γ+1. As a consequence,
all projections πi(v) with i > d − γ + 1 will be zero and πd−β−γ+1(v) will be
contained in the β-dimensional lattice

Λd−β−γ+1 := Λ (πd−β−γ+1(bd−β−γ+1), . . . , πd−β−γ+1(bd−γ+1)) ,

enabling it to be recovered by BKZ-β at an index d − β − γ + 1 < d − β + 1.
Thus, BKZ in our experiments behaves better than predicted by (2). We note
that another effect of this second intersection is that, for very few instances, it
directly leads to a recovery of v from πd−β−γ+1(v).

Giving a closed formula incorporating this effect akin to (2) would entail to
predict the index γ and then replace β with β + γ in (2). However, as illustrated
in Figure 3, neither does the GSA hold for the last 50 or so indices of the
basis [Che13] nor does the prediction

√
d− i+ 1σ for ‖πd−1+1(v)‖.

We stress that while the second intersection often occurs for parameter sets
within reach of practical experiments, it does not always occur for all parameter
sets. That is, for many large parameter sets (n, α, q), e.g. those in [ADPS16],
a choice of β satisfy (2) does not lead to a predicted second intersection at
some larger index. Thus, this effect may highlight the pitfalls of extrapolating
experimental lattice-reduction data from small instances to large instances.

Finding the short vector. In what follows, we assume that the projected
norm ‖πd−k(v)‖ is indeed equal to this expected norm (cf. Figure 2). We further
assume that πi(v) is distributed in a random direction with respect to the rest of
the basis. This assumption holds for LWE where the vector e is sampled from a
(near) spherical distribution. We also note that we can rerandomise the basis and
thus the relative directions. Under this assumption, we show that size reduction
recovers the short vector v with high probability. More precisely, we show:

Claim 1 Let v ∈ Λ ⊂ Rd be a unique shortest vector and β ∈ N. Assume
that (2) holds, the current basis is B = {b1, . . . ,bd} such that b∗κ = πκ(v) for
κ = d− β + 1 and

v = bk +

k−1∑
i=1

νibi

for some νi ∈ Z, and the GSA holds for B until index κ. If the size reduction step
of BKZ-β is called on bκ, it recovers v with high probability over the randomness
of the basis.
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Note that if BKZ has just found a projection of v at index κ, the current
basis is as required by Claim 1. Now, let νi ∈ Z denote the coefficients of v with
respect to the basis B, i.e.

v = bd−β+1 +

d−β∑
i=1

νibi.

Let b
(d−β+1)
d−β+1 = bd−β+1, where the superscript denotes a step during size reduc-

tion. For i = d− β, d− β − 1, . . . , 1 size-reduction successively finds µi ∈ Z such
that

wi = µiπi(bi) + πi(b
(i+1)
d−β+1) = µib

∗
i + πi(b

(i+1)
d−β+1)

is the shortest element in the coset

Li := {µb∗i + πi(b
(i+1)
d−β+1)|µ ∈ Z}

and sets
b
(i)
d−β+1 := µibi + b

(i+1)
d−β+1.

Note that if b
(i+1)
d−β+1 = bd−β+1 +

∑d−β
j=i+1 νjbj , as in the first step i = d−β, then

we have that
πi(v) = νib

∗
i + πi(b

(i+1)
d−β+1) ∈ Li

is contained in Li and hence

Li = πi(v) + Zb∗i .

If the projection πi(v) is in fact the shortest element in Li, for the newly defined

vector b
(i)
d−β+1 it also holds that

b
(i)
d−β+1 = νibi + b

(i+1)
d−β+1 = bd−β+1 +

d−β∑
j=i

νjbj .

Hence, if πi(v) is the shortest element in Li for all i, size reduction finds the
shortest vector

v = b
(1)
d−β+1

and inserts it into the basis at position d− β + 1, replacing bd−β+1.
It remains to argue that with high probability p for every i we have that the

projection πi(v) is the shortest element in Li. The success probability p is given
by

p =

d−β∏
i=1

pi,

where the probabilities pi are defined as

pi = Pr [πi(v) is the shortest element in πi(v) + Zb∗i ] .
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0

Li

πi(v)

πi(b
(i+1)
d−β+1)

b∗i

Fig. 5: Illustration of a case such that πi(v) is the shortest element on Li.

For each i the probability pi is equal to the probability that

‖πi(v)‖ < min{‖πi(v) + b∗i ‖ , ‖πi(v)− b∗i ‖}

as illustrated in Figure 5. To approximate the probabilities pi, we model them as
follows. By assumption, we have

ri := ‖πi(v)‖ = (
√
d− i+ 1/

√
d) ‖v‖ and Ri := ‖b∗i ‖ = δ

−2(i−1)+d
0 Vol(Λ)

1
d ,

and that πi(v) is uniformly distributed with norm ri. We can therefore model pi
as described in the following and illustrated in Figure 6.

0

w

b∗i

−b∗i

hi

Ri
ri

ri

ri

Fig. 6: Illustration of the success probability pi in R2. If w is on the thick part of
the circle, step i of size reduction is successful.
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Pick a point w with norm ri uniformly at random. Then the probability pi is
approximately the probability that w is closer to 0 than it is to b∗i and to −b∗i ,
i.e.

ri < min{‖w − b∗i ‖ , ‖w + b∗i ‖}.

Calculating this probability leads to the following approximation of pi

pi ≈

{
1− 2Ad−i+1(ri,hi)

Ad−i+1(ri)
if Ri < 2ri

1 if Ri ≥ 2ri
,

where Ad−i+1(ri) is the surface area of the sphere in Rd−i+1 with radius ri
and Ad−i+1(ri, hi) is the surface area of the hyperspherical cap of the sphere
in Rd−i+1 with radius ri of height hi with hi = ri − Ri/2. Using the formulas
provided in [Li11], an easy calculation leads to

pi ≈

1−
∫ 2

hi
ri

−(hi
ri

)
2

0 t((d−i)/2)−1(1−t)−1/2dt

B( d−i
2 , 12 )

if Ri < 2ri

1 if Ri ≥ 2ri

,

where B(·, ·) denotes the Euler beta function. Note that Ri ≥ 2ri corresponds
to (3).

Estimated success probabilities p for different block sizes β are plotted in
Figure 7. Note that if we assume equality holds in (2), the success probability p
only depends on the block size β and not on the specific lattice dimension, volume
of the lattice, or the length of the unique short vector, since then the ratios

between the predicted norms ‖πd−β+1−k(v)‖ and
∥∥∥b∗d−β+1−k

∥∥∥ only depend on

β for all k = 1, 2, . . ., since

‖πd−β+1−k(v)‖∥∥∥b∗d−β+1−k

∥∥∥ =

√
β
√
β+k√

β
√
d
‖v‖

δ
2(β+k)−d
0 Vol(Λ)

1
d

=

√
β+k√
β
δ2β−d0 Vol(Λ)

1
d

δ
2(β+k)−d
0 Vol(Λ)

1
d

=

√
β + k√
β

δ−2k0

and the estimated success probability only depends on these ratios.
The prediction given in Figure 7 is in line with the measured probability of

finding v in the same step when its projection πd−β+1(v) is found as reported in
Table 1 for β = β2016 and m = m2016. Finally, note that by the above analysis
we do not expect to recover v from a projection πd−γ+1(v) for some small γ � β
except with small probability.

5 Applications

Section 4 indicates that (2) is a reliable indicator for when lattice-reduction will
succeed in recovering an unusually short vector. Furthermore, as illustrated in
Figure 1, applying (2) lowers the required block sizes compared to the 2008 model
which is heavily relied upon in the literature. Thus, in this section we evaluate
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Fig. 7: Estimated success probability p for varying block sizes β, assuming β is
chosen minimal such that (2) holds.

the impact of applying the revised estimates to various parameter sets from the
literature. Indeed, for many schemes we find that their parameters need to be
adapted to maintain the currently claimed level of security.

Many of the schemes considered below feature an unusually short secret s
where si←$ {−B, . . . , B} for some small B ∈ Zq. Furthermore, some schemes pick
the secret to also be sparse such that most components of s are zero. Thus, before
we apply the revised 2016 estimate, we briefly recall the alternative embedding
due to Bai and Galbraith [BG14b] which takes these small (and sparse) secrets
into account.

5.1 Bai and Galbraith’s embedding

Consider an LWE instance in matrix form (A, c) ≡ (A,A · s + e) ∈ Zm×nq × Zmq .
By inspection, it can be seen that the vector (ν s | e | 1), for some ν 6= 0, is
contained in the lattice Λ

Λ =

{
x ∈ (νZ)

n × Zm+1 | x ·
(

1

ν
A | Im | −c

)>
≡ 0 mod q

}
, (4)

where ν allows to balance the size of the secret and the noise. An (n+m+ 1)×
(n+m+ 1) basis M for Λ can be constructed as

M =

νIn −A> 0
0 qIm 0
0 c 1

 .
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Indeed, M is full rank, det(M) = Vol(Λ), and the integer span of M ⊆ Λ, as we
can see by noting thatνIn −A> 0

0 qIm 0
0 c 1

(1

ν
A | Im | −c

)>
= (A−A | qIm | c− c)

> ≡ 0 mod q.

Finally, note that (s | ∗ | 1) ·M = (ν s | e | 1) for suitable values of ∗. If s
is small and/or sparse, choosing ν = 1, the vector (s | e | 1) is unbalanced,

i.e. ‖s‖√
n
� ‖e‖√

m
≈ σ, where σ is the standard deviation of the LWE error

distribution. We may then want to rebalance it by choosing an appropriate
value of ν such that ‖(ν s | e | 1)‖ ≈ σ

√
n+m. Rebalancing preserves (ν s | e | 1)

as the unique shortest vector in the lattice, while at the same time increasing
the volume of the lattice being reduced, reducing the block size required by (2).

If s
$←− {−1, 0, 1}n we expect ‖ν s‖2 ≈ 2

3ν
2n. Therefore, we can chose ν =

√
3
2σ

to obtain ‖ν s‖ ≈ σ
√
n, so that ‖(s | e | 1)‖ ≈ σ

√
n+m. Similarly, if w < n

entries of s are non-zero from {−1, 1}, we have ‖ν s‖2 = w ν2. Choosing ν =
√

n
wσ,

we obtain a vector ν s of length σ
√
n.

In the case of sparse secrets, combinatorial techniques can also be ap-
plied [HG07, BGPW16, Alb17]. Given a secret s with at most w < n non-zero
entries, we guess k entries of s to be 0, therefore decreasing the dimension of the
lattice to consider. For each guess, we then apply lattice reduction to recover
the remaining components of the vector (s | e | 1). Therefore, when estimating
the overall complexity for solving such instances, we find min

k
{1/pk · C(n− k)}

where C(n) is the cost of running BKZ on a lattice of dimension n and pk is the
probability of guessing correctly.

5.2 Estimates

In what follows, we assume that the geometry of (4) is sufficiently close to
that of (1) so that we transfer the analysis as is. Furthermore, we will denote
applying (2) from [ADPS16] for Kannan’s embedding as “Kannan” and apply-
ing (2) for Bai and Galbraith’s embedding [BG14b] as “Bai-Gal”. Unless stated
otherwise, we will assume that calling BKZ with block size β in dimension d
costs 8 d 20.292 β+16.4 operations [BDGL16, Alb17].

Lizard [CKLS16b, CKLS16a] is a PKE scheme based on the Learning With
Rounding problem, using a small, sparse secret. The authors provide a reduction to
LWE, and security parameters against classic and quantum adversaries, following
their analysis. In particular, they cost BKZ by a single call to sieving on a block
of size β. They estimate this call to cost β 2c β operations where c = 0.292 for
classical adversaries, c = 0.265 for quantum ones and c = 0.2075 as a lower
bound for sieving (“paranoid”). Applying the revised 2016 cost estimate for the
primal attack to the parameters suggested in [CKLS16b] (using their sieving cost
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model as described above) reduces the expected costs, as shown in Table 2. We
note that in the meantime the authors of Lizard have updated their parameters
in [CKLS16a].

Classical Quantum Paranoid
n, log2 q, σ 386, 11, 2.04 414, 11, 2.09 504, 12, 4.20
Cost β d λ β d λ β d λ

[CKLS16b] 418 — 130.8 456 — 129.7 590 — 131.6

Kannan 372 805 117.2 400 873 114.6 567 1120 126.8
Bai-Gal 270 646 88.5 297 692 86.9 372 833 85.9

Table 2: Bit complexity estimates λ for solving Lizard PKE [CKLS16b] as given
in [CKLS16b] and using Kannan’s resp. Bai and Galbraith’s embedding under
the 2016 estimate. The dimension of the LWE secret is n. In all cases, BKZ-β is
estimated to cost β 2c β operations.

HElib [GHS12a, GHS12b] is an FHE library implementing the BGV scheme [BGH13].
A recent work [Alb17] provides revised security estimates for HELib by employing
a dual attack exploiting the small and sparse secret, using the same cost estimate
for BKZ as given at the beginning of this section. In Table 3 we provide costs
for a primal attack using Kannan’s and Bai and Galbraith’s embeddings. Primal
attacks perform worse than the algorithm described [Alb17], but, as expected,
under the 2016 estimate the gap narrows.

SEAL [CLP17] is an FHE library by Microsoft, based on the FV scheme [FV12].
Up to date parameters are given in [CLP17], using the same cost model for BKZ
as mentioned at the beginning of this section. In Table 4, we provide complexity
estimates for Kannan’s and Bai and Galbraith’s embeddings under the 2016
estimate. Note that the gap in solving time between the dual and primal attack
reported in [Alb17] is closed for SEAL v2.1 parameters.

TESLA [BG14a, ABBD15] is a signature scheme based on LWE. Post-quantum
secure parameters in the quantum random oracle model were recently proposed
in [ABB+17]. In Table 5, we show that these parameters need to be increased to
maintain the currently claimed level of security under the 2016 estimate. Note
that [ABB+17] maintains a gap of ≈ log2 n bits of security between the best
known attack on LWE and claimed security to account for a loss of security in
the reduction.
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TESLA-0 TESLA-1 TESLA-2
n, log2 q, σ 644, 31, 55 804, 31, 57 1300, 35, 73
Cost β d λ β d λ β d λ

Classical

[ABB+17] — — 110.0 — — 142.0 — — 204.0
[ABB+17]+ 255 — 110.0 358 — 140.4 563 — 200.9

Kannan 248 1514 102.4 339 1954 129.3 525 3014 184.3

Post-Quantum

[ABB+17] — — 71.0 — — 94.0 — — 142.0
[ABB+17]+ 255 — 68.5 358 — 90.7 563 — 136.4

Kannan 248 1415 61.5 339 1954 81.1 525 3014 122.4

Table 5: Bit complexity estimates for solving TESLA parameter sets [ABB+17].
The entry “[ABB+17]+” refers to reproducing the estimates from [ABB+17]
using a current copy of the estimator from [APS15] which uses t = 1 instead of
t = ‖e‖, as a consequence the values in the respective rows are slightly lower than
in [ABB+17]. We compare with Kannan’s embedding under the 2016 estimate.
Classically, BKZ-β is estimated to cost 8d 20.292 β+16.4 operations; quantumly
BKZ-β is estimated to cost 8d

√
β0.0225 β · 20.4574 β/2β/4 operations in [ABB+17].

BCIV17 [BCIV17] is a somewhat homomorphic encryption scheme obtained
as a simplification of the FV scheme [FV12] and proposed as a candidate for
enabling privacy friendly energy consumption forecast computation in smart
grid settings. The authors propose parameters for obtaining 80 bits of security,
derived using the estimator from [APS15] available at the time of publication. As
a consequence of applying (2), we observe a moderate loss of security, as reported
in Table 6.

80 bit security
n = 4096, log2 q = 186, σ = 102

Embedding β d λ Embedding β d λ

Kannan 156 8105 77.9 Bai-Gal 147 7818 75.3

Table 6: Solving costs for proposed Ring-LWE parameters in [BCIV17] using
Kannan’s resp. Bai and Galbraith’s embedding under the 2016 estimate. In both
cases, BKZ-β is estimated to cost 8d 20.292 β+16.4 operations.
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