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Abstract. A popular security problem in database management is how
to guarantee to a querying party that the database owner will not learn
anything about the data that is retrieved — a problem known as Private
Information Retrieval (PIR). While a variety of PIR schemes are known,
they are rarely considered for practical use cases yet. We investigate the
feasibility of PIR in the telecommunications world to open up data of
carriers to external parties. To this end, we first provide a comparative
survey of the current PIR state of the art (including ORAM schemes as a
generalized concept) as well as implementation and analysis of two PIR
schemes for the considered use case. While an overall conclusion is that
PIR techniques are not too far away from practical use in specific cases,
we see ORAM as a more suitable candidate for further R&D investment.

1 Background and Motivation

The telecommunications world is undergoing a transition where carriers not
only provide services such as telephony or internet access, but also attempt
to monetize the huge amount of data associated with their subscribers’ activity.
Analyzing data such as call statistics or roaming behavior can be used to offer
specifically tailored services and packages. The combination of such data with
other data from 3rd parties can potentially result in even more value. As such,
one direction is to open up the existing databases to subscribing external parties.
In fact, it may very well be the case that two rivaling carriers allow each other
to query their subscriber databases, e.g. for detecting faults in the network or to
support detection of fraudulent activities. Another real-world scenario is that of
answering to the demands of public authorities which may want to verify that
a user has been making a call at a certain time or to assess whether a certain
IMEI or IMSI is part of the carriers subscriber base.

An open practical problem is how to guarantee to the querying party that
the database owner will not learn anything about the data that is retrieved
— a problem known as Private Information Retrieval (PIR) [8]. Accordingly,
we assessed the feasibility of PIR schemes to support such use cases, where the
typical database consists of 400.000-800.000 entries of IMEIs and/or IMSIs. This
paper provides a comparative survey of PIR schemes as part of Section 2. We
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then discuss two schemes in detail, i.e. a Trapdoor Group scheme in Section 3.1
and an ORAM approach in Section 3.2. We provide detailed performance and
runtime analysis data in Section 4.

2 Overview and Comparison of Existing Schemes

The trivial solution for a user who wants to query a database without the
database server learning about the query is for the server to simply send the
entire database back to the user, who ignores all except the queried entries. Of
course, this is very inefficient in terms of communication, but very efficient re-
garding computational effort because there is (almost) none. Thus, the incurred
effort provides a good starting point in the sense that any new solution should
have less communication than this trivial solution, often trading this for com-
putational complexity in some form.

We split existing works that realize some form of private information re-
trieval into four main approaches. In a forthcoming paper, we present a de-
tailed overview of the different schemes, here we only examine the high-level
approaches and categorize the schemes into these approaches. Some of the men-
tioned schemes have also been presented in [20].

– Homomorphic Approaches: These protocols rely on the idea of the user
masking (e.g., by homomorphically encrypting) the index which is being
queried, and the server algebraically combining all indices with the database
entries to obtain a masked version of only the queried entry. The user can
then remove the mask to obtain the result. Publications which follow this
general idea are [12, 3, 18] (Group Homomorphic), [22] (Trapdoor Group),
[10, 13, 9] (Branching Programs), [19] (Lattice-based) and [5] (FHE-based).

– ORAM Approaches: ORAM comes from the field of software protection,
but can also be used to protect privacy in databases as in this context.
ORAM requires a slightly different setup in that the database must be en-
crypted and thus there must be some key management mechanism to imple-
ment PIR functionality. In contrast to pure PIR, ORAM offers the added
option of writing, i.e., changing or adding entries. Publications based on
ORAM are [17, 21, 16] (ORAM-Tree), [4] (Onion-ORAM), [1] (FHE-ORAM)
and [14] (Parallel-Tree-ORAM).

– Garbled Approaches: Since PIR consists of two parties (the user and the
server) trying to compute a function (the correct database entry) without
the server learning the users input (the query index), it is natural to look
to Multiparty-Computation, where two or more parties compute a function
together without learning any input except their own, and the result of the
computation. Publications involving this approach are [15, 6, 7].

– Other Approaches: The ϕ-Hiding Approach [2], the Trapdoor Permuta-
tion Approach [11], and the Sender Anonymity Approach [22].

Table 1 compares the schemes from the above approaches, indicating a partic-
ularly good value with a (light) green background and particularly unfavorable
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aspects with a (darker) red background. The aspects considered are CommU→S
(communication from the user to the server), CommS→U (communication from
the server to the user), CompU (computational effort for the user) and CompS
(computational effort for the server). The variables used are the following:

– n is the number of database elements
– B is the block size (i.e., in most cases the size of one database element)
– λ is the security parameter
– M (resp. C) is the message (resp. ciphertext) space of the encryption scheme
– m is a finite group order

The leftmost column denotes the underlying approach as presented above: H
for homomorphic, O for ORAM, G for garbled and “-” if non apply.

3 Choosing and Optimizing

To test performance for the actual use cases as described in Section 1, we imple-
mented two different approaches — one homomorphic scheme and one ORAM-
approach, as these differ greatly, yet can both solve our problem of private infor-
mation retrieval. Concretely, we chose and modified a Trapdoor Group Scheme
based on [22] and the Path-ORAM Scheme [21] for their conceptual simplicity.

3.1 The (Optimized) Trapdoor Group Scheme

The original scheme [22] only allows retrieval of an entire row (i.e.,
√
n out

of n) of database entries, which we extend to allow single-entry-retrieval and
minimize communication. To make this optimized scheme more easily accessible,
we present it as a protocol:
Database Structure: n elements of ZN arranged as a ln(n)-dimensional array
with entries xi1,...,iln(n)

, ij = 1, . . . , n1/ ln(n) for j = 1, . . . , ln(n).
Prerequisites: We assume that we work in the group (Zm,+) and that m and
N are coprime.
Queries: Suppose the user wants to query the element xi∗1 ,...,i∗ln(n)

.

1. The user selects m as the group order above depending on the required
security level, but at least m > Ndln(n)e · n · (N − 1).

2. The user randomly selects bj ∈ Z∗m, j = 1, . . . , ln(n) and ln(n) · n1/ ln(n)

coefficients ei,j , i = 1, . . . , n1/ ln(n), j = 1, . . . , ln(n), all of which are kept
secret. There are three restrictions on the coefficients ei,j :

i. ei,j < ln(n)

√
m

n·(N−1) for all (i, j).

ii. For j = 1, . . . , ln(n): If i∗j 6= i, ei,j is a multiple of N (i.e., ei = ai ·N for
some ai).

iii. For j = 1, . . . , ln(n): If i∗j = i, ei,j has the form 1 + al ·N for some al.

3. The user sends the bji = bj · ei,j mod m to the database. This constitutes the
query.
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Idea Scheme CommU→S CommS→U CompU CompS Comments Code

- Trivial 1 n · B - - - x

H [12, 3, 18]
(Group
Homo-

morphic)

√
n · log(|C|)

√
n·log(|C|)

√
n encryptions, 1

decryption
n scalar ciphertext

multiplications,√
n · log(

√
n)

ciphertext additions

C is the ciphertext
space, log(|C|) is the
size of a ciphertext.

x

H [22]
(Trap-
door

Group)

√
n · log2(m) O(

√
n ·

log2(m)+n)
Generating m,

√
n

modular
exponentiations/

multiplications +
√
n

discrete logs

n integer
exponentiations/
multiplications
+
√
n · log(

√
n)

integer
multiplications/

additions

Group order m can be
chosen by user such
that discrete log is

efficient (e.g., additive
group). Several queries
can be sent at once, so
amortized cost lower.

Not
pub
lic

H This
paper
(Opti-
mized

Trapdoor
Group)

ln(n) ·
n1/ ln(n) ·

log2(m)

O((log2(

m))ln(n)

+
√
n)

Generating m,

ln(n) · n1/ ln(n)

modular
exponentiations/
multiplications

+ ln(n) discrete logs

O(n) integer
exponentiations/
multiplications
+O(n) integer

multiplications/
additions

Group order m can be
chosen by user such
that discrete log is

efficient (e.g., additive
group).

Not
pub
lic

H [10, 13, 9]
(Branch-

ing
Pro-

grams)

log(n) ·
√
n ·

log(|C|)

√
n·log(|C|) log(n) encryptions

and decryptions
For k-ary branching
program (optimal

k = 5): n
multiplications,
n
k
·
√
k · log(

√
k)

additions

C is the ciphertext
space of the

Damg̊ard-Jurik
cryptosystem.

x

H [19]
(Lattice-
based)

O(n ·N2 ·m) N ·m O(n · Nx) where x
depends on the

matrix
multiplication

algorithm used,
mostly a bit less

than 3.

2n · N2

multiplications and
2N · log(n · N)

additions.

Recommended as
N = 50.

X
C++

H [5] (FHE-
based)

log(C) log(C) One encryption, one
decryption

Depends on the
concrete FHE

scheme used, likely
very expensive.

This is one extreme
where the server does
all the work and the

user almost none.

x

O [17, 21,
16]

(ORAM-
Tree)

O(log(n)3 +

log(n)2 ·
log(|C|))

O(log(n)3 +

log(n)2 ·
log(|C|))

log(n) recryptions
for each operation

- Supports writing as
well. Could be

combined with FHE to
reduce user

communication and
transfer computation

to the server.

X
Java

O [4]
(Onion-
ORAM)

O(log(n)) O(B) Õ(B · log4(n)) ω̃(B · log4(n)) The block size B needs
to be very large(
Ω̃(log5(n))

)
.

x

O [1] (FHE-
ORAM)

log(|C|) ·
|op|, op =

ORAM
operation
written as

circuit

log(|C|) Convert operation
into circuit, encrypt

values, decrypt
result.

Again depends on
concrete FHE

scheme, likely very
expensive.

This seems worse than
the trivial FHE

approach above, but
ORAM has a

write-operation which
pure PIR does not.

x

O [14]
(Parallel-

Tree-
ORAM)

log(n) O(B) - log(n) recryptions
for each operation,
but parallelized.

Tree-ORAM outsourced
to server using secure

coprocessors (with
which the user

communicates in
non-oblivious fashion).

Not
pub
lic

G Trivial
Garbled
Circuit

>> n O(B) Transform function
into Boolean circuit,
generate 4 keys for
each gate, compute
2 MACS for each

gate.

Evaluate the
Boolean circuit with

the garbled keys.

This is worse than the
trivial solution in every

aspect except server
communication.

x

G [15, 6, 7]
(Garbled

RAM)

O(RAM-
execution
time of
query)

O(B) Garble the query
(O(RAM-execution

time of query))

Evaluate garbled
query

(O(RAM-execution
time of query))

The user also has to
garble and upload the
database once in the

beginning.

x

- [2] (ϕ-
Hiding)

log(n) + λ λ Effort of computing
ϕ-hiding m plus 2

modular
exponentiations

Hamming-weight(n)
modular

exponentiations

λ is logarithmic in n,
with recommended

settings total
communication is
O(log8(n)).

Pseu
do

code

- [11]
(Trap-
door

Permuta-
tion)

O(B) n − n
2B

(< O(n)
while

n > B2)

O(B) O(n · B) User computation
depends on the

trapdoor functions and
hardcore predicates
used, assumed O(n).

x

- [22]
(Sender
Anony-
mity)

(λ + 1) ·
√
n (λ + 1) ·

√
n O(log(λ) ·

√
n) O(Q · (λ + 1) ·

√
n),

Q is number of
separate queries sent

(> 1!)

Very likely insecure, as
summing up all

subqueries yields sum
of separate query

vectors.

Not
pub
lic

Table 1. A comparison of different PIR solutions
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Database Action: For j = 1, . . . , ln(n): The database computes xi1+j ,...,iln(n)
:=

n1/ ln(n)∑
k=1

bjk · xk,i1+j ,...,iln(n)
and sends x := xiln(n)+1

to the user. Note that the

operations in this step are done over the integers, as the database does not know
the group order.
User Decoding: For j = 1, . . . , ln(n), the user sets x = x · (bj)−1 mod m and
transforms the result to N -ary encoding. Then the least significant digit is the
requested database item xi∗1 ,...,i∗ln(n)

.

Security: One notable aspect in this new protocol is that the size limit of the
ei’s has changed from the original version. This requirement ensures getting
the correct result without wrapping around mod m in the decoding phase. The
security of the original scheme relies on the assumption that given the

√
n PIR

request elements (b1, . . . , b√n), where bi = b · ei mod m and the ei’s are chosen
according to the constraints detailed above (with the ai’s in constraints 2.ii. and
2.iii. selected uniformly at random), any computationally bounded adversary can
output the correct m only with negligible probability. This assumption is called
the Hidden Modular Group Order Assumption, and indicators for the hardness
of the problem (i.e., how much information about the group order is leaked by
the queries), are presented in the original paper [22], along with a reduction from
the PIR protocol to this assumption. For our improved scheme, it can easily be
verified that

√
n > ln(n) · n1/ ln(n) for n ≥ 213. As databases are generally much

larger than 213 elements, we can now base security on the security of the original
scheme, since we will now be sending less query elements and thus leaking at
most as much data as the original scheme.

3.2 The Path-ORAM Scheme

The second solution we chose to implement is the Path-ORAM scheme from
[21] with non-recursive position map storage. We describe the scheme on a high
level, but with some parameters as we implemented them instead of the generic
version (e.g. encrypting with AES):
Database Structure: The database is held in a binary tree of height L =
dlog2(n)e with 2L leaves. Each leaf (called a “bucket”) holds up to 5 database
entries (and is filled with dummy entries if it contains less). Note that there are
far more buckets than database elements. The bucket is encrypted by the user
with AES in CBC mode, where in our use case each database entry consists of
1 or 2 AES-Blocks (128 bits each) depending on the chosen parameter setting
(see Section 4). Thus, each bucket contains 5 or 10 AES Blocks plus the IV, so
6 or 11 blocks in total. Also, the user maintains a local stash S (which acts as a
temporary storage space) and a lookup table (called “position map”) mapping
database blocks to the leaves of the binary tree. We assume that the database
is already initialized, as setup is rather tedious and must only be done once
at the very beginning before the first query is made, making it irrelevant for
performance comparisons.
Queries: To retrieve an entry, the user looks up what leaf of the tree the data
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block is mapped to in the position map and reads the entire path from the root
to the leaf into the local stash S (which may already contain some elements from
previous queries), as the entry will be in some bucket on this path (or in the
stash). The entry is mapped to a new leaf randomly and the data is replaced
in case of a write operation. Then, all elements in the stash are reencrypted
and written to the server in a bottom-up manner: Each entry in the stash is
placed in a bucket on the path to the (old) leaf as far away from the root as
possible, guaranteeing that the maximum amount of blocks can be placed into
the tree. The bucket is filled up with dummy blocks and encrypted with AES
in CBC-mode with a random IV. It can happen that some elements from the
stash cannot be placed into the tree (e.g., when there are several elements whose
paths to their leaves only intersect the current path at the root, and there are
more of these elements than the root bucket can contain), these remain in the
client stash so that they can be placed into a bucket in a future query. If too
many of these elements accumulate and the stash cannot hold them in addition
to the elements being read from a path during a query, we say that the ORAM
has failed. We chose a stash size of 220 blocks.
Security: Since we implemented the scheme without changing it, the security
analysis of the original paper holds.

4 Performance

We now present the performance of our two chosen schemes. Times were mea-
sured on an Intel Core i5-4570 CPU with 3.20GHz and constitute average values,
and the number of database entries was derived from our use case (400.000 −
800.000 with some smaller numbers for scale). The entries are random numbers
of lengths 256 (resp. 128) bits to simulate the IMEIs and (or) IMSIs. The chosen
AES implementation in the ORAM scheme was wolfcrypt. Regarding memory
requirements1 for our use case, the Trapdoor Group scheme requires a group
order m of at least 3756 bits. This implies a server memory of about 25.6MB
for the database, and about 1.317GB for storing intermediate results, so roughly
1.345GB in total. The memory requirement on the user side is only about 34kB.
In the ORAM-scheme, user memory is about 2.1MB, whereas server memory
strongly depends on the number of entries and got so large that we could not
supply data for 800.000 entries because our allotted memory limit was exceeded.

For the more traditional Private Information Retrieval metrics, we split the
performance measure into three main components: Communication (Figure 1a),
computational effort for the user (1b) and computational effort for the server (1c)
and plot the effort for different numbers of database entries. In each diagram, the
dotted plots represent entries of length 256 bits, and the solid plots are entries
of length 128 bits. The green plots always correspond to the ORAM scheme,
and the red plots to the Trapdoor-Group scheme. In the communication figure,
there are three colors: Red represents the amount of data sent from the user to
the server in the Trapdoor-Group scheme, blue represents the amount of data

1 These are theoretical results and were not actually measured
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Fig. 1. Performance of the two approaches: Red (top 2 lines) is Trapdoor-Group (user
to server in communication), green (bottom 2 lines) is ORAM, blue (middle 2 lines)
is server to user communication (Trapdoor-Group). Dotted is 256 bit, solid is 128 bit
database entries.

sent from the server to the user in the Trapdoor-Group scheme, and green is
the amount of data sent from either the user to the server or vice versa (as
these values are equal) in the ORAM scheme. User computation encompasses
decrypting, reading and encrypting in the ORAM scheme, and the decoding step
in the Trapdoor-Group scheme 2.

5 Conclusion and Future Work

As we can see, ORAM performs better in all these aspects, even though the
Trapdoor-Group protocol actually performs worse in terms of user computation
than Figure 1b implies (see Footnote 2). Thus, for the use case upon which this
paper is based, the ORAM-approach seems like the better solution — provided,
of course, that the server has enough memory to store the tree. If, however,
memory is the constraining factor rather than speed (which seems unlikely in
today’s world), the Trapdoor Group protocol would be the better choice both
for user and for the server.

For future work, an interesting aspect in optimizing performance could be
the “levels” observed in Figure 1a for the Trapdoor Group scheme (i.e., the

2 Additionally, there is a user setup phase which incurs computational effort but was
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Fig. 2. User setup w/o
prime generation for 128
and 256 bit inputs.

not included in Figure 1b. The reason is that m was com-
puted as a prime by calling nextprime() from the GMP-
library in our code and this function varies enormously in
its runtime, dominating the total time. However, it seems
that this could be easily circumvented in reality once the
parameters of the database are set - e.g., by picking m
randomly from a large list of primes, or choosing m as not
prime and implementing constraints on the secret values
instead. Either way, this is an additional cost that really
needs to be added to the time in Figure 1b. The time for
user setup without this prime generation can be seen in
the figure on the right.
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values for 200, 000 and 400, 000 entries seem similar, as do those for 600, 000 and
800, 000), which we suppose comes from the dln(n)e exponent in the constraint
for the size of the group order m (where n is the number of database entries).
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