
Reassessing Grover’s Algorithm

Scott Fluhrer

Cisco Systems, USA
sfluhrer@cisco.com

Abstract. We note that Grover’s algorithm (and any other quantum
algorithm that does a search using an oracle) does not parallelize well.
Accordingly, we propose a modified security assumption, that the attacker
has bounded time to perform the attack in addition to an overall compu-
tational budget. We show that, under this security assumption, the size
of the problems that Grover’s algorithm can attack is less than commonly
assumed. For example, we show that for symmetric keys, we don’t need
to double their size, adding a fixed number of bits is sufficient. This
reduction in strength can be used to make postquantum cryptography to
be of lesser cost, without sacrificing security.

1 Introduction

Postquantum cryptographical algorithms are generally more expensive than their
corresponding non-postquantum equivalents. This additional expense is due to
the need to be infeasible to attack by quantum algorithms; it seems reasonable
to assess the actual strength of these algorithms.

In 1996, Grover introduced his well publicized algorithm to do database
searches [8], which can search through a space of size N in O(

√
N) time. Here,

the attacker is searching for a database entry (or cryptographical key) that is
distinguished; it performs successive evaluations of the Oracle being searched
over an entangled state, interleaved with relatively simple quantum operations
on that state; after about π/4

√
N such iterations, a measurement of that state

will give the value being searched for with high probability.
Because of this algorithm, it has been commonly accepted that (for example)

we need to double the size of our symmetric keys in order to maintain the security
level against a Quantum Computer. For example, to obtain "128 bit quantum
security", that is, require the attacker to perform circa 2128 quantum operations
to successfully attack the system, we need a symmetric cipher with a 256 bit key.

And, yes, if the attacker has a Quantum Computer that can issue circa 2128

successive evaluations to our encryption function, they could find the key with
high probability. However, in this attack model, even a 160 bit key (which would
require circa 280 successive evaluations), would be secure for all practical purposes.
Even if we assume that the quantum computer could evaluate the encryption
function in the absurdly fast time of 1 picosecond, the total of 280 successive
evaluations would require over 30,000 years to complete. Any realistic security
policy is not concerned with an attack that takes that long to perform.



The reason we insist on 128 bit security is because of parallelization; we
can divide the search task over a large number of parallel processors, each
with a separate implementation of the encryption function oracle, which can be
queried in parallel. On a conventional computer, this search process is arbitrarily
parallelizable; if we have a single oracle, then with T queries, we can search
through a space of size O(T ), if we’re given S Oracles which we can query in
parallel, then we can perform a total of ST queries, and are able to search a
space of size O(ST ).

2 Parallelization of Grover’s Algorithm

We would like to consider the corresponding parallelizability on a Quantum
Computer; that is, given a parallel Quantum Computer, with access to a number
of oracles, how fast can they perform a search for a distinguished input. It turns
out that the limits of what can be achieved by any such quantum algorithm has
been proven in [12]. This paper is well known for showing that Grover’s algorithm
is an optimal solution to this problem given a single oracle; however, this paper
also considers the scenario if the Quantum Computer is given a number of oracles
in parallel that it can query simultaneously (see section [4]).

Specifically, Zalka proves that any quantum algorithm which does a search
based on issuing entangled oracle queries necessarily has

2N − 2
√
N
√
p− 2

√
N
√
N − 1

√
1− p ≤ S · 4T 2

(see equations (8), (26) from the paper), where:

– N is the size of the space being searched over
– S is the number of parallel oracles available to the attacker
– T is the number of times he can issue queries to eachoOracle in parallel
– p is the success probability of deriving the correct key

The paper further notes that this inequality is tight; equality can be achieved
by splitting up the search space into S equal sized subregions, and have a separate
implementation of Grover’s algorithm search each subspace.

This paper explicitly assumes that the oracle has a unique solution; that
is, there will be exactly one value that will cause the oracle to evaluate to the
searched for result. For some of the uses we will use this theorem, we will need
to handle the general case where there are t distinct values that will satisfy the
Oracle query, and the search will be successful if we find any of them1.

It is easy to extend Zalka’s result for general t; we get:

2N − 2
√
Np/t− 2

√
N(N − 1)(1− p/t) ≤ S · 4T 2

1 [5] gives a Quantum algorithm for evaluating t for an oracle; this is important for
the original Grover’s algorithm; however as long as t � S, the exact value of t is
unimportant to the attack which uses S separate Grover’s searches.



We outline how to modify Zalka’s proof in appendex 1.
We note that

2N − 2
√
Np/t− 2

√
N · (N − 1) · (1− p/t) ≈ 2N(1−

√
1− p/t) > Np/t

(where the approximation holds for p� t/N) and so we have:

Np/t < 4ST 2

If we denote the total amount of Oracle calls that the adversary can make as
C = pST , then we have N/t < 4CT .

3 Proposed Security Assumptions

Because of this, we propose that we modify the security assumptions that we
make to include the factor of time. In particular, we would make three explicit
assumptions.

– The first assumption is one of total computational effort pC, where C is the
overall computational budget, and p is the minimum success probability that
the adversy will tolerate. For example, in the 128 bit security case, to obtain
a success probability of p, he must involve the Oracle at least 2128p times.
This is the standard computational complexity assumption.

– The second assumption is one of time T1; we assume that the attacker must
complete his attack within a certain timeframe; for example, the attack must
be completed within 200 years.

– The third assumption is of speed; we assume that the Quantum Computer
cannot issue a query to the Oracle and get a response back within a certain
amount of time T0; say, within 3nsec.

We allow the attacker to use arbitrary amounts of parallelization, as long as
he stays within the total computational assumption of no more than pC queries.

Against an adversary with a conventional computer, these additional assump-
tions do not make the attacker’s problem any harder; we allow him to increase
the amount of parallelization high enough to perform the search in the given
amount of time.

However, against an adversary with a Quantum Computer, these additional
assumptions are nontrivial; if we denote T = T1/T0 (the total number of successive
Oracle queries possible in the time allowed), then the attacker can succeed with
probability p only if:

log2 N/t < log2 C + (2 + log2 T )
That is, to reach a given security level against Quantum Computers using

Grover’s algorithm (or any other quantum oracle search algorithm), we don’t
need to double the size of the symmetric keys; it suffices to add a fixed number of
bits (the number of bits depends on how fast we assume the Quantum Computer
is compared to the time we allow the attacker).



3.1 Reasonability of Security Assumptions

We are adding two security assumptions; the obvious questions are whether those
assumptions are reasonable, and if so, what are appropriate values for T0, T1.

As for the time bound, it is common for security policies to have a time
bound; there is no data that needs to be kept private literally forever, and for a
signature scheme, no public key will be used forever. It is unclear how long the
time bound could be; we would tentative recommend a time bound T0 of 200
years (as it is hard to think of anything that needs to be kept private that long).

As for the speed bound, that is trickier. We are attempting to make a bound
on how fast a Quantum Computer will perform, and we don’t have a practical
Quantum Computer2 in front of us.

However, we can look at the existing state of the art and extrapolate from
there; we will take as example cryptographical Oracles the SHA-256 and the
AES-256 functions, as they have been studied.

In [2],a quantum circuit for implementing the SHA-256 hash function is
proposed, along with the estimate of the cost (including the total quantum gate
delay); their optimized implementation gives a T-Depth3 of 704004.

In [7], a quantum circuit for implementing the AES-256 encryption function
is proposed; their implementation gives a T-Depth of 7488.5

The current model is that, after each gate, we will need to implement Quantum
Error Correction, which involves measuring physical qbits which are set to be a
function of the actual data physical qbits. The current fastest we can perform
such a measurement is in 48nsec, as in [11]

Assuming that the measurement time takes the bulk of the operation time,
then this gives us a time of 3.38msec to implement the SHA-256 hashing function
on a quantum computer, and 0.359msec to implement the AES-256 function.

Now, these estimates are based on the current state of the art; quite likely,
future researchers will find ways to improve these values; by providing alternative
implementations with less depth; by reducing the decoherence probability (so
we don’t need to implement error correction as frequently), and by speeding up
the measurement process. Because of these uncertainties, I would suggest that
we derate these parameters by a factor of a million; giving us a T1 = 3nsec for
SHA-256 and T1 = 0.3nsec for AES6.
2 That is, one that is capable of attacking real cryptographic problems.
3 T-Depth [1] is the number of stages in the quantum circuit involving non-Clifford
group gates. This is a metric commonly used in quantum computing, as these gates
are expected to be the bottleneck in fault-tolerant computation.

4 They also give a proposed Quantum implementation of SHA-3; that has a signfiicantly
shallower T-depth of 432. It is not immediately clear if this indicates that SHA3 has
somewhat less resistance to quantum attacks, or whether that’s an artifact of this
analysis, which considers implementation speed, but not implementation cost.

5 The smaller depth for AES reflects the greater parallelizability inherent within the
AES structure.

6 Both these speed estimates are approximately an order of magnitude faster than how
fast we can implment these functions using conventional gates.



When we combine these two estimates, we obtain T < 261 for SHA-256, and
T < 265 for AES.

One can argue that these values might not be conservative enough; however
any reasonable value of T0, T1 allows some improvement over the traditional view
of Grover’s algorithm.

4 Implications of These Security Assumptions

Now, if you go through this argument, you’ll find that this implies that AES-192
has (with the above assumptions) almost 128 bits security; it would take circa 2125

entangled decryptions to recover an AES-192 key. However, we are not suggesting
that people abandon AES-256 in favor of AES-192. By this argument, AES-256
has far more than "128 bits quantum security", by the above security assumptions,
it has about 190 bits strength, however the addiitonal cost of AES-256 is minimal,
and so there is little to be gained by switching to AES-192.

This is not true for other operations, which can become significantly less
expensive if we adjust the security parmeters in accordance to these security
assumptions.

4.1 Hash Based Signatures

A hash based signature is a signature method whose cryptographical strength
relies solely on the strength of the underlying hash function; if we believe that
the hash function is strong (e.g. is first and second preimage resistant), then it is
infeasible to generate forgeries. Proposed hash based signatures include XMSS [9],
LMS [10] and Sphincs [4]. We will focus on Sphincs as that scheme has the fewest
practical issues; similar size reductions occur with these other schemes as well.

The Sphincs structure consists of twelve levels of Merkle trees, where each
tree uses a one time signature (WOTS+) to sign the root of the tree immediately
below it; each Merkle tree is of height 5, and so we have hypertree with 260 leaf
nodes. Each node can be used to sign the root of a HORST tree, which is a few
time signature method (that is, one which can be used to sign a few messages).
To generate a Sphincs signature, we hash the message (and a random value) to
select one of the leaf nodes of the hypertree; we then form the HORST tree that
corresponds to that leaf node, and generate the HORST signature of the message,
and the authentication path through the hypertree to the top level root value
(which is the public key).

Against such a primitive, we expect that oracle queries are the best possible
attack7, and hence the quantum oracle search is what we are concerned with.

Against Sphincs, the best attack strategy would be to attack either one of the
unrevealed HORST leafs (adjacent to one of the revealed ones), or the previous
value in the WOTS+ chain. In both cases, these are preimage attacks where we
7 If the hash function is such that it allows a better attack, we should replace it with a
better hash function.



know (by construction) there is at least one preimage (the one that the legitimate
signer would reveal); hence there are an expected 2 such preimages (and hence
t = 2).

We would also note that, as a public key signature method, the timespan for
the attacker has for any forgery to be useful must be within the lifetime of the
public key; that is, when someone with the public key is still willing to accept a
message verified by it. In [3], NIST recommends that public key cryptoperiods
be limited to "on the order of several years"; one could argue that our value
T0 = 200 years could be reduced. However, for this analysis, we will retain that
value.

If we use the security assumptions given above8, we find that a 192 bit hash
function9 provides a full "128 bits Quantum Security"; and hence meets the
original Sphincs security target.

The original Sphincs signature method has signatures which are 41000 bytes
long; however, we can take advatage of our security assumptions to shrink the
signatures in three ways:
– The Sphincs signature consists largely of a series of hashes; if each hash is

192 bits rather than 256 bits, each hash contained in the signature is 8 bytes
smaller.

– The signanture includes a number of WOTS+ signatures with W = 16; to
sign a 256 bit hash, each WOTS+ signature consists of 67 hashes. By making
each signed hash be only 192 bits, each WOTS+ signature would now consist
of 51 hashes.

– The HORST signature consists of k = 32 authentication chains from the
bottom of the Horst tree. They selected k = 32 because that implies that if a
HORST tree was used γ = 8 times, then a distinct message that the attacker
selects would have probability ≤ 2−256 of consisting of already revealed leaf
values. This probability of 2−256 was selected because Grover’s algorithm can
be used to select such a message; however we can show that a probability of
2−192 is sufficient to be Quantum Secure; this allows us to use a value k = 23,
which implies that we need fewer authentication chains in the signature.

As a result of these three observations, we can safely shrink the Sphincs
signature to about 23k, while retaining all of the security goals. We also improve
the signature generation time somewhat (because computing the internal WOTS+
public keys becomes cheaper), but not as dramatically.

5 Conclusion

We have shown that Grover’s algorithm, in practice, is less powerful than generally
assumed. Many postquantum primitives can be criticized as expensive; for some
8 Sphincs uses Blake as its internal hash function; for this analysis, we will assume
that either a value T1 = 3 nsec is appropriate for Blake, or alternatively we replace
it with SHA-256.

9 Which can be implemented by computing our 256 bit hash function, and just using
the initial 192 bits.



of them, specifically, the ones for which a Grover search is the best attack, this
observation may allow us to safely reduce the security parameters, and thus
reduce the cost, while staying within the design security bounds.

We have made suggestions for values for T0, T1; while we feel that our value
for T1 is safe, it could be criticized as being both arbitrary and not conservative
enough. We would still recommend that this approach still be considered; a quam-
tum computer will require some amount of time to compute a cryptographical
function, and with a smaller T1, this analysis gives us some (albeit less) practical
benefit.

I would like to thank David McGrew and Andreas Hülsing for their useful
comments, and I would especially like to thank John Schanck with help with my
questions on Quantum Computation speed.

6 Future Work

Open questions that may be addressed in future work:

– Can we obtain a better estimate on what the value T1 should be?
– What other postquantum cryptographical primitives can be optimized using

this observation?
– We used existing analysis for our example cryptographical functions, AES-256

and SHA-256. There may be no corresponding analysis for the oracles that
is queried during an attack against other primitives, such as a lattice-based
primitive. How should we proceed with the analysis in that case?

References

1. Matthew Amy, Dmitri Maslov, Michele Mosca, Martin Roetteler A meet-in-
the-middle algorithm for fast synthesis of depth-optimal quantum circuits IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
https://arxiv.org/abs/1206.0758

2. Matthew Amy, Olivia Di Matteo, Vlad Gheorghiu, Michele Mosca, Alex Parent, John
Schanck Estimating the cost of generic quantum pre-image attcks on SHA-2 and
SHA-3 Selected Areas in Cryptography 2016 https://eprint.iacr.org/2016/992.pdf

3. Elaine Barker Recommendation for Key Management; Part 1: General
http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4

4. Daniel J. Bernstein, Daria Hopwood, Andreas Hülsing, Tanja Lange, Ruben Nieder-
hagen, Louiza Papachristodoulou, Peter Schwabe, Zooko Wilbox O’Hearn SPHINCS:
practical stateless hash-based signatures https://cryptojedi.org/papers/sphincs-
20141001.pdf

5. Michel Boyer, Gilles Brassard, Peter Høyer, Alain Tapp Tight bounds on quantum
searching PhysComp96 https://arxiv.org/abs/quant-ph/9605034

6. Austin G. Fowler, Matteo Mariantoni, John M. Martins, Andrew N. Cleland Surface
Codes: Towards practical large-scale quantum computation Phys. Rev A 86, 03324
(2012) https://arxiv.org/abs/1208.0928



7. Markus Grassl, Brandom Langenberg, Martin Roettler, Rainer Steainwandt Ap-
plying Grover’s algorithm to AES: quantum resource estimates PQCrypto 2016
https://arxiv.org/pdf/1512.04965.pdf

8. Lov K. Grover, A fast quantum mechanical algorithm for database search, STOC
1996, https://www.arxiv.org/abs/quant-ph/9605043

9. A. Hülsing, D. Butin, S. Gazdag, J. Rijneveld, A. Mohaisen XMSS: Extended
Hash-Based Signatures https://datatracker.ietf.org/doc/draft-irtf-cfrg-xmss-hash-
based-signatures/

10. D. McGrew, M. Curcio, S. Fluhrer Hash-Based Signatures
https://datatracker.ietf.org/doc/draft-mcgrew-hash-sigs/

11. T. Walter, P. Kurpiers, S. Gasparinetti, P. Magnard, A. Potočnik, Y. Salathé, M.
Pechal, M. Mondal, M. Oppliger, C. Eichler, A. Wallraff Rapid High-Fidelity Single-
Shot Dispersive Readout of Superconducting Qubits Phys. Rev. Applied, vol. 7, issue
5 https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.7.054020

12. Christof Zalka Grover’s quantum searching algorithm is optimal, Phys.Rev. A60
(1999) 2746-2751, https://arxiv.org/abs/quant-ph/9711070

7 Appendix 1: Parallel Oracle Searches with Multiple
Matching Targets

Let us consider the case where we have a Quantum Computer with S identical
oracles, however instead of having one marked elements that we are searching
for, we have t such elements.

Zalka’s proof consists of two parts, the first where he proves the inequality
(26) and the second where he proves the inequality (8).

First, we can easily see that, in Zalka’s [12] proof, his inequality (26)∑
y

|φT − φy
T |

2 ≤ S · 4T 2

is not modified by t > 1; the proof of this deals with the difference between
the quantum state in the case of an oracle with t elements that answer ’yes’, and
the case of an oracle that always answers ’no’, that difference is not affected by
the value t.

As for equation (8)

2N − 2
√
N
√
p− 2

√
N
√
N − 1

√
1− p ≤

N−1∑
y=0
|φy

T − φT |2

We can see how this is modified by going through the derivation of this
inequality in section 5.1.2. We redefine φy

10 in equation (29) to be the quantum
state when we have an oracle that gives yes for t distinct answers (while φ still
designates the state when we have an oracle that gives a no answer for all inputs).

We find that the remainder of the proof applies unchanged until we get
to the constraint 1/N

∑
y py = p found after equation (35); with our modified

10 In his appendix, Zalka shifts the designation of the quantum state from φ to ψ; for
consistency, I will continue to denote the state as φ.



assumption, this constraint becomes t/N
∑

y py = p. The other constraints remain
unchanged, and so the Lagrange multiplier technique gives us ay = 1/N ∀y and
py = p/t ∀y.

This then gives us the modified formula:

N−1∑
y=0
|φy − φ|2 ≥ 2N −

√
Np/t− 2

√
N(N − 1)(1− p/t)

This is the formula we have used above.
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