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ABSTRACT
Password checking systems traditionally allow login only if the cor-
rect password is submitted. Recent work on typo-tolerant password
checking suggests that usability can be improved, with negligible
security loss, by allowing a small number of typographical errors.
Existing systems, however, can only correct a handful of errors,
such as accidentally leaving caps lock on or incorrect capitalization
of the first letter in a password. This leaves out numerous kinds of
typos made by users, such as transposition errors, substitutions, or
capitalization errors elsewhere in a password. Some users therefore
receive no benefit from existing typo-tolerance mechanisms.

We introduce personalized typo-tolerant password checking. In
our approach, the authentication system learns over time the typos
made by a specific user. In experiments using Mechanical Turk,
we show that 45% of users would benefit from personalization. We
therefore design a system, called TypTop, that securely implements
personalized typo-tolerance. Underlying TypTop is a new stateful
password-based encryption scheme that can be used to store recent
failed login attempts. Our formal analysis shows that security in
the face of an attacker that obtains the state of the system reduces
to the difficulty of a brute-force dictionary attack against the real
password. We implement TypTop for Linux and Mac OS login and
report on a proof-of-concept deployment.

1 INTRODUCTION
Passwords remain the predominant means of authenticating users
on both computers and the web — however studies show that users
persistently pick weak passwords [6, 12, 34]. This phenomena is
often ascribed to users selecting easy-to-remember passwords; how-
ever a number of studies [17, 18, 32] highlight that strong passwords
are also more difficult to type. To increase password usability, some
companies [2, 25, 28] allow authentication under a small set of com-
mon typos. For example, Facebook permits capitalization errors in
the first letter or accidental caps lock errors.

Motivated by this, Chatterjee et al. [8] recently initiated the
academic investigation of typo-tolerant password checking. In a
24-hour study at Dropbox, they found that a small set of easy-to-
correct typos accounted for over 9.3% of failed login attempts, and
3% of the total users turned away — underscoring the burden that
typos represent to both users and the companies that ultimately
lose out on user engagement due to them. To increase usability, the
authors advocate an approach they call ‘relaxed checking’. They
establish a handful of the most frequently occurring typos across
a user population, and build corrector functions to rectify those
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particular typos on behalf of the user at the time of authentication
(e.g., flipping the case of all letters to correct a caps lock error).
The authors show empirically that for a carefully selected set of
correctors, the resulting security degradation is minimal.

A limitation of this approach is that checking each correction
requires applying a computationally intensive password hashing
algorithm; as such the number of typos one may correct is inher-
ently limited by performance constraints. While correcting the five
most prevalent typos accounts for 20% of typos made by users [8],
this still leaves the majority of password typos uncorrectable. Indi-
vidual users may be totally neglected, should they frequently make
a typo that is rare across the broader population of users. Users
who choose complex, strong passwords are likely to fall into this
neglected group.

We introduce a new approach to password checking: person-
alized typo-tolerance. In such a system, the password checking
mechanism learns the typos commonly made by each user over
time, storing them in a secure manner. After learning frequent ty-
pos, the system can check to see if a submitted password is either
the one originally registered, or one of the learned variants. By
tailoring typo-tolerance to the individual user, we aim to correct
a larger set of typos than previously possible, while maintaining
strong security guarantees.

Building a personalized typo-tolerant checking system requires
care. The system should not begin accepting arbitrary incorrect
passwords that are submitted — indeed this would enable poten-
tially malicious users to register arbitrary passwords which allow
access to an account. Therefore we need a policy dictating the
types of errors that can be added to a cache of allowed typos, and
a mechanism to enforce it. We must consider security in the face
of remote guessing attacks as well as compromise of password
databases, both being threats that frequently arise in practice. This
rules out simple schemes in which recent incorrect submissions
are simply stored in the clear. Ideally, a scheme would be as secure
as a conventional password-based checking system, meaning an
attacker must perform as much work to compromise an account as
they would have had there been no typo-tolerance.

We overcome these challenges and design a secure personal-
ized typo-tolerant password checking system that we call TypTop.
At a high level, the system works as follows. It maintains a set
of allowed hashes, corresponding to the registered password and
allowed typos of it. The user can successfully login by submitting
either the password or an allowed typo. Initially, this set contains
only the salted hashes of the registered password and some typos
of that password that are considered likely across the population
of all users. To personalize, TypTop adapts this set of typos over
time by securely storing incorrect submissions encrypted under a
public-key for which the associated secret key is, itself, encrypted
under the registered password and previously allowed typos. Upon
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a subsequent successful login, the recent incorrect submissions can
be decrypted and checked to see if they satisfy the policy regarding
typos. If so, new salted hashes of the incorrect submissions, now
considered as legitimate typos, can be added to the set of allowed
hashes. To ensure the set does not grow too large, less frequently
observed typos can be evicted. Future login attempts that make one
of the frequent typos will be allowed, thereby avoiding the need
for the user to retype their password.

Underlying TypTop is therefore a new kind of stateful password-
based encryption scheme that ensures the plaintext state for a user
can only be unlocked with knowledge of the registered password
or one of the policy-checked cached variants of it. We introduce
a formal security notion requiring that an attacker learns noth-
ing about a sequence of password logins (including the number of
logins, how many variants were entered into the typo cache, or
partial information about the passwords) given the state of the pass-
word system, unless the attacker can successfully mount a modified
form of brute-force guessing attack in which it repeatedly hashes
common passwords or typos of them and checks them against the
hashes stored within the state.

We prove the security of our construction relative to this notion,
and go on to analyze the brute-force guessing game to which we
reduce security. We give criteria on password and typo distributions
which, if met, mean that the attacker will gain no additional benefit
by attempting to guess a stored typo. For such settings, we prove
that the optimal strategy is a standard brute-force guessing attack
against the registered password as if there were no additional pass-
word hashes of typos stored. We show empirically that real-world
password and typo distributions meet the required criteria.

To gauge the potential efficacy of TypTop, we conduct a study
using Amazon Mechanical Turk (MTurk) [7] in which we ask users
to perform repeated logins using a password of their choosing.1
In this way, we can analyze the types of errors made and the po-
tential benefit of personalization compared to the prior relaxed
checking approach with a fixed set of typo correctors. The analysis
reveals that 45% of users would benefit from personalization, a
1.5x improvement over the 29% of users that benefit from the top 5
correctors from [8].

We implemented a prototype of TypTop for Unix systems includ-
ing Linux and Mac OS using the pluggable authentication module
(PAM) framework. The prototype enables typo-tolerance for all
password-based authentications managed by the operating system.
We report on the initial deployment with 25 users, and while further
studies will be needed to assess generalizability of our results, they
so far indicate that TypTop significantly benefits users that often
mistype their passwords in ways not covered by prior correction
mechanisms. Our prototype is open-source and publicly available.2

2 BACKGROUND AND RELATEDWORK
In traditional password-based authentication schemes (PBAS), a
user initially registers a user name and a password with the system.
The password is stored in some protected form (typically a salted
password hash). On subsequent login attempts, the user re-enters
their password which is then compared to the stored password;
1All our study designs were reviewed by our university’s IRB.
2https://typtop.info/

authentication is granted only if these match. A formal definition
of PBAS schemes is given in Section 3.

Password distributions and guessing attacks. Measurement
studies [6, 12, 24] and password leaks such as [33] show that users
frequently pick weak passwords, with a large number of users shar-
ing a relatively small set of passwords at the head of the password
distribution. This leaves them vulnerable to guessing attacks (see
Section 3).

The reason users persistently pick such weak passwords is of-
ten cited as ease of memorability. However studies by Keith et
al. [17, 18] indicate that the rate at which typos are made approxi-
mately doubles for complex passwords; similarly Mazurek et al. [21]
show via a large-scale study that login errors are correlated with
stronger passwords, and suggest that users pick weaker passwords
due to their ease of typing. Work by Shay et al. [31] finds a sim-
ilar correlation between length and rate of typo occurrence for
CorrectHorseBatteryStaple-type passphrases [26]. For a more de-
tailed discussion of these related works, see [8].

Typo-tolerant password checking. Motivated by the industry
practice [2, 25, 28] of allowing a small number of typos (specifically
capitalization errors) during authentication, Chatterjee et al. [8]
provide the first formal treatment of typo-tolerant password check-
ing for user-selected passwords. With an experiment conducted on
MTurk, they show that 20% of typos can be corrected by a small
set of corrector functions (e.g., applying caps lock or switching the
case of the first letter). They advocate an approach called relaxed
checking, which allows authentication under a small number of
easily correctable typos. Now when a password fails its initial au-
thentication check, a set of (e.g., 5) corrector functions representing
common typos are applied to the entered string; the user is allowed
to authenticate if any of these corrections matches the registered
password. The authors show that relaxed checking with a care-
fully chosen set of corrector functions can achieve a significant
improvement in utility with minimal degradation in security.

While relaxed checking allows for the secure correction of 20%
of typos, this still leaves the majority of typos uncorrected. Further-
more, the corrector functions utilized are based on common typo
behavior across the population of users, as opposed to that of the
individual. In this work, we explore a new approach — personalized
typo-tolerance — which allows us to correct a greater proportion
of typos by tailoring typo-tolerance to the individual user.

3 PERSONALIZED TYPO TOLERANCE
We introduce personalized typo-tolerant password checking which
adapts, over time, to correct the specific typos made by an individ-
ual user. We begin by defining the abstract components of such a
scheme, as well as the utility and the security goals.

Passwords and typos. We let 𝒮 denote the set of strings which
users may choose as passwords (e.g., the set of ASCII strings up
to some maximum length, say ℓ ). We let 𝑝 be a distribution which
models user selection of passwords, so 𝑝(𝑤) denotes the probability
that 𝑤 is the password chosen by a user, and let 𝒲 denote the
support of 𝑝, which represents the set of user passwords. We let
𝑤1, 𝑤2, . . . denote the passwords in𝒲 ordered in descending order
of probability.
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A typo-tolerant PBAS which allows authentication under any
string is clearly insecure. As such we need a means to distinguish le-
gitimate user typos from unrelated strings. We do this following the
approach of [8]. We first convert both the password 𝑤 and possible
typo 𝑤̃ into their key press representation [8], and then compute
the Damerau-Levenshtein distance [9, 20] of these representations,
which we denote DL(𝑤, 𝑤̃). We view 𝑤̃ as a legitimate typo of 𝑤 if
this distance is at most some small fixed parameter 𝛿; here we set
𝛿 = 2. We let {𝜏𝑤} be a family of distributions over typos for each
password 𝑤, so 𝜏𝑤 (𝑤̃) is the probability that the password 𝑤 ∈ 𝒲
is typed as 𝑤̃ ∈ 𝒮 . Note that 𝜏𝑤 (𝑤) denotes the probability that
𝑤 is typed correctly. Together these components (𝑝, 𝜏 ) define an
error setting.

Looking ahead, we will conservatively assume that an attacker
has precise knowledge of the underlying error setting when we
analyze the security of TypTop with respect to guessing attacks. In
practice, TypTop uses a state of the art password strength estimator,
zxcvbn [35], to estimate password guessability.

Adaptive checkers. An adaptive password checker Π is a stateful
PBAS — that is to say Π = (Reg,Chk) is a pair of algorithm defined
as follows:
∙ Reg is a randomized algorithm which takes as input a password

𝑤, and outputs an initial state 𝑠0 for Π.
∙ Chk is an algorithm (possibly randomized) which takes as input

a string 𝑤̃ and a state 𝑠, and outputs a bit 𝑏 and an updated
state 𝑠′. An output 𝑏 = 1 means authentication is granted.

Our definition is analogous to the formalization of standard (non-
adaptive) PBAS given in [8]; their definition may be recovered by
keeping the state constant across invocations of Chk. We call a
non-adaptive PBAS an exact checker if it outputs 𝑏 = 1 only if the
correct password is entered exactly.

We require that a password checker is complete, which is to say
that the probability that a user successfully authenticates when
he enters his correct password is one. Additionally we desire our
typo-tolerant checker to authenticate under as many typos made
by a legitimate user as possible (subject to security constraints).
We will measure the utility of a typo-tolerant PBAS in terms of the
fraction of typos accepted by the password checker across all users.
By this measure, the utility of an exact checker is always 0.

Guessing attacks. Guessing attacks against PBAS schemes come
in two key flavors: online and offline attacks. In the former, an at-
tacker uses the login API of the system to submit different password
guesses in an attempt to impersonate a user. The attacker might
target a specific user in what is known as a vertical attack, or may
try common passwords against the accounts of many users (known
as a horizontal attack). Various countermeasures can be deployed
to mitigate these attacks, including locking the account after a num-
ber of (e.g., 10) incorrect password submissions, and slowing down
responses for login attempts that appear unsafe based on contex-
tual information (for example, those originating from suspicious IP
addresses).

In offline attacks we assume that the attacker has compromised
the database of stored PBAS states, and attempts to brute-force
guess the underlying values. In contrast to online attacks, the num-
ber of guesses made by an offline attacker is limited only by the

Input: 𝑤̃

Check
typo
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Decrypt 𝑠𝑘

Decrypt wait list

Filter using
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Insert into
typo cache

Output: Yes

Encrypt 𝑤̃
using 𝑝𝑘
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wait list

Output: No
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Figure 1: Diagram showingTypTop’s approach to personalized typo-
tolerant password checking.

computational power they are willing to expend. We analyze the
security of TypTop in the face of both forms of attack in Section 5.

4 THE TYPTOP DESIGN
We first give an overview of TypTop, and then detail its components
more fully. TypTop uses a typo cache and an encrypted wait list. The
typo cache securely stores the set of strings under which the user
is allowed to authenticate; namely their registered password plus a
number of previously accepted typos of that password. The wait list
is a public-key encryption of recent incorrect password submissions
that were not the registered password or one of the typos already
in the typo cache. The secret decryption key for the wait list is,
in turn, encrypted using the registered password and (separately)
under each of the cached typos. When a login attempt’s password
submission is accepted — either it was the registered password
or one of the previously accepted typos — the wait list can be
decrypted and processed according to some typo cache policy. The
latter defines which incorrect submissions should be allowed into
the typo cache. A diagrammatic view of TypTop’s Chk procedure
is given in Figure 1.

Underlying components. We begin by defining the primitives
utilized by TypTop. A public-key encryption (PKE) scheme PKE =
(𝒦, ℰ ,𝒟) is a triple of algorithms. The key generation algorithm
𝒦 takes random coins as input and outputs a public / secret key
pair (𝑝𝑘, 𝑠𝑘)←$𝒦. The randomized encryption algorithm ℰ takes
as input a public key 𝑝𝑘 and a message 𝑚 ∈ ℳℰ (where ℳℰ
denotes the message space), and outputs a ciphertext 𝑐←$ ℰ𝑝𝑘 (𝑚).
We let 𝒞ℰ denote the ciphertext space. The deterministic decryp-
tion algorithm 𝒟 takes as input a secret key 𝑠𝑘 and a ciphertext
𝑐 and outputs a message 𝑚̃ ∈ℳℰ ∪ {⊥}. We use a PKE scheme
with perfect correctness, meaning that the probability an honestly
generated ciphertext decrypts to the correct message is one.

A password-based encryption (PBE) scheme PBE = (E,D) is a
pair of algorithms defined as follows. The randomized encryption
algorithm E takes as input a password 𝑤 ∈ 𝒲 (the set of all al-
lowed passwords) and a message 𝑚 ∈ ℳE (the message space),
and outputs a ciphertext 𝑐←$ E𝑤 (𝑚), where we let 𝒞E denote the
ciphertext space. The deterministic decryption algorithm D takes
as input a password 𝑤 and a ciphertext 𝑐 and outputs a message
𝑚̃ ∈ℳE∪{⊥}. We require PBE to be perfectly correct. A conven-
tional symmetric encryption scheme is the same as a PBE scheme,
except that it assumes uniform bit strings of some length 𝜅 as keys.
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We let PBE[SH, SE] = (E,D) denote the canonical PBE scheme
that works as follows. The scheme utilizes a random oracle with
signature SH : {0, 1}* → {0, 1}𝜅 and a conventional symmetric
encryption scheme SE = (E,D) that uses keys of length 𝜅 bits.
Then E(𝑤,𝑚) first chooses a fresh salt sa←$ {0, 1}ℓsalt for some
suitably large ℓsalt, computes 𝑐 = E(SH(sa ‖𝑤),𝑚), and outputs
(sa, 𝑐). Decryption works in the obvious way.

Later, we will assume the message space associated to a PKE
scheme unambiguously supports passwords of length up to some
parameter ℓ (passwords will be unambiguously padded to this max
length), a distinguished empty string symbol 𝜀, and the state space
of the caching scheme. We assume that encryptions of passwords
and the empty string are of equal length. We assume PBE has
a message space containing a typical representation of the PKE
scheme’s secret keys.

Finally, we let Perm(𝑡) denotes the set of all permutations on
Z𝑡. Looking ahead, we shall set 𝑡 to be the number of typos stored
in the typo cache, and regularly apply a random permutation to
randomize the order of elements in the cache. For our scheme, 𝑡 will
be small, making random permutations on Z𝑡 easily sampleable
and representable.

The details. A pseudocode description of TypTop’s adaptive typo-
tolerant password checking scheme Π = (Reg,Chk) appears in
Figure 2. TypTop uses a caching scheme to determine which entries
in the wait list are integrated into the cache. In the figure we detail
a probabilistic least frequently used (PLFU) caching scheme, but
TypTop works modularly with other caching schemes as discussed
later in this section.

The state of the adaptive checking scheme 𝑠 consists of a public
key 𝑝𝑘, the encryption of the caching scheme’s (plaintext) state S,
a typo cache T, an encrypted wait list W, and an index 𝛾 which
is a pointer to the next wait list entry that should be used. The
typo cache consists of up to 𝑡 PBE encryptions of the secret key 𝑠𝑘
corresponding to 𝑝𝑘, where 𝑡 is a parameter of the scheme. The typo
cache is initially filled with random ciphertexts, unless otherwise
indicated by the caching scheme in use (e.g., one may want to
warm up the cache with possible typos as discussed below). The
wait list consists of up to 𝜔 PKE encryptions of incorrect password
submissions. For the wait list we use a simple least-recently entered
eviction policy, accomplished by having index 𝛾 wrap around. To
force a wrap around would require 𝜔 incorrect submissions before
a correct one, so in practice we can set 𝜔 to be equal to a lockout
threshold (such as 10). The wait list is initialized with encryptions
of the empty string symbol 𝜀, and cleared in the same manner. The
index 𝛾 is initialized to a random value in Z𝜔 .

After every change to the typo cache, a random permutation
𝜋←$ Perm(𝑡) is used to permute the order of the cached typos.
This is to ensure that even if an adversary knows the typos likely
to be made by a user, he will not know at which position each typo
lies in the cache. This will have ramifications for offline security,
making the guessing game harder for particular distributions. See
Section 5.

Caching schemes. TypTop maintains a set of cached typos which
evolves over time based on the users’ login attempts and the caching
policy in use. We require that the set of cached typos are distinct,

and that the real password is never cached as a typo; this maximizes
the number of typos we can tolerate for a given cache size. We ab-
stract out the process of initializing and updating the typo cache
via a stateful caching scheme Cache = (CacheInit,CacheUpdt)
defined as follows. The algorithm CacheInit takes as input a pass-
word 𝑤, and outputs an initial state for the caching scheme S0 and
a set 𝒰0 of typo / index pairs (𝑤̃, 𝑖), indicating that the typo 𝑤̃

should be stored at the 𝑖th position in the initial cache. The algo-
rithm CacheUpdt takes as input the caching scheme state S and
a list (𝑤̃1, . . . , 𝑤̃𝜔 ) of candidate replacement typos (in our case,
drawn from the wait list) plus any other information required to
implement the caching policy (e.g., their frequencies). It outputs
an updated state S′ and a set 𝒰 indicating the replacements to be
made.

The checker Π is designed so that any caching scheme of choice
may be dropped in. The set of caching schemes we consider is
given in Figure 3. The simplest is a least recently used (LRU) caching
schemeCacheLRU = (InitLRU,UpdateLRU) which maintains a list
of typo cache indices ordered by how recently they were entered by
the user; when we update the cache, the last (and least recently used)
entry in the cache is evicted and replaced with the most frequently
observed entry in the wait list. LRU ignores the frequency with
which a user authenticates under a cached typo.

We consider three other strategies that take this frequency into
consideration. The simplest scheme is the LFU policy, which per-
forms cache updates by replacing the least frequently used cache
typo with the most frequently observed wait list entry. The newly
added typo has its frequency set to the number of times it appeared
in the wait list.

A potential drawback of this approach is that we replace a cached
typo each time we update, and so may inadvertently replace a typo
that the user makes reasonably often (and is thus good to keep
in the cache) with an anomalous typo from the wait list which
they are unlikely to use again. We therefore give a probabilistic-
LFU (PLFU) scheme, which performs cache updates as follows.
First the frequencies of the least frequently used typo in the cache
𝑤̃𝑜 and the most frequently observed typo in the wait list 𝑤̃𝑛 are
compared, and we replace the former with the latter with probability
𝜈 = 𝑓𝑤̃𝑛

/(𝑓𝑤̃𝑛
+ 𝑓𝑤̃𝑜

), where 𝑓 denotes the frequency count of
the typo in subscript in the wait list (for 𝑤̃𝑛) or the typo cache
(for 𝑤̃𝑜). If such an update occurs, the frequency of the newly
cached typo is set to 𝑓𝑤̃𝑛

+ 𝑓𝑤̃𝑜
. This process is repeated for each

of the unique typos in the wait list in descending order of their
frequency. This both serves to decrease the probability that a useful
cached typo is replaced unnecessarily, and increases the likelihood
that typos which are observed repeatedly in low frequencies over
different login attempts are cached; we give a detailed discussion
in Appendix A.1.

The above schemes require |S| ∈ 𝒪(𝑡) space for caching; desir-
able in our construction since storing more data in the state of Π
could negatively impact efficiency. In settings where this is less of a
concern (e.g., authentication to personal devices) and we can afford
to maintain a larger state, we can employ a most frequently used
(MFU) caching policy which records the frequency of all valid typos
made by a user so far. The 𝑡 most frequent typos are maintained in
the cache.
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Reg(𝑤):
(𝑝𝑘, 𝑠𝑘)←$𝒦
T[0]←$ E𝑤 (𝑠𝑘)

For 𝑖 = 1, . . . , 𝑡 do T[𝑖]←$ 𝒞E
For 𝑗 = 1, . . . , 𝜔 do W[𝑗]←$ ℰ𝑝𝑘 (𝜀)
(S0,𝒰0)←$ CacheInit(𝑤)

𝑐←$ ℰ𝑝𝑘 (S0)

For (𝑤̃, 𝑖) ∈ 𝒰0 do
T[𝑖]←$ E𝑤̃ (𝑠𝑘)

𝛾←$ Z𝜔

𝑠← (𝑝𝑘, 𝑐, T,W, 𝛾)

Return 𝑠

CacheInit(𝑤):
For 𝑖 = 1, . . . , 𝑡 do F[𝑖]← 0
S← (𝑤, F)
𝒰 ← 𝜑

Return (S,𝒰 )

Chk(𝑤̃, 𝑠):
Parse 𝑠 as (𝑝𝑘, 𝑐, 𝛾, T,W)

𝑏← false
For 𝑖 = 0, . . . , 𝑡 do

𝑠𝑘 ← D𝑤̃ (T[𝑖])
If 𝑠𝑘 , ⊥ then

𝑏← true; 𝜋←$ Perm(𝑡); S← 𝒟𝑠𝑘 (𝑐)

For 𝑗 = 1, . . . , 𝜔 do 𝑤̃𝑗 ← 𝒟𝑠𝑘 (W[𝑗])
(S′,𝒰 ) ← CacheUpdt(𝜋, S, (𝑤̃, 𝑖), 𝑤̃1, . . . , 𝑤̃𝜔 )

𝑐′←$ ℰ𝑝𝑘 (S′)
For (𝑤̃′, 𝑗) ∈ 𝒰 do T[𝑗]←$ E𝑤̃′ (𝑠𝑘)

For 𝑗 = 1, . . . , 𝑡 do T′[𝜋[𝑗]]← T[𝑗]
For 𝑗 = 1, . . . , 𝜔 do W[𝑗]←$ ℰ𝑝𝑘 (𝜀)
𝑠← (𝑝𝑘, 𝑐′, 𝛾, T′,W)

If 𝑏 = false then
W[𝛾]←$ ℰ𝑝𝑘 (𝑤̃); 𝛾′ ← 𝛾 + 1 mod 𝜔

𝑠← (𝑝𝑘, 𝑐, 𝛾′, T,W)

Return (𝑏, 𝑠)

CacheUpdt(𝜋, S, (𝑤̃, 𝑖), 𝑤̃1, . . . , 𝑤̃𝜔 ):
Parse S as (𝑤, F)
If 𝑖 > 0 then F[𝑖]← F[𝑖] + 1
For 𝑗 = 1, . . . , 𝜔 do

If valid(𝑤, 𝑤̃𝑗 ) = true then
ℳ[𝑤̃𝑗]←ℳ[𝑤̃𝑗] + 1

Sortℳ in decreasing order of values
For each 𝑤̃′ s.t.ℳ[𝑤̃′] > 0 do

𝑘 ← argmin𝑗 F[𝑗]
𝜈 ←ℳ[𝑤̃′]/(F[𝑘] +ℳ[𝑤̃′])
𝑑←𝜈 {0, 1}
If 𝑑 = 1 then

F[𝑘]← F[𝑘] +ℳ[𝑤̃′]
𝒰 ← 𝒰 ∪ {(𝑤̃′, 𝑘)}

For 𝑗 = 1, . . . , 𝑡 do
F′[𝜋(𝑗)]← F[𝑗]

S′ ← (𝑤, F′)
Return (S′,𝒰 )

Figure 2: Our adaptive password checking scheme Π = (Reg,Chk) using a modified least-frequently used caching policy. The latter uses a
function valid that checks whether a string should be considered for entry into the typo cache (e.g., checking whether a string lies within an
edit distance threshold of the true password).

Scheme Replacement Policy

LRU Replace least recently used typo with 𝑤̃𝑛

LFU Replace least frequently used typo and associated frequency with
(𝑤̃𝑛, 𝑓𝑤̃𝑛 )

PLFU Replace least frequently used typo 𝑤̃𝑜 and associated frequency
with (𝑤̃𝑛, 𝑓𝑤̃𝑛 + 𝑓𝑤̃𝑜 ) with probability

𝑓𝑤̃𝑛
𝑓𝑤̃𝑛

+𝑓𝑤̃𝑜
MFU Make necessary replacements to ensure 𝑡 most frequently used

typos lie in cache
Best-𝑡 Initialize cache with 𝑡 most probable typos based on typo model;

never replace

Figure 3: Table summarizing the caching schemes considered. Here
𝑤̃𝑛 denotes the wait list typo being considered for inclusion in the
cache, 𝑓 denotes the frequency count of the typo in subscript, and 𝑡

denotes the cache size.

As a benchmark against which to compare the utility benefit of
adaptive checking, we also consider a static caching policy Best-𝑡:
fill the cache of a given password 𝑤 with its 𝑡 most likely typos
according to some typo model, and then never update the cache.
Looking ahead, we will build a typo model from measurements of
typos made by users.

Admissible typos. As discussed in Section 3, care must be taken
when deciding which typos are cached. As such we use a procedure
valid to test whether an entry in the wait list should be input to
CacheUpdt as a candidate for inclusion. Our policy applies three
restrictions. Firstly, we set a threshold 𝑑, and only consider a typo
𝑤̃ of a password 𝑤 for inclusion if DL(𝑤, 𝑤̃) ≤ 𝑑. For TypTop we
use 𝑑 = 1 unless stated otherwise, allowing us to capture the caps
lock errors, single substitutions, deletions and transpositions which
studies indicate account for 46% of typos made by users [8].

Secondly, we wish to avoid including easily guessable typos in
the cache which may speed up guessing attacks — for example
Password1# may be mistyped as Password1, but the latter requires
only 8 attempts to guess as opposed to nearer 1,000 for the former
(as estimated by zxcvbn [35]). As such we impose two password

strength checks with associated thresholds 𝑚,𝜎. For a typo 𝑤̃ of a
password 𝑤 to be considered admissible, 𝑤̃ must be such that both
𝜇𝑤̃ ≥ 𝑚 and 𝜇𝑤̃ ≥ 𝜇𝑤−𝜎, where 𝜇 denotes the strength estimate
of the password / typo in subscript. The first condition ensures
that the most easily guessed typos are never cached, while the
second prevents the caching of typos significantly more guessable
than the real password. We will use 𝑚 = 10 and 𝜎 = 3 unless
otherwise specified; a justification for these parameter choices is
given in Section 6.1. To estimate guessability, we use zxcvbn due
to its accuracy and ease of deployment; one could also use other
strength estimators such as those based on neural networks [22].

Warming up caches. For all of the adaptive caching schemes
described above, the user must make a typo at least once before
it is considered for inclusion in the cache — for example, when
the typo cache is “cold” immediately after registration, no typos
will be tolerated. As such we consider initializing the typo cache T
with probable typos of the registered password; a process we call
“warming up” the cache. We build an empirical typo distribution
using data collected via an MTurk study (detailed in Section 6.1),
and the data released with [8]. We then fill the cache of a given
password with its 𝑡 most likely typos as indicated by the typo
distribution, with their frequency counts set to 0. In contrast to
relaxed checking, these cached typos are chosen on a per password
basis (as opposed to using population-wide corrector functions).
We will always warm up the cache unless otherwise specified.

5 SECURITY OF TYPTOP
In this section, we analyze the security of TypTop within the two
main threat models for password checking schemes described in
Section 3: offline and online attacks.

In the offline setting an attacker gains access to the state of the
checker, so we first analyze TypTop from a cryptographic view-
point, showing that the state does not leak additional information
about the user’s password and login history. We give a formal secu-
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rity notion that captures this requirement, and provide a reduction
showing that an attacker obtaining access to the state of TypTop
learns nothing about the user’s login behavior (including partial
information about the password) unless they are able to brute-force
guess the password or one of the typos active in the cache. With
this in place, we consider the success probability of an attacker in
such a brute-force attack. We show that for certain classes of error
settings, the maximum advantage of an attacker against TypTop
is no greater than that of an optimal attacker against the exact
checker (who must brute-force guess the exact password in order
to succeed).

We then analyze the online setting, which will be similar to the
security analysis of the relaxed checking approach introduced by
Chatterjee et al. [8]. The results indicate that security loss in the
face of online attacks is minimal, with less security degradation
than the prior approach [8].

In both online and offline settings, our analyses are with respect
to an attacker who we conservatively assume has precise knowledge
of the password distribution. In practice, where precise knowledge
is unlikely, security will be even better than our analyses predict.

5.1 Cryptographic Security
Our security notion formalizes the following intuition. Consider an
adversary that can obtain the state of a password checking system
after registration plus some sequence of login attempts by a user.
Then the adversary should not be able to distinguish this real state
from one drawn at random from the state space of the checker 𝒮 ,
unless they are able to brute-force guess one of the passwords or
typos allowed by the checking system at the point of compromise.

To this end we introduce some additional notation that will make
defining security and our subsequent analysis simpler. For a given
error setting (𝑝, 𝜏 ), we define an associated login transcript genera-
tor 𝒯 to model a user’s sequence of login attempts. Formally a login
transcript generator 𝒯 is defined to be a randomized algorithm that
takes no input and outputs a sequence of passwords and typos
which represent a user’s selection of their password (the first pass-
word in the sequence) and subsequent login attempts, all sampled
according to the appropriate distributions. A transcript checker
associated to an adaptive password checker Π = (Reg,Chk) (see
Section 3) is an algorithm Checker[Π] that takes as input a se-
quence of passwords and outputs a state value. The canonical such
transcript checker, on input 𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛, runs 𝑠0←$ Reg(𝑤0),
and then computes 𝑠𝑖←$ Chk(𝑤̃𝑖, 𝑠𝑖−1) iteratively for 1 ≤ 𝑖 ≤ 𝑛.
It then outputs the final state 𝑠𝑛.

Let Π = (Reg,Chk) be an adaptive password checker and let 𝒯
be a transcript generator. Consider the game OFFDIST of Figure 4.
We define the offline distinguishing advantage of an adversary 𝒜
against Π, 𝒯 to be

Advoffdist
Π,𝒯 (𝒜) = 2 ·

����Pr
[

OFFDIST𝒜
Π,𝒯 ⇒ true

]
− 1

2
����

where the probability is over the random coins used in executing
the game. We will not provide strict definitions of security (e.g.
using asymptotics), but rather measure concretely the advantage
of adversaries given certain running times and query budgets.

The security model proposed here coincides with a one-time
compromise of the system. A stronger model would perhaps allow

adaptive compromises, observing multiple instances of the pass-
word checking state over time. We conjecture that Π meets such a
definition but leave the analysis to future work.

Preliminaries. Before our analysis, we fix a number of further
definitions that will be needed in the proofs.

We implement TypTop with the canonical PBE scheme
PBE[SH, SE] = (E,D) as described in Section 4 which utilizes a
symmetric encryption (SE) scheme SE and random oracle SH; ad-
versaries in security games against this implementation of TypTop
are given access to the random oracle accordingly.

We now define two security notions which we will require for
the underlying SE scheme. The first is a multi-key real-vs-random
security notion for symmetric encryption under chosen plaintext
attack. Let SE = (E,D) be a SE scheme with associated cipher-
text space 𝒞E. The pseudocode description of the security game
MKRORℬ,𝑡

SE appears in Figure 4. This game tasks the attacker with
determining whether it is receiving encryptions of a (chosen) mes-
sage, or a random ciphertext, in a multi-key setting. We define the
distinguishing advantage of an adversary ℬ as

Advmkror
SE (ℬ, 𝑡) = 2 ·

����Pr
[

MKRORℬ,𝑡
SE ⇒ true

]
− 1

2
���� .

The security game for the familiar single-key real-vs-random
security notion, which we denote SKRORℬ

SE, is obtained by setting
𝑡 = 1 in the above definition. A straightforward hybrid argument
shows that for any symmetric encryption scheme SE and adversary
ℬ in game MKRORℬ,𝑡

SE running in time 𝑇 , there exists an adver-
sary ℬ′ in game SKRORℬ

SE running in time 𝑇 ′ ≈ 𝑇 such that
Advmkror

SE (ℬ, 𝑡) ≤ 𝑡 · Advskror
SE (ℬ′). By 𝑇 ′ ≈ 𝑇 (which we will also

use in theorem statements below), we mean that the running time of
ℬ′ is the same as that of ℬ plus some qualitatively inconsequential
overheads that can be derived from the proof.

We need one additional security property from our SE scheme:
that of robustness, which ensures that no computationally efficient
adversary can find two keys that both decrypt the same ciphertext.
The notion of robustness for PKE schemes was introduced by Ab-
dalla et al. [1], and later extended in [10, 23]. Security notions and
constructions for robust SE schemes are given by Farshim et al. [11].
We use a variant of their full robustness notion that is strictly weaker
than full robustness, but which suffices for our purposes. Formally,
let ROBℛ

SE be the game that works as follows. The adversaryℛ runs
with no inputs and outputs (k, k′,𝑚), i.e., a pair of keys and a mes-
sage. The game then computes 𝑐←$ E(k,𝑚) and 𝑚′ ← D(k′, 𝑐).
The game outputs true if k , k′ and 𝑚′ , ⊥. We define the advan-
tage of an adversaryℛ as Advrob

SE (ℛ) = Pr
[

ROBℛ
SE ⇒ true

]
.

Finally we require a more standard real-vs-random ciphertext
notion of security for a PKE scheme PKE = (𝒦, ℰ ,𝒟) with asso-
ciated ciphertext space 𝒞ℰ . The game ROR𝒞

PKE (not shown) first
generates a key pair (𝑝𝑘, 𝑠𝑘)←$𝒦 and a random bit 𝑏. It then runs
adversary 𝒞 (𝑝𝑘), who is given access to an oracle RoR to which
it may query messages 𝑚. The oracle computes 𝑐1←$ ℰ (𝑝𝑘,𝑚)
and 𝑐0←$ 𝒞ℰ and returns 𝑐𝑏. Finally 𝒞 outputs a bit 𝑏′, and the
game returns (𝑏 = 𝑏′). We define the distinguishing advantage of
an adversary 𝒞 as

Advror
PKE (𝒞) = 2 ·

����Pr
[

ROR𝒞
PKE ⇒ true

]
− 1

2
���� .
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OFFDIST𝒜
Π,𝒯 :

(𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)←$ 𝒯
𝑠0
𝑛←$ Checker[Π](𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)

𝑠1
𝑛←$ 𝒮
𝑏←$ {0, 1}
𝑏′ ← 𝒜(𝑠𝑏𝑛)

return (𝑏′ = 𝑏)

OFFGUESS𝒢,𝑞
Π,𝒯 :

(𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)←$ 𝒯
𝑠𝑛←$ PChecker[Π](𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)

parse 𝑠𝑛 as (S, T,W, 𝛾)

𝑟 ← 0 ; win← false
𝒢Test

Return win

Test(𝑖, 𝑤̃)

If (T[𝑖] = 𝑤̃) and (𝑟 ≤ 𝑞) then
win← true
Return true

𝑟← 𝑟 + 1
Return false

MKRORℬ,𝑡
SE :

for 𝑖 = 1, . . . , 𝑡
k𝑖←$ {0, 1}𝜅

𝑏←$ {0, 1}
𝑏′←$ ℬRoR

Return (𝑏′ = 𝑏)

RoR(𝑖,𝑚)

𝑐1←$ E(k𝑖,𝑚)

𝑐0←$ 𝒞E
Return 𝑐𝑏

Figure 4: Cryptographic security games for adaptive password checking schemes, offline guessing attacks, and multi-key real-or-random
symmetric encryption security.

Offline guessing attacks. With this in place, we now define the
eventual target of our reduction: a guessing game in which the
adversary obtains an oracle to make guesses against the password
and its 𝑡 cached typos. Observe that for the canonical transcript
checker Checker[Π], the eventual entries in the typo cache (and
wait list) associated to 𝑠𝑛 depend not only on the input transcript
𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛 but also on whether a ciphertext in the typo cache
is erroneously decrypted to something besides ⊥ when using the
wrong password. We can, however, rule out such an event using
the robustness of the SE scheme (see definition above).

In order to simplify the subsequent analysis, we define a modified
transcript checker PChecker[Π] that evolves the state of Π using
only plaintext values. Crucially, rather than relying on a successful
decryption to determine whether a password / typo lies in the cache,
we may now simply compare the input to the plaintext cache values,
thereby eliminating the negligible probability of erroneous state
updates. The pseudocode for PChecker[Π] is given in Figure 5.

The game OFFGUESS𝒢,𝑞
Π,𝒯 is given in Figure 4. The guessing ad-

vantage of an adversary 𝒢 who makes at most 𝑞 queries to the Test
oracle is defined as Advoffguess

Π,𝒯 (𝒢, 𝑞) = Pr[OFFGUESS𝒢,𝑞
Π,𝒯 ⇒ true].

The transcript generator and plaintext checker are first used to
sample a set of cache values; the adversary succeeds if he can
guess any password or typo which lies in the cache. Note that this
game requires the adversary to specify which password each guess
should be checked against. We measure the complexity of guessing
adversaries in terms of the number of Test queries they make.

We assume without loss of generality that all adversaries make
legitimate queries in their respective games (i.e., with values inside
the appropriate domains, and with an index in the range [0, 𝑡] for
MKROR and OFFGUESS).

The analysis. Let Π = (Reg,Chk) denote TypTop’s password
checker, and fix some transcript generator 𝒯 . Our analysis will
show that the OFFDISTΠ,𝒯 security of Π reduces to the guessing
game OFFGUESSΠ,𝒯 . We note that this analysis is independent
of the specific caching scheme used by TypTop; the effect on se-
curity of different such schemes will be surfaced in Section 5.2
when we bound the success probability of an attacker in game
OFFGUESSΠ,𝒯 .

As the first step in our reduction, we introduce PChecker[Π] into
game OFFDISTΠ,𝒯 , via an intermediate game OFFDISTΠ,𝒯 defined
to be identical except we replace Checker[Π] with PChecker[Π],
and then use the values in the final plaintext state 𝑠𝑛 = (S, T,W, 𝛾)
to compute the final (encrypted) challenge state 𝑠𝑛 as specified
by the scheme. We bound the transition between the games by

PChecker[Π](𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)

𝛾←$ Z𝜔 ; (S0,𝒰0)←$ CacheInit(𝑤0) ; T[0]← 𝑤0
For (𝑤̃, 𝑖) ∈ 𝒰0 do T[𝑖]← 𝑤̃

For 𝑘 = 1, . . . , 𝑛 do
𝑏← 0
For 𝑖 = 0, . . . , 𝑡 do

If 𝑤̃𝑘 = T[𝑖] then
𝑏← 1 ; 𝜋←$ Perm(𝜔)

(S𝑘,𝒰𝑘 )←$ CacheUpdt(𝜋, S𝑘−1, (𝑤̃𝑘, 𝑖),W[1], . . . ,W[𝜔])
For (𝑤̃′, 𝑗) ∈ 𝒰𝑘 do T[𝑗]← 𝑤̃′

For 𝑗 = 1, . . . , 𝑡 do T′[𝜋[𝑗]]← T[𝑗]
For 𝑗 = 1, . . . , 𝜔 do W[𝑗]← 𝜀

If 𝑏 = 0 then W[𝛾]← 𝑤̃𝑘 ; 𝛾 ← 𝛾 + 1 mod 𝜔

𝑠𝑛 ← (S, T,W, 𝛾)

Return 𝑠𝑛

Figure 5: The plaintext transcript checking scheme associated to Π
with caching scheme Cache = (CacheInit,CacheUpdt). All entries of
tables T andW are initially set to ⊥ and 𝜀, respectively.

invoking the following lemma, which is implied by a reduction to
the robustness of SE. We give the full proof in Appendix A.3.

Lemma 5.1. Let (𝑝, 𝜏 ) be an error setting with associated transcript
generator 𝒯 , and let Π = (Reg,Chk) be TypTop’s password checker,
with associated plaintext checker PChecker[Π]. LetΠ be implemented
using the canonical PBE scheme PBE[SH, SE] = (E,D) where SE is a
symmetric encryption scheme and SH is a random oracle. Then for
any adversary 𝒜 running in time 𝑇 and making at most 𝑞 queries to
SH, there exist adversaries 𝒜′,ℛ such that

Advoffdist
Π,𝒯 (𝒜) ≤ Advoffdist

Π,𝒯 (𝒜′)+2·Advrob
SE (ℛ)+

(𝑡 · (𝑛 + 1) + 1)2

2(𝜅−1) ,

and, moreover,𝒜′ andℛ run in time 𝑇 ′ ≈ 𝑇 , and𝒜′ makes at most
𝑞 queries to SH. Here 𝑡 denotes the cache size, SE takes as keys uniform
bit strings of length 𝜅, and 𝑛 denotes the length of the transcript.

We now state our main theorem in which we upper bound the
advantage of an attacker 𝒜 in game OFFDISTΠ,𝒯 .

Theorem 5.2. Let (𝑝, 𝜏 ) be an error setting with associated tran-
script generator 𝒯 , and let Π = (Reg,Chk) be TypTop’s password
checker with associated plaintext checker PChecker[Π]. Let Π be im-
plemented using the canonical PBE scheme PBE[SH, SE] = (E,D)
where SE is a symmetric encryption scheme and SH is a random
oracle. Then for any adversary 𝒜 running in time 𝑇 and making at
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most 𝑞 queries to SH, there exist adversaries ℬ, 𝒞,ℛ,𝒢 such that

Advoffdist
Π,𝒯 (𝒜) ≤ Advoffguess

Π,𝒯 (𝒢, 𝑞) + 2 · Advmkror
SE (ℬ, 𝑡) + (𝑡 + 1)2

2ℓsalt

+ 2 · Advrob
SE (ℛ) + 2 · Advror

PKE (𝒞) +
(𝑡 · (𝑛 + 1) + 1)2

2(𝜅−1) ,

and, moreover, ℬ, 𝒞,ℛ,𝒢 run in time 𝑇 ′ ≈ 𝑇 . Here 𝑡 denotes the
cache size, SE takes as keys uniform bit strings of length 𝜅, and 𝑛
denotes the length of the transcript. The salts used to derive keys for
the canonical PBE scheme are of length ℓsalt. Adversary ℬ makes
𝑡 queries to its encryption oracle, and 𝒞 makes 𝜔 + 1 queries to its
encryption oracle, where 𝜔 is the length of the wait list.

The above theorem shows that the distinguishing advantage of
an attacker in game OFFDISTΠ,𝒯 is upper bounded by the prob-
ability that they can guess either the real password or a cached
typo (which comprises the first term of the right hand side of the
above equation) plus the remaining terms which, for the appro-
priate choice of cryptographic components and key sizes, can be
assumed to be negligibly small. This implies that an attacker who
compromises the state of the adaptive checker in an offline attack
learns no information about the underlying password and the login
pattern, unless they can guess one of the cached values. We will
analyze the probability that this occurs in Section 5.2.

We sketch the proof here and defer a detailed treatment to
Appendix A.3. We first apply Lemma 5.1 to transition to game
OFFDISTΠ,𝒯 and thereby introduce the plaintext checker. We then
argue by a series of game hops, beginning with the cache state
𝑠𝑛 as in game OFFDISTΠ,𝒯 with challenge bit 𝑏 = 0. We then
modify the PBE scheme to sample salts without replacement; this
will ultimately be used to ensure that the attacker has to sub-
mit guesses to distinct cache positions when we reduce to game
OFFGUESSΠ,𝒯 . With this in place, we further set a flag which is set
only if the attacker queries one of the cached values to his random
oracle, allowing us to eventually reduce to the success probability
of OFFGUESSΠ,𝒯 . Finally we use the real-or-random ciphertext
security of the SE and PKE schemes to replace all of the real ci-
phertexts in the state of the checker with random ciphertexts, thus
transforming the state into a random one as per game OFFDISTΠ,𝒯
with challenge bit 𝑏 = 1.

On the use of PBKDFs. Above in our analysis we have abstracted
away the details of the slow hash SH and modeled it simply as a
random oracle. This allows accounting for queries to SH as unit cost,
which will suffice for our analysis. One can go further, however,
replacing SH with a true password-based key derivation function
and converting the unit cost to that of computing the hash func-
tion (e.g., the cost of 𝑐 applications of a standard hash function, in
the case that SH is replaced by a hash chain construction such as
PKCS#5). See for example [5, 16, 27] for a discussion of relevant
results.

5.2 Security Against Offline Guessing Attacks
Having reduced the offline security of TypTop to the guessing
game OFFGUESS, we now upper bound the success probability of
an attacker in this game. Recall that 𝑝 denotes the distribution of
passwords chosen by users, 𝒲 denotes the support of 𝑝, and 𝜏

denotes the family of typo distributions for each password 𝑤 ∈ 𝒲 .
When TypTop is used in a given error setting, the probability

that a typo lies in the cache of a given password depends inherently
on the caching policy in use. For an error setting and instantiation of
TypTop, we let 𝜏 denote the induced cache inclusion function where
𝜏𝑤 (𝑤̃) denotes the probability that 𝑤̃ is included in the typo cache
of password 𝑤. We provide a general security analysis of TypTop
in terms of 𝜏 , then concretize our analysis by empirically modeling
𝜏 for a real world error setting and a number of caching policies.
Letting 𝑇 [𝑗] denote the distribution of the typo at position 𝑗 in the
cache, the fact that the set of cached typos are distinct and randomly
permuted implies that Pr[𝑇 [𝑗] = 𝑤̃ |𝑇 [0] = 𝑤] = 1

𝑡 · 𝜏𝑤 (𝑤̃), for
all 0 < 𝑗 ≤ 𝑡.

We would like to establish a class of typo distributions for which
adding typo-tolerance via TypTop offers no security degradation
over an exact checker. Since an exact checker accepts the correct
password only, the analogous guessing game has the adversary
attempting to guess a user’s password with a budget of 𝑞 guesses,
and we denote the success probability achieved by an optimal at-
tacker as 𝜆𝑞 . It is easy to see that the attacker’s best strategy is to
guess the 𝑞 most probable passwords according to the distribution,
so it follows that 𝜆𝑞 =

∑𝑞
𝑖=1 𝑝(𝑤𝑖), where 𝑤1, 𝑤2, . . . denote the

passwords in𝒲 sorted in decreasing order of their probability.
We define the edge-weight of a typo 𝑤̃ under the induced cache

inclusion function 𝜏 to be 𝑏𝜏̃ (𝑤̃) =
∑

𝑤∈𝒲 𝜏𝑤 (𝑤̃). Notice that for a
given typo 𝑤̃, we have that 𝜏𝑤 (𝑤̃) ∈ [0, 1] for each password 𝑤, so
in theory the edge-weight could be very large. We say that an error
setting is 𝑡-sparse with respect to TypTop with cache size 𝑡 and a
particular caching scheme, if for all 𝑤̃ ∈ℳ it holds that 𝑏𝜏̃ (𝑤̃) ≤ 𝑡.
In the following theorem, we show that if an error setting is 𝑡-sparse
then there is no speedup in an optimal offline attack against TypTop
as opposed to an optimal offline attack against an exact checker
ExChk.

Theorem 5.3. Let (𝑝, 𝜏 ) be an error setting with associated tran-
script generator 𝒯 , and let Π = (Reg,Chk) be TypTop’s password
checker with typo cache size 𝑡. Then if the error setting is 𝑡-sparse
with respect to Π, then for any adversary 𝒢, it holds that

Advoffguess
Π,𝒯 (𝒢, 𝑞) ≤ 𝜆𝑞 where 𝜆𝑞 =

𝑞∑
𝑖=1

𝑝(𝑤𝑖)

The full proof is given in Appendix A.4; we provide a brief sketch
here. We begin by splitting the set of guess / index pairs output by
𝒢 into two exclusive sets — a set 𝑍0 consisting of guesses at the real
password in cache position T[0], and a set 𝑍1 consisting of guesses
at the cached typos in positions T[𝑗] where 0 < 𝑗 ≤ 𝑡. The success
probability induced by the former set is simply ∑

𝑤∈𝑍0 𝑝(𝑤). The
success probability contributed by the latter set is the expectation —
over all passwords not already accounted for by the guesses at the
real password in𝑍0 — that one of these cache typo guesses succeeds.
We show — via a general result which allows us to succinctly upper
bound a certain class of summations in which this latter success
probability lies — that the 𝑡-sparsity of the error setting implies that
the guessing advantage arising from both sets is upper-bounded by
𝜆𝑞 , as required.

Are real world error settings 𝑡-sparse? It remains to estab-
lish whether real world error settings are 𝑡-sparse; if so, then
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Figure 6: The change in the maximum edge-weight for different
number of passwords considered from RockYou leak.

Theorem 5.3 shows that we can enjoy the typo-tolerance offered by
TypTop with no loss in offline security compared to an exact checker.
It is easy to see that not every error setting is 𝑡-sparse; e.g., imagine
(𝑝, 𝜏 ) such that all passwords are mistyped to the same typo, with
no other typos possible. This one typo will lie in the cache of every
password with probability close to 1, greatly degrading security
and pushing the maximum edge-weight well above 𝑡.

In this section we use simulations to show that real world error
settings (𝑝, 𝜏 ) are indeed 𝑡-sparse. We model the password distri-
bution 𝑝 using password data observed in the RockYou password
leak [33], which consists of 14 million unique passwords from 32
million users. We sanitized the Rockyou data by removing pass-
words longer than 50 characters (as these are unlikely to be human
chosen passwords) and shorter than 6 characters (as per common
password policy recommendation), and set 𝑝 equal to the resulting
distribution. We model the typo distribution 𝜏 using data on user’s
password typing habits gathered via an MTurk experiment (see
Section 6.1), and the data released with [8]. We describe how we
built this model in Appendix A.2.

To compute the induced cache inclusion function 𝜏 for (𝑝, 𝜏 )
and TypTop with a given caching policy, we simulate the asso-
ciated transcript generator 𝒯 using the password distribution 𝑝
and the typo distribution 𝜏 . For each password 𝑤, we sample 𝑛
strings 𝑤̃1, . . . , 𝑤̃𝑛 according to 𝜏𝑤 . This captures a user with reg-
istered password 𝑤 who makes a series of login attempts including
some typos. We run PChecker (with default parameters) on in-
put (𝑤, 𝑤̃1, . . . , 𝑤̃𝑛, 𝑤), where the final correct password entry is
included to ensure at least one cache update occurs. We ran the
simulation 𝑚 times for each password 𝑤, and set 𝜏𝑤 (𝑤̃) to be the
fraction of these 𝑚 runs that the typo 𝑤̃ lies in the final cache of
the password 𝑤. We repeat this process for all four caching policies
described in Section 4. Via preliminary simulations on a small sub-
set of randomly sampled passwords with different values of 𝑚 and
𝑛, we found that 𝜏𝑤 changed very little for 𝑛 ≥ 1000 and 𝑚 ≥ 200;
therefore we set 𝑛 = 1000 and 𝑚 = 200 for our full simulation.

Running the simulation for each of the passwords in the RockYou
leak would be very slow, so we estimate 𝜏𝑤 using the 𝑘 most proba-
ble passwords in the RockYou leak for 𝑘 ∈ {1, . . . , 10}× 104. With
this in place, we compute the edge-weight 𝑏𝜏̃ (𝑤̃) =

∑
𝑤 𝜏𝑤 (𝑤̃)

for each possible typo 𝑤̃, and report the maximum observed edge-
weight for each 𝑘 and caching policy in Figure 6.

For all four caching policies, we found that 𝜏𝑤 comfortably sat-
isfies the desired 5-sparsity condition (recall that we implement
TypTop with cache size 𝑡 = 5) for all 𝑘 ≤ 105. The largest ob-
served edge-weight was 4.2 for the MFU caching policy, with a

maximum edge-weight of only 3.2 for the PLFU policy which we
shall ultimately choose for deployment (see Section 6).

Moreover, we find that the maximum edge-weight increases
minimally in the range 5 × 104 ≤ 𝑘 ≤ 105 for all caching poli-
cies considered. This, coupled with the fact that the maximum
edge-weights are well below the required threshold of 5.0 for all 𝑘
considered, indicates that if we were able to perform simulations
on the entire password distribution, we would still find the error
setting to be 5-sparse as required.

The top 105 passwords in the RockYou leak share some struc-
tural similarities (e.g., 90% of these passwords contain only letters
and numbers, and only 5% are more than 10 characters in length).
To check that these similarities are not biasing our results, and to
gain further support for our conclusion that the simulated error
setting (𝑝, 𝜏 ) is 5-sparse, we repeat the above experiment using two
different sets of passwords to estimate 𝜏𝑤 and the corresponding
edge-weights. The first set consists of 𝑘 passwords chosen ran-
domly from the support of 𝑝, and the second consists of the 𝑘 most
probable passwords when the top one million passwords are ex-
cluded from consideration. As before, we consider all values of
𝑘 ∈ {1, . . . , 10} × 104.

We observed similar trends to those displayed in Figure 6, except
that in these two experiments the maximum observed edge-weights
are even better (in terms of security) at 2.8 and 3.0 respectively for
the MFU caching scheme, and less for all other caching policies.
This is likely to be because passwords which are distinct in structure
induce more diverse sets of typos. This results in fewer typos being
shared between multiple passwords, which in turn decreases their
observed edge-weights.

To assess the benefit of the admissible typo policy described in
Section 4, we additionally repeated the above experiments with
these restrictions removed one at a time. We found that the error
setting (𝑝, 𝜏 ) no longer remains 5-sparse if any of the three restric-
tions are removed. These simulations emphasize the importance of
the admissible typo policy for security.

5.3 Security Against Online Attacks
We briefly discuss TypTop’s resistance to online guessing attacks,
in which an attacker attempts to impersonate a user via the login
API of the system. The main difference between online and offline
attacks against TypTop is that in the former, each guess the attacker
makes is checked against every entry in the cache, whereas in the
latter it is only checked against the specific cache slot guessed. We
provide full details of these notions and our analyses in Appen-
dix A.5

To estimate the decrease in the online security of TypTop com-
pared to an exact checker, we approximate the success probability
of an optimal online attacker using a greedy algorithm similar to
that used by Chatterjee et. al. in [8], and data from real world pass-
word / typo distributions. We show that security loss is minimal for
all caching schemes (namely a loss of 0.2% for the MFU policy, and
less than 0.1% for all others, including the PLFU caching scheme
which we ultimately choose for deployment). We also describe a
simple blacklisting strategy, in which a small subset of the typos
most beneficial to an attacker are excluded from the typo cache,
and prove that this reduces the security loss to zero.
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Another variety of online attack against adaptive checkers con-
siders an adversary who is able to interleave his guesses with correct
password submissions by the legitimate user. For TypTop these cor-
rect submissions trigger cache updates, so it is possible that one of
the attacker’s guesses, stored in the wait list, is allowed into the
cache.

Recall that we set TypTop’s admissible typo policy so only typos
within DL distance one of the real password are allowed in the
cache. This in itself provides a degree of protection against these
interleaving attacks. We additionally propose a simple countermea-
sure which virtually eliminates them. We can associate an origin
tag (such as an IP in the web login setting, or TTY id in an SSH
login) to each entry in the wait list; only entries originating from
destinations at which the user has successfully authenticated are
allowed to enter the cache. This may exclude the occasional typo
made by a legitimate user from a new location; we defer a detailed
treatment of this attack and countermeasures to future work.

6 EVALUATING UTILITY
In this section, we investigate how successful TypTop is at correct-
ing user’s password typos under different parameter settings and
ultimately select the best performing ones for real world deploy-
ment. To gather data about user’s password typing patterns, we
conducted an experiment on Amazon Mechanical Turk (MTurk).

We define the utility of a typo-tolerant PBAS to be the frac-
tion of typos accepted by the checker taken across the popula-
tion; formally the utility of a PBAS Π is defined Utility(Π) =
# (typos accepted by Π) / # (typos observed). The same utility met-
ric is used by Chatterjee et al. in [8], allowing for a direct comparison
of results.

6.1 Data Collection From MTurk
Our study — designed to capture the password typing behavior of a
user who first registers a password with a service, and then reenters
this password to authenticate himself at subsequent logins — asks
an MTurk worker to choose a password and type it repeatedly over
a period of time. The design is similar to that of Komanduri et al.
in [19], and has two stages: registration and login. Registration
consists of a single MTurk HIT (Human Intelligence Task) in which
we ask the worker to choose a password that is at least 8 characters
long, as if they were registering with an email provider. They are
encouraged to choose a password which is strong and distinct from
any of their existing passwords, and are informed that they must
memorize this password for future logins. As with many registration
forms, they must type the password twice. The user then fills in a
short survey (1–2 questions) as means of distraction, and then is
instructed to attempt to login with their registered password via
a login form. The worker has to type the password correctly to
be able to submit the HIT. An option for a “forgotten password”
link is provided; however this link delays the HIT by 20 seconds,
discouraging them from clicking it frequently. We informed workers
that they must type their passwords manually and avoid browser
auto-fills. We recorded every keypress made inside the password
boxes and used heuristics to reject any submissions that did not
appear to have been typed in.

After this registration step is complete, we create a sequence of

50 user-specific HITs for the worker, which they alone may view
and complete; this allows us to track individual user’s typing habits
over different login attempts, while keeping their chosen password
confidential. Each HIT consists of the same login form used in
the final step of the registration stage. The user must complete
the login, then answer a few questions on their demographics or
password typing behavior. New HITs are created an hour after the
submission of the last HIT to prevent workers from completing
them back-to-back; we notify the workers when a new HIT is
available. The workers are paid $0.05 for each HIT they complete,
with an additional bonus of $0.04 for completing every five HITs.

Data cleansing and demographics. Due to various incompat-
ibility issues with rare browser versions and submissions which
appeared to have been auto-filled, data from 42 workers had to be
discarded. Of the remaining 438 workers, 271 (61.9%) made at least
10 login attempts. In all subsequent analysis, we only consider the
data from these 271 workers. Based on the demographics survey,
we found that 48% of the 271 workers are males and 52% female;
only 35 (13%) of the users are left handed with the rest right handed.
117 (43%) of the users belong to the age group 18–30, 108 (40%)
belong to the age group 31–45, 30 (11%) to the age group 46–60,
and 16 (6%) are above the age of 60.

6.2 Analysis of Passwords and Typos
All of the passwords chosen by the MTurk workers were unique,
with a median and average length of 10 and 10.9 characters respec-
tively, and average estimated zxcvbn strength of 31.5 bits. Most
passwords included special characters, numbers and different case
letters. Overall the passwords chosen by MTurk workers were
stronger than those seen in most password leaks (e.g., passwords
in the RockYou leak have a median password length of 7 charac-
ters and average zxcvbn entropy of 14.2 bits). While we expect our
results to hold for weaker password choices, further studies will
need to be performed to confirm this.

The workers made a median of 30 login attempts per person
and 8,739 login attempts in total; 491 (5.6%) of these contained at
least one incorrect password submission. Within the login attempts,
there were a total of 9,440 password submissions; of these 701 (7.4%)
were incorrect, with 484 (70%) of these incorrect submissions lying
within DL distance 2 of the real password — as per the discussion in
Section 3, we classify these 484 incorrect submissions as typos, and
therefore eligible for typo-tolerance in our subsequent analysis. A
classification of typos into exclusive categories is shown in Figure 7;
our study finds similar user typo behavior to that observed by
Chatterjee et al. in [8]. Looking ahead, we will calculate the utility
of a given implementation of TypTop to be the fraction of these
484 typos accepted by that implementation.

A graph depicting the DL distances of incorrect password sub-
missions is given in Figure 9a (the blue line). In total, 366 separate
login attempts (4.2%) required at least one password resubmission
due to a typo. We found that 167 users (62%) made at least one
typo, with 95 (35%) making at least two typos in two different login
attempts.
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Typo Category % of Typos % of Users

Caps Lock 14 21
Shift first char 4 7
One insertion 12 28
One deletion 12 25
One replacement 31 47
Transposition 4 7
Two insertions 3 5
Two deletions 3 5
Two replacements 10 20
Other 8 16

Figure 7: Categorization of typos observed in the MTurk study. The
middle column gives the percentage of observed typos which were
of each category. The rightmost column gives the percentage of
users who made a typo of that category.

6.3 Simulation Setup
We perform simulations using the data from our MTurk study to
evaluate the utility of various combinations of cache sizes, caching
schemes, and typo admission policies. In more detail, we consider:
∙ Cache size: While a larger cache allows us to accept more

typos and increases utility, this benefit needs to be weighed up
against the greater computational power required to process
larger caches, and the potential degradation in online security
from allowing more typos to authenticate. We consider caches
of size 𝑡 for 𝑡 ∈ {2, 3, 5} in our simulations.

∙ Caching Schemes: We consider all of the caching schemes
discussed in Section 4: LRU, LFU, PLFU, MFU, and Best-𝑡. To see
how TypTop compares with the relaxed checking approach of
Chatterjee et al., we also run simulations for the relaxed checker
using the Top-𝑡 corrector functions as per [8], which in order of
their efficacy are: flipping the case of all characters, flipping the
case of the first character, removing the last character, removing
the first character, and applying shift to switch the last digit to
a symbol.

∙ Typo admission policy: As discussed in Section 4, admissible
typos must satisfy three criteria:
(1) DL(𝑤, 𝑤̃) ≤ 𝑑; (2) 𝜇𝑤̃ > 𝑚; and (3) 𝜇𝑤̃ > 𝜇𝑤 − 𝜎. We
investigated all combinations of the values 𝑑 ∈ {1, 2}, 𝑚 ∈
[0, 40], and 𝜎 ∈ [0, 9].

∙ Warming up the cache: Since warming up the cache allows
us to tolerate typos from the very first login, it can only in-
crease utility. Additionally our security simulations in Section 5,
which were all performed with warmed caches, indicate that
this practice does not negatively impact security. As such we
warm caches with the 𝑡 most probable typos according to our
typo model (see Appendix A.2).
For each set of parameter choices in the scope of the above, we

simulate each worker’s login behavior by replaying their password
submissions to the password checker being evaluated. We report the
utility for each of these configurations below; recall that the utility
of a checkerΠ is defined to beUtility(Π) = # (typos accepted by Π) /
# (typos observed), where both numerator and denominator are
taken across all users.

CP
𝑑 = 1 𝑑 = 2

𝑡=2 𝑡=3 𝑡=5 𝑡=2 𝑡=3 𝑡=5

LFU 18 21 26 19 24 31
PLFU 19 22 27 22 26 32
MFU 18 21 26 19 25 30
LRU 17 21 27 19 25 32
Best-𝑡 16 19 23 16 19 23
Top-𝑡 18 19 22 18 19 22

Figure 8: The utility of different caching policies (CP), cache sizes
(𝑡) and edit distance cutoff (𝑑) for admissible typos, when applied to
the login transcripts of all MTurk workers who made at least one
typo. We impose no guessability restrictions on admissible typos.

6.4 Results
Caching policies and cache sizes. We first compare the efficacy
of different caching schemes, cache sizes 𝑡, and DL distance thresh-
olds 𝑑. For these simulations, we impose no guessability restrictions
on admissible typos, setting 𝑚 = 0 and 𝜎 =∞, as this will maxi-
mize the number of admissible typos. The utility of each strategy is
shown in Figure 8. We see that larger cache sizes (which allow us to
cache and tolerate more typos) correspond to an increase in utility.
Similarly increasing the DL distance threshold (and with it the set
of typos considered for inclusion in the cache) also increases utility.
However, we conjecture that allowing typos with DL distance 2 will
degrade security enough to outweigh the utility benefits (e.g., the
resulting error settings are less likely to be 𝑡-sparse), so we select
𝑡 = 5 and 𝑑 = 1 for further analysis and deployment.

For caching schemes, perhaps unsurprisingly, the utility of re-
laxed checking with Top-𝑡 correctors is very similar to that of the
static policy Best-𝑡 — the former performs better for 𝑡 = 2, while the
latter performs better for 𝑡 = 5. This is because in our unoptimized
typo model, the common error of flipping the case of the first char-
acter often does not appear among the two most probable typos for
a given password, whereas it does get corrected by Top-2 correctors;
the resulting typos missed by Best-2 allows Top-2 to outperform
it. However for 𝑡 = 5, the benefit of the password-specific typo
correction offered by Best-5 emerges, catching typos that the Top-5
correctors (which are chosen based on population-wide analysis)
cannot correct. With more data about typos and future refinement
of the parameters should overcome this small difference.

Because each individual worker made only a small number of
incorrect submissions in our study, the choice of caching policy had
little observable impact on utility for cache sizes 𝑡 ≥ 3. However
the variation is more noticeable for cache size 𝑡 = 2. As anticipated
LRU performs less well than the frequency based caching policies.
Among the latter set, PLFU performs the best. Surprisingly, we also
see that MFU underperforms PLFU; however this could be due to
the fact that we did not receive enough incorrect submissions to
see the benefit of MFU emerge, and conjecture that in a longer term
study, MFU may outperform PLFU.

Due to strong performance for utility and security (as discussed
in Section 5), and the cache size restraints, (which make MFU un-
suitable for practical purposes), we choose PLFU as the caching
policy for deployment, with a cache size of 𝑡 = 5 and DL distance
threshold 𝑑 = 1.

Different guessability restrictions. Next we investigate the im-
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Figure 9: (a) CDF of fraction of incorrect password submissions within a given DL distance of the real password. (b) CDFs of zxcvbn strength
of real passwords compared to typos in the MTurk study. (c),(d) The change in utility for different absolute guessability thresholds (𝑚) and
relative guessability thresholds (𝜎). The values of other parameters are specified above each chart.

pact of different admissible typo parameters 𝑚 and 𝜎 on util-
ity (recall that for typo 𝑤̃ to be considered for inclusion in the
cache of password 𝑤, it must be the case that 𝜇𝑤̃ > 𝑚, and
𝜇𝑤̃ > 𝜇𝑤 − 𝜎). We begin by considering the guessability cutoff
parameter 𝑚 ∈ {0, . . . , 40}. We perform simulations for TypTop
implemented with cache size 𝑡 = 5, edit distance threshold 𝑑 = 1,
but without any relative guessability cutoff imposed (𝜎 =∞). We
compute utility for all guessability cutoff values 𝑚 ∈ {0, . . . , 40}
and all caching policies; the results are shown in Figure 9c. As ex-
pected, utility decreases as the guessability cutoff increases and
fewer typos are considered for inclusion in the cache. Notably, we
see the utility decrease rapidly for 𝑚 > 10. This is because, as
shown in Figure 9b, nearly 5% of the observed typos have an esti-
mated security strength of less than 10 bits, indicating that setting
𝑚 = 10 gives the maximum security benefit without significantly
degrading utility.

We then investigated the effect on utility of different relative
guessability cutoff parameter settings 𝜎. We perform simulations
with the same parameter settings as above, except we now fix
𝑚 = 10. We compute utility for all relative guessability cutoff pa-
rameters 𝜎 ∈ [0, 9] and all caching policies; the results are shown in
Figure 9c. For most of the caching policies, we found no significant
improvement on utility for 𝜎 > 3. This is to be expected, given
that the guessability of passwords and typos are very similar (as
shown in Figure 9b). Since increasing the guessability cutoff further
increases the possibility that a significantly more guessable string
enters the cache with minimal benefit to utility, we choose 𝜎 = 3
to optimize the balance between utility and security.

Users and logins benefited. Among the 167 users who made at
least one typo during their submission (recall, here a typo is an
incorrect submission within edit distance 2 of the real password),
75 users (44.9%) would benefit by having at least one of their typos
accepted by TypTop with the PLFU caching policy and the parame-
ter setting described above. In contrast, only 49 users (29.3%) would
receive this benefit from the relaxed checker of [8] implemented
with the Top-5 correctors. Of the 366 login attempts containing
at least one typo, 106 (29%) of these would require at least one
less password resubmission if TypTop were used as the password
checker. This saves an average of 5 seconds per login attempt for
the users making at least one typo, and an average of 12 seconds
for the users who made two typos in two different logins. In our
small MTurk study (271 users), we find that TypTop would save

23 person-minutes of login time, and with larger user populations
expect to see this time saved grow to several person-months.

We test the null hypothesis that TypTop (with the parameters
decided above) does not outperform relaxed checking with Top-𝑡
correctors in tolerating typos for a randomly chosen user using a
Wilcoxon signed-rank test [36]. We found that we can reject the
null hypothesis with 𝑝-value < 0.001.

7 A CASE STUDYWITH TYPTOP
Password authenticated personal device logins are a key scenario
in which users may benefit from the typo-tolerance offered by
TypTop. In this section we discuss how to build TypTop for typo-
tolerant device logins in Mac OS X and Linux based systems. We
deploy this prototype on 25 volunteers’ machines, obtaining data
on their password typing behaviors, and report on the performance
of TypTop in a real world deployment.

Implementation of TypTop. We build TypTop as a pluggable
authentication module (PAM) [30] for Unix based systems. The
state of TypTop for each user is stored in a separate file with the
same permissions as the /etc/shadow file, which is used to store
users’ password hashes and is readable only by the root. The Chk
procedure is implemented in C++ and installed with similar file
permissions to passwd, a Linux utility tool which is used to update
a user’s password. Via modifying the PAM configuration files, we
set TypTop to be engaged on almost all applications which require
password based authentication. TypTop is very simple to install,
but requires root privileges.

As detailed in Section 6, we implement TypTop with parameters:
{CP=PLFU, 𝑡=5, 𝑑=1, 𝑚=10, 𝜎=3}. There is currently no option to
customize the parameters; we plan to introduce restricted control
for system admins in the next version.

We tested the computational overhead of TypTop in an Ubuntu
14.04 laptop with Intel Core M processor and 8 GB of memory.
The size of the state-file is 13KB. The average turnaround time is
110 milliseconds for a successful authentication (i.e., the correct
password or a cached typo is entered), and 250 milliseconds for an
incorrect submission. For traditional Ubuntu logins (e.g., with su),
login takes less than 1 millisecond.

The main computational overhead incurred by TypTop is due to
our use PBKDF2 [16] with 20,000 iterations of SHA-256 for each
computation of the hash function SH, while (somewhat surpris-
ingly) a default Ubuntu laptop uses only 1 iteration of SHA-256 for
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its hash computation. Current standards [16, 29] recommend using
at least 5,000 iterations of SHA-256 to hash passwords.

Chk will always perform the maximum number of hashes for an
incorrect submission, which is why we see a longer turn around
time for failed authentications. However, this overhead is well be-
low the noticeable limit for users. To avoid timing side channels,
we might want to compute the maximum number of hash compu-
tations for every login attempt (successful or failed) to make these
turnaround times constant.

Pilot deployment of TypTop. To gather data on TypTop’s effi-
cacy, we modify the implementation of TypTop slightly to allow
confidential logging of users’ password typing behavior.

The logging module works as follows. During password regis-
tration, two random 16-byte strings are generated and stored in
the state of TypTop; the first is used as an HMAC key to compute
a unique identifier for each submitted password (or typo), while
the second is used as a user-device identifier. With every password
submission, we log the HMAC identifier of the submission, along
with the DL distance from the real password, the relative guessabil-
ity, and whether the typo could have been corrected using Top-5
correctors (to form a comparison between TypTop and relaxed
checking). This allows us to learn the transcript of password and
typo submissions — and thus simulate a run of TypTop — while
never learning the actual strings entered. Some of these values (e.g.,
DL distance) require both the underlying password and the typo
to process; we back-fill these values after a successful authentica-
tion when the encrypted caching scheme state and wait list are
decrypted. To simulate the Best-5 static caching scheme, we also
log the identifiers of the five most probable typos of the password.

The log and corresponding user identifier are uploaded to a
server via an HTTPS post request every 10 logins, after which
the uploaded log is deleted from the user’s laptop. The key used
to generate the HMAC identifiers is never uploaded, making it
impossible to brute-force recover passwords given the information
uploaded. Users can disable the logging and / or uploading feature
at any time during the study without any effect on the functionality.

Data collection and analysis. We initially advertised our study
via two university mailing lists and a number of social media groups.
However, we received a lower response rate than anticipated, as
users were initially reluctant to run research code as their primary
mode of authentication. Therefore, while not optimal, we used
snowball sampling [4] to increase participation in our study.

Study participation is anonymous: we do not know the exact set
of volunteers who installed TypTop, although we can deduce the
number of distinct machines on which TypTop was installed from
the logs generated. In subsequent analysis, we assume that each
user installed TypTop on only one machine. We collected data from
25 users over a period of 22–100 days (different users have varying
data collection periods depending on when they joined the study,
and how long they chose to participate for). TypTop was used for
a median of 27 days.

We observed a total of 4,563 password submissions during the
study, with a median of 103 submissions per user. The average user
types their password more than five times a day, and incorrectly
15% of the time. We found that 93% of these incorrect submissions

are within DL distance two of the real password and thus are classi-
fied as typos. The fraction of incorrect submissions that constitute
typos is larger than that observed in the MTurk study (70%); this
is probably because MTurk workers created their ‘passwords’ for
the study, and so were more likely to make high DL distance errors
due to misremembering them.

In total we observed 501 typos, of which 316 (63%) are toler-
ated by TypTop. This is significantly higher than the 122 (22%) that
would be tolerated by the relaxed checker with Top-5 correctors.
However the benefit of typo correction varies across users. We
observed 2 users who received an especially great benefit from Typ-
Top. They used TypTop for over 45 days, during which they typo-ed
their password 24% of the time — we found TypTop corrected 85%
of their typos, whereas the Top-5 corrector functions corrected
virtually none. For the remainder of the participants, we found that
TypTop and the Top-5 correctors performed roughly the same. We
believe this is because personal machines in university settings
tend to have very lenient password policies (if any policy at all),
meaning users pick simpler passwords whose typos are more likely
to be among those corrected by the Top-5 correctors. We expect to
see the performance benefit of TypTop emerge in settings where
users must pick stronger and less readily correctable passwords
(e.g., over 12 characters), and lock / unlock their computers many
times a day. We simulated other caching policies on the collected
data, and observed roughly the same performance.

These results suggest that personalized typo-tolerance may be
very beneficial to users who are especially typo-prone, and that this
benefit increases the longer the system is used. The sample size of
our initial pilot deployment is too small to allow us to draw more
general conclusions at this stage; as such we are planning a study
with more participants and which runs for a longer period of time.
We will be publishing TypTop as a public, open-source project to
facilitate a study with a broader set of participants.

8 CONCLUSION
We introduce the notion of personalized typo-tolerant password
checkers, which adapt over time to correct the typos made most
frequently by the individual user. We design and build an adaptive
password checking scheme called TypTop, which securely caches
incorrect password submissions that pass a policy check on what
forms of typos to allow. We formalize a cryptographic security no-
tion for such schemes, and show a formal reduction of our scheme’s
security to the difficulty of brute-force cracking attacks against the
registered password or the typos entered into the typo cache. We
give simple criteria that, if met, ensure no security loss in offline
attack and negligible security loss in online attack, and empirically
verify that real world password and typo distributions satisfy this
requirement. Simulations conducted with data gathered via a study
on Amazon MTurk suggest that TypTop will outperform existing
approaches to typo-tolerant password checking, and a small pilot
deployment suggests that TypTop can provide a substantial usability
benefit to especially typo-prone users.
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A APPENDIX
A.1 Benefits of the PLFU Caching Scheme
We now describe the intuition behind the utility benefits of the
probabilistic least frequently used (PLFU) caching scheme over
its deterministic counterpart (LFU). Recall that during each PLFU
cache update, the cached typo 𝑤̃𝑜 is replaced with the wait listed
typo 𝑤̃𝑛 with probability 𝜈 = 𝑓𝑤̃𝑛

/(𝑓𝑤̃𝑛
+ 𝑓𝑤̃𝑜

), where 𝑓 denotes
the frequency count of the typo in the subscript. The main goal
of the PLFU caching scheme is to let the cache be agile enough to
adapt and change, while simultaneously increasing the likelihood
that the most useful typos ultimately stay in the cache.

The PLFU scheme has two key benefits over the non-probabilistic
LFU scheme. First, it makes it more likely that a typo which is
repeated in small amounts over many login attempts (and thus is
likely to increase usability if cached) ultimately enters the cache,
as opposed to one which appears multiple times in a single (and
possibly anomalous) login attempt. For example, if a typo 𝑤̃𝑛 is
repeated once across 𝑟 login attempts in which the least frequently
used typo 𝑤̃𝑜 is not entered at all, the probability that 𝑤̃𝑛 will not
enter the cache is approximately

(
1− 1/(1 + 𝑓𝑤̃𝑜

)
)𝑟

, which is less
than 1/𝑒 if 𝑟 ≈ 𝑓𝑤̃𝑜

> 2. Conversely, if the same typo appears
𝑟 ≈ 𝑓𝑤̃𝑜

times in a single login attempt, the probability that it does
not then enter the cache is

(
1− 𝑟/(𝑓𝑤̃𝑜

+ 𝑟)
)
≈ 1/2 > 1/𝑒.

Second, by setting the frequency count for the newly cached
typo to 𝑓𝑤̃𝑛

+𝑓𝑤̃𝑜
, the PLFU scheme increases the eventual stability

of the cache, as the increasing frequency counts of the cached typos
mean that the probability that they are replaced by a wait listed typo
decreases over time. In contrast the LFU caching scheme updates
the cache on each login attempt, increasing the chance that useful
typos are accidentally evicted from the cache.

A.2 Modeling the Typo Distribution 𝜏𝑤
In this section, we describe the procedure with which we built
the typo model 𝜏 used for the simulations on Page 8. We use a
supervised training method to learn the typo distribution using the
typo data collected in our MTurk study (Section 6.1) and the data
released with [8]. Our approach is inspired by that of Houser et
al. [14].

A simple way to build the typo model would be to compute the
frequency distribution of typos for each password. However, our
data set contains only 30, 000 typos of 20, 000 distinct passwords in
total. As such, both the set of passwords on which we have typo data,
and the amount of typo data we have for the individual passwords,
is too small to build a good frequency based model. Therefore,
we make two simplifying assumptions about typographical errors:
that a typo of a given character in a password is influenced by the
characters very close to it, and that this typo is independent of the
characters in the remainder of the string.

Given a list of pairs of passwords and typos, we first align each
pair by inserting a special symbol “␣” zero or more times (as re-

quired), such that the resulting pair of strings are of the same
length, and have the same DL distance as the originals. For exam-
ple, the password-typo pair (password, pasword) may be aligned
to (password, pa␣sword). If there are multiple alignments possible,
we consider all of them. For each of the aligned password-typo
pairs (𝑤, 𝑤̃), we take the set of substring pairs (𝑤𝑖:𝑗 , 𝑤̃𝑖:𝑗 ) for all
0 ≤ 𝑗 ≤ 𝑘; 0 ≤ 𝑖 ≤ |𝑤| − 𝑗, and compute the frequency distribu-
tion of those pairs across all the aligned password-typo pairs. Here
|𝑥| denotes the length of the string 𝑥; 𝑥𝑖:𝑛 denotes the sub-string
of length 𝑛 of 𝑥 beginning at location 𝑖 ≤ |𝑥|−𝑛; and 𝑘 is a param-
eter of the model. We let 𝐸 denote the frequency distribution of
these pairs of strings, and will use it in subsequent steps to compute
the typo probability of a given password.

We define an edit as a triplet (𝑖, 𝑙, 𝑟), where 𝑖 denotes a location
in the string, and 𝑙 and 𝑟 are strings of length at most 𝑘. An edit
(𝑖, 𝑙, 𝑟) is valid for a password 𝑤 if 𝑤𝑖:|𝑙| = 𝑙. Transforming a
password 𝑤 by applying a valid edit (𝑖, 𝑙, 𝑟) means, replacing 𝑤𝑖:|𝑙|
with the sub-string 𝑟. For a given password 𝑤 we let 𝐸𝑤 denote
the set of all possible valid edits in the set Z|𝑤| × 𝐸. We assign
weights to each edit (𝑖, 𝑙, 𝑟) in 𝐸𝑤 as the frequency of the pair (𝑙, 𝑟)
according to the frequency distribution 𝐸, divided by the number
of locations 𝑗 ∈ [0, |𝑤|] for which (𝑗, 𝑙, 𝑟) is a valid edit for 𝑤. The
weights are then normalized to define a probability distribution 𝑃𝑤

over the valid edits of 𝑤.
With this in place, the process of sampling a typo of a password

𝑤 according to the typo model 𝜏𝑤 is reduced to sampling an edit
from 𝑃𝑤 and applying it to 𝑤. Note that there could be multiple
edits of a password 𝑤 which result in the same typo 𝑤̃. Thus, 𝜏𝑤 (𝑤̃)
is equal to the sum of the probabilities of all edits that transform 𝑤
into 𝑤̃.

Efficacy of the typo model. We use the average log likelihood
— which is a typical measure for evaluating generative models —
to gauge the efficacy of our typo model. We compare our model
against the naive uniform model, that assigns uniform probabilities
to all the typos. Note, a model is better if the average log likelihood
value is higher.

We perform a cross validation of our model over five 80:20 train-
test splits of the data set of password / typo pairs. For each split,
we train our typo model using the training data, and compute the
average log likelihood of test samples as the average of log 𝜏𝑤 (𝑤̃)
taken over all pairs (𝑤, 𝑤̃) in the test data. We find that the average
log likelihood of the test data according to our model is –7.2 with
standard deviation 0.4, which is much better than base uniform
model, which obtains an average likelihood of –11. This suggests
that our model captures the real world typo distribution fairly well.

A.3 Proofs from Section 5

Proof of Lemma 5.1. We begin by proving Lemma 5.1 which we
shall utilize in subsequent analysis.
Proof: We argue by a series of game hops. Let game G0 denote
game OFFDIST𝒜

Π,𝒯 (as defined in Figure 4), so

Advoffdist
Π,𝒯 (𝒜) = 2 ·

����Pr [ G0 ⇒ 1 ]− 1
2
���� .

Recall that the cache of TypTop stores up to (𝑡 + 1) ciphertexts,
each of which corresponds to a password-based encryption (using
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the canonical PBE scheme PBE[SH, SE]) of the secret key of the
PKE scheme 𝑠𝑘 under the real password and each of the (at most 𝑡)
cached typos.

We define a new game G1 which is identical to G0 except that
the keys sampled to encrypt cached ciphertexts are now sam-
pled without replacement. In more detail, when a new typo is
cached during the evolution of the challenge state 𝑠𝑛, a salt is
chosen sa←$ {0, 1}ℓsalt , and the cached ciphertext is computed as
𝑐←$ E(SH(sa||𝑤̃), 𝑠𝑘). In game G0 oracle SH responds to fresh
queries of this form by returning k𝑗 ←$ {0, 1}𝜅, whereas in G1
oracle SH samples these keys without replacement. In the distin-
guishing phase of G1, SH returns to sampling keys with replace-
ment. These games run identically unless two keys sampled during
the computation of these cached ciphertexts collide. Since at most
(𝑡 · (𝑛+ 1) + 1) such keys are sampled while processing a transcript
of length 𝑛 (where the (𝑡 + 1) term corresponds to the maximum
number of keys sampled to encrypt the ciphertexts in the initial
cache, and the 𝑡 · 𝑛 term arises as processing each of the 𝑛 typos in
the transcript can introduce at most 𝑡 new ciphertexts in the typo
cache), it follows that

2 · |Pr [ G0 ⇒ 1 ]− Pr [ G1 ⇒ 1 ]| ≤ (𝑡 · (𝑛 + 1) + 1)2

2𝜅 .

Next we define game G2 which is identical to G1 except we re-
place Checker[Π] with PChecker[Π] and a sequence of statements
that encrypt the final typo cache, state and wait list returned by it
as specified by the scheme. Notice that these games run identically
unless during the process of updating the state we find two distinct
keys k1 , k2 such that Dk2 (Ek1 (𝑠𝑘)) ,⊥ where 𝑠𝑘 denotes the
secret key of the PKE scheme which is encrypted under each of the
cached typos. As such the fundamental lemma of game playing [3]
implies that the gap between game G1 and G2 is upper-bounded by
the probability that this event occurs. Notice that we can further
upper bound this probability by Advrob

SE (ℛ) as follows. Consider
an adversaryℛ in game ROBℛ

SE who simply executes the game G1,
simulating SH by sampling random strings without replacement,
and checking if there ever exists a typo cache ciphertext Ek1 (𝑠𝑘)
that decrypts under some subsequently sampled k2 , k1 (recall
that since G1 samples without replacement, all keys are distinct).
The gap between these two games is upper bounded by the proba-
bility that this event occurs, and so the robustness of the encryption
scheme implies that

2 · |Pr [ G1 ⇒ 1 ]− Pr [ G2 ⇒ 1 ]| ≤ 2 · Advrob
SE (ℛ) .

Next we define game G3 which is identical to G2 except we return
SH to sampling keys with replacement. An analogous argument
to that above bounding the probability that two keys collide en-
sures that the gap between these games is again bounded above by
(𝑡·(𝑛+1)+1)2

2𝜅 .
Notice that G3 is identical to game OFFDISTΠ,𝒯 , and so may

be perfectly simulated by an attacker 𝒜′ in this game. On input
challenge state 𝑠𝑛, attacker 𝒜′ passes this state to 𝒜 in game G3,
simulating 𝒜’s random oracle by querying his own oracle SH, and
returning the responses. Since 𝒜′ makes precisely the same set of
oracle queries as 𝒜, it follows that if 𝒜 makes at most 𝑞 queries,
then 𝒜′ does also. At the end of the game 𝒜′ outputs whatever bit

𝒜 does, and so

2 ·
����Pr [ G3 ⇒ 1 ]− 1

2
���� = Advoffdist

Π,𝒯 (𝒜′) ,

concluding the proof.

Proof of Theorem 5.2. We now provide the full proof of Theo-
rem 5.2.
Proof: Consider an adversary 𝒜 in game OFFDIST𝒜

Π,𝒯 . Recall
that by Lemma 5.1, there exist adversaries 𝒜′ andℛ both running
in time approximately that of 𝒜 and where 𝒜′ makes the same
number of oracle queries as 𝒜 such that,

Advoffdist
Π,𝒯 (𝒜) ≤ Advoffdist

Π,𝒯 (𝒜′)+2 ·Advrob
SE (ℛ)+

(𝑡 · (𝑛 + 1) + 1)2

2(𝜅−1) ;

so it is sufficient to upper bound the success probability of an
attacker 𝒜′ in game OFFDIST𝒜′

Π,𝒯 . We argue by a series of game
hops, shown in Figure 10. We begin by defining game G0, which is
identical to game OFFDIST𝒜′

Π,𝒯 with 𝑏 = 0. We also set two flags,
bad-sa and bad neither of which affect the outcome of the game.

Next we define game G1 which is identical to G0 except the
salts used by the canonical PBE scheme to compute the cipher-
texts in the challenge state are now sampled without replacement.
Games G0 and G1 run identically unless the flag bad-sa is set to
true. Since there are at most 𝑡+ 1 salts sampled, the birthday bound
and the fundamental lemma of game playing therefore imply that
this transition is bounded above by (𝑡+1)2

2ℓsalt+1 , and so

|Pr [ G0 ⇒ 1 ]− Pr [ G0 ⇒ 1 ]| ≤ Pr [ bad-sa = true in game G1 ]

≤ (𝑡 + 1)2

2ℓsalt+1 .

We now define game G2 which is identical to G1 except we change
the way in which the random oracle SH responds to queries. Now
if in the guessing phase 𝒜 queries SH on a salt / password pair
(sa, 𝑤) on which it was queried during the computation of the
challenge state 𝑠𝑛, it responds with an independent random string
k←$ {0, 1}𝜅 updating its hash table to this new value, as opposed
to the previously used value. Accordingly in G2 the keys k used by
the SE encryption scheme are now random and independent of the
underlying password. Games G1 and G2 run identically unless 𝒜
manages to guess and query SH on one of the cached passwords and
corresponding salt; an event we mark by setting a flag bad = true.
The fundamental lemma of game playing then implies that,
|Pr [ G1 ⇒ 1 ]− Pr [ G2 ⇒ 1 ]| ≤ Pr [ bad = true in game G2 ] ,

a probability which we shall upper bound in a later game.
Next we define game G3, which is identical to G2 except we

replace all symmetric encryptions with random ciphertexts. This
transition is bounded by a reduction to the MKROR security of SE.
Formally, let ℬ1 be an adversary in game MKRORℬ1,𝑡

SE with chal-
lenge bit 𝑏′. Adversary ℬ1 runs (𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)←$ 𝒯 , followed
by 𝑠𝑛←$ PChecker[Π](𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛), and generates a public /
secret key pair (𝑝𝑘, 𝑠𝑘)←$𝒦. ℬ1 then constructs the encrypted
state 𝑠𝑛 as follows. ℬ1 first chooses sa𝑖←$ {0, 1}𝜅 and uses his
RoR oracle to compute 𝑐𝑖 = RoR(𝑖, 𝑠𝑘) for 𝑖 = 0, . . . , 𝑡, placing
the salt / ciphertext pairs in the appropriate positions in the cache.
(Recall that from game G2, the symmetric keys used to create the
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proc. main//𝐺0, 𝐺1, 𝐺2

(𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)←$ 𝒯
𝑠𝑛←$ PChecker[Π](𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)
parse 𝑠𝑛 as (S, T,W, 𝛾)
(𝑝𝑘, 𝑠𝑘)←$𝒦
For 𝑖 = 0, . . . , 𝑡

sa𝑖←$ {0, 1}ℓsalt

If sa𝑖 ∈ {sa0, . . . , sa𝑖−1}
bad-sa← true
sa𝑖←$ {0, 1}ℓsalt/{sa0, . . . , sa𝑖−1}

If T[𝑖] , ⊥
k𝑖← SH(sa𝑖 ‖ T[𝑖])
𝑐𝑖←$ Ek𝑖 (𝑠𝑘)
T[𝑖]← (sa𝑖, 𝑐𝑖)

Else
𝑐𝑖←$ 𝒞E
T[𝑖]←$ (sa𝑖, 𝑐𝑖)

𝑐←$ ℰ𝑝𝑘 (S)
For 𝑗 = 0, . . . , 𝜔 do

W[𝑗]←$ ℰ𝑝𝑘 (W[𝑗])
𝑠𝑛 ← (𝑝𝑘, 𝑐, T,W, 𝛾)
𝑏′←$𝒜SH (𝑠𝑛)
Return 𝑏 = 𝑏′

proc. main//𝐺3, 𝐺4

(𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)←$ 𝒯
𝑠𝑛←$ PChecker[Π](𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)
parse 𝑠𝑛 as (S, T,W, 𝛾)
(𝑝𝑘, 𝑠𝑘)←$𝒦
For 𝑖 = 0, . . . , 𝑡

sa𝑖←$ {0, 1}ℓsalt

If sa𝑖 ∈ {sa0, . . . , sa𝑖−1}
bad-sa← true
sa𝑖←$ {0, 1}ℓsalt/{sa0, . . . , sa𝑖−1}

𝑐𝑖←$ 𝒞E
T[𝑖]← (sa𝑖, 𝑐𝑖)

𝑐←$ ℰ𝑝𝑘 (S)
𝑐←$ 𝒞ℰ
For 𝑗 = 0, . . . , 𝜔 do

W[𝑗]←$ ℰ𝑝𝑘 (W[𝑗])
W[𝑗]←$ 𝒞ℰ

𝑠𝑛 ← (𝑝𝑘, 𝑐, T,W, 𝛾)
𝑏′←$𝒜SH (𝑠𝑛)
Return 𝑏 = 𝑏′

proc. main//𝐺5 ,G6

(𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)←$ 𝒯
𝑠𝑛←$ PChecker[Π](𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)
parse 𝑠𝑛 as (S, T,W, 𝛾)
(𝑝𝑘, 𝑠𝑘)←$𝒦
For 𝑖 = 0, . . . , 𝑡

sa𝑖←$ {0, 1}ℓsalt

If sa𝑖 ∈ {sa0, . . . , sa𝑖−1}
bad-sa← true
sa𝑖←$ {0, 1}ℓsalt/{sa0, . . . , sa𝑖−1}

𝑐𝑖←$ 𝒞E
T[𝑖]← (sa𝑖, 𝑐𝑖)

𝑐←$ 𝒞ℰ
For 𝑗 = 0, . . . , 𝜔 do

W[𝑗]←$ 𝒞ℰ
𝑠𝑛 ← (𝑝𝑘, 𝑐, T,W, 𝛾)
𝑏′←$𝒜SH (𝑠𝑛)
Return 𝑏 = 𝑏′

SH(sa ‖𝑤) // 𝐺0, 𝐺1 𝐺2,...,5 , 𝐺6

𝑌 ←$ {0, 1}𝜅
If SH[sa ‖𝑤] =⊥

SH[sa ‖𝑤]← 𝑌

If ∃𝑖 : (sa ‖𝑤) = (sa𝑖 ‖ T[𝑖])
bad← true; SH[sa ‖𝑤]← 𝑌

Return SH[sa ‖𝑤]

Figure 10: Games used in the proof of Theorem 5.2.

ciphertexts in 𝑠𝑛 are random and independent of the salts and un-
derlying passwords, and so identically distributed to those used by
ℬ1’s RoR oracle). Next, ℬ1 encrypts S and the entries in W under
the public key 𝑝𝑘, and assembles challenge state 𝑠𝑛 accordingly.
Finally ℬ1 passes 𝑠𝑛 to 𝒜′, simulating queries to SH by returning
a random bit string to each fresh query, and at the end of the game
outputs whatever bit 𝒜′ does. Notice that if 𝑏′ = 1 and ℬ1 is re-
ceiving real encryptions from the RoR oracle then this perfectly
simulates G2, and if 𝑏′ = 1 this perfectly simulates G3. It follows
that,

|Pr [ G2 ⇒ 1 ]− Pr [ G3 ⇒ 1 ]|
= |Pr

[
ℬ1 ⇒ 1 | 𝑏′ = 0

]
− Pr

[
ℬ1 ⇒ 1 | 𝑏′ = 1

]
|

≤ Advmkror
SE (ℬ1, 𝑡).

We can similarly show that the probability that bad is set in G3 is
close to the probability that it is set in G2 via a separate reduction
to the MKROR security of SE. Formally let ℬ2 be an adversary in
game MKRORℬ2

SE,𝑡.ℬ2 constructs the simulated state 𝑠𝑛 as described
above, using its RoR oracle to compute the symmetric encryptions
in the state. However now when ℬ2 passes 𝑠𝑛 to 𝒜′, it watches
the queries𝒜′ makes to SH. If there exists a query (sa𝑖||𝑤̃𝑖) where
𝑖 ∈ [0, 𝑡] such that 𝑤̃𝑖 is equal to the typo corresponding to position
𝑖 in the cache (in which case the flag bad ← true), ℬ2 outputs 1;
else it returns 0. By the same argument made above, it follows that,

Pr [ bad = true in G2 ] ≤ Pr [ bad = true in G3 ]
+ |Pr

[
ℬ2 ⇒ 1 | 𝑏′ = 0

]
− Pr

[
ℬ2 ⇒ 1 | 𝑏′ = 1

]
|

≤ Pr [ bad = true in G3 ] + Advmkror
SE (ℬ2, 𝑡) .

We may now define a third adversary ℬ in game MKRORℬ,𝑡
SE who

flips a bit and depending on the outcome runs either ℬ1 or ℬ2 and
then outputs the same bit as that adversary. It is easy to see that
Advmkror

SE (ℬ, 𝑡) = 1
2 · (Adv

mkror
SE (ℬ1, 𝑡) +Advmkror

SE (ℬ2, 𝑡)), and so it
follows that

|Pr [ G2 ⇒ 1 ]− Pr [ G3 ⇒ 1 ]| + Pr [ bad = true in G2 ]

≤ 1
2 ·

(
Advmkror

SE (ℬ1, 𝑡) + Adv
mkror
SE (ℬ2, 𝑡)

)
+ Pr [ bad = true in G3 ]

≤ 2 · Advmkror
SE (ℬ, 𝑡) + Pr [ bad = true in G3 ] .

Now we can define a game G4 which replaces all encryptions under
the public-key encryption scheme PKE with random ciphertexts,
where this transition is bounded by a reduction to the ROR security
of PKE. Formally we can define an adversary 𝒞1 in game ROR𝒞1

PKE
with challenge bit 𝑏′ who proceeds as follows: on input 𝑝𝑘, 𝒞1 first
runs (𝑤1, 𝑤̃1, . . . , 𝑤̃𝑛)←$ 𝒯 , 𝑠𝑛←$ PChecker[Π](𝑤, 𝑤̃1, . . . , 𝑤̃𝑛).
𝒞1 submits S and the elements in W to its RoR oracle, chooses ran-
dom symmetric ciphertexts and salts, and assembles the final state
including the public key 𝑝𝑘 it was given as part of its challenge. 𝒞1
then passes 𝑠𝑛 to 𝒜′, simulating queries to SH in the natural way,
and at the end of the game outputs whatever bit 𝒜′ does. Notice
that if 𝑏′ = 0 then 𝒞 receives real encryptions and this perfectly
simulates G3; otherwise it perfectly simulates G4. It follows that,

|Pr [ G3 ⇒ 1 ]− Pr [ G4 ⇒ 1 ]|
= |Pr

[
𝒞1 ⇒ 1 | 𝑏′ = 0

]
− Pr

[
𝒞1 ⇒ 1 | 𝑏′ = 1

]
|

≤ Advror
PKE (𝒞1) .

Furthermore, an analogous argument to that made above implies
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that we can construct an adversary 𝒞2 in the ROR𝒞2
PKE game against

PKE who simulates the final state 𝑠𝑛 using its RoR oracle, passes 𝑠𝑛
to 𝒜′ and outputs 1 if and only if 𝒜′ sets the flag bad by guessing
one of the cached passwords. It follows that,

Pr [ bad = true in G3 ] ≤ Pr [ bad = true in G4 ] + Advror
PKE (𝒞2) .

With this in place, we may again define an adversary 𝒞 in the
ROR𝒞

PKE game against PKEwho randomly chooses to run either 𝒞1
or 𝒞2, and outputs the same bit that they do. It follows that

|Pr [ G3 ⇒ 1 ]− Pr [ G4 ⇒ 1 ]| + Pr [ bad = true in G3 ]

≤ 1
2 ·

(
Advror

PKE (𝒞1) + Adv
ror
PKE (𝒞2)

)
+ Pr [ bad = true in G4 ]

≤ 2 · Advror
PKE (𝒞) + Pr [ bad = true in G4 ] .

Notice that in game G4 all values in the state 𝑠𝑛 given to 𝒜′ are
random and independent of 𝒯 , and so the state 𝑠𝑛 may be perfectly
simulated by an adversary 𝒢 in game OFFGUESS𝒢,𝑞

Π,𝒯 ; we shall now
use a reduction to this game to bound the probability that bad is set
in game G4. 𝒢 generates a public / secret key pair (𝑝𝑘, 𝑠𝑘)←$𝒦,
assembles the remainder of 𝑠𝑛 by choosing the appropriate random
components, and passes 𝑠𝑛 to 𝒜′. Now each time 𝒜′ makes a new
query (sa||𝑤̃) to SH such that sa ∈ {sa0, . . . , sa𝑡},𝒢 returns a fresh
random string to 𝒜′, and submits a query of the form (𝑖, 𝑤̃) to its
Test oracle. Since by construction all salts are distinct, it follows
that if 𝒜 makes 𝑞 queries to SH then 𝒢 makes at most 𝑞 queries to
his Test oracle also. Therefore,

Pr [ bad = true in game G4 ] = Pr
[

OFFGUESS𝒢,𝑞
Π,𝒯 ⇒ 1

]

≤ Advoffguess
Π,𝒯 (𝒢, 𝑞) .

In game G5 we return SH to responding truthfully to oracle queries.
Since these values are no longer set during the construction of
challenge state 𝑠𝑛, this does not affect the outcome of the game
and so |Pr [ G4 ⇒ 1 ] = Pr [ G5 ⇒ 1 ]| .

Finally in game G6 we return to sampling salts without replace-
ment. An identical argument to that made previously implies that,

|Pr [ G5 ⇒ 1 ]− Pr [ G6 ⇒ 1 ]| ≤ (𝑡 + 1)2

2ℓsalt+1 .

Now G6 is identical to game OFFDIST𝒜′,𝑞
Π,𝒯 with challenge bit 𝑏 = 1.

Putting all this together, we conclude that,

Advoffdist
Π,𝒯 (𝒜) ≤ Advoffguess

Π,𝒯 (𝒢, 𝑞) + 2 · Advmkror
SE (ℬ, 𝑡) + (𝑡 + 1)2

2ℓsalt

+ 2 · Advrob
SE (ℛ) + 2 · Advror

PKE (𝒞) +
(𝑡 · (𝑛 + 1) + 1)2

2(𝜅−1) .

A.4 Proof of Theorem 5.3
Before giving the full proof of Theorem 5.3, we begin by proving a
useful lemma which we will use in subsequent analysis.

Lemma A.1. Let {𝑝1, . . . , 𝑝𝑛} and {𝑥1, . . . , 𝑥𝑛} be sequences of
numbers such that each 𝑝𝑖, 𝑥𝑖 ∈ [0, 1] and 𝑝1 ≥ 𝑝2 ≥ · · · ≥ 𝑝𝑛.
Then

𝑛∑
𝑖=1

𝑝𝑖 · 𝑥𝑖 ≤
𝑟∑
𝑖=1

𝑝𝑖 where 𝑟 =


𝑛∑
𝑖=1

𝑥𝑖


.

Proof: Since 𝑝1 ≥ · · · ≥ 𝑝𝑛, the rearrangement inequality [13] im-
plies that ∑𝑛

𝑖=1 𝑝𝑖 ·𝑥𝑖 is maximized when the 𝑥𝑖 are such that 𝑥1 ≥
𝑥2 ≥ · · · ≥ 𝑥𝑛, so to upper bound this sum, we reorder them so this
is the case. Notice that since 𝑟 =

⌈∑𝑛
𝑖=1 𝑥𝑖

⌉
≥ ∑𝑟

𝑖=1 𝑥𝑖 +
∑𝑛

𝑖=𝑟+1 𝑥𝑖,
this implies that,

𝑟 −
𝑟∑
𝑖=1

𝑥𝑖 ≥
𝑛∑

𝑖=𝑟+1
𝑥𝑖 ⇒

𝑟∑
𝑖=1

(1− 𝑥𝑖) ≥
𝑛∑

𝑖=𝑟+1
𝑥𝑖 .

With this in place, it follows that
𝑟∑
𝑖=1

𝑝𝑖 · (1− 𝑥𝑖) ≥ 𝑝𝑟 ·
𝑟∑
𝑖=1

(1− 𝑥𝑖) ≥ 𝑝𝑟 ·
𝑛∑

𝑖=𝑟+1
𝑥𝑖 ≥

𝑛∑
𝑖=𝑟+1

𝑝𝑖 · 𝑥𝑖 .

The first inequality follows since 𝑝1 ≥ · · · ≥ 𝑝𝑟 . The second
inequality since ∑𝑟

𝑖=1 (1 − 𝑥𝑖) ≥
∑𝑛

𝑖=𝑟+1 𝑥𝑖. The final inequality
follows since 𝑝𝑟 ≥ · · · ≥ 𝑝𝑛. Finally rearranging yields,

𝑟∑
𝑖=1

𝑝𝑖 ≥
𝑛∑
𝑖=1

𝑝𝑖 · 𝑥𝑖 ,

as required.

We now proceed to the proof of Theorem 5.3.
Proof: We wish to upper bound the maximum advantage of an
attacker 𝒢 who makes at most 𝑞 queries to the Test oracle in game
OFFGUESS𝒢,𝑞

Π,𝒯 . Let the sequence of guesses made by 𝒢 be denoted
𝐺 = {(𝑤̃1, 𝑗1), (𝑤̃2, 𝑗2), . . . , (𝑤̃𝑞, 𝑗𝑞 )}, and recall that if 𝑗𝑖 = 0
then this corresponds to a guess at the value of the real password;
otherwise the guess represents a guess at the typo stored at position
0 < 𝑗𝑖 ≤ 𝑡 in the cache. Without loss of generality, we may assume
that 𝒢 never repeats a query, since this would decrease his success
probability. We split the guesses into two sets 𝑍0 and 𝑍1 where,

𝑍0 = {(𝑤̃𝑖, 𝑗𝑖) | 𝑗𝑖 = 0} and 𝑍1 = {(𝑤̃𝑖, 𝑗𝑖) | 0 < 𝑗𝑖 ≤ 𝑡} .
We let 𝑞0 = |𝑍0| and 𝑞1 = |𝑍1|, so 𝑞1 ≤ 𝑞− 𝑞0. We let 𝑇 [𝑗] denote
the distribution of the typo at the 𝑗th position in the cache. Notice
that the adversary 𝒢 will succeed if either the real password 𝑇 [0]
lies in the set 𝑍0, or 𝑇 [𝑗𝑖] = 𝑤̃𝑖 for some (𝑤̃𝑖, 𝑗𝑖) ∈ 𝑍1. It follows
that

Advoffguess
Π,𝒯 (𝒢, 𝑞) = Pr[𝑇 [0] ∈ 𝑍0 ∨ ∃(𝑤̃𝑖, 𝑗𝑖) ∈ 𝑍1 : 𝑇 [𝑗𝑖] = 𝑤̃𝑖]
= Pr[𝑇 [0] ∈ 𝑍0] + Pr[𝑇 [0] < 𝑍0 ∧ ∃(𝑤̃𝑖, 𝑗𝑖) ∈ 𝑍1 : 𝑇 [𝑗𝑖] = 𝑤̃𝑖] .

We may rewrite the above expression

Advoffguess
Π,𝒯 (𝒢, 𝑞) − Pr[𝑇 [0] ∈ 𝑍0]

=
∑

𝑤∈𝒲∖𝑍0

Pr[∃(𝑤̃𝑖, 𝑗𝑖) ∈ 𝑍1 : 𝑇 [𝑗𝑖] = 𝑤̃𝑖 |𝑇 [0] = 𝑤] · Pr[𝑇 [0] = 𝑤]

=
∑

𝑤∈𝒲∖𝑍0

Pr
[ ∨
(𝑤̃𝑖,𝑗𝑖 )∈𝑍1

𝑇 [𝑗𝑖] = 𝑤̃𝑖 |𝑇 [0] = 𝑤
]
· Pr[𝑇 [0] = 𝑤] .

For each 𝑤 ∈ 𝒲 , Pr
[∨

(𝑤̃𝑖,𝑗𝑖 ) 𝑇 [𝑗𝑖] = 𝑤̃𝑖 | 𝑇 [0] = 𝑤
]
∈ [0, 1],

and so an application of Lemma A.1 implies that

Advoffguess
Π,𝒯 (𝒢, 𝑞) ≤

∑
𝑤∈𝑍0

Pr[𝑇 [0] = 𝑤] +
∑

𝑤∈𝑍*
1

Pr[𝑇 [0] = 𝑤]

≤
𝑞0+⌈𝑞′1⌉∑

𝑖=1
Pr[𝑇 [0] = 𝑤𝑖] ,
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where 𝑍*
1 is the set of the 𝑞′1 heaviest passwords in𝒲 ∖ 𝑍0 and,

𝑞′1 =



∑
𝑤∈𝒲∖𝑍0

Pr
[ ∨
(𝑤̃𝑖,𝑗𝑖 )∈𝑍1

𝑇 [𝑗𝑖] = 𝑤̃𝑖 | 𝑇 [0] = 𝑤
]

.

We now upper bound 𝑞′1. Since by assumption the error setting is
𝑡-sparse, it holds that 𝑏𝜏̃ (𝑤̃) ≤ 𝑡 for all 𝑤̃ ∈ℳ. It follows that

𝑞′1 ≤
∑

𝑤∈𝒲∖𝑍0

Pr
[ ∨
(𝑤̃𝑖,𝑗𝑖 )∈𝑍1

𝑇 [𝑗𝑖] = 𝑤̃𝑖 | 𝑇 [0] = 𝑤
]

≤
∑

𝑤∈𝒲
Pr

[ ∨
(𝑤̃𝑖,𝑗𝑖 )∈𝑍1

𝑇 [𝑗𝑖] = 𝑤̃𝑖 | 𝑇 [0] = 𝑤
]

≤
∑

𝑤∈𝒲

∑
(𝑤̃𝑖,𝑗𝑖 )∈𝑍1

Pr[𝑇 [𝑗𝑖] = 𝑤̃𝑖 | 𝑇 [0] = 𝑤]

=
∑

𝑤∈𝒲

∑
(𝑤̃𝑖,𝑗𝑖 )∈𝑍1

1
𝑡
· 𝜏𝑤 (𝑤̃𝑖)

=
∑

(𝑤̃𝑖,𝑗𝑖 )∈𝑍1

1
𝑡
· 𝑏𝜏̃ (𝑤̃𝑖) ≤ 𝑞 − 𝑞0 .

The first inequality follows since𝒲 ∖ 𝑍0 ⊆ 𝒲 for any 𝑍0. The
second inequality follows by taking a union bound over the points
in𝑍1. The next equality follows because the typo cache elements are
distinct and randomly permuted, so Pr[𝑇 [𝑗𝑖] = 𝑤̃𝑖 | 𝑇 [0] = 𝑤] =
1
𝑡 · 𝜏𝑤 (𝑤̃). The next equality follows since by definition 𝑏𝜏̃ (𝑤̃𝑖) =∑
𝑤∈𝒲 𝜏𝑤 (𝑤̃𝑖). The final inequality follows since 𝑏𝜏̃ (𝑤̃𝑖) ≤ 𝑡 for

all 𝑤̃𝑖, and there are at most 𝑞 − 𝑞0 guesses in 𝑍1. Putting this all
together implies that,

𝑞0 + 𝑞
′
1 ≤ 𝑞0 + (𝑞 − 𝑞0) = 𝑞 ,

and we conclude that

Advoffguess
Π,𝒯 (𝒢, 𝑞) ≤

𝑞∑
𝑖=1

𝑝(𝑤𝑖) .

A.5 Online Security
Following from the discussion in Section 5.3, we now detail the
security analysis of TypTop in the online setting.

We define online security via the game ONGUESS depicted in Fig-
ure 11, adapting the corresponding notion formulated by Chatterjee
et al. in [8] to the adaptive checking setting, with the advantage
defined

Advonguess
Π,𝒯 (𝒜, 𝑞) = Pr

[
ONGUESS𝒜,𝑞

Π,𝒯 ⇒ true
]
.

We sample a password and login transcript via the transcript gen-
erator 𝒯 and evolve the state of the adaptive checker accordingly.
The attacker is given access to an oracle Test to which he may
submit guesses; he succeeds if he makes a guess which is accepted
by the checking algorithm Chk. The game is parameterized by 𝑞
representing the number of Test queries 𝒜 is allowed; this reflects
the standard online attack countermeasure of locking an account
after a certain number of incorrect guesses.

The analysis. Following the similar discussion in Section 5, we
first define a game ONGUESS analogous to OFFGUESS, in which
the final cache state is generated via the plaintext checker PChecker,

and the advantage is defined as

Advonguess
Π,𝒯 (𝒜, 𝑞) = Pr

[
ONGUESS𝒜,𝑞

Π,𝒯 ⇒ true
]
.

In Lemma A.2 we bound the difference between the two games for
TypTop in terms of the robustness of the underlying SE scheme SE.

LemmaA.2. Let (𝑝, 𝜏 ) be an error setting with associated transcript
generator 𝒯 , and let Π = (Reg,Chk) be TypTop’s password checker
with associated plaintext checker PChecker[Π]. LetΠ be implemented
using the canonical PBE scheme PBE[SH, SE] = (E,D) where SE is a
symmetric encryption scheme and SH is a random oracle. Then for
any adversary 𝒜 running in time 𝑇 , there exist adversaries 𝒜′, ℛ
such that

Advonguess
Π,𝒯 (𝒜, 𝑞) ≤ Advonguess

Π,𝒯 (𝒜′, 𝑞)

+ Advrob
SE (ℛ) +

(𝑡 · (𝑛 + 1 + 𝑞) + 1 + 𝑞)2

2𝜅 ,

and, moreover,𝒜′ runs in time 𝑇 ′ ≈ 𝑇 . Here 𝑡 denotes the size of the
cache, 𝑛 denotes the length of the transcript output by 𝒯 and SE has
key space {0, 1}𝜅.

Proof: We argue by a series of game hops. Let game G0 be equiva-
lent to game ONGUESSΠ,𝒯 , so

Advonguess
Π,𝒯 (𝒜, 𝑞) = Pr [ G0 ⇒ 1 ] .

Let game G1 be identical to G0 except that the keys used to compute
the cached ciphertexts in state 𝑠𝑛, and those used for trial decryp-
tions in response to Test queries made by 𝒜 in the guessing stage
of the game while win = false, are sampled without replacement.
These games run identically unless two of the keys sampled during
these phases collide. There are at most (𝑡 · (𝑛 + 1) + 1) such keys
sampled while computing the cached ciphertexts for a transcript of
length 𝑛, and at most 𝑞 · (𝑡 + 1) keys sampled during the guessing
phase (reflecting the (𝑡+ 1) trial decryptions performed by Chk for
each of the 𝑞 Test queries made by 𝒜). Notice that since cache up-
dates only occur in the guessing phase if 𝒜 guesses a string which
is accepted by Chk, the cache will never update while win = false.
It follows that

|Pr [ G0 ⇒ 1 ]− Pr [ G1 ⇒ 1 ]| ≤ (𝑡 · (𝑛 + 1 + 𝑞) + 1 + 𝑞)2

2𝜅+1 .

Next we define game G2 which is identical to G1 except that we
replace Checker[Π] with PChecker and redefine Test to perform
comparisons on the plaintext typo cache output by PChecker. Since
the adversary in these games never sees the internal state of the
checker, not encrypting the values which lie in this state does
not change the adversary’s view of the game; rather the two run
identically unless during the process of updating the state and
the adversary’s subsequent queries to Test we find two distinct
keys k1 , k2 such that Dk2 (Ek1 (𝑠𝑘)) ,⊥ where 𝑠𝑘 denotes the
secret key of the PKE scheme which is encrypted under each of
the cached typos. Thus the fundamental lemma of game playing
implies that the gap between game G1 and G2 is upper bounded
by the probability that this event occurs. Consider an adversaryℛ
in game ROBℛ

SE who simply executes the game G1, simulating SH
by sampling random strings without replacement, and checking
if there ever exists a typo cache ciphertext Ek1 (𝑠𝑘) that decrypts
under some subsequently sampled k2 , k1 (recall that since G1
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ONGUESS𝒜,𝑞
Π,𝒯 :

(𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)←$ 𝒯
𝑠𝑛←$ Checker[Π](𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)

𝑟 ← 0 ; win← false
𝒜Test

return win

Test(𝑤̃):
(𝑏, 𝑠𝑛+𝑟+1) ← Chk(𝑤̃, 𝑠𝑛+𝑟 )

𝑟 ← 𝑟 + 1
If (𝑏 = 1) and (𝑟 ≤ 𝑞)

win← true
return 𝑏

ONGUESS𝒜,𝑞
Π,𝒯 :

(𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)←$ 𝒯
𝑠𝑛←$ PChecker[Π](𝑤0, 𝑤̃1, . . . , 𝑤̃𝑛)

parse 𝑠𝑛 as (S, T,W, 𝛾)

𝑟 ← 0; win← false
𝒜Test

Return win

Test(𝑤̃)

If 𝑤̃ ∈ T
𝑏← 1

𝑟← 𝑟 + 1
If (𝑏 = 1) and (𝑟 ≤ 𝑞)

win← true
return 𝑏

Figure 11: Security games for online attacks.

samples without replacement, all keys are distinct). The robustness
of the encryption scheme implies that the probability that this
event occurs, and thus the gap between games G1 and G2 is upper-
bounded by Advrob

SE (ℛ)

|Pr [ G1 ⇒ 1 ]− Pr [ G2 ⇒ 1 ]| ≤ Advrob
SE (ℛ) .

Next we define game G3 which is identical to G2 except we return
SH to sampling keys with replacement. An analogous argument to
that above bounding the probability that two keys collide ensures
that

|Pr [ G2 ⇒ 1 ]− Pr [ G3 ⇒ 1 ]| ≤ (𝑡 · (𝑛 + 1 + 𝑞) + 1 + 𝑞)2

2𝜅+1 .

Notice that G3 is identical to ONGUESS𝒜Π,𝒯 , and so can be perfectly
simulated by an adversary 𝒜′ in this game. 𝒜′ simulates 𝒜’s Test
oracle by submitting 𝒜’s queries to his own oracle, and returning
the responses. Since 𝒜′ makes precisely the same set of queries as
𝒜, it follows that if 𝒜 makes at most 𝑞 queries, then 𝒜′ does also.
Since both games are identically distributed, it follows that

Advonguess
Π,𝒯 (𝒜′, 𝑞) = Pr [ G3 ⇒ 1 ] ,

concluding the proof.

Online guessing advantage. It remains to boundAdvonguess
Π,𝒯 (𝒜, 𝑞).

The key difference between the online guessing game and its offline
counterpart is that in the former each guess is tested for equality
against each of the 𝑡+ 1 positions in the cache, whereas in the latter
a guess is only checked against the specific slot to which it was
guessed.

We reduce the online guessing game — in which the attacker’s
goal is to find 𝑞 guesses that maximizes its success probability — to
a weighted maximum coverage problem, and use an approximate
greedy algorithm to compute the attacker’s advantage. We can then
bound the advantage of the optimal attacker using the classic result
of [15]. However, due to the complex dependencies of the cached
elements, we could not show the reduction in the other direction:
that is to say, reduce an NP-complete problem to that of finding the
optimal set of guesses in the online guessing game. We strongly
believe that this problem is NP-hard but leave the detailed reduction
as an open problem.

Approximation via greedy algorithm. Recall that the maxi-
mum coverage problem is defined as follows. Given 𝑛 subsets 𝑆𝑖

from a universe 𝑈 , the goal is to find 𝑘 subsets that cover the maxi-
mum number of elements. In the weighted version of this problem,
every element in 𝑈 is weighted, and the goal is to maximize the
sum total weight of the covered elements.

We reduce the online guessing game ONGUESS for a partic-
ular error setting (𝑝, 𝜏 ) and plaintext checker PChecker[Π] to a
weighted maximum coverage problem as follows. We define the
universe 𝑈 to be the set of all possible cache-tuples, where a cache-
tuple consists of a password 𝑤 ∈ 𝒲 followed by at most 𝑡 distinct
and alphabetically sorted typos 𝑤̃𝑖 ∈ 𝒮 . The weight of a given
cache-tuple is defined to be the probability that this tuple lies in
the cache of the state 𝑠𝑛 that the attacker guesses against in game
ONGUESS. For each password or typo 𝑤̃, we define 𝑆𝑤̃ ⊆ 𝑈 to be
the set of all cache-tuples that contain 𝑤̃. Given all such subsets,
the attacker’s goal is to find 𝑞 subsets so that the sum total of the
covered cached-tuples is maximized.

With this reduction in place, we can apply the greedy approxi-
mation algorithm for finding the weighted maximum coverage.

Empirical analysis. We wish to compute the advantage of an
adversary in the online guessing game for real world error settings.
While it is easy to describe the reduction to a weighted maximum
coverage problem, generating the universe of cache-tuples and the
corresponding subsets for large numbers of passwords and typos is
computationally very expensive. For example, there could be more
than a billion cache-tuples for a password with 100 typos and cache
size 𝑡 = 5, and finding all such cache-tuples for a large number of
passwords seems infeasible.

We therefore perform the simulation on a subset of 𝑘 passwords
from RockYou in the following way. For each real password 𝑤,
we sample 𝑚 typos from 𝜏𝑤 with replacement, run the plaintext
checker PChecker[Π] on the sampled list, and record the final cache-
tuple. We repeat this process 𝑛 times for each password, and record
all the unique cache-tuples with their weight set to 𝑝(𝑤) · 𝑓/𝑛,
where 𝑓 is the number of times the cache-tuple was observed. We
set the universe 𝑈 to be the set of all cache-tuples we collected in
the above experiment, and for each string 𝑤̃, subset 𝑆𝑤̃ is defined as
the set of all cache-tuples from 𝑈 which contain 𝑤̃. The attacker’s
goal is to find a set of 𝑞 strings 𝑤̃ such that the cumulative weight
of the elements covered by their subsets is maximized.

The greedy algorithm to find the weighted maximum cover
works as follows: find the subset 𝑆𝑤̃* that has the highest cumula-
tive weight, add the corresponding string 𝑤̃* to the list of guesses,
remove all occurrences of cache-tuples in 𝑆𝑤̃* from other subsets,
and repeat until 𝑞 guesses are found or all subsets are empty.

We wish to compute the security loss incurred by using TypTop
compared to an exact checker. Recall that 𝜆𝑞 denotes the success
probability of an optimal attack against an exact checker with a
budget of 𝑞 guesses, and that 𝜆𝑞 =

∑𝑞
𝑖=1 𝑝(𝑤𝑖). We define the

security loss of a checker Π over the exact checker to be

∆𝑞 = Advonguess
Π,𝒯 (𝒜, 𝑞) − 𝜆𝑞 .

19



CCS ’17, October 30-November 3, 2017, Dallas, TX, USA Chatterjee et al.

Using 𝑘 most frequent passwords from RockYou, we ran the above
simulation with 𝑚 = 200, 𝑛 = 500. We chose 𝑘 = 105, and for
each caching policy we compute the greedy attacker’s advantage
for 𝑞 = 100. For all caching policies the security loss ∆𝑞 is minimal,
with a maximum security loss of ∆100 = 0.001 for the MFU caching
policy, and less than 0.0006 for all other caching policies. We also
tried sampling passwords randomly from the support of the pass-
word distribution, and taking the 𝑘 most frequent passwords in
RockYou after ignoring the first million passwords. The security
loss is even less in such samples as we observed in the offline sce-
nario in Section 5.2. To see the effect of 𝑛 on the final security loss,
we also ran the experiment with 𝑛 = 1000 for the PLFU caching
strategy. We found negligible change in the security loss.

By the result of Hochbaum [15], we know that the output of the
greedy algorithm is no less than 1−1/𝑒 times that of the optimal al-
gorithm. If we include this adjustment into the output of our greedy
approximation algorithm, we get ∆𝑞 ≤ 𝑒

𝑒−1 ·Adv
onguess
Π,𝒯 (𝒜, 𝑞)−𝜆𝑞 .

Therefore, the security loss due to TypTop is at most ∆100 ≤
1.582× 0.0456− 0.045 = 0.027.

This bound is pessimistic. It assumes the attacker has precise
knowledge of the typo distribution. Moreover, the final bound is
looser if the greedy approximation results are closer to the optimal—
which we believe to be the case.

We might be able to use a blacklisting strategy similar to the
one proposed in [8] to further reduce the security loss. A naive
blacklisting approach would be to block a set of ‘risky’ typos (that
is to say those which allow an attacker to achieve too great an
advantage) from entering the typo-cache. However to decide which
typos to blacklist, we need an accurate measure of the cache in-
clusion function, which will itself change each time a new typo is
blacklisted, significantly complicating the analysis of this approach.
We leave a detailed treatment of blacklisting strategies for future
work.
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