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Abstract

This paper presents the first attribute-based signature (ABS) scheme supporting signing policies rep-
resentable by Turing machines (TM), based on well-studied computational assumptions. Our work sup-
ports arbitrary TMs as signing policies in the sense that the TMs can accept signing attribute strings
of unbounded polynomial length and there is no limit on their running time, description size, or space
complexity. Moreover, we are able to achieve input-specific running time for the signing algorithm. All
other known expressive ABS schemes could at most support signing policies realizable by either arbitrary
polynomial-size circuits or TMs having a pre-determined upper bound on the running time. Consequently,
those schemes can only deal with signing attribute strings whose lengths are a priori bounded, as well
as suffers from the worst-case running time problem. On a more positive note, for the first time in the
literature, the signature size of our ABS scheme only depends on the size of the signed message and is
completely independent of the size of the signing policy under which the signature is generated. This
is a significant achievement from the point of view of communication efficiency. Our ABS construction
makes use of indistinguishability obfuscation (IO) for polynomial-size circuits and certain IO-compatible
cryptographic tools. Note that, all of these building blocks including IO for polynomial-size circuits are
currently known to be realizable under well-studied computational assumptions.
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1 Introduction
In a traditional digital signature scheme, each signer possesses a secret signing key and publishes its
corresponding verification key. A signature on some message issued by a certain signer is verified with
respect to the public verification key of the respective signer, and hence during the verification process,
the explicit signer gets identified. In other words, standard digital signatures can guarantee no privacy
in the relationship between signers and claims attested by signatures due to the tight correspondence
between the signing and verification keys.

Attribute-based signatures (ABS), introduced by Maji et al. [23], aims to relax such a firm relationship
between signers and signatures issued by them, thereby ensuring some form of signer privacy. ABS comes
in two flavors, namely, key-policy and signature-policy. In a key-policy ABS scheme, a setup authority holds
a master signing key and publishes system public parameters. Using its master signing key, the authority
can give out restricted signing keys corresponding to specific signing policies. Such a constrained signing
key enables a signer to sign messages with respect to only those signing attributes which are accepted by
the signing policy embedded within the signing key. The signatures are verifiable by anyone using solely
the public parameters. By verifying a signature on some message with respect to some signing attributes,
a verifier gets convinced that the signature is indeed generated by a signer possessing a signing key
corresponding to some signing policy that accepts the signing attributes. However, the verifier cannot
trace the exact signer or signing policy used to generate the signature. The signature-policy variant
interchanges the roles of signing attributes and signing policies. Other than being an exciting primitive
in its own right, ABS has countless interesting practical applications such as attribute-based messaging,
attribute-based authentication, anonymous credential systems, trust negotiation, and leaking secrets.

A central theme of research in the field of ABS has been to expand the class of admissible signing
policies in view of implementing ABS in scenarios where the correspondence between signers and signa-
tures is more and more sophisticated. Starting with the initial work of Maji et al. [23], which supports
signing policies representable by monotone span programs, the family of supported signing policies has
been progressively enlarged by Okamoto and Takashima [26] to admit non-monotone span programs,
by Datta et al. [9] to support arithmetic branching programs, and further by Tang et al. [30], Sakai et
al. [28], Tsabary [31], as well as El Kaafarani and Katsumata [20] to realize arbitrary polynomial-size
circuits. On the other hand, Bellare and Fuchsbauer [5] have put forth a versatile cryptographic primitive
termed as policy-based signatures (PBS) and have exhibited a generic transformation from PBS to ABS.
Their generic conversion can be used in conjunction with their proposed PBS construction to build an
ABS scheme for general polynomial-size circuits as well.

While the circuit model is already powerful enough to capture arbitrary computations, an important
bottleneck of this model is that it is non-uniform in nature and thus ABS schemes supporting circuit-
realizable signing policies can withstand only signing attribute strings of bounded length, where the bound
is determined during setup. Another drawback of representing signing policies as circuits is that generating
a signature with respect to some signing attribute string using a signing key corresponding to certain
signing policy is at least as slow as the worst-case running time of that policy circuit on all possible signing
attribute strings. These are serious limitations not only for ABS itself, but also for all the aforementioned
applications of ABS

In this paper, we aim to express signing policies in a uniform computational model, namely, the Turing
machine (TM) model, which is the most natural direction to overcome the above problems. First, we would
like to mention that concurrently and independently to our work, Sakai et al. [29] have developed an ABS
scheme which can withstand TM-realizable signing policies under the symmetric external Diffie-Hellman
(SXDH) assumption. Unfortunately however, in their ABS scheme, the size of a signature scales with the
running time of the signing policy TM used to generate it on the signing attribute string with respect to
which it is created. As a result, for ensuring signer privacy, their scheme should impose a universal upper
bound on the running times of the signing policy TMs, and should enforce the size of the signatures
to scale with that system-wide upper bound. Evidently, such a universal running-time bound in turn
induces a bound on the lengths of the allowable signing attribute strings. Moreover, it implies that the
signing algorithm should also have running time proportional to that universal time bound, i.e., incurs
the worst-case running time in order to generate the signatures. Consequently, it is clear that their scheme
actually fails to achieve both the advanced properties which are the sole utility of considering the richer
TM model over the circuit model, namely, unbounded-length signing attribute strings and input-specific
running time of the signing algorithm. Further, the failure to achieve these rich properties is in fact the
result of their rather simple approach that involves giving out non-interactive zero-knowledge (NIZK)
proofs for each of the evaluation steps of the signing policy TM on the signing attribute string considered
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in a manner analogous to how an NIZK proof is issued for each gate of the signing policy circuit in [28]. In
contrast, our goal in this paper is to devise advanced techniques to accomplish both the rich properties
expected from the TM model and thereby truly expand the state of the art in the field of ABS beyond
the essential barriers of the circuit model. Additionally, we aim at making the signature size as small as
that of an ordinary digital signature scheme, that is, dependent only on the size of the signed message–a
feature that has remained elusive despite the tremendous progress in the field of ABS so far.

1.1 Our Contribution
In this paper, we present the first ever key-policy ABS scheme supporting signing policies representable
as Turing machines (TM) which can handle signing attribute strings of unbounded polynomial length, as
well as have arbitrary (polynomial) running time, description size, and space complexity. Thus, our work
captures the most general form of signing policies possible. Moreover, in our ABS scheme, generating a
signing key corresponding to a signing policy takes time polynomial in the description size of that signing
policy, which may be much shorter compared to the worst-case running time of that signing policy. Also,
the signature generation time only depends on the time the used signing policy takes to run on the
signing attribute string with respect to which the signature is being generated, rather than its worst-case
running time. These features were beyond the reach of any other known ABS construction. On a more
positive note, for the first time in the literature, the signature size of our ABS scheme only depends on
the size of the signed message and is completely independent of the associated signing policy. This is a
significant achievement from the point of view of communication efficiency. Further, using the technique
of universal TM, our key-policy ABS construction can be readily converted into a signature-policy variant
while preserving the same level of expressiveness as the key-policy version.

Our ABS construction is shown to possess perfect signer privacy and existential unforgeability against
selective attribute adaptive chosen message attacks under well-studied computational assumptions. The
construction makes use of indistinguishability obfuscation (IO) for polynomial-size circuits. Other than IO,
we make use of standard digital signatures (SIG), injective pseudorandom generators (PRG), and certain
additional IO-compatible cryptographic tools, namely, puncturable pseudorandom functions, somewhere
statistically binding (SSB) hash functions, positional accumulators, cryptographic iterators, and splittable
signatures. Among the cryptographic building blocks used in our ABS construction in addition to IO,
iterators and splittable signatures are realizable using IO itself in conjunction with one-way functions,
whereas all the others have very efficient instantiations based on standard number theoretic assumptions
or one-way functions. Very recently, a series of exciting works [2,22,1,17,19,13,18] have finally provided
an IO candidate based on the sub-exponential security of four well-studied computational assumptions,
namely, learning with errors (LWE), learning parity with noise (LPN), existence of boolean pseudorandom
generators (PRG) in NC0, and symmetric external Diffie-Hellman (SXDH).

To achieve our result, we extend the techniques employed by Koppula et al. [21] for designing message-
hiding encoding schemes for TMs, or by Deshpande et al. [10] for designing constrained pseudorandom
functions (CPRF) for TMs secure in the selective challenge selective constraints model to withstand
adaptive signing key queries of the adversary. We give an overview of our techniques in the next subsection.

1.2 Our Techniques
Here we explain the intuitive approach underlying our ABS scheme.

A Conventional Approach and its Drawback

The generic blueprint underlying most prominent ABS schemes so far, e.g., [24,28,29,20,5] is as follows:
Each signer receives as its signing key a signature on its signing policy from the setup authority. In
order to sign under a public attribute string, a signer generates a non-interactive zero-knowledge proof of
knowledge (NIZK) of the signature on its signing policy that it has obtained from the setup authority and
that its policy accepts the attribute string. The signature that a signer receives from the setup authority
on its signing policy works as a certificate of the signer having that signing policy and prevents any third
party from signing in the name of its signing policy. Also, the zero-knowledge property ensures that the
proof does not leak the signature on the signer’s signing policy to a verifier. It seems quite tempting to
use the above generic blueprint to construct ABS scheme for TMs as well. However, this idea suffers from
the following inherent limitation: If we use the above blueprint, then in order to sign a message under
some signing attribute string x, the signer needs to generate an NIZK proof of the membership of x in
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the language L: x ∈ L ⇐⇒ there exists some TM M belonging to the supported TM family such that
M is signed by the setup authority and such that M accepts x. Now, all known NIZK proof systems
are designed for NP languages. By the definition of NP, the language L defined above will belong to
NP provided there exists a polynomial q and a verifier V that on input any valid instance-witness pair
(x, (M,σ)) runs in time q(|x|) and verifies that M accepts x and that σ is a valid signature on M . For
this to hold there must exist some polynomial q′ such that for any signing attribute string x and any
accepting TM M belonging to the underlying TM family, the running time of M on x is bounded by
q′(|x|). In fact, the scheme of Sakai et al. [29], which follows this high-level construction methodology,
indeed suffers from (a more stringent form of) the aforementioned limitation. This is something we want
to avoid in this work. More precisely, our goal is to design ABS scheme for a TM family with no fixed
polynomial bound on the running time. For such a TM family, the language L defined above does not
belong to NP at all, so that the above generic blueprint cannot be employed.

Our Initial Idea and Its Limitations

In order to achieve signature size dependent only on the signed message, we attempt to build our key-
policy ABS scheme in such a way that the signature on a message is simply a usual digital signature on
it. Towards this end, we start with the following naive idea: We assign a different signing key-verification
key pair of a standard digital signature (SIG) scheme to each of the possible signing attribute strings, and
publish as the public parameters all the SIG verification keys associated with all the signing attribute
strings, while provide the signers as their signing keys only those SIG signing keys that are associated
with the signing attribute strings accepted by their signing policies. Then, in order to sign a message with
respect to some signing attribute string accepted by its signing policy, a signer would sign the message
using the SIG signing key associated with that signing attribute string, whereas a verifier can verify
the authenticity of the signature by verifying it with respect to the SIG verification key associated with
that signing attribute string. While this naive idea clearly satisfies the desired correctness and security
properties of ABS, as well as fulfils our objective concerning the signature size, the immediate problem of
this idea is the exponential running time of all the algorithms of the resulting ABS scheme as well as the
exponential size of the public parameters and signing keys due to the potentially exponential number of
possible signing attribute strings involved in the system.

Our Approach to Fix the Drawbacks of the Naive Idea

In order to solve the above issues we apply a standard derandomization technique. More precisely, we
define the SIG signing key-verification key pair associated with a signing attribute string as the outcome of
the setup algorithm of SIG using a pseudorandom string, which is obtained as the output of a puncturable
pseudorandom function (PPRF) on input that signing attribute string using a key k fixed during setup.
Roughly speaking, a PPRF, introduced by Sahai and Waters [27], is an augmentation of a standard
pseudorandom function (PRF) [14] with an additional puncturing algorithm which enables a party holding
a PRF key to derive punctured keys that allow the evaluation of the PRF over all points of the input
domain except one. However, given a punctured key, the PRF evaluation still remains indistinguishable
from random on the input at which the key is punctured.

We design our ABS public parameters and signing keys using IO. The notion of IO [4] stipulates that
the obfuscated program preserves the functionality of the original program, and the obfuscations of two
functionally identical programs are computationally indistinguishable. Our public parameters and signing
keys are constructed as follows: We set the public parameters of our ABS scheme to be an IO-obfuscated
program Vabs, we call the verifying program, which has the PPRF key k hardwired in it. It takes as input
a signing attribute string x and performs the following steps: First, it runs the PPRF with key k on x
to generate a pseudorandom string. Next, it runs the setup algorithm of SIG using that pseudorandom
string to generate and output the SIG verification key associated with x. On the other hand, the signing
key corresponding to some signing policy is again an IO-obfuscated program Pabs, we call the signing
program, that also has the PPRF key k hardwired in it along with the associated signing policy. It takes as
input a signing attribute string x and proceeds as follows: First it checks whether x satisfies the hardwired
signing policy. If so, it generates a pseudorandom string by applying the PPRF with key k on x, and
subsequently creates and outputs the SIG signing key-verification key pair associated with x by running
the setup algorithm of SIG using the generated randomness. Otherwise, if the embedded signing policy
does not accepts x, then it outputs a special symbol ⊥ indicating failure.
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Thus, the setup algorithm of our modified ABS scheme simply consists of sampling a PPRF key
k and generating the obfuscated verifying program Vabs, while our signing key generation algorithm
only involves generating the obfuscated signing program Pabs. To sign a message under some signing
attribute string accepted by its signing policy, a signer simply runs the obfuscated signing program Pabs
contained in its signing key to obtain an SIG signing key-verification key pair, and then signs the message
using the obtained SIG signing key. The ABS signature consists of the generated SIG verification key-
signature pair. On the other hand, verification of an ABS signature on some message under some claimed
signing attribute string requires only generating the SIG verification key associated with the claimed
signing attribute string by running the obfuscated verifying program Vabs, and then checking whether
the generated SIG verification key matches the one included within the ABS signature, as well as whether
the SIG signature included within the ABS signature verifies under that SIG verification key. This resolves
the problem of exponential running time, as well as brings the size of public parameters and signing keys
down to polynomial.

The correctness of the above ABS scheme follows directly from the description of the signing and
verifying programs, in conjunction with the correctness of SIG and the functionality preserving feature of
IO. Let us now quickly look into the security proof of the above ABS construction. Firstly, observe that
the ABS scheme clearly preserves signer privacy since the signature on some message with respect to some
signing attribute string only contains the SIG verification key that has been associated with that signing
attribute string while setting up the system (by sampling the PPRF key k), together with an SIG signature
on the message verifiable under that SIG verification key. In particular, the ABS signatures do not depend
on the signing keys used to generate them. In order to prove selective existential unforgeability, we proceed
as follows: Recall that in the selective unforgeability experiment, the adversary A has to commit to some
signing attribute string x∗, under which it wishes to output a forgery, at the beginning of the experiment,
and then is supplied with the public parameters, and is allowed to adaptively request any polynomial
number of signatures and signing keys associated with signing policies that do not accept x∗. At the
end, A outputs a forged signature on some message msg∗ under x∗, and is declared to be the winner
if it has not queried any signature on msg∗ under x∗. To argue selective unforgeability of the above
ABS construction, we first change the original unforgeability experiment into one in which we hardwire
the punctured PPRF key k{x∗} punctured at x∗ within the verifying program Vabs included within the
public parameters given to A, as well as in the signing programs Pabs included within all the signing keys
provided to A. More precisely, we modify the program Vabs into a new program V ′abs as follows: When
run on some signing attribute string x 6= x∗, the program V ′abs runs identically to Vabs, but it uses the
punctured PPRF key k{x∗} in place of the full PPRF key k. On the other hand, when run on x∗, it uses a
hardwired string r̂∗sig as the randomness for generating the SIG verification key corresponding to x∗. We
set r̂∗sig to be the evaluation of the PPRF with key k on x∗. We similarly modify the signing programs
Pabs into new programs P ′abs as follows: When run on some signing attribute string x 6= x∗, P ′abs runs
identically to Pabs except that it uses the punctured PPRF key k{x∗} in place of the full PPRF key k.
On the other hand, when run on input x∗, P ′abs outputs ⊥. Observe that the programs Vabs and V ′abs are
clearly functionally identical since the punctured PPRF key behaves identically to the full PPRF key on
all inputs x 6= x∗. For the same reason, for all the signing keys given to A, the programs Pabs and P ′abs
are also functionally identical since A is allowed to request signing keys for only those signing policies
that does not accept x∗. Thus, by the security of IO, which stipulates that obfuscations of functionally
identical programs are computationally indistinguishable, the modified experiment is computationally
indistinguishable from the original one. After that, we apply the pseudorandomness at punctured point
property of PPRF to change the pseudorandom string r̂sig hardwired within V ′abs to a uniformly random
one. This modification essentially ensures that a perfectly distributed SIG signing key-verification key
pair gets associated to x∗. Note that once this alteration is made, we can directly prove the unforgeability
of our ABS scheme relying on the unforgeability property of SIG.

Problem with Accommodating Unbounded-Length Signing Attributes

Now, observe that we want to consider signing policies as TMs and signing attribute strings of arbitrary
polynomial length. Then we must represent the signing and verifying programs in the above ABS con-
struction as TMs, and use some IO scheme for TMs to obfuscate those programs. Several recent works
have built IO candidates for TMs [21, 3]. However, we cannot directly use such an IO for TM scheme in
our ABS construction sketched above. Observe that IO guarantees indistinguishability of two functionally
equivalent programs if and only if they have the same size. In our proof of unforgeability, we use IO to
switch between two sets of programs, where one set of programs have the full PPRF key k hardwired in
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it, while the other have the punctured PPRF key k{x∗} hardwired. Thus, in order to use IO security, we
must ensure that programs having k hardwired, i.e., those used in the actual construction, have the same
size as those having k{x∗}. Unfortunately, in the existing PPRF construction [6], namely, the tree-based
PPRF construction derived from the PRF construction of [14], the size of punctured PPRF key depends
linearly on the length of the punctured point. This means that if we are to upper bound the size of the
programs to be used in the real construction, we must put an upper bound on the length of the signing
attributes, which we want to avoid.

In order to overcome the length bounding issue discussed above, a natural direction is to use some
compressing tool, e.g., a collision-resistant hash function H to map arbitrary-length signing attribute
strings to a fixed length. Concretely, let us define the SIG signing key-verification key pair associated
with a signing attribute string x to be the one obtained by running the setup algorithm of SIG using the
pseudorandom string obtained as the output of the PPRF not on x itself, but on H(x), and accordingly
modify our signing programs Pabs and verifying program Vabs to evaluate the PPRF on the hash values of
the input signing attribute strings rather than applying on signing attribute strings themselves directly.
While this alteration would allow us to support signing attribute strings of arbitrary polynomial length,
it would pose new challenges. Observe that in order to use a strategy similar to our earlier proof of
unforgeability, we must modify the real signing and verifying programs having the full PPRF key k into
ones having the punctured PPRF key k{h∗} punctured at h∗ = H(x∗). However, unlike the previous
scenario, now we cannot rely on IO security to perform this transformation since the real and modified
sets of programs are not functionally identical in general. For instance, consider the real signing program
Pabs (with the full PPRF key k hardwired) and the modified program P ′abs (with the punctured PPRF
key k{h∗} hardwired) included within a signing key provided to the adversary A in the real and modified
unforgeability experiment respectively. Now, consider some signing attribute string x 6= x∗ which is
accepted by the associated signing policy, and for which H(x) = h∗. Then, on input x, Pabs would output
the SIG signing key-verification key pair associated with x (which are the same as those associated with
x∗ by definition) since it has the full PPRF key, while P ′abs would output ⊥ since it has the punctured
PPRF key.

To settle the above issue, one possible option could be to resort to stronger forms of obfuscation,
e.g., differing-input obfuscation (DIO) [4, 7] or its weaker variant, namely, public-coin differing-input
obfuscation (PCDIO) [16]. However, the existence of DIO or its variants are highly strong knowledge-type
assumptions, and basing security of cryptographic construction on such assumptions are largely considered
to be risky. In fact, DIO was already shown to be implausible to exist [11]. On the contrary, there is no
known impossibility or implausibility result against IO. On the contrary, as we have already mentioned,
a steady progress has taken place in the last few years towards building IO candidates. Therefore, we
search for other techniques so as to base the security of our ABS scheme on IO.

Approach along the Lines of [21,10] and its Limitation

At this point, we look into the recent work of Deshpande et al. [10], where they have employed the elegant
techniques of Koppula et al. [21] to design a constrained pseudorandom function (CPRF) for constraints
representable as TMs of arbitrary description size that can handle inputs of arbitrary polynomial length,
based on IO for circuits and PPRF. The notion of CPRFs [6] is a generalization of the notion of PPRFs.
More precisely, a CPRF is an augmentation of a standard PRF with an additional constrain algorithm
which enables a party holding a PRF key to derive constrained keys corresponding to specific constraint
predicates. Such a constrained key allows the evaluation of the PRF at all points of the input domain
that are accepted by the predicate. However, given a set of constrained keys, the PRF evaluations still
remain indistinguishable from random on all the inputs not covered by those constraint predicates.

The high level idea behind the CPRF construction of Deshpande et al. [10] is as follows: Similar to
our approach, to produce the CPRF output, their construction uses a PPRF and a compressing tool that
maps arbitrarily long inputs to fixed size ones. However, the compressing tool that they have used is
not a mere hash function, but a more advanced one, namely a (prefixed) positional accumulator [21],
which possesses several additional IO-friendly properties that a usual hash function does not. Roughly
speaking, a positional accumulator is a cryptographic data structure that maintains two values, namely, a
storage value and an accumulator value. The storage value is allowed to grow comparatively large, while
the accumulator value is constrained to be short. Message symbols can be written to various positions
in the underlying storage, and new accumulated values can be computed dynamically, knowing only the
previous accumulator value and the newly written symbol together with its position in the data structure.
Moreover, there are additional helper algorithms which essentially allow a party who is maintaining the full
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storage to help a more restricted party maintaining only the accumulator value recover the data currently
written at an arbitrary location. However, the helper is not necessarily trusted. So, it should additionally
provide a short proof to convince the accumulator-value-maintaining party about the correctness of the
symbols being read. In the CPRF construction of Deshpande et al. [10], a master CPRF key consists of a
key k for the underlying PPRF and a set of public parameters ppacc of the positional accumulator. The
CPRF evaluation on some input x is simply the output of the PPRF with key k on input winp, where winp
is the accumulation of the bits of x using ppacc.

A constrained key of the CPRF corresponding to some TM M , comprises of ppacc along with two
programs P1 and Pcprf, which are obfuscated using IO. The first program P1, also known as the initial
signing program, takes as input an accumulator value and outputs a signature on it together with the
initial state and header position of the TM M . The second program Pcprf, also called the next step
program, has the PPRF key k hardwired in it. It takes as input a state and header position of M ,
along with an input symbol and an accumulator value. It essentially computes the next step function
of M on the input state-symbol pair, and eventually outputs the proper CPRF value, if M reaches the
accepting state. The program Pcprf also performs certain authenticity checks before computing the next
step function of M in order to prevent illegal inputs. For this purpose, Pcprf additionally takes as input
a signature on the input state, header position, and accumulator value, together with a proof for the
positional accumulator. The program Pcprf verifies the signature in order to ensure authenticity, as well
as checks the accumulator proof to get convinced that the input symbol is indeed the one placed at the
input header position of the underlying storage of the input accumulator value. If all these verifications
pass, then Pcprf determines the next state and header position of M , as well as the new symbol that
needs to be written to the input header position. The program Pcprf then updates the accumulator value
by placing the new symbol at the input header position, as well as signs the updated accumulator value
along with the computed next state and header position of M . In order to deal with the security proof,
the signature scheme used by the two programs is a special type of IO-compatible signature, namely,
splittable signature.

Evaluating the CPRF on some input x using a constrained key corresponding to some TM M , consists
of two steps. In the first step, the evaluator computes the accumulation winp of the bits of x using ppacc,
which are also included in the constrained key, and then obtains a signature on winp together with the
initial state and header position of M , by running the program P1. The second step is to repeatedly run
the program Pcprf, each time on input the current accumulator value, current state and header position
of M , along with the signature on them. Additionally, in each iteration, the evaluator also feeds winp to
Pcprf. The iteration is continued until the program Pcprf either outputs the proper CPRF value, namely,
the evaluation of the PPRF with key k on winp, or the designated symbol ⊥ indicating failure.

We attempt to follow the above approach in designing our ABS scheme. More precisely, we augment
the above CPRF construction as follows: We treat the signing attribute strings like the inputs of the
above CPRF construction. Just as their CPRF master key, our master signing key consists of a PPRF
key k and a set of public parameters ppacc of the positional accumulator. We define the SIG signing
key-verification key pair associated with a signing attribute string x as those obtained by running the
setup algorithm of SIG using the randomness obtained by evaluating the underlying PPRF with key k
on winp, where winp is the accumulation of the bits of x using ppacc. Similar to their constrained keys,
our signing key corresponding to some TM M would comprise of two IO-obfuscated program P1 and
Pabs. The functionality of the program P1 would be exactly same as the program P1 in the above CPRF
construction, whereas the functionality of Pabs would be an augmentation of that of Pcprf in the above
CPRF construction. Precisely, in case reaching to the accepting state, Pabs first computes the PPRF with
key k on input winp just like Pcprf. After that it generates and outputs a SIG signing key-verification key
pair by running the setup algorithm of SIG using the computed pseudorandom string. Our ABS public
parameters would contain ppacc along with the IO-obfuscated verifying program Vabs that has the same
functionality as earlier, except that instead of taking as input a signing attribute string directly, it now
take as input an accumulator value and applies the PPRF on the input accumulator value.

In order to sign a message under some signing attribute string accepted by the TM embedded in its
signing key, a signer first follows similar steps as those involved in the CPRF evaluation procedure described
above to obtain the SIG signing key-verification key pair associated with the signing attribute string. After
that, the signer signs the message using the obtained SIG signing key. The signature verification process
remains exactly same as earlier, except that instead of directly inputting the claimed signing attribute
string to Vabs, now a verifier have to accumulate the bits of the claimed signing attribute string using
ppacc, and input the accumulated value to Vabs.
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While the above strategy appears to be sound, there still remain some subtle issues. Observe that
To handle the positional accumulator related verifications and updations, just like the programs Pcprf
in the CPRF construction of Deshpande et al. [10], the programs Pabs must have ppacc hardwired in
them. During the course of the unforgeability proof, we have to modify the signing keys given to the
adversary A to embed the punctured PPRF key k{w∗inp} punctured at w∗inp instead of the full PPRF key
k. Here, w∗inp is the accumulation of the bits of the challenge signing attribute string x∗, committed by
A at the beginning of the experiment, using ppacc included within the public parameters given to the
adversary A. In order to make this substitution, it is to be ensured that the programs Pabs included in
those signing keys always outputs ⊥ for signing attribute strings corresponding to w∗inp even if reaching
the accepting state. As usual, we would carry out the transformation one signing key at a time through
multiple hybrid steps. Now, suppose for transforming the signing keys we attempt to follow a strategy
similar to that of [21] or [10]. Let the total number of signing keys queried by A be q̂key. Consider
the transformation of the νth signing key (1 ≤ ν ≤ q̂key) corresponding to the TM M (ν) that runs on
the challenge signing attribute string x∗ for t∗(ν) steps and reaches the rejecting state. In the course of
transformation, the program P(ν)

abs contained in the νth signing key would first be altered to one that
always outputs ⊥ for inputs corresponding to w∗inp within the first t∗(ν) steps. Towards accomplishing this
transition, in successive hybrids, the steps of execution of M (ν) on x∗ would be repeatedly programmed
and unprogrammed within P(ν)

abs taking the help of IO. In order to perform this operation using IO, at
various stages, we need to guarantee program functional equivalence, and for that we need to generate
ppacc in read/write enforcing mode, certain special statistically binding modes indistinguishable from
the normal setup mode. However, in the prefixed version of positional accumulator employed in [10] or
in [21], to setup ppacc in read/write-enforcing mode, we require the entire sequence of symbol-position
pairs arising from iteratively running M (ν) on x∗ up to the step we are programming in. This was not
a problem for [21] or [10] since in their security model the adversary A was bounded to declare the TM
queries prior to setting up the system. On the contrary, in our unforgeability experiment, A is allowed
to adaptively submit signing key queries corresponding to signing policy TMs of its choice throughout
the experiment. In such a case, we would be able to determine those symbol-position pairs only after
receiving the νth queried TM M (ν) from A. However, we would require ppacc while creating the signing
keys queried by A before making the νth signing key query, and even for preparing the public parameters.
Thus, it is immediate that we must generate ppacc prior to receiving the νth signing key query from A.
This is clearly impossible as setting ppacc in read/write enforcing mode requires the knowledge of the
TM M (ν), which is not available before the νth signing key query of A.

Approach to Solve the Limitation of [21,10] using Adaptive Positional Accumulator and the
Associated Challenge

Observe that a set of public parameters of the positional accumulator must be included within each
signing key. This is mandatory due to the required updatability feature of positional accumulator, which
is indispensable to keep track of the current situation while running the program Pabs iteratively in the
course of signing a message under some signing attribute string. The root cause of the problem discussed
above, however, is the use of a single set of public parameters ppacc of the positional accumulator
throughout the system. Observe that this problem would immediately disappear if we use a more advanced
variant of positional accumulator, namely, adaptive positional accumulator [8] as opposed to the prefixed
ones employed in [21, 10]. Adaptive positional accumulators do not require the history of computation
for setting up the public parameters. More precisely, in case of adaptive positional accumulators, there
are two separate algorithms, one for generating the public parameters needed for updating the storage
and accumulator values, and the other for creating the verification key for verifying the correctness of
accumulator proofs. In order to get the enforcing properties, it is only sufficient to generate the verification
key in the enforcing mode. Thus, we can generate a single system-wide set of public parameters of
positional accumulator, while hardwire a different verification key of positional accumulator within the
program Pabs contained in each signing key. Then, in our proof of unforgeability, when modifying the
signing keys, we can set the accumulator verification key associated with the signing key being modified
in the enforcing mode without affecting other signing keys or the public parameter. However, in case of
adaptive positional accumulators, unlike the prefixed variant, there is no helper algorithm by which a
storage-maintaining party could assist a party, who is only maintaining the accumulator value, to update
the accumulator value following an update in the storage. This means that we should also input the entire
accumulator storage, which is of a potentially exponential size, to Pabs in each iteration as otherwise the
program cannot update the accumulator value after executing the next step function of the embedded
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TM. This would again pose new challenges. Note however that Canetti et al. [8] could manage to update
the accumulator value outside the obfuscated programs roughly since they dealt with RAM machines,
and unlike TMs, RAM machines read from the same memory location in the next iteration where they
have written to in the previous iteration. More precisely, a TM reads the symbol at the current header
position, writes a possibly new symbol at that location, and moves its header to a new location for the
next iteration. On the other hand, a RAM machine reads a symbol from the current header position, and
writes a possibly new symbol at some possibly different location by moving its header to that location,
where from it starts the next iteration by reading the value just written down.

Our Solution

Instead of going into that, we try to explore whether it is possible to resolve the problem arising out of
the approach of [21,10] without altering any cryptographic tool used in [21,10]. We have already noticed
that the problem in the approach of [21, 10] is the use of a single set of public parameters of positional
accumulator throughout the system. Therefore, we attempt to assign a fresh set of public parameters of
the positional accumulator to each signing key. However, for compressing the signing attribute strings to
a fixed length, on which the PPRF can be applied to produce the pseudorandom strings specifying the SIG
signing key-verification key pairs associated with those signing attribute strings, we need a system-wide
compressing tool. We employ a somewhere statistically-binding (SSB) hash function for this purpose.
However, note that this does not mean the introduction of any new tool or assumption since one can
always replace an SSB hash function with a prefixed positional accumulator. In fact, SSB hash functions,
introduced in [15], has a similar type of property as positional accumulator, although is less functional
than it. Roughly speaking, just like an ordinary hash function, an SSB hash can be used to create a
short digest of some long string. However, in case of SSB hashes, a hashing key is created by specifying a
special binding index and the generated hashing key gets the property that the hash value of some string
created with the hashing key is statistically binding for the specified index, meaning that the hash value
completely determines the symbol of the hashed input at that index. Moreover, it is possible to prove
that the input string underlying a given hash value contains a specific symbol at a particular index, by
providing a short opening value.

Our idea is that while signing a message under some signing attribute string x using its legitimate
signing key for some TM M , the signer first computes the hash value h by hashing x using the system-wide
SSB hash key, which is part of the ABS public parameters. The signer also computes the accumulator
value winp by accumulating the bits of x using the public parameters of positional accumulator, specific
to its signing key. Then, using the obfuscated initial signing program P1 included in its signing key, the
signer will obtain a signature on winp along with the initial state and header position of M . Finally, the
signer will repeatedly run the obfuscated next step program Pabs included in its signing key, each time
giving as input all the quantities as earlier, except that it would now have to feed the SSB hash value h in
place of winp in each iteration. This is because, in case Pabs reaches the accepting state, it would require
h to apply the PPRF for producing the SIG signing key-verification key pair associated with x. The same
change would also apply to the public verifying program Vabs, namely, it would also take as input the
SSB hash value of a signing attribute string in place of the accumulator value obtained by accumulating
its bits.

However, this approach is not completely sound yet. Observe that, a possibly malicious signer can
compute the SSB hash value h on the signing attribute string x, with respect to which it wishes to
generate a signature despite of the fact that its signing policy TM M does not accepts it, but initiates the
computation by accumulating the bits of only a substring of x or some entirely different signing attribute
string, which is accepted by M . To prevent such malicious behavior, we include another IO-obfuscated
program P2 within the signing key, we call the accumulating program, whose purpose is to restrict the
signer from accumulating the bits of a different signing attribute string rather than the hashed one. The
program P2 takes as input an SSB hash value h, an index i, a symbol, an accumulator value, a signature
on the input accumulator value (along with the initial state and header position of M), and an opening
value for SSB. The program P2 verifies the signature, and also checks whether the input symbol is indeed
present at the index i of the string that has been hashed to form h, using the input opening value. If all of
these verifications pass, then P2 updates the input accumulator value by writing the input symbol at the
ith position of the accumulator storage, and signs the updated accumulator value (along with the initial
state and header position of M). The signature used by P2 is also a splittable signature that facilitates
the security proof. The obfuscated initial signing program P1 included in the signing key is also modified
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to take as input a hash value, and output a signature on the accumulator value corresponding to the
empty accumulator storage together with the initial state and header position of M .

Moreover, for forbidding the signer from performing the computation by accumulating an M -accepted
substring of the hashed input, we define the SIG signing key-verification key pair associated with a signing
attribute string as the output of the setup algorithm of SIG using the pseudorandom string generated by
applying the PPRF on the pair (hash value, length) of the signing attribute string in stead of just the
hash value. Note that, without loss of generality, we can set the upper bound of the length of signing
attribute strings to be 2λ, where λ is the underlying security parameter, in view of the fact that by
suitably choosing λ we can accommodate signing attribute strings of any polynomial length. Since the
lengths of the attribute strings are bounded by 2λ, the lengths can be expressed as bit strings of size λ.
Hence, the total size of the hash value-length pair corresponding to a signing attribute string would be
bounded, and the problem of arbitrarily large punctured PPRF key size would not appear. However, now
the obfuscated next step programs Pabs included in our signing keys, must also take as input the length
of the signing attribute strings for applying the PPRF if reaching to the accepting state.

Thus, the signing procedure of our ABS scheme becomes the following: to sign a message under some
signing attribute string using its legitimate signing key corresponding to some TM M , a signer first hash
the signing attribute string with the system-wide SSB hash key. The signer also obtains a signature on the
empty accumulator value, by running the obfuscated initial signing program P1 on input the computed
hash value. Next, it repeatedly runs the obfuscated accumulating program P2 to authentically accumulate
the bits of the hashed signing attribute string. Finally, it runs the obfuscated next step program Pabs
iteratively on the current accumulator value along with other legitimate inputs, until it obtains either the
SIG signing key-verification key pair associated with the signing attribute string under consideration or
⊥. Once it obtains the SIG signing key-verification key pair associated with the signing attribute string,
it simply signs the message using the SIG signing key, and outputs the SIG verification key-signature pair
as the ABS signature on the message.

Notice that the problem with enforcing the public parameters of the positional accumulator while
transforming the adaptively queried signing keys will not appear in our case as we have assigned a
separate set of public parameters of positional accumulator to each signing key. However, our actual proof
of unforgeability involves many subtleties that are difficult to describe with this high level description,
and is provided in full details in the sequel. We would only like to mention here that to cope up with
certain issues in the proof, another IO-obfuscated program P3 is also included within the signing keys,
we call the signature changing program, that changes the splittable signature obtained from P2 on the
accumulation of the bits of the signing attribute string, before starting the iterative computation with
the obfuscated next step program Pabs.

We follow the same novel technique introduced in [10] for handling the tail hybrids in the final stage
of transformation of the signing keys in our unforgeability experiment. Note that as in [10], we consider
TMs which run for at most T = 2λ steps on any input. Unlike [21], Deshpande et al. [10] have devised an
elegant approach to obtain an end to end polynomial reduction to the security of IO for the tail hybrids
by means of an injective pseudorandom generator (PRG). We directly adopt that technique to deal with
the tail hybrids in our unforgeability proof. Please refer to [10] for a high level overview of the approach.

2 Preliminaries
Here we give the necessary background on various cryptographic tools which we will be using in the
sequel. Let λ ∈ N denotes the security parameter. For n ∈ N and a, b ∈ N ∪ {0} (with a < b), we let
[n] = {1, . . . , n} and [a, b] = {a, . . . , b}. For any set S, υ $←− S represents the uniform random variable
on S. For a randomized algorithm R, we denote by ψ = R(υ; ρ) the random variable defined by the
output of R on input υ and randomness ρ, while ψ $←− R(υ) has the same meaning with the randomness
suppressed. Also, if R is a deterministic algorithm ψ = R(υ) denotes the output of R on input υ. We
will use the alternative notation R(υ)→ ψ as well to represent the output of the algorithm R, whether
randomized or deterministic, on input υ. For any string s ∈ {0, 1}∗, |s| represents the length of the string
s. For any two strings s, s′ ∈ {0, 1}∗, s‖s′ represents the concatenation of s and s′. A function negl is
negligible if for every integer c, there exists an integer k such that for all λ > k, |negl(λ)| < 1/λc.

2.1 Turing Machines
A Turing machine (TM) M is a 7-tuple M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 with the following semantics:
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– Q: The finite set of possible states of M .
– Σinp: The finite set of input symbols.
– Σtape: The finite set of tape symbols such that Σinp ⊂ Σtape and there exists a special blank symbol

‘ ’ ∈ Σtape\Σinp.
– δ : Q×Σtape → Q×Σtape × {+1,−1}: The transition function of M .
– q0 ∈ Q: The designated start state.
– qac ∈ Q: The designated accept state.
– qrej( 6= qac) ∈ Q: The distinguished reject state.

For any t ∈ [T = 2λ], we define the following variables for M , while running on some input (without the
explicit mention of the input in the notations):

– posM,t: An integer which denotes the position of the header of M after the tth step. Initially, posM,0 =
0.

– symM,t ∈ Σtape: The symbol stored on the tape at the posM,t
th location.

– sym(write)
M,t ∈ Σtape: The symbol to be written at the posM,t−1

th location during the tth step.
– stM,t ∈ Q: The state of M after the tth step. Initially, stM,0 = q0.

At each time step, theTM M reads the tape at the header position and based on the current state,
computes what needs to be written on the tape at the current header location, the next state, and whether
the header must move left or right. More formally, let (q, ζ, β ∈ {+1,−1}) = δ(stM,t−1, symM,t−1). Then,
stM,t = q, sym(write)

M,t = ζ, and posM,t = posM,t−1 + β. M accepts at time t if stM,t = qac. In this paper
we consider Σinp = {0, 1} and Σtape = {0, 1, }. Given any TM M and string x ∈ {0, 1}∗, we define
M(x) = 1, if M accepts x within T steps, and 0, otherwise.

2.2 Indistinguishability Obfuscation
Definition 2.1 (Indistinguishability Obfuscation: IO [12]). An indistinguishability obfuscator (IO)
IO for a circuit class {Cλ}λ is a probabilistic polynomial-time (PPT) uniform algorithm satisfying the
following conditions:

� Correctness: IO(1λ, C) preserves the functionality of the input circuit C, i.e., for any C ∈ Cλ, if we
compute C ′ = IO(1λ, C), then C ′(υ) = C(υ) for all inputs υ.

� Indistinguishability: For any security parameter λ and any two circuits C0, C1 ∈ Cλ with same func-
tionality, the circuits IO(1λ, C0) and IO(1λ, C1) are computationally indistinguishable. More precisely,
for all (not necessarily uniform) PPT adversaries D = (D1,D2), there exists a negligible function negl
such that, if

Pr
[
(C0, C1, ξ)

$←− D1(1λ) : ∀ υ,C0(υ) = C1(υ)
]
≥ 1− negl(λ),

then
∣∣Pr
[
D2(ξ, IO(1λ, C0)) = 1

]
− Pr

[
D2(ξ, IO(1λ, C1)) = 1

]∣∣ ≤ negl(λ).

We remark that the two distinct algorithms D1 and D2, which pass state ξ, can be viewed equivalently
as a single stateful algorithm D. In this paper we employ the latter approach, although here we present
the definition as it appears in [12]. When clear from the context, we will drop 1λ as an input to IO.

The circuit class we are interested in are polynomial-size circuits, i.e., when Cλ is the collection of
all circuits of size at most λ. This circuit class is denoted by P/poly. The first candidate construction of
IO for P/poly was presented by Garg et al. [12] in 2013. Their construction uses nonstandard instance
dependent assumption on graded multilinear encodings. Since then, there has been a rapid progress
towards designing IO from better understood cryptographic tools and complexity assumptions. Very
recently, a series of exciting works [2, 22, 1, 17, 19, 13, 18] have finally provided an IO candidate based on
the sub-exponential security of four well-studied computational assumptions, namely, learning with errors
(LWE), learning parity with noise (LPN), existence of boolean pseudorandom generators (PRG) in NC0,
and symmetric external Diffie-Hellman (SXDH).

2.3 IO-Compatible Cryptographic Primitives
In this section, we describe the notions of certain IO-friendly cryptographic tools used in our ABS con-
struction.
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2.3.1 Puncturable Pseudorandom Function

A puncturable pseudorandom function, introduced by Sahai and Waters [27], is a pseudorandom function
(PRF) with the additional property that given a master PRF key, it is possible to derive punctured PRF
keys that enable the evaluation of the PRF at all points of the input domain except the punctured points,
whereas given such a punctured key, the PRF output still remains pseudorandom at the punctured point.

Definition 2.2 (Puncturable Pseudorandom Function: PPRF [27]). A puncturable pseudoran-
dom function (PPRF) F : Kpprf×Xpprf → Ypprf consists of an additional punctured key space Kpprf-punc
other than the usual key space Kpprf and the PPT algorithms (F .Setup, F .Eval, F .Puncture,
F .Eval-Punctured) described below. Here, Xpprf = {0, 1}`pprf-inp and Ypprf = {0, 1}`pprf-out , where `pprf-inp
and `pprf-out are polynomials in the security parameter λ,

F .Setup(1λ)→ K : The setup authority takes as input the security parameter 1λ and uniformly samples
a PPRF key K ∈ Kpprf.

F .Eval(K,x) → r : The setup authority takes as input a PPRF key K ∈ Kpprf along with an input
x ∈ Xpprf. It outputs the PPRF value r ∈ Ypprf on x. For simplicity, we will represent by F(K,x) the
output of this algorithm.

F .Puncture(K,x) → K{x} : Taking as input a PPRF key K ∈ Kpprf along with an element x ∈ Xpprf,
the setup authority outputs a punctured key K{x} ∈ Kpprf-punc.

F .Eval-Puncured(K{x}, x′)→ r or ⊥ : An evaluator takes as input a punctured key K{x} ∈ Kpprf-punc
along with an input x′ ∈ Xpprf. It outputs either a value r ∈ Ypprf or a distinguished symbol ⊥
indicating failure. For simplicity, we will represent by F(K{x}, x′) the output of this algorithm.

The algorithms F .Setup and F .Puncture are randomized, whereas, F .Eval and F .Eval-Punctured are
deterministic.

� Correctness under Puncturing: Consider any security parameter λ, K ∈ Kpprf, x ∈ Xpprf, and
K{x} $←− F .Puncture(K,x). Then it must hold that

F(K{x}, x′) =
ß
F(K,x′), if x′ 6= x
⊥, otherwise

� Selective Pseudorandomness at Punctured Points: This property of a PPRF is defined through

the following experiment between an adversary B and a challenger C:

• B submits a challenge input x∗ ∈ Xpprf to C.
• C chooses uniformly at random a PPRF key K∗

$←− Kpprf and a random bit b̂ $←− {0, 1}. It computes
the punctured key K∗{x∗} $←− F .Puncture(K∗, x∗). If b̂ = 0, it sets r∗ = F(K∗, x∗). Otherwise, it
selects r∗ $←− Ypprf. It sends back (K∗{x∗}, r∗) to B.

• B outputs a guess bit b̂′ ∈ {0, 1}.

The PPRF F is selectively pseudorandom at punctured points if for any PPT adversary B, for any security
parameter λ,

AdvF,sel-pr
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

Boneh and Waters [6], have shown that the tree-based PRF constructed by Goldreich et al. [14] can be
readily modified to build a PPRF from one-way functions.

2.3.2 Somewhere Statistically Binding Hash Function

We provide the definition of somewhere statistically binding hash function as defined by Hubacek et
al. [15]. A somewhere statistically binding hash can be used to create a short digest of some long string.
A hashing key is created by specifying a special binding index and the generated hashing key gets the
property that the hash value of some string created with the hashing key is statistically binding for
the specified index, meaning that the hash value completely determines the symbol of the hashed input
at that index. In other words, even if some hash value has several pre-images, all of those pre-images
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agree in the symbol at the specified index. The index on which the hash is statistically binding should
remain computationally hidden given the hashing key. Moreover, it is possible to prove that the input
string underlying a given hash value contains a specific symbol at a particular index, by providing a short
opening value.

Definition 2.3 (Somewhere Statistically Binding Hash Function: SSB Hash [15,25]). A some-
where statistically binding (SSB) hash consists of the PPT algorithms (SSB.Gen,H,SSB.Open,SSB.Verify)
along with a block alphabet Σssb-blk = {0, 1}`ssb-blk , output size `ssb-hash, and opening space Πssb =
{0, 1}`ssb-open , where `ssb-blk, `ssb-hash, `ssb-open are some polynomials in the security parameter λ. The al-
gorithms have the following syntax:

SSB.Gen(1λ, nssb-blk, i
∗) → hk : The setup authority takes as input the security parameter 1λ, an

integer nssb-blk ≤ 2λ representing the maximum number of blocks that can be hashed, and an index
i∗ ∈ [0, nssb-blk − 1] and publishes a public hashing key hk.

Hhk : x ∈ Σnssb-blk
ssb-blk → h ∈ {0, 1}`ssb-hash : This is a deterministic function that has the hash key hk

hardwired. A user runs this function on input x = x0‖ . . . ‖xnssb-blk−1 ∈ Σnssb-blk
ssb-blk to obtain as output

h = Hhk(x) ∈ {0, 1}`ssb-hash .
SSB.Open(hk, x, i) → πssb : Taking as input the hash key hk, input x ∈ Σnssb-blk

ssb-blk, and an index i ∈
[0, nssb-blk − 1], a user creates an opening πssb ∈ Πssb.

SSB.Verify(hk, h, i, u, πssb) → β̂ ∈ {0, 1} : On input a hash key hk, a hash value h ∈ {0, 1}`ssb-hash , an
index i ∈ [0, nssb-blk − 1], a value u ∈ Σssb-blk, and an opening πssb ∈ Πssb, a verifier outputs a bit
β̂ ∈ {0, 1}.

The algorithms SSB.Gen and SSB.Open are randomized, while the algorithm SSB.Verify is deterministic.

� Correctness: For any security parameter λ, integer nssb-blk ≤ 2λ, i, i∗ ∈ [0, nssb-blk − 1], hk $←−
SSB.Gen(1λ, nssb-blk, i

∗), x ∈ Σnssb-blk
ssb-blk, and πssb

$←− SSB.Open(hk, x, i), we have SSB.Verify(hk,Hhk(x), i,
xi, πssb) = 1.

� Index Hiding: The index hiding property of an SSB hash is defined through the following experiment
between an adversary B and a challenger C:

• B chooses an integer nssb-blk ≤ 2λ together with a pair of indices i∗0, i∗1 ∈ [0, nssb-blk − 1], and submits
them to C.

• C selects a random bit b̂ $←− {0, 1} and computes hk $←− SSB.Gen(1λ, nssb-blk, i
∗
b̂
), and returns hk to B.

• B eventually outputs a guess bit b̂′ ∈ {0, 1}.

The SSB hash is said to be index hiding if for any PPT adversary B, for any security parameter λ,

Advssb,ih
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� Somewhere Statistically Binding: An SSB hash key hk is said to be statistically binding for an
index i∗ ∈ [0, nssb-blk−1] if there do not exist any h ∈ {0, 1}`ssb-hash , u 6= u′ ∈ Σssb-blk, and πssb, π

′
ssb ∈ Πssb

such that SSB.Verify(hk, h, i∗, u, πssb) = 1 = SSB.Verify(hk, h, i∗, u′, π′ssb).
The SSB hash is defined to be somewhere statistically binding if for any security parameter λ, integer

nssb-blk ≤ 2λ, index i∗ ∈ [0, nssb-blk − 1], the hash key hk $←− SSB.Gen(1λ, nssb-blk, i
∗) is statistically

binding for i∗. Note that this is an information theoretic property.

The first construction of an SSB hash is presented by Hubacek et al. [15]. Their construction is based on
fully homomorphic encryption (FHE) [?]. Recently, Okamoto et al. [25] provides alternative constructions
of SSB hash based on various standard number theoretic assumptions. Such as the Decisional Diffie-
Hellman assumption. In this paper, we consider `ssb-blk = 1 and nssb-blk = 2λ.

2.3.3 Positional Accumulator

We will now present the notion of a positional accumulator as defined by Koppula et al. [21]. Intuitively,
a positional accumulator is a cryptographic data structure that maintains two values, namely, a storage
value and an accumulator value. The storage value is allowed to grow comparatively large, while the
accumulator value is constrained to be short. Message symbols can be written to various positions in the
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underlying storage, and new accumulated values can be computed as a string, knowing only the previous
accumulator value and the newly written symbol together with its position in the data structure. Since
the accumulator values are small, one cannot hope to recover everything written in the storage from the
accumulator value alone. However, there are additional helper algorithms which essentially allow a party
who is maintaining the full storage to help a more restricted party maintaining only the accumulator
value recover the data currently written at an arbitrary location. The helper is not necessarily trusted, so
the party maintaining the accumulator value performs a verification procedure in order to be convinced
that it is indeed reading the correct symbols.

Definition 2.4 (Positional Accumulator [21]). A positional accumulator consists of the PPT algo-
rithms (ACC.Setup, ACC.Setup-Enforce-Read, ACC.Setup-Enforce-Write, ACC.Prep-Read, ACC.Prep-Write,
ACC.Verify-Read, ACC.Write-Store, ACC.Update) along with a block alphabet Σacc-blk = {0, 1}`acc-blk , ac-
cumulator size `acc-accumulate, proof space Πacc = {0, 1}`acc-proof where `acc-blk, `acc-accumulate, `acc-proof
are some polynomials in the security parameter λ. The algorithms have the following syntax:

ACC.Setup(1λ, nacc-blk) → (ppacc, w0, store0) : The setup authority takes as input the security pa-
rameter 1λ and an integer nacc-blk ≤ 2λ representing the maximum number of blocks that can be
accumulated. It outputs the public parameters ppacc, an initial accumulator value w0, and an initial
storage value store0.

ACC.Setup-Enforce-Read(1λ, nacc-blk, ((x1, i1), . . . , (xκ, iκ)), i∗)→ (ppacc, w0, store0) : Taking as input
the security parameter 1λ, an integer nacc-blk ≤ 2λ representing the maximum number of blocks that
can be accumulated, a sequence of symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk×[0, nacc-blk−
1])κ, and an additional index i∗ ∈ [0, nacc-blk−1], the setup authority publishes the public parameters
ppacc, an initial accumulator value w0, together with an initial storage value store0.

ACC.Setup-Enforce-Write(1λ, nacc-blk, ((x1, i1), . . . , xκ, iκ)))→ (ppacc, w0, store0) : On input the secu-
rity parameter 1λ, an integer nacc-blk ≤ 2λ denoting the maximum number of blocks that can be accu-
mulated, and a sequence of symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk × [0, nacc-blk − 1])κ,
the setup authority publishes the public parameters ppacc, an initial accumulator value w0, as well
as, an initial storage value store0.

ACC.Prep-Read(ppacc, storein, iin) → (xout, πacc) : A storage-maintaining party takes as input the
public parameter ppacc, a storage value storein, and an index iin ∈ [0, nacc-blk − 1]. It outputs a
symbol xout ∈ Σacc-blk ∪ {ε} (ε being the empty string) and a proof πacc ∈ Πacc.

ACC.Prep-Write(ppacc, storein, iin) → aux : Taking as input the public parameter ppacc, a storage
value storein, together with an index iin ∈ [0, nacc-blk − 1], a storage-maintaining party outputs an
auxiliary value aux.

ACC.Verify-Read(ppacc, win, xin, iin, πacc) → β̂ ∈ {0, 1} : A verifier takes as input the public parameter
ppacc, an accumulator value win ∈ {0, 1}`acc-accumulate , a symbol xin ∈ Σacc-blk ∪ {ε}, an index iin ∈
[0, nacc-blk − 1], and a proof πacc ∈ Πacc. It outputs a bit β̂ ∈ {0, 1}.

ACC.Write-Store(ppacc, storein, iin, xin)→ storeout : On input the public parameters ppacc, a storage
value storein, an index iin ∈ [0, nacc-blk − 1], and a symbol xin ∈ Σacc-blk, a storage-maintaining
party computes a new storage value storeout.

ACC.Update(ppacc, win, xin, iin,aux) → woutor⊥ : An accumulator-updating party takes as input the
public parameters ppacc, an accumulator value win ∈ {0, 1}`acc-accumulate , a symbol xin ∈ Σacc-blk, an
index iin ∈ [0, nacc-blk − 1], and an auxiliary value aux. It outputs the updated accumulator value
wout ∈ {0, 1}`acc-accumulate or the designated reject string ⊥.

Following [21,10], in this paper we will consider the algorithms ACC.Setup,ACC.Setup-Enforce-Read, and
ACC.Setup-Enforce-Write as randomized while all other algorithms as deterministic.

� Correctness: Consider any symbol-index pair sequence ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk×[0, nacc-blk−
1])κ. Fix any (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk). For j = 1, . . . , κ, iteratively define the fol-
lowing:

– storej = ACC.Write-Store(ppacc, storej−1, ij , xj)
– auxj = ACC.Prep-Write(ppacc, storej−1, ij)
– wj = ACC.Update(ppacc, wj−1, xj , ij ,auxj)

The following correctness properties are required to be satisfied:
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i) For any security parameter λ, nacc-blk ≤ 2λ, index i∗ ∈ [0, nacc-blk−1], sequence of symbol-index pairs
((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk×[0, nacc-blk−1])κ, and (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk),
if storeκ is computed as above, then ACC.Prep-Read(ppacc, storeκ, i∗) returns (xj , πacc) where j is
the largest value in [κ] such that ij = i∗.

ii) For any security parameter λ, nacc-blk ≤ 2λ, sequence of symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈
(Σacc-blk× [0, nacc-blk−1])κ, i∗ ∈ [0, nacc-blk−1], and (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk),
if storeκ and wκ are computed as above and (xout, πacc) = ACC.Prep-Read(ppacc, storeκ, i∗), then
ACC.Verify-Read(ppacc, wκ, xout, i

∗, πacc) = 1

� Indistinguishability of Read Setup: This property of a positional accumulator is defined through
the following experiment between an adversary B and a challenger C:

• B chooses a bound nacc-blk ≤ 2λ of the number of blocks, κ symbol-index pairs ((x1, i1), . . . , (xκ, iκ)) ∈
(Σacc-blk × [0, nacc-blk − 1])κ, and an index i∗ ∈ [0, nacc-blk − 1]. It submits all of those to C.

• C selects a random bit b̂ $←− {0, 1}. If b̂ = 0, C generates (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk).
Otherwise, C forms (ppacc, w0, store0) $←− ACC.Setup-Enforce-Read(1λ, nacc-blk, ((x1, i1), . . . , (xκ, iκ)),
i∗). It returns (ppacc, w0, store0) to B.

• B outputs a guess bit b̂′ ∈ {0, 1}.

The positional accumulator is said to satisfy indistinguishability of read setup if for any PPT adversary
B, for any security parameter λ, we have

Advacc,ind-read
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� Indistinguishability of Write Setup: This property of a positional accumulator is defined through
the following experiment between an adversary B and a challenger C:

• B chooses a bound nacc-blk ≤ 2λ of the number of blocks, and κ symbol-index pairs ((x1, i1), . . . ,
(xκ, iκ)) ∈ (Σacc-blk × [0, nacc-blk − 1])κ. It submits all of those to C.

• C selects a random bit b̂ $←− {0, 1}. If b̂ = 0, C generates (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk).
Otherwise, C generates (ppacc, w0, store0) $←− ACC.Setup-Enforce-Write(1λ, nacc-blk, ((x1, i1), . . . ,
(xκ, iκ))). It returns (ppacc, w0, store0) to B.

• B outputs a guess bit b̂′ ∈ {0, 1}.

A positional accumulator is said to satisfy indistinguishability of write setup if for any PPT adversary B,
for any security parameter λ, we have

Advacc,ind-write
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� Read Enforcing: Consider any security parameter λ, nacc-blk ≤ 2λ, ((x1, i1), . . . , (xκ, iκ)) ∈ (Σacc-blk×
[0, nacc-blk−1])κ, and i∗ ∈ [0, nacc-blk−1]. Let (ppacc, w0, store0) $←− ACC.Setup-Enforce-Read(1λ, nacc-blk,
((x1, i1), . . . , (xκ, iκ)), i∗). For j = 1, . . . , κ, iteratively define the following:

– storej = ACC.Write-Store(ppacc, storej−1, ij , xj)
– auxj = ACC.Prep-Write(ppacc, storej−1, ij)
– wj = ACC.Update(ppacc, wj−1, xj , ij ,auxj)

The positional accumulator is said to be read enforcing if ACC.Verify-Read(ppacc, wκ, xin, i
∗, πacc) = 1

implies either [i∗ /∈ {i1, . . . , iκ}] ∧ [xin = ε] or xin = xj for the largest j ∈ [κ] such that ij = i∗. Note
that this is an information theoretic property.

� Write Enforcing: Consider any security parameter λ, nacc-blk ≤ 2λ, and ((x1, i1), . . . , (xκ, iκ)) ∈
(Σacc-blk×[0, nacc-blk−1])κ. Let (ppacc, w0, store0) $←− ACC.Setup-Enforce-Write(1λ, nacc-blk, ((x1, i1), . . . ,
(xκ, iκ))). For j = 1, . . . , κ, iteratively define the following:

– storej = ACC.Write-Store(ppacc, storej−1, ij , xj)
– auxj = ACC.Prep-Write(ppacc, storej−1, ij)
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– wj = ACC.Update(ppacc, wj−1, xj , ij ,auxj)

The positional accumulator is defined to be write enforcing if ACC.Update(ppacc, wκ−1, xκ, iκ,aux) =
wout 6= ⊥, for any aux, implies wout = wκ. Observe that this is an information theoretic property as
well.

The first construction of a positional accumulator is presented by Koppula et al. [21] based on IO and one-
way function. Recently, Okamoto et al. [25] provided an alternative construction of positional accumulator
from standard number theoretic assumptions. Such as the Decisional Diffie-Hellman assumption.

2.3.4 Iterator

Here, we define cryptographic iterators again following [21]. Informally speaking, a cryptographic iterator
consists of a small state that is updated in an iterative fashion as messages are received. An update to
incorporate a new message given the current state is performed with the help of some public parameters.
Since, states are relatively small regardless of the number of messages that have been iteratively incorpo-
rated, there is in general many sequences of messages that lead to the same state. However, the security
property requires that the normal public parameters should be computationally indistinguishable from
specially constructed enforcing parameters which ensure that a particular state can only be obtained as
the outcome of an update to precisely one other state-message pair. Note that this enforcement is a very
localized property to a specific state and hence can be achieved information-theoretically when it is fixed
ahead of time where exactly this enforcement is desired.

Definition 2.5 (Iterator [21]). A cryptographic iterator consists of the PPT algorithms (ITR.Setup,
ITR.Setup-Enforce, ITR.Iterate) along with a message space Mitr = {0, 1}`itr-msg and iterator state size
`itr-st, where `itr-msg, `itr-st are some polynomials in the security parameter λ. Algorithms have the
following syntax:

ITR.Setup(1λ, nitr) → (ppitr, v0) : The setup authority takes as input the security parameter 1λ along
with an integer bound nitr ≤ 2λ on the number of iterations. It outputs the public parameters ppitr
and an initial state v0 ∈ {0, 1}`itr-st .

ITR.Setup-Enforce(1λ, nitr, (µ1, . . . , µκ)) → (ppitr, v0) : Taking as input the security parameter 1λ, an
integer bound nitr ≤ 2λ, together with a sequence of κ messages (µ1, . . . , µκ) ∈Mκ

itr, where κ ≤ nitr,
the setup authority publishes the public parameters ppitr and an initial state v0 ∈ {0, 1}`itr-st .

ITR.Iterate(ppitr, vin ∈ {0, 1}`itr-st , µ) → vout : On input the public parameters ppitr, a state vin, and a
message µ ∈ Mitr, an iterator outputs an updated state vout ∈ {0, 1}`itr-st . For any integer κ ≤ nitr,
we will write ITR.Iterateκ(ppitr, v0, (µ1, . . . , µκ)) to denote ITR.Iterate(ppitr, vκ−1, µκ), where vj is
defined iteratively as vj = ITR.Iterate(ppitr, vj−1, µj) for all j = 1, . . . , κ− 1.

The algorithm ITR.Iterate is deterministic, while the other two are randomized.

� Indistinguishability of Enforcing Setup: This property of a cryptographic iterator is defined
through the following experiment between an adversary B and a challenger C:

• B chooses an integer bound nitr ≤ 2λ, along with a sequence of κ messages (µ1, . . . , µκ) ∈Mκ
itr, and

submits them to C.
• C selects a random bit b̂ $←− {0, 1}. If b̂ = 0, C generates (ppitr, v0) $←− ITR.Setup(1λ, nitr). Else, C

generates (ppitr, v0) $←− ITR.Setup-Enforce(1λ, nitr, (µ1, . . . , µκ)). It sends back (ppitr, v0) to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The cryptographic iterator is said to satisfy indistinguishability of enforcing setup if for any PPT adversary
B, for any security parameter λ,

Advitr,ind-enf
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� Enforcing: Consider any security parameter λ, nitr ≤ 2λ, κ ≤ nitr, and (µ1, . . . , µκ) ∈ Mκ
itr. Let

(ppitr, v0) $←− ITR.Set-Enforce(1λ, nitr, (µ1, . . . , µκ)) and vj = ITR.Iteratej(ppitr, v0, (µ1, . . . , µj)) for all
j ∈ [κ]. The cryptographic iterator is said to be enforcing if vk = ITR.Iterate(ppitr, v

′, µ′) implies (v′, µ′) =
(vκ−1, µκ). Note that this is an information theoretic property.

Koppula et al. [21] have presented a construction of cryptographic iterators from IO and one-way function.
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2.3.5 Splittable Signature

The following background on splittable signatures is taken verbatim from Koppula et al. [21] as well. A
splittable signature scheme is essentially a normal signature scheme augmented by some additional algo-
rithms that produce alternative signing and verification keys with different capabilities. More precisely,
there are “all-but-one” signing and verification keys which work correctly for all messages except for a
specific one, as well as there are “one” signing and verification keys which work only for a particular
message. Additionally, there are “reject” verification keys which always reject signatures.

Definition 2.6 (Splittable Signature: SPS [21]). A splittable signature scheme (SPS) for message
spaceMsps = {0, 1}`sps-msg and signature space Ssps = {0, 1}`sps-sig , where `sps-msg, `sps-sig are some polynomi-
als in the security parameter λ, consists of the PPT algorithms (SPS.Setup, SPS.Sign, SPS.Verify, SPS.Split,
SPS.Sign-ABO) which are described below:

SPS.Setup(1λ) → (sksps,vksps,vksps-rej) : The setup authority takes as input the security parameter
1λ and generates a signing key sksps, a verification key vksps, together with a reject verification key
vksps-rej.

SPS.Sign(sksps,m)→ σsps : A signer given a signing key sksps along with a message m ∈Msps, produces
a signature σsps ∈ Ssps.

SPS.Verify(vksps,m, σsps) → β̂ ∈ {0, 1} : A verifier takes as input a verification key vksps, a message
m ∈Msps, and a signature σsps ∈ Ssps. It outputs a bit β̂ ∈ {0, 1}.

SPS.Split(sksps,m
∗) → (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo) : On input a signing key sksps

along with a message m∗ ∈ Msps, the setup authority generates a signature σsps-one,m∗ =
SPS.Sign(sksps,m

∗), a one-message verification key vksps-one, and all-but-one signing-verification key
pair (sksps-abo,vksps-abo).

SPS.Sign-ABO(sksps-abo,m)→ σsps or ⊥ : An all-but-one signer given an all-but-one signing key sksps-abo
and a message m ∈ Msps, outputs a signature σsps ∈ Ssps or a distinguished string ⊥ to indicate
failure. For simplicity of notation, we will often use SPS.Sign(sksps-abo,m) to represent the output of
this algorithm.

We note that among the algorithms described above, SPS.Setup and SPS.Split are randomized while all
the others are deterministic.

� Correctness: For any security parameter λ, messagem∗ ∈Msps, (sksps,vksps,vksps-rej)
$←− SPS.Setup(1λ),

and (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo) $←− SPS.Split(sksps,m
∗) the following correctness condi-

tions hold:

i) ∀m ∈Msps, SPS.Verify(vksps,m,SPS.Sign(sksps,m)) = 1.
ii) ∀m 6= m∗ ∈Msps, SPS.Sign(sksps,m) = SPS.Sign-ABO(sksps-abo,m).

iii) ∀σsps ∈ Ssps, SPS.Verify(vksps-one,m
∗, σsps) = SPS.Verify(vksps,m

∗, σsps).
iv) ∀m 6= m∗ ∈Msps, σsps ∈ Ssps, SPS.Verify(vksps-abo,m, σsps) = SPS.Verify(vksps,m, σsps).
v) ∀m 6= m∗ ∈Msps, σsps ∈ Ssps, SPS.Verify(vksps-one,m, σsps) = 0.
vi) ∀σsps ∈ Ssps, SPS.Verify(vksps-abo,m

∗, σsps) = 0.
vii) ∀m ∈Msps, σsps ∈ Ssps, SPS.Verify(vksps-rej,m, σsps) = 0.

� vkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvksps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rejsps-rej Indistinguishability: This property of a splittable signature scheme is defined through the
following experiment between an adversary B and a challenger C:

• C generates (sksps,vksps,vksps-rej)
$←− SPS.Setup(1λ). Next it chooses a random bit b̂ $←− {0, 1}. If

b̂ = 0, it sends vksps to B. Otherwise, it sends vksps-rej to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The splittable signature scheme is said to be vksps-rej indistinguishable if for any PPT adversary B, for
any security parameter λ,

Advsps,ind-rej
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� vkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvksps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-onesps-one Indistinguishability: This feature of a splittable signature scheme is defined through the
following experiment between an adversary B and a challenger C:



Short Attribute-Based Signatures for Arbitrary Turing Machines from Standard Assumptions 17

• B submits a message m∗ ∈Msps to C.
• C generates (sksps,vksps,vksps-rej)

$←− SPS.Setup(1λ). Next it computes (σsps-one,m∗ ,vksps-one, sksps-abo,

vksps-abo) $←− SPS.Split(sksps,m
∗). Then it chooses a random bit b̂ $←− {0, 1}. If b̂ = 0, it returns

(σsps-one,m∗ ,vksps-one) to B. Else, it returns (σsps-one,m∗ ,vksps) to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The splittable signature scheme is said to be vksps-one indistinguishable if for any PPT adversary B, for
any security parameter λ,

Advsps,ind-one
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� vkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvkvksps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abosps-abo Indistinguishability: This feature of a splittable signature scheme is defined through the
following experiment between an adversary B and a challenger C:

• B submits a message m∗ ∈Msps to C.
• C generates (sksps,vksps,vksps-rej)

$←− SPS.Setup(1λ). Next it computes (σsps-one,m∗ ,vksps-one, sksps-abo,

vksps-abo) $←− SPS.Split(sksps,m
∗). Then it chooses a random bit b̂ $←− {0, 1}. If b̂ = 0, it returns

(sksps-abo,vksps-abo) to B. Else, it returns (sksps-abo,vksps) to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The splittable signature scheme is said to be vksps-abo indistinguishable if for any PPT adversary B, for
any security parameter λ,

Advsps,ind-abo
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

� Splitting Indistinguishability: This feature of a splittable signature scheme is defined through the
following experiment between an adversary B and a challenger C:

• B submits a message m∗ ∈Msps to C.
• C forms (sksps,vksps,vksps-rej)

$←− SPS.Setup(1λ), (sk′sps,vk′sps,vk′sps-rej)
$←− SPS.Setup(1λ). Next it

computes (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo) $←− SPS.Split(sksps,m
∗) as well as (σ′sps-one,m∗ ,

vk′sps-one, sk′sps-abo,vk′sps-abo) $←− SPS.Split(sk′sps,m
∗). Then it chooses a random bit b̂ $←− {0, 1}. If

b̂ = 0, it returns (σsps-one,m∗ ,vksps-one, sksps-abo,vksps-abo) to B. Else, it returns (σsps-one,m∗ ,vksps-one,
sk′sps-abo,vk′sps-abo) to B.
• B outputs a guess bit b̂′ ∈ {0, 1}.

The splittable signature scheme is said to be splitting indistinguishable if for any PPT adversary B, for
any security parameter λ,

Advsps,ind-spl
B (λ) = |Pr[b̂ = b̂′]− 1/2| ≤ negl(λ)

for some negligible function negl.

Koppula et al. [21] have constructed a splittable signature scheme using IO and one-way function.

3 Our Attribute-Based Signature for Turing Machines

3.1 Notion
Here we will formally define the notion of an attribute-based signature scheme where signing policies are
associated with TM’s. This definition is similar to that defined in [30, 28] for circuits. However, due to
the use of TM’s as opposed to circuits, such a scheme can handle signing attribute strings of arbitrary
polynomial length.
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Definition 3.1 (Attribute-Based Signature for Turing Machines: ABS). Let Mλ be a class
of TM’s, the members of which have (worst-case) running time bounded by T = 2λ. An attribute-
based signature (ABS) scheme for signing policies associated with the TM’s in Mλ comprises of an
attribute universe Uabs ⊂ {0, 1}∗, a message space Mabs = {0, 1}`abs-msg , a signature space Sabs =
{0, 1}`abs-sig , where `abs-msg, `abs-sig are some polynomials in the security parameter λ, and the PPT al-
gorithms (ABS.Setup, ABS.KeyGen, ABS.Sign, ABS.Verify) described below:
ABS.Setup(1λ) → (ppabs,mskabs) : The setup authority takes as input the security parameter 1λ. It

publishes the public parameters ppabs while generates a master secret key mskabs for itself.
ABS.KeyGen(mskabs,M) → skabs(M) : Taking as input the master secret key mskabs and a signing

policy TM M ∈Mλ of a signer, the setup authority provides the corresponding signing key skabs(M)
to the legitimate signer.

ABS.Sign(skabs(M), x,msg) → σabs or ⊥ : On input the signing key skabs(M) corresponding to the
legitimate signing policy TM M ∈Mλ, a signing attribute string x ∈ Uabs, and a message msg ∈Mabs,
a signer outputs either a signature σabs ∈ Sabs or ⊥ indicating failure.

ABS.Verify(ppabs, x,msg, σabs) → β̂ ∈ {0, 1} : A verifier takes as input the public parameters ppabs, a
signing attribute string x ∈ Uabs, a message msg ∈ Mabs, and a purported signature σabs ∈ Sabs. It
outputs a bit β̂ ∈ {0, 1}.

We note that all the algorithms described above except ABS.Verify are randomized. The algorithms satisfy
the following properties:

� Correctness: For any security parameter λ, (ppabs,mskabs)
$←− ABS.Setup(1λ), M ∈Mλ, skabs(M) $←−

ABS.KeyGen(mskabs,M), x ∈ Uabs, and msg ∈Mabs, if M(x) = 1, then ABS.Sign(skabs(M), x,msg) out-
puts σabs ∈ Sabs such that ABS.Verify(ppabs, x,msg, σabs) = 1.

� Signer Privacy: An ABS scheme is said to provide signer privacy if for any security parameter
λ, message msg ∈ Mabs, (ppabs,mskabs)

$←− ABS.Setup(1λ), signing policies M,M ′ ∈ Mλ, signing
keys skabs(M) $←− ABS.KeyGen(mskabs,M), skabs(M ′)

$←− ABS.KeyGen(mskabs,M
′), x ∈ Uabs such that

M(x) = 1 = M ′(x), the distributions of the signatures outputted by ABS.Sign(skabs(M), x,msg) and
ABS.Sign(skabs(M ′), x,msg) are identical.

� Existential Unforgeability against Selective Attribute Adaptive Chosen Message Attack:
This property of an ABS scheme is defined through the following experiment between an adversary A
and a challenger B:
• A submits a challenge attribute string x∗ ∈ Uabs to B.
• B generates (ppabs,mskabs)

$←− ABS.Setup(1λ) and provides A with ppabs.
• A may adaptively make a polynomial number of queries of the following types:

– Signing key query: When A queries a signing key corresponding to a signing policy TM M ∈Mλ

subject to the restriction that M(x∗) = 0, B gives back skabs(M) $←− ABS.KeyGen(mskabs,M) to
A.

– Signature query: When A queries a signature on a message msg ∈ Mabs under an attribute
string x ∈ Uabs, B samples a signing policy TM M ∈Mλ such that M(x) = 1, creates a signing key
skabs(M) $←− ABS.KeyGen(mskabs,M), and generates a signature σabs

$←− ABS.Sign(skabs(M), x,msg),
which B returns to A.

• At the end of interaction A outputs a message-signature pair (msg∗, σ∗abs). A wins if the following
hold simultaneously:
i) ABS.Verify(ppabs, x

∗,msg∗, σ∗abs) = 1.
ii) A has not made any signature query on msg∗ under x∗.

The ABS scheme is said to be existentially unforgeable against selective attribute adaptive chosen message
attack if for any PPT adversary A, for any security parameter λ,

Advabs,uf-cma
A (λ) = Pr[A wins] ≤ negl(λ)

for some negligible function negl.
Remark 3.1. Note that in the existential unforgeability experiment above without loss of generality, we
can consider signature queries on messages only under the challenge attribute string x∗. This is because
any signature query under some attribute string x 6= x∗ can be replaced by a signing key query for a
signing policy TM Mx ∈ Mλ that accepts only the string x. Since x 6= x∗, Mx(x∗) = 0, and thus Mx

forms a valid signing key query. We will use this simplification in our proof.
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3.2 Principal Ideas behind Our ABS Scheme
Here we give an overview of our ABS scheme. To generate an ABS signature, we use a PPRF F , an
SSB hash function, and a standard existentially unforgeable digital signature scheme SIG for the same
message space Mabs = {0, 1}`abs-msg of the ABS scheme. A high level description of the structure of our
ABS signatures and the signature verification process is presented below:

a) The master signing key mskabs of our ABS scheme consists of a key K for the PPRF F and an SSB
hash key hk.

b) The ABS signature on a message msg ∈Mabs under certain signing attribute string x = x0 . . . x`x−1 ∈
Uabs ⊂ {0, 1}∗ of length |x| = `x is σabs = (vksig, σsig), which consists of a verification key vksig and
a signature σsig of the digital signature scheme SIG, computed as follows:
The signing attribute string x is hashed using the SSB hash key hk to form a fixed length hash value
h. Next, a pseudorandom string rsig = F(K,h) is computed using the PPRF F . The setup algorithm
of SIG is then executed with the randomness rsig to generate the SIG verification key vksig along
with its corresponding SIG signing key sksig. The SIG signing key sksig is utilized to generate the SIG
signature σsig on the message msg by running the SIG signing algorithm.

c) The public parameters ppabs corresponding to the master signing key mskabs is comprised of the
SSB hash key hktogether with an IO-obfuscated program Vabs, known as the verifying program (see
Fig. 3.1). The verifying program Vabs has the PPRF key K hardwired in it, and takes as input an SSB
hash value h. The program Vabs generates the pseudorandom string r̂sig = F(K,h), performs the SIG
setup algorithm using r̂sig as the randomness, and outputs the resulting SIG verification key ”vksig.

d) A verifier checks a purported signature σabs = (vksig, σsig) on some message msg ∈Mabs under some
signing attribute string x = x0 . . . x`x−1 ∈ Uabs with |x| = `x using the public parameters ppabs as
follows:
It first hashes x using the SSB hash key hk forming the hash value h. Next, it obtains an SIG
verification key ”vksig by running the obfuscated verifying program Vabs on input the hash value h.
The verifier accepts the signature σabs if the SIG verification key”vksig outputted by the program Vabs
matches vksig and the SIG signature σsig is verified for msg with respect to vksig. The correctness of
the verification process is immediate from the correctness of SIG along with the functional property
of the PPRF F and the SSB hash function.

We now explain the structure of the ABS signing keys associated with specific signing policy TM’s and
justify the utility of the IO-obfuscated programs included in our ABS signing keys. The first intuition is to
design the signing key corresponding to certain signing policy TM M in such a way that while attempting
to sign any message with respect to some signing attribute string x ∈ Uabs, the signer is forced to execute
M on x and succeeds in obtaining a valid signature if and only if M accepts x. We plan to make this
idea work by providing an IO-obfuscated program Pabs, called the next step program (see Fig. 3.5). We
sketch the functionality of Pabs below:

i) The program Pabs has the PPRF key K hardwired in it. It takes as input a state and header position
of M , together with an input symbol and an SSB hash value. It computes the next step function of
M on the input state-symbol pair. In case M enters the accepting state, the program outputs the
desired SIG signing key-verification key pair as follows:
It first generates a pseudorandom string by applying the PPRF F with key K on the input SSB hash
value. Next, it runs the SIG setup algorithm utilizing the generated pseudorandom string to produce
the SIG signing key-verification key pair to be outputted. Observe that once the required SIG signing
key-verification key is obtained, the signer can itself compute an SIG signature on any message.

ii) To prevent illegal inputs across successive invocations, the program Pabs must perform certain au-
thenticity checks before executing the next step function of M . A natural choice would be to maintain
a short authenticated commitment of the current tape configuration of the TM M that is updated
and re-authenticated at each invocation of Pabs. For this, we make use of a positional accumulator
ACC and a splittable signature scheme SPS. Our security proof crucially relies on various features
of splittable signatures in the hybrid transformations. We include a fresh set of public parameters
ppacc of the positional accumulator within each ABS signing key. We design the program Pabs to
additionally take as input an accumulator value, a proof for the accumulator value, together with an
SPS signature on the input state, header position, and the input accumulator value.

iii) The program Pabs verifies the SPS signature and checks the accumulator proof to get convinced that
the input symbol is indeed the one placed at the input header position of the underlying storage of
the input accumulator value.
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iv) If all these verifications pass, then Pabs determines the next state and header position of M , as well
as computes the new symbol that needs to be written to the input header position. The program Pabs
then updates the accumulator value by placing the new symbol at the input header position, and
generates an SPS signature on the updated accumulator value along with the computed next state
and header position of M . In order to deal with the positional accumulator related verifications and
updations, Pabs has ppacc hardwired.

Now, observe that before starting the repeated execution of Pabs, the signer would require an SPS
signature on the initial accumulator value formed by accumulating the bits of the signing attribute
string along with the initial state and header position of M . For this, we include another IO-obfuscated
program P1, known as the initial signing programm (see Fig. 3.2). It takes as input an accumulator value
and outputs an SPS signature on the tuple of the input accumulator value, initial state, and initial header
position of M . The idea is that while signing some message under some signing attribute string x using
a signing key corresponding to some TM M , the signer would proceed as follows:

a) It would first compute the SSB hash value h by hashing x using the system wide SSB hash key hk,
which is part of the public parameters ppabs.

b) The signer would also compute the accumulator value winp by accumulating the bits of x using the
public parameters ppacc of positional accumulator included in the ABS signing key.

c) Then, using the obfuscated initial signing program P1, included in the signing key, the signer would
obtain an SPS signature on winp along with the initial state and header position of M .

d) Finally, the signer would repeatedly run the obfuscated next step program Pabs, included in the signing
key, each time giving as input all the quantities as mentioned above. Note that the hash value that
needs to be given as input to Pabs in each iteration is h. In case Pabs reaches the accepting state,
it would require h to apply F for producing the pseudorandom string to be used in the SIG setup
algorithm.

However, this approach is not completely sound yet. Observe that, a possibly malicious signer can
compute the SSB hash value h on the signing attribute string x, under which it wishes to produce the
ABS signature, although M does not accepts it, and initiates the signing process by accumulating the
bits of only a substring of x or some entirely different signing attribute string, which is accepted by
M . To prevent such malicious behavior, we include another IO-obfuscated program P2 within the ABS
signing key, known as the accumulating program (see Fig. 3.3), whose purpose is to restrict the signer
from accumulating the bits of a different signing input string rather than the hashed one. The program
P2 functions as follows:

i) The program P2 takes as input an SSB hash value h, an index i, a symbol, an accumulator value, an
SPS signature on the input accumulator value (along with the initial state and header position of M),
and an opening value for SSB.

ii) The program P2 verifies the SPS signature. Using the input opening value for SSB, it also checks
whether the input symbol is indeed present at the index i of the string that has been hashed to form
h, using the input opening value.

iii) If all of these verifications pass, then P2 updates the input accumulator value by writing the input
symbol at the ith position of the accumulator storage.

We also modify the obfuscated initial signing program P1, included in the signing key, to take as input
an SSB hash value rather than an accumulator value and output an SPS signature on the accumulator
value corresponding to the empty accumulator storage, along with the initial state and header position
of M .

To forbid the signer from performing the signature generation by accumulating an M -accepted sub-
string of the hashed signing attribute string, we generate the pseudorandom string to be used in the SIG
setup algorithm by evaluating F on hash value-length pair of the signing attribute string instead of the
hash value only. Without loss of generality, we set the upper bound of the length of signing attribute
strings to be 2λ, where λ is the underlying security parameter. Note that by suitably choosing λ, we
can accommodate signing attribute strings of any polynomial length. Now, as the length of the signing
attribute strings is bounded by 2λ, it can be expressed as a bit strings of length λ. Thus, the signing
attribute string length can be safely fed to F along with the SSB hash value of the signing attribute
string. Hence, the obfuscated next step programs Pabs included in our signing keys must also take as in-
put the length of the attribute string for generating the pseudorandom string for the SIG setup algorithm
if reaching to the accepting state. For the same reason, the verifying program Vabs included in the public
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parameters ppabs also needs to be modified to take as input the length of signing attribute strings along
with their SSB hash values.

Therefore, in our ABS scheme, to generate an ABS signature on some message under certain signing
attribute string using a signing key, corresponding to some TM M , a signer does the following:

a) It first hashes the signing attribute string.
b) It also obtains an SPS signature on the empty accumulator value included in the signing key, by

running the obfuscated initial signing program P1 on input the computed hash value.
c) Next, it repeatedly runs the obfuscated accumulating program P2 to accumulate the bits of the signing

attribute string.
d) It then runs the obfuscated next step program Pabs iteratively on the current accumulator value along

with other legitimate inputs until it obtains either the desired SIG signing key-verification key pair or
⊥.

e) Finally, it uses the obtained SIG signing key to generate an SIG signature on the message it wishes
to sign and outputs the pair of the SIG verification key obtained from Pabs and the computed SIG
signature on the message as the purported ABS signature.

To cope up with certain issues in the security proof we further include another IO-obfuscated program
P3 in our ABS signing keys, known as the signature changing program (see Fig. 3.4). It changes the SPS
signature on the accumulation of the bits of the signing attribute string before starting the iterative
computation with the obfuscated next step program Pabs.

3.3 Formal Description of our ABS Construction
Let λ be the underlying security parameter. Let Mλ denote a family of TM’s, the members of which
have (worst case) running time bounded by T = 2λ, input alphabet Σinp = {0, 1}, and tape alphabet
Σtape = {0, 1, }. Our ABS construction supporting signing attribute universe Uabs ⊂ {0, 1}∗, signing
policies representable by TM’s in Mλ, and message space Mabs = {0, 1}`abs-msg utilizes the following
cryptographic building blocks:

i) IO: An indistinguishability obfuscator for general polynomial-size circuits.
ii) SSB = (SSB.Gen,H,SSB.Open,SSB.Verify): A somewhere statistically binding hash function with

Σssb-blk = {0, 1}.
iii) ACC = (ACC.Setup,ACC.Setup-Enforce-Read,ACC.Setup-Enforce-Write,ACC.Prep-Read,ACC.Prep-Write,

ACC.Verify-Read,ACC.Write-Store,ACC.Update): A positional accumulator with Σacc-blk = {0, 1, }.
iv) ITR = (ITR.Setup, ITR.Setup-Enforce, ITR.Iterate): A cryptographic iterator with an appropriate mes-

sage space Mitr
v) SPS = (SPS.Setup,SPS.Sign,SPS.Verify,SPS.Split,SPS.Sign-ABO): A splittable signature scheme with

an appropriate message space Msps.
vi) PRG : {0, 1}λ → {0, 1}2λ: A length-doubling pseudorandom generator.

vii) F = (F .Setup,F .Puncture,F .Eval): A puncturable pseudorandom function whose domain and range
are chosen appropriately. For simplicity, we assume that F has inputs and outputs of bounded length
instead of fixed length inputs and outputs. This assumption can be easily removed by using different
PPRF’s for different input and output lengths.

viii) SIG = (SIG.Setup,SIG.Sign,SIG.Verify): A digital signature scheme with associated message space
Mabs = {0, 1}`abs that is existentially unforgeable against chosen message attack (CMA).

The formal description of our ABS construction follows:

ABS.Setup(1λ) → (ppabs = (hk,Vabs),mskabs = (K,hk)): The setup authority takes as input the
security parameter 1λ and proceeds as follows:
1. It first chooses a PPRF key K $←− F .Setup(1λ).
2. Next it generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0).
3. After that, it forms the obfuscated program Vabs = IO(Verify.Progabs[K]), where the program

Verify.Progabs is described in Fig. 3.1.
4. It keeps the master secret key mskabs = (K,hk) and publishes the public parameters ppabs =

(hk,Vabs).
ABS.KeyGen(mskabs,M) → skabs(M) = (hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pabs): On input

the master secret key mskabs = (K,hk) and a signing policy TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 ∈
Mλ, the setup authority performs the following steps:
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Constants: PPRF key K
Inputs: SSB hash value h, Length `inp

Output: SIG verification key ”vksig

1. Compute r̂sig = F(K, (h, `inp)), (ŝksig,”vksig) = SIG.Setup(1λ; r̂sig).
2. Output ”vksig.

Fig. 3.1. Verify.Progabs

1. At first, it selects PPRF keys K1, . . . ,Kλ,Ksps,A,Ksps,E
$←− F .Setup(1λ).

2. Next, it forms (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (ppitr, v0) $←− ITR.Setup(1λ,
nitr = 2λ).

3. Then, it constructs the obfuscated programs
– P1 = IO(Init-SPS.Prog[q0, w0, v0,Ksps,E ]),
– P2 = IO(Accumulate.Prog[nssb-blk = 2λ,hk,ppacc,ppitr,Ksps,E ]),
– P3 = IO(Change-SPS.Prog[Ksps,A,Ksps,E ]),
– Pabs = IO(Constrained-Key.Progabs[M,T = 2λ,ppacc,ppitr,K,K1, . . . ,Kλ,Ksps,A]),

where the programs Init-SPS.Prog,Accumulate.Prog, Change-SPS.Prog and Constrained-Key.Progabs
are as depicted respectively in Figs. 3.2, 3.3, 3.4 and 3.5.

4. It provides the constrained key skabs(M) = (hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pabs) to a
legitimate signer.

Constants: Initial TM state q0, Accumulator value w0, Iterator value v0, PPRF key Ksps,E

Input: SSB hash value h
Output: Signature σsps,out

1. Compute rsps,E = F(Ksps,E , (h, 0)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).
2. Output σsps,out = SPS.Sign(sksps,E , (v0, q0, w0, 0)).

Fig. 3.2. Init-SPS.Prog

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF key Ksps,E

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Set min = (vin, st, win, 0). If SPS.Verify(vksps,E ,min, σsps,in) = 0, output ⊥.
2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Set mout = (vout, st, wout, 0). Compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. 3.3. Accumulate.Prog

Constants: PPRF keys Ksps,A, Ksps,E

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, `inp), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Set m = (v, st, w, 0). If SPS.Verify(vksps,E ,m, σsps,in) = 0, output ⊥.
2. (a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Output σsps,out = SPS.Sign(sksps,A,m).

Fig. 3.4. Change-SPS.Prog

ABS.Sign(skabs(M), x,msg)→ σabs = (vksig, σsig) or⊥: A signer takes as input its signing key skabs(M) =
(hk,ppacc, w0, store0,ppitr, v0,P1,P2,P3,Pabs), corresponding to its legitimate signing policy TM
M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉 ∈ Mλ, an attribute string x = x0 . . . x`x−1 ∈ Uabs with |x| = `x,
and a message msg ∈Mabs. If M(x) = 0, it outputs ⊥. Otherwise, it proceeds as follows:
1. It first computes h = Hhk(x).
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public parameters for positional accumulator
ppacc, Public parameters for iterator ppitr, PPRF keys K,K1, . . . , Kλ, Ksps,A

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win, Accumulator
proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp, Signature σsps,in

Output: (SIG signing key sksig, SIG verification key vksig), or (Header Position posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3. (a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A, vksps,A, vksps-rej,A) = SSB.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4. (a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if stout = qac, perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig, vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig, vksig).
5. (a) Compute wout = ACC.Update(ppacc, win, symout, posin, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6. (a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A, vk′sps,A, vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Set mout = (vout, stout, wout, posout). Compute σsps,out = SPS.Sign(sk′sps,A,mout).
7. If t+ 1 = 2τ

′
, for some integer τ ′, set seedout = F(Kτ′ , (h, `inp)).

Else, set seedout = ε
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. 3.5. Constrained-Key.Progabs

2. Next, it computes σ̆sps,0 = P1(h).
3. Then for j = 1, . . . , `x, it iteratively performs the following:

(a) It computes πssb,j−1
$←− SSB.Open(hk, x, j − 1).

(b) It computes auxj = ACC.Prep-Write(ppacc, storej−1, j − 1).
(c) It computes out = P2(j − 1, xj−1, q0, wj−1,auxj , vj−1, σ̆sps,j−1, h, πssb,j−1).
(d) If out = ⊥, it outputs out. Else, it parses out as out = (wj , vj , σ̆sps,j).
(e) It computes storej = ACC.Write-Store(ppacc, storej−1, j − 1, xj−1).

4. It computes σsps,0 = P3(q0, w`x , v`x , h, `x, σ̆sps,`x).
5. It sets posM,0 = 0 and seed0 = ε.
6. Suppose, M accepts x in tx steps. For t = 1, . . . , tx, it iteratively performs the following steps:

(a) It computes (symM,t−1, πacc,t−1) = ACC.Prep-Read(ppacc, store`x+t−1, posM,t−1).
(b) It computes aux`x+t = ACC.Prep-Write(ppacc, store`x+t−1,posM,t−1).
(c) It computes out = Pabs(t, seedt−1,posM,t−1, symM,t−1, stM,t−1, w`x+t−1, πacc,t−1,aux`x+t,

v`x+t−1, h, `x, σsps,t−1).
(d) If t = tx, it parses out as out = (sksig,vksig). Otherwise, it parses out as out = (posM,t,

sym(write)
M,t , stM,t, w`x+t, v`x+t, σsps,t, seedt).

(e) It computes store`x+t = ACC.Write-Store(ppacc, store`x+t−1,posM,t−1, sym(write)
M,t ).

7. Finally, it computes σsig
$←− SIG.Sign(sksig,msg).

8. It outputs the signature σabs = (vksig, σsig) ∈ Sabs.

ABS.Verify(ppabs, x,msg, σabs) → β̂ ∈ {0, 1}: A verifier takes as input the public parameters ppabs =
(hk,Vabs), an attribute string x = x0 . . . x`x−1 ∈ Uabs, where |x| = `x, a message msg ∈ Mabs,
together with a signature σabs = (vksig, σsig) ∈ Sabs. It executes the following:
1. It first computes h = Hhk(x).
2. Next, it computes ”vksig = Vabs(h, `x).
3. If [vksig =”vksig] ∧ [SIG.Verify(vksig,msg, σsig) = 1], it outputs 1. Otherwise, it outputs 0.

3.4 Security Analysis
Theorem 3.1 (Security of the ABS Scheme of Section 3.3). Assuming IO is a secure indistin-
guishability obfuscator for P/poly, F is a secure puncturable pseudorandom function, SSB is a somewhere
statistically binding hash function, ACC is a secure positional accumulator, ITR is a secure cryptographic
iterator, SPS is a secure splittable signature scheme, PRG is a secure injective pseudorandom genera-
tor, and SIG is existentially unforgeable against chosen message attack, the ABS scheme of Section 3.3
satisfies signer privacy and existential unforgeability against selective attribute adaptive chosen message
attack.
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� Proof Overview

The signer privacy property of our ABS construction follows readily from the following observation: Note
that the signatures only depend on the PPRF key K, the SSB hash of the signing attribute strings with
respect to which the signatures are issued, and the signed messages. The latter two have no connection
with the signing keys at all, while the PPRF key K is shared among all the signing keys.

The proof of existential unforgeability is rather complicated. This is where we employ our new technical
ideas to enrich the techniques of [21, 10] to deal with adaptive key queries of the adversary. The actual
proof of unforgeability involves many subtleties. However, here we would like to sketch a bird’s eye-
view of our proof ideas. In order to prove unforgeability in selective attribute adaptive chosen message
attack model described in Section 3.1, we aim to modify the signing keys given to the adversary A
during the experiment to embed the punctured PPRF key K{(h∗, `∗)} punctured at (h∗, `∗) instead of
the full PPRF key K, which is part of the master ABS key sampled by the challenger B. Here, h∗ and
`∗ respectively denotes the SSB hash value (under the hash key hk sampled by B while performing the
setup) and length of the challenge signing attribute string x∗ submitted by the adversary A. Once this
substitution is made, the unforgeability can be argued employing the selective pseudorandomness of the
PPRF F and the existential unforgeability of the digital signature scheme SIG. Now, in order to make
this substitution, it is to be ensured that the obfuscated next step programs included in the constrained
keys never evaluates the PPRF F for inputs corresponding to (h∗, `∗) even if reaching the accepting state.
Our proof transforms the signing keys one at a time through multiple hybrid steps. Suppose that the
total number of signing keys queried by A be q̂key. Consider the transformation of the νth signing key
(1 ≤ ν ≤ q̂key) corresponding to the TM M (ν) that runs on the challenge signing attribute string x∗

for t∗(ν) steps and reaches the rejecting state. In the course of transformation, the obfuscated next step
program P(ν)

abs of the νth signing key is first altered to one that never evaluates the PPRF F for inputs
corresponding to (h∗, `∗) within the first t∗(ν) steps. The idea of transforming the signing keys in this
way is analogous to that of [21,10].

However, [21, 10] could achieve the key transition only based on the properties of positional accumu-
lators and splittable signatures. At a very high level, [21, 10] used a system-wide public parameters for
the positional accumulators and used it as the tool for compressing the arbitrary length input strings.
Unfortunately, the technique of [21,10] does not work if the key queries are adaptive as in our case. This is
because, while performing the transition of the νth queried signing key, the challenger B at various stages
needs to generate the accumulator public parameters in read/write enforcing mode where the enforcing
property is tailored to the steps of execution of the specific TM M (ν) on x∗. Evidently, B can determine
those execution steps only after receiving the νth signing key query from A. However, if a system-wide set
of public parameters for the positional accumulator is used, then B would also require it while creating
the signing keys queried by A before making the νth signing key query. Thus, it is immediate that B must
generate the set of public parameters for positional accumulator prior to receiving the νth query from A.
This is impossible as setting the accumulator public parameters in read/write enforcing mode requires
the knowledge of the TM M (ν), which is not available before the νth signing key query of A. We resolve
this issue by generating distinct set of public parameters of the positional accumulator for each signing
key. However, we must provision for a system-wide compressing tool for compressing the arbitrary-length
signing attribute strings. Here, the SSB hash comes to our rescue. However, using two different kinds of
compressing tools, one system-wide and the other signing key specific, causes additional complications
in the security proof. We overcome those challenges by using several tricks, which would be clear while
going through our formal unforgeability proof.

We follow the same novel technique introduced in [10] for handling the tail hybrids in the final stage
of transformation of the signing keys in our unforgeability experiment. Note that as in [10], we are also
considering TM’s which run for at most T = 2λ steps on any input. Unlike [21], the authors of [10] have
devised an elegant approach to obtain an end to end polynomial reduction to the security of IO for the
tail hybrids by means of an injective pseudorandom generator (PRG). We directly adopt that technique
to deal with the tail hybrids in our unforgeability proof. A high level overview of the approach is outlined
below.

Let us call the time step 2τ as the τ th landmark and the interval [2τ , 2τ+1 − 1] as the τ th interval.
Like [10], our obfuscated next step programs Pabs included within the signing keys take an additional
PRG seed as input at each time step, and perform some additional checks on the input PRG seed. At
time steps just before a landmark, the programs output a new pseudorandomly generated PRG seed,
which is then used in the next interval. Using standard IO techniques, it can be shown that for inputs
corresponding to (h∗, `∗), if the program Pabs outputs ⊥, for all time steps upto the one just before a
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landmark, then we can alter the program indistinguishably so that it outputs ⊥ at all time steps in the
next interval. Employing this technique, we can move across an exponential number of time steps at a
single switch of the next step program Pabs.

� Formal Proof

� Signer Privacy: Observe that for any message msg ∈ Mabs, (ppabs = (hk, IO(Verify.Progabs[K])),
mskabs = (K,hk)) $←− ABS.Setup(1λ), and x ∈ Uabs with |x| = `x, a signature on msg under x is of the form
σabs = (vksig, σsig), where (sksig,vksig) = SIG.Setup(1λ;F(K, (Hhk(x), `x))), σsig = SIG.Sign(sksig,msg).
Here, hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and K

$←− F .Setup(1λ). Thus, the distribution of the
signature σabs is clearly the same regardless of the signing key skabs(M) that is used to compute it.

� Existential Unforgeability: We will prove the existential unforgeability of the ABS construction of
Section 3.3 against selective attribute adaptive chosen message attack by means of a sequence of hybrid
experiments. We will demonstrate based on the security of various primitives that the advantage of any
PPT adversary A in consecutive hybrid experiments differs only negligibly as well as that in the final
hybrid experiment is negligible. We note that due to the selective attribute setting, the challenger B
knows the challenge attribute string x∗ = x∗0 . . . x

∗
`∗−1 ∈ Uabs and the SSB hash value h∗ = Hhk(x∗)

before receiving any signing key or signature query from the adversary A. Suppose, the total number of
signing key query and signature query made by the adversary A be q̂key and q̂sign respectively. As noted
in Remark 3.1, without loss of generality we will assume that A only queries signatures on messages
under the challenge attribute string x∗. The description of the hybrid experiments follows:

Sequence of Hybrid Experiments

Hyb0: This experiment corresponds to the real selective attribute adaptive chosen message unforgeability
experiment described in Section 3.1. More precisely, this experiment proceeds as follows:

• A submits a challenge attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs with |x∗| = `∗ to B.

• B generates (ppabs = (hk, IO(Verify.Progabs[K])),mskabs = (hk,K)) $←− ABS.Setup(1λ), as described
in Section 3.3, and provides ppabs to A.

• For η = 1, . . . , q̂key, in response to the ηth signing key query corresponding to signing policy TM
M (η) = 〈Q(η), Σinp, Σtape, δ

(η), q
(η)
0 , q

(η)
ac , q

(η)
rej〉 ∈Mλ with M (η)(x∗) = 0, B creates

skabs(M (η)) =
hk,pp(η)

acc, w
(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Progabs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A])


$←− ABS.KeyGen(mskabs,M

(η)),

as described in Section 3.3 and returns skabs(M (η)) to A.
• For θ = 1, . . . , q̂sign, in reply to the θth signature query on message msg(θ) under attribute string x∗, B

identifies some TMM∗ ∈Mλ such thatM∗(x∗) = 1, generates skabs(M∗)
$←− ABS.KeyGen(mskabs,M

∗),
and computes σ(θ)

abs = (vk∗sig, σ
(θ)
sig ) $←− ABS.Sign(skabs(M∗), x∗,msg(θ)) as described in Section 3.3. B

gives back σ(θ)
abs to A.

• Finally, A outputs a forged signature σ∗abs on some message msg∗ under attribute string x∗.

Hyb0,ν (ν = 1, . . . , q̂keykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykeykey): This experiment is similar to Hyb0 except that for η ∈ [q̂key], in reply to the
ηth signing key query of A corresponding to signing policy TM M (η) ∈Mλ with M (η)(x∗) = 0, B returns
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the signing key

skabs(M (η)) =
hk,pp(η)

acc, w
(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗])

 ,

if η ≤ ν, where the program Constrained-Key.Prog′abs is an alteration of the program Constrained-Key.Progabs
(Fig. 3.5) and is described in Fig. 3.6, while it returns the signing key

skabs(M (η)) =
hk,pp(η)

acc, w
(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Progabs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A])

 ,

if η > ν. Observe that Hyb0,0 coincides with Hyb0.

Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Public parameters for positional accumulator ppacc,
Public parameters for iterator ppitr, PPRF keys K,K1, . . . , Kλ, Ksps,A, SSB hash value of challenge input h∗,
Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win, Accumulator
proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp, Signature σsps,in

Output: (SIG signing key sksig, SIG verification key vksig), or (Header Position posout, Symbol symout, TM state stout,
Accumulator value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3. (a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A, vksps,A, vksps-rej,A) = SSB.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4. (a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if [stout = qac] ∧ [(h, `inp) 6= (h∗, `∗)], perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig, vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig, vksig).
Else if stout = qac, output ⊥.

5. (a) Compute wout = ACC.Update(ppacc, win, symout, posin, aux). If wout = ⊥, output ⊥.
(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).

6. (a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A, vk′sps,A, vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).
(b) Set mout = (vout, stout, wout, posout). Compute σsps,out = SPS.Sign(sk′sps,A,mout).

7. If t+ 1 = 2τ
′
, for some integer τ ′, set seedout = F(Kτ′ , (h, `inp)).

Else, set seedout = ε
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. 3.6. Constrained-Key.Prog′abs

Hyb1: This experiment coincides with Hyb0,q̂key . More formally, in this experiment for η = 1, . . . , q̂key, in
reply to the ηth signing key query of A corresponding to signing policy TM M (η) ∈Mλ with M (η)(x∗) = 0,
B generates all the components of the signing key as in Hyb0, however, it returns the signing key

skabs(M (η)) =
hk,pp(η)

acc, w
(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K,K
(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗])

 .
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The rest of the experiment is analogous to Hyb0.

Hyb2: This experiment is identical to Hyb1 other than the following exceptions:

(I) Upon receiving the challenge attribute string x∗, B proceeds as follows:
1. It selects a PPRF key K

$←− F .Setup(1λ) and generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0)
just as in Hyb1,

2. It then computes h∗ = Hhk(x∗) and creates the punctured PPRF key K{(h∗, `∗)} $←− F .Puncture(K,
(h∗, `∗)),

3. It computes r̂∗sig = F(K, (h∗, `∗)), forms (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r̂∗sig),
4. It sets the public parameters ppabs to be given to A as ppabs = (hk, IO(Verify.Prog′abs[K{(h∗, `∗)},”vk∗sig, h

∗, `∗])), where the program Verify.Prog′abs is an alteration of the program Verify.Progabs
(Fig. 3.1) and is depicted in Fig. 3.7.

Constants: Punctured PPRF key K{(h∗, `∗)}, SIG verification key ”vk∗sig, SSB hash value of challenge input h∗, Length of
challenge input `∗

Inputs: SSB hash value h, Length `inp
Output: SIG verification key ”vksig

(a) If (h, `inp) = (h∗, `∗), output ”vk∗sig.
Else compute r̂sig = F(K{(h∗, `∗)}, (h, `inp)), (ŝksig,”vksig) = SIG.Setup(1λ; r̂sig).

(b) Output ”vksig.

Fig. 3.7. Verify.Prog′abs

(II) For η = 1, . . . , q̂key, in response to the ηth signing key query of A corresponding to signing policy TM
M (η) ∈Mλ with M (η)(x∗) = 0, B provides A with the signing key

skabs(M (η)) =
hk,pp(η)

acc, w
(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K{(h∗, `∗)},K(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗])

 .

Hyb3: This experiment is similar to Hyb2 with the only exception that B selects r̂∗sig
$←− Ypprf. More

formally, this experiment has the following deviations from hyb2:

(I) In this experiment B creates the punctured PPRF key K{(h∗, `∗)} as in Hyb2, however, it gener-
ates (ŝk∗sig,”vk∗sig) $←− SIG.Setup(1λ). It includes the obfuscated program IO(Verify.Prog′abs[K{(h∗, `∗)},”vk∗sig, h

∗, `∗]) within the public parameters ppabs to be provided to A as earlier.
(II) Also, for θ = 1, . . . , q̂sign, to answer the θth signature query of A on message msg(θ) ∈ Mabs under

attribute string x∗, B computes σ(θ)
sig

$←− SIG.Sign(ŝk∗sig,msg(θ)) and returns σ(θ)
abs = (”vk∗sig, σ

(θ)
sig ) to A.

Analysis

Let Adv(0)
A (λ),Adv(0,ν)

A (λ) (ν = 1, . . . , q̂key),Adv(1)
A (λ),Adv(2)

A (λ), and Adv(3)
A (λ) represent respectively

the advantage of the adversary A, i.e., A’s probability of successfully outputting a valid forgery, in
Hyb0,Hyb0,ν (ν = 1, . . . , q̂key),Hyb1, Hyb2, and Hyb3 respectively. Then, by the description of the hybrid
experiments it follows that Advabs,uf-cma

A (λ) ≡ Adv(0)
A (λ) ≡ Adv(0,0)

A (λ) and Adv(1)
A (λ) ≡ Adv(0,q̂key)

A (λ).
Hence, we have

Advabs,uf-cma
A (λ) ≤

q̂key∑
ν=1
|Adv(0,ν−1)

A (λ)− Adv(0,ν)
A (λ)|+

2∑
j=1
|Adv(j)

A (λ)− Adv(j+1)
A (λ)|+ Adv(3)

A (λ). (3.1)

Lemmas A.1–A.4 presented in Appendix A will show that the RHS of Eq. (3.1) is negligible and thus the
existential unforgeability of the ABS construction of Section 3.3 follows.
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4 Conclusion
In this paper, we construct the first ABS scheme supporting signing policies expressible as Turing ma-
chines (TM) which can handle signing attribute strings of arbitrary polynomial length. On the technical
side, we devise new ideas to empower the techniques of [21,10] to deal with adaptive key queries.
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Appendix

A Lemmas for the Proof of Theorem 3.1

Lemma A.1. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, SSB is a somewhere statistically binding hash function, ACC is a secure
positional accumulator, ITR is a secure cryptographic iterator, SPS is a secure splittable signature scheme,
and PRG is a secure injective pseudorandom generator, for any PPT adversary A, for any security pa-
rameter λ, |Adv(0,ν−1)

A (λ)− Adv(0,ν)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of our Lemma A.1 extends the ideas involved in the security proof for the message-
hiding encoding of [21]. Lemma 1 in the security proof of the CPRF construction of [10] also employs a
similar technique. However, as mentioned earlier, we elegantly extend the technique of [10] to support
adaptive signing key queries of the adversary as stipulated in our unforgeability experiment. We will first
provide a complete description of the sequence of hybrid experiments involved in the proof of Lemma A.1
and then provide the analysis of those hybrid experiments providing the details for only those segments
which are technically distinct from [10].

Let t∗(ν) denotes the running time of the TM M (ν) ∈ Mλ, queried by the adversary A, on input the
challenge string x∗ and 2τ∗(ν) be the smallest power of two greater than t∗(ν). The sequence of intermediate
hybrid experiments between Hyb0,ν−1 and Hyb0,ν are described below:

Sequence of Intermediate Hybrids between Hyb0,ν−1 and Hyb0,ν

Hyb0,ν−1,0: This experiment coincides with Hyb0,ν−1.

Hyb0,ν−1,1: This experiment if analogous to Hyb0,ν−1,0 except that to answer the νth signing key query
of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first picks PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E

$←− F .Setup(1λ).

2. After that, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. It provides A with the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog[K(ν)
sps,A,K

(ν)
sps,E ]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the program Constrained-Key.Prog(1)
abs is a modification of the program Constrained-Key.Prog′abs

(Fig. 3.6) and is depicted in Fig. A.1.

Hyb0,ν−1,2: In this experiment, in response to the νth signing key query of A corresponding to TM
M (ν) ∈Mλ with M (ν)(x∗) = 0, B performs the following steps:

1. It first chooses PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E , K(ν)

sps,F
$←− F .Setup(1λ).

2. After that, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗,
Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys
K,K1, . . . , Kλ, Ksps,A, Ksps,B , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win, Accumulator
proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or (Header Position posout, Symbol symout, TM state stout, Accumulator value
wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3. (a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, t− 1)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4. (a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if stout = qac, perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig, vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig, vksig).
5. (a) Compute wout = ACC.Update(ppacc, win, symout, posin, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6. (a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A, vk′sps,A, vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Compute r′sps,B = F(Ksps,B , (h, `inp, t)), (sk′sps,B , vk′sps,B , vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout). Compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, for some integer τ ′, set seedout = F(Kτ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.1. Constrained-Key.Prog(1)
abs

3. It provides A with the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Change-SPS.Prog(1)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the programs Accumulate.Prog(1) and Change-SPS.Prog(1) are modifications of the programs
Accumulate.Prog and Change-SPS.Prog (Figs. 3.3 and 3.4) and are depicted in Figs. A.2 and A.3
respectively.

The rest of the experiment proceeds in the same way as in Hyb0,ν−1,1.

Hyb0,ν−1,3: In this experiment, to answer the νth signing key query of A corresponding to TM M (ν) ∈Mλ

with M (ν)(x∗) = 0, B generates all the PPRF keys as well as the public parameters for the positional
accumulator and iterator just as in Hyb0,ν−1,2, however, it returns the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Change-SPS.Prog(2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E , Ksps,F , SSB hash value of challenge
input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Set mout = (vout, st, wout, 0). Compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. A.2. Accumulate.Prog(1)

Constants: PPRF keys Ksps,A, Ksps,B , Ksps,E , Ksps,F , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, `inp)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. (a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.3. Change-SPS.Prog(1)

where the programs Accumulate.Prog(2) and Change-SPS.Prog(2) are modifications of the programs
Accumulate.Prog(1) and Change-SPS.Prog(1) (Figs. A.2 and A.3) and are depicted in Figs. A.4 and A.5
respectively. The remaining part of the experiment is similar to Hyb0,ν−1,2.

Hyb0,ν−1,3,ι (ι = 0, . . . , `∗ − 1): In this hybrid experiment, to answer the νth signing key query of A
corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accumulator
and the iterator as in Hyb0,ν−1,3.

2. Next, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )

– store(ν)
j = ACC.Write-Store(pp(ν)

acc, store(ν)
j−1, j − 1, x∗j−1)

– v
(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι,0 = (v(ν)

ι , q
(ν)
0 , w

(ν)
ι , 0).
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E , Ksps,F , SSB hash value of challenge
input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (i = 0)∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F , vk′sps,F , vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0).

If i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. A.4. Accumulate.Prog(2)

Constants: PPRF keys Ksps,A, Ksps,B , Ksps,E , Ksps,F , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, `inp)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp > `∗)∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. (a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.5. Change-SPS.Prog(2)

3. It gives A the signing key

skabs{M (ν)} =
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
,

where the programs Accumulate.Prog(3,ι) and Change-SPS.Prog(3,ι) are alterations of the programs
Accumulate.Prog(2) and Change-SPS.Prog(2) (Figs. A.4 and A.5) and are described in Figs. A.6 and A.7
respectively.

The remaining part of the experiment is analogous to Hyb0,ν−1,3.

Hyb0,ν−1,3,ι′ (ι = 0, . . . , `∗ − 1): This experiment is identical to Hyb0,ν−1,3 except that in response
to the νth signing key query of A corresponding to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B executes the
following steps:
1. It first generates all the PPRF keys as well as the public parameters for the positional accumulator

and the iterator as in Hyb0,ν−1,3.
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E , Ksps,F , Message mι,0, SSB hash
value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗)∨ (0 ≤ i ≤ ι)∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F , vk′sps,F , vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0).

If [(h, i) = (h∗, ι)] ∧ [min = mι,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι)] ∧ [min 6= mι,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. A.6. Accumulate.Prog(3,ι)

Constants: PPRF keys Ksps,A, Ksps,B , Ksps,E , Ksps,F , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, `inp)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp > `∗)∨ (0 < `inp ≤ ι)∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. (a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.7. Change-SPS.Prog(3,ι)
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
,

where the program Accumulate.Prog(3,ι′) is an alteration of the program Accumulate.Prog(3,ι) (Fig. A.6)
and is shown in Fig. A.8.
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E , Ksps,F , Message mι+1,0, SSB hash
value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F , vk′sps,F , vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0).

If [(h, i) = (h∗, ι)]∧ [mout = mι+1,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι)] ∧ [mout 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,Emout).

5. Output (wout, vout, σsps,out).

Fig. A.8. Accumulate.Prog(3,ι′)

Hyb0,ν−1,4: This experiment is identical to Hyb0,ν−1,3,(`∗−1)′ with the exception that now in response to
the νth signing key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B does not generate
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,

where the program Accumulate.Prog is shown in Fig. 3.3 while the program Change-SPS.Prog(4), which is
a modification of the program Change-SPS.Prog(3,ι) (Fig. A.7), is depicted in Fig. A.9.

Constants: PPRF keys Ksps,A, Ksps,B , Ksps,E , Message m`∗,0, SSB hash value of challenge input h∗, Length of challenge
input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, `inp), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Set m = (v, st, w, 0).
(c) If SPS.Verify(vksps,E ,m, σsps,in) = 0, output ⊥.

2. (a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) If [(h, `inp) = (h∗, `∗)]∧ [m 6= m`∗,0], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. A.9. Change-SPS.Prog(4)

Hyb0,ν−1,4,γ (γ = 1, . . . , t∗(ν) −1): This experiment is analogous to Hyb0,ν−1,4 except that in response
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to the νth signing key query of A corresponding to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B proceeds as
follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accumulator
and the iterator as in Hyb0,ν−1,4.
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,

where the program Change-SPS.Prog is described in Fig. 3.4 and the program Constrained-Key.Prog(2,γ)
abs ,

a modification of program Constrained-Key.Prog(1)
abs (Fig. A.1), is described in Fig. A.10.

Hyb0,ν−1,4,γ′ (γ = 0, . . . , t∗(ν) − 1): This experiment is identical to Hyb0,ν−1,4 except that in response
to the νth signing key query of A corresponding to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B proceeds as
follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accumulator
and the iterator as in Hyb0,ν−1,4.
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗, Public parame-
ters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,K1, . . . , Kλ, Ksps,A, Ksps,B ,
Message m`∗,γ , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win, Accumulator
proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or (Header Position posout, Symbol symout, TM state stout, Accumulator value
wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3. (a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, t− 1)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗)∨ (t ≤ γ)∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4. (a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if [stout = qac] ∧ [α =‘A’] ∧ [(h, `inp) = (h∗, `∗)] ∧ [t ≤ γ], output ⊥.
Else if stout = qac, perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig, vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig, vksig).
5. (a) Compute wout = ACC.Update(ppacc, win, symout, posin, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6. (a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A, vk′sps,A, vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Compute r′sps,B = F(Ksps,B , (h, `inp, t)), (sk′sps,B , vk′sps,B , vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If [(h, `inp, t) = (h∗, `∗, γ)] ∧ [mout = m`∗,γ ], compute σsps,out = SPS.Sign(sk′sps,A,mout).
Else if [(h, `inp, t) = (h∗, `∗, γ)] ∧ [mout 6= m`∗,γ ], compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, for some integer τ ′, set seedout = F(Kτ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.10. Constrained-Key.Prog(2,γ)
abs
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`∗+t−1,posM(ν),t−1))

– store(ν)
`∗+t = ACC.Write-Store(pp(ν)

acc, store(ν)
`∗+t−1,posM(ν),t−1, sym(write)

M(ν),t
)

– posM(ν),t = posM(ν),t−1 + β

B sets m(ν)
`∗,γ = (v(ν)

`∗+γ , stM(ν),γ , w
(ν)
`∗+γ ,posM(ν),γ).

4. B provides A with the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog[K(ν)
sps,A,K

(ν)
sps,E ]),

IO(Constrained-Key.Prog(2,γ′)
abs [M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

m
(ν)
`∗,γ , h

∗, `∗])


,

where the program Constrained-Key.Prog(2,γ′)
abs is an alteration of the program Constrained-Key.Prog(2,γ)

abs
(Fig. A.10) and is described in Fig. A.11.

Hyb0,ν−1,5: This experiment is similar to Hyb0,ν−1,4,(t∗(ν)−1)′ with the exception that in responding to
the νth signing key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B gives A the signing
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗,
Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys
K,K1, . . . , Kλ, Ksps,A, Ksps,B , Message m`∗,γ , SSB hash value of challenge input h∗, Length of challenge
input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win, Accumulator
proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or (Header Position posout, Symbol symout, TM state stout, Accumulator value
wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3. (a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, t− 1)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗)∨ (t ≤ γ + 1)∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4. (a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if [stout = qac] ∧ [α =‘A’] ∧ [(h, `inp) = (h∗, `∗)]∧ [t ≤ γ + 1], output ⊥.
Else if stout = qac, perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig, vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig, vksig).
5. (a) Compute wout = ACC.Update(ppacc, win, symout, posin, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6. (a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A, vk′sps,A, vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Compute r′sps,B = F(Ksps,B , (h, `inp, t)), (sk′sps,B , vk′sps,B , vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If [(h, `inp, t) = (h∗, `∗, γ + 1)] ∧ [min = m`∗,γ ], compute σsps,out = SPS.Sign(sk′sps,A,mout).
Else if [(h, `inp, t) = (h∗, `∗, γ + 1)] ∧ [min 6= m`∗,γ ], compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, for some integer τ ′, set seedout = F(Kτ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.11. Constrained-Key.Prog(2,γ′)
abs

key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog[K(ν)
sps,A,K

(ν)
sps,E ]),

IO(Constrained-Key.Prog(3)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the program Constrained-Key.Prog(3)
abs is a modification of the program Constrained-Key.Prog(2,γ′)

abs
(Fig. A.11) and is described in Fig. A.12.

Hyb0,ν−1,6: This experiment corresponds to Hyb0,ν .

Analysis

Let Adv(0,ν−1,0)
A (λ), Adv(0,ν−1,1)

A (λ), Adv(0,ν−1,2)
A (λ), Adv(0,ν−1,3)

A (λ), Adv(0,ν−1,3,ι)
A (λ)(ι = 0, . . . , `∗ − 1),

Adv(0,ν−1,3,ι′)
A (λ)(ι = 0, . . . , `∗−1),Adv(0,ν−1,4)

A (λ),Adv(0,ν−1,4,γ)
A (λ)(γ = 1, . . . , t∗(ν)−1),Adv(0,ν−1,4,γ′)

A (λ)
(γ = 0, . . . , t∗(ν) − 1),Adv(0,ν−1,5)

A (λ), and Adv(0,ν−1,6)
A (λ) represent respectively the advantage of the

adversary A, i.e., the absolute difference between 1/2 and A’s probability of correctly guessing the random
bit selected by the challenger B, in the hybrid experiment HybΥ with Υ as indicated in the superscript
of the advantage notation. By the description of the hybrid experiments it follows that Adv(0,ν−1)

A (λ) ≡
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗,
Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys
K,K1, . . . , Kλ, Ksps,A, Ksps,B , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win, Accumulator
proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or (Header Position (posout, Symbol symout, TM state stout, Accumulator
value wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3. (a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Set min = (vin, stin, win, posin). If SPS.Verify(vksps,A,min, σsps,in) = 0, output ⊥.
4. (a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.

(b) If stout = qrej, output ⊥.
Else if [stout = qac] ∧ [(h, `inp) = (h∗, `∗)]∧ [t ≤ t∗], output ⊥.
Else if stout = qac, perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig, vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig, vksig).
5. (a) Compute wout = ACC.Update(ppacc, win, symout, posin, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6. (a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A, vk′sps,A, vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Compute r′sps,B = F(Ksps,B , (h, `inp, t)), (sk′sps,B , vk′sps,B , vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If (h, `inp, t) = (h∗, `∗, t∗), compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,A,mout).

7. If t+ 1 = 2τ
′
, for some integer τ ′, set seedout = F(Kτ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. A.12. Constrained-Key.Prog(3)
abs

Adv(0,ν−1,0)
A (λ) and Adv(0,ν)

A (λ) ≡ Adv(0,ν−1,6)
A (λ). Thus we have,

|Adv(0,ν−1)
A (λ)− Adv(0,ν)

A (λ)| ≤

|Adv(0,ν−1,0)
A (λ)− Adv(0,ν−1,1)

A (λ)|+ |Adv(0,ν−1,1)
A (λ)− Adv(0,ν−1,2)

A (λ)|+

|Adv(0,ν−1,2)
A (λ)− Adv(0,ν−1,3)

A (λ)|+ |Adv(0,ν−1,3)
A (λ)− Adv(0,ν−1,3,0)

A (λ)|+
`∗−1∑
ι=0
|Adv(0,ν−1,3,ι)

A (λ)− Adv(0,ν−1,3,ι′)
A (λ)|+

`∗−2∑
ι=0
|Adv(0,ν−1,3,ι′)

A (λ)− Adv(0,ν−1,3,ι+1)
A (λ)|+

|Adv(0,ν−1,3,(`∗−1)′)
A (λ)− Adv(0,ν−1,4)

A (λ)|+ |Adv(0,ν−1,4)
A (λ)− Adv(0,ν−1,4,0′)

A (λ)|+
t∗(ν)−1∑
γ=1

|Adv(0,ν−1,4,(γ−1)′)
A (λ)− Adv(0,ν−1,4,γ)

A (λ)|+
t∗(ν)−1∑
γ=1

|Adv(0,ν−1,4,γ)
A (λ)− Adv(0,ν−1,4,γ′)

A (λ)|+

|Adv(0,ν−1,4,(t∗(ν)−1)′)
A (λ)− Adv(0,ν−1,5)

A (λ)|+ |Adv(0,ν−1,5)
A (λ)− Adv(0,ν−1,6)

A (λ)|.

(A.1)

Lemmas B.1–B.12 provided in Appendix B will prove that the RHS of Eq. (A.1) is negligible and hence
Lemma A.1 follows. ut

Lemma A.2. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies the cor-
rectness under puncturing property, for any PPT adversary A, for any security parameter λ, |Adv(1)

A (λ)−
Adv(2)

A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The two differences between Hyb1 and Hyb2 are the following:

(I) In Hyb1, B includes IO(V0) within the public parameters ppabs provided to A, whereas, in Hyb2, B
includes the program IO(V1) within ppabs, where
– (V0) = Verify.Progabs[K] (Fig. 3.1),
– (V1) = Verify.Prog′abs[K{(h∗, `∗)},”vk∗abs, h

∗, `∗] (Fig. 3.7).
(II) For η = 1, . . . , q̂key, the signing key skabs(M (η)) returned by B to A corresponding to signing policy

TM M (η) ∈ Mλ with M (η)(x∗) = 0, includes the program IO(P (η)
0 ) in the experiment Hyb1, while

skabs(M (η)) includes the program IO(P (η)
1 ) in Hyb2, where

– P
(η)
0 = Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K,K

(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A, h

∗, `∗],
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– P
(η)
1 = Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)

acc,pp(η)
itr,K{(h∗, `∗)},K(η)

1 , . . . ,K
(η)
λ ,K

(η)
sps,A, h

∗, `∗],
the program Constrained-Key.Prog′abs being described in Fig. 3.6.

Now, observe that on input (h, `inp) 6= (h∗, `∗), both the programs V0 and V1 operates in the same
manner only that the latter one uses the punctured PPRF key K{(h∗, `∗)} for computing the string
r̂sig instead of the full PPRF key K used by the former program. Therefore, by the correctness under
puncturing property of PPRF F , it follows that for all inputs (h, `inp) 6= (h∗, `∗), both the programs have
identical output. Moreover, on input (h∗, `∗), V1 outputs the hardwired SIG verification key ”vk∗sig which
is computed as (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r̂∗sig), where r̂∗sig = F(K, (h∗, `∗)). Notice that these values
are exactly the same as those outputted V0 on input (h∗, `∗). Thus, the two programs are functionally
equivalent.

Further, note that the program Constrained-Key.Prog′abs computes F(K, (h, `inp)) if and only if (h, `inp) 6=
(h∗, `∗). Thus, again by the correctness under puncturing property of PPRF F , the programs P (η)

0 and
P

(η)
1 are functionally equivalent as well for all η ∈ [q̂key].

Thus the security of IO, Lemma A.2 follows. Observe that to prove this lemma we would actually
have to proceed through a sequence of intermediate hybrid experiments where in each hybrid experiment
we switch the programs one at a time. ut

Lemma A.3. Assuming F is a secure puncturable pseudorandom function, for any PPT adversary A,
for any security parameter λ, |Adv(2)

A (λ)− Adv(3)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(2)
A (λ)−Adv(3)

A (λ)| is non-negligible. Below
we construct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F using A as
a sub-routine.

• B initializes A on input 1λ and receives a challenge attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs with

|x∗| = `∗ from A.
• After receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. B sends (h∗, `∗) as the challenge input to its PPRF selective pseudorandomness challenger C and

receives back a punctured PPRF key K∗{(h∗, `∗)} along with a challenge value r∗ ∈ Ypprf, where
either r∗ = F(K∗, (h∗, `∗)} or r∗ $←− Ypprf. B implicitly views the key K∗ as the key K.

3. Then B creates (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗).
4. Next, B sets the public parameters ppabs = (hk, IO(Verify.Prog′abs[K∗{(h∗, `∗)},”vk∗sig, h

∗, `∗])) and
gives it to A.

• For η = 1, . . . , q̂key, to answer the η th signing key query of A corresponding to signing policy TM
M (η) ∈Mλ with M (η)(x∗) = 0, B executes the following steps:
1. At first, B chooses PPRF keys K(η)

1 , . . . ,K
(η)
λ ,K

(η)
sps,A,K

(η)
sps,E

$←− F .Setup(1λ).
2. Next, B generates (pp(η)

acc, w
(η)
0 , store(η)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(η)
itr, v

(η)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. B returns A the signing key

skabs(M (η)) =

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K
∗{(h∗, `∗)},K(η)

1 , . . . ,K
(η)
λ ,K

(η)
sps,A,

h∗, `∗])


.

• For θ = 1, . . . , q̂sign, in response to the θth signature query of A on message msg(θ) ∈Mabs under at-
tribute string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig, msg(θ)) and provides A with σ(θ)

abs = (”vk∗sig, σ
(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs b̂′ = 1 as
its guess bit in its PPRF selective pseudorandomness experiment if A wins, i.e., if ABS.Verify(ppabs, x

∗,

msg∗, σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs b̂′ = 0 in its PPRF selective
pseudorandomness experiment.
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Notice that if r∗ = F(K∗, (h∗, `∗)), then B perfectly simulates hyb2. On the other hand, if r∗ $←− Ypprf,
then B perfectly simulates Hyb3. This completes the proof of Lemma A.3. ut

Lemma A.4. Assuming SIG is existentially unforgeable against CMA, for any PPT adversary A, for
any security parameter λ, Adv(3)

A (λ) ≤ negl(λ) for some negligible function negl.

Proof. Suppose that there exists a PPT adversary A for which Adv(3)
A (λ) is non-negligible. We construct

a PPT adversary B that breaks the existential unforgeability of SIG using A as a sub-routine. The
description B is as follows:

• B receives a SIG verification key vk∗sig from its SIG existential unforgeability challenger C. Then, B
runs A on input 1λ and receives a challenge attribute string x∗ = x∗0 . . . x

∗
`∗−1 ∈ Uabs with |x∗| = `∗

from A.
• After receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Next, it selects a PPRF key K $←− F .Setup(1λ) and creates the punctured PPRF key K{(h∗, `∗)} $←−
F .Puncture(K, (h∗, `∗)).

3. Next, B sets the public parameters ppabs = (hk, IO(Verify.Prog′abs[K{(h∗, `∗)},vk∗sig, h
∗, `∗])) and

gives it to A.
• For η = 1, . . . , q̂key, to answer the ηth signing key query of A corresponding to signing policy TM
M (η) ∈Mλ with M (η)(x∗) = 0, B executes the following steps:
1. At first, B chooses PPRF keys K(η)

1 , . . . ,K
(η)
λ ,K

(η)
sps,A,K

(η)
sps,E

$←− F .Setup(1λ).
2. Next, B generates (pp(η)

acc, w
(η)
0 , store(η)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(η)
itr, v

(η)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. B returns A the signing key

skabs(M (η)) =

hk,pp(η)
acc, w

(η)
0 , store(η)

0 ,pp(η)
itr, v

(η)
0 ,

IO(Init-SPS.Prog[q(η)
0 , w

(η)
0 , v

(η)
0 ,K

(η)
sps,E ])

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(η)
acc,pp(η)

itr,K
(η)
sps,E ])

IO(Change-SPS.Prog[K(η)
sps,A,K

(η)
sps,E ])

IO(Constrained-Key.Prog′abs[M (η), T = 2λ,pp(η)
acc,pp(η)

itr,K{(h∗, `∗)},K(η)
1 , . . . ,K

(η)
λ ,K

(η)
sps,A,

h∗, `∗])


.

• For θ = 1, . . . , q̂sign, in response to the θth signature query of A on message msg(θ) ∈ Mabs under
attribute string x∗, B forwards the message msg(θ) to C and receives back a signature σ(θ)

sig on msg(θ)

from C. B provides, σ(θ)
abs = (vk∗sig, σ

(θ)
sig ) to A.

• At the end of interaction, A outputs a signature σ∗abs = (Èvk∗sig, σ
∗
sig) on some message msg∗ under

attribute string x∗. B outputs (msg∗, σ∗sig) as a forgery in its existential unforgeability experiment
against SIG.

Observe that the simulation of the experiment Hyb3 by B is perfect. Now, if A wins in the above
simulated experiment, then the following must hold simultaneously:

(I) ABS.Verify(ppabs, x
∗,msg∗, σ∗abs) = 1.

(II) msg∗ 6= msg(θ) for any θ ∈ [q̂sign].

Note that ABS.Verify(ppabs, x
∗,msg∗, σ∗abs) = 1 implies [Èvk∗sig = vk∗sig]∧[SIG.Verify(Èvk∗sig,msg∗, σ∗sig) = 1],

i.e., SIG.Verify(vk∗sig,msg∗, σ∗sig) = 1. Further, notice that msg(θ), for θ ∈ [q̂sign], are the only messages that
B queried a signature on to C. Thus, (msg∗, σ∗sig) is indeed a valid forgery in the existential unforgeability
experiment against SIG. ut

B Lemmas for the proof of Lemma A.1
Lemma B.1. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, and SPS is a splittable signature scheme satisfying ‘vksps-rej indistin-
guishability’, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,0)

A (λ)−Adv(0,ν−1,1)
A (λ)| ≤

negl(λ) for some negligible function negl.
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Proof. To establish Lemma B.1, we introduce t∗(ν)+1 intermediate hybrid experiments between Hyb0,ν−1,0
and Hyb0,ν−1,1, namely, Hyb0,ν−1,0,γ , for γ ∈ [0, t∗(ν)] such that Hyb0,ν−1,0,t∗(ν) coincides with Hyb0,ν−1,0
and Hyb0,ν−1,0,0 coincides with hyb0,ν−1,1.

Sequence of Intermediate Hybrids Between Hyb0,ν−1,0 and Hyb0,ν−1,1

Hyb0,ν−1,0,γ (γ = 0, . . . , t∗(ν)): In this experiment in response to the νth signing key query of A
corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first picks PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E

$←− F .Setup(1λ).

2. After that, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. It provides A with the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog[K(ν)
sps,A,K

(ν)
sps,E ]),

IO(Constrained-Key.Prog(0,γ)
abs [M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the program Constrained-Key.Prog(0,γ)
abs , depicted in Fig. B.1, is a modification of the program

Constrained-Key.Prog(1)
abs, shown in Fig. A.1.

The rest of the experiment is identical to Hyb0,ν−1,0.

Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗,
Public parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys
K,K1, . . . , Kλ, Ksps,A, Ksps,B , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win, Accumulator
proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or (Header Position posout, Symbol symout, TM state stout, Accumulator value
wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3. (a) Compute rsps,A = F(Ksps,A, (h, `inp, t− 1)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, t− 1)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗)∨ (t ≤ γ)∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4. (a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if stout = qac, perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig, vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig, vksig).
5. (a) Compute wout = ACC.Update(ppacc, win, symout, posin, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6. (a) Compute r′sps,A = F(Ksps,A, (h, `inp, t)), (sk′sps,A, vk′sps,A, vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Compute r′sps,B = F(Ksps,B , (h, `inp, t)), (sk′sps,B , vk′sps,B , vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout). Compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, for some integer τ ′, set seedout = F(Kτ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. B.1. Constrained-Key.Prog(0,γ)
abs
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Analysis

Let us denote by Adv(0,ν−1,0,γ)
A (λ) the advantage of A, i.e., the absolute difference between 1/2 and

A’s probability of correctly guessing the random bit selected by the challenger B, in the hybrid experi-
ment Hyb0,ν−1,0,γ , for γ ∈ [0, t∗(ν)]. Clearly, Adv(0,ν−1,0)

A (λ) ≡ Adv(0,ν−1,0,t∗(ν))
A (λ) and Adv(0,ν−1,1)

A (λ) ≡
Adv(0,ν−1,0,0)

A (λ). Hence, we have

|Adv(0,ν−1,0)
A (λ)− Adv(0,ν−1,1)

A (λ)| ≤
t∗(ν)∑
γ=1
|Adv(0,ν−1,0,γ)

A (λ)− Adv(0,ν−1,0,γ−1)
A (λ)|. (B.1)

Claim B.1 below justifies that the RHS of Eq. (B.1) is negligible and consequently Lemma B.1 follows.

Claim B.1. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, and SPS is a splittable signature scheme satisfying ‘vksps-rej in-
distinguishability’, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,0,γ)

A (λ) −
Adv(0,ν−1,0,γ−1)

A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim B.1 is similar to that of Claim B.1 of [10]. ut
ut

Lemma B.2. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, and SPS is a splittable signature scheme satisfying ‘vksps-rej indistin-
guishability’, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,1)

A (λ)−Adv(0,ν−1,2)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. To prove Lemma B.2, we consider the following sequence of intermediate hybrid experiments
between Hyb0,ν−1,1 and Hyb0,ν−1,2:

Sequence of Intermediate Hybrids between Hyb0,ν−1,1 and Hyb0,ν−1,2

Hyb0,ν−1,1,0: This experiment coincides with Hyb0,ν−1,1.

Hyb0,ν−1,1,1: In this experiment, to answer the νth signing key query of A corresponding to TM
M (ν) ∈ Mλ with M (ν)(x∗) = 0, B selects an additional PPRF key K

(ν)
sps,F

$←− F .Setup(1λ) along with
all the other PPRF keys as well as the public parameters for positional accumulator and iterator as
generated in Hyb0,ν−1,1,0, providing A with the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(0,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Change-SPS.Prog(0,1)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the programs Accumulate.Prog(0,1) and Change-SPS.Prog(0,1) are the alterations of the programs
Accumulate.Prog(1) and Change-SPS.Prog(1) (Figs. A.2 and A.3) and are depicted in Figs. B.2 and B.3
respectively. The rest of the experiment proceeds in the same way as in Hyb0,ν−1,1,0.

Hyb0,ν−1,1,2: In this experiment, in response to the νth signing key query of A corresponding to TM
M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accumulator
and the iterator just as in Hyb0,ν−1,1,1.
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E , Ksps,F , SSB hash value of challenge
input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) If (h, i) = (h∗, `∗), set vk = vksps-rej,F .
(d) Set min = (vin, st, win, 0) and α =‘-’.
(e) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(f) If [α =‘-’] ∧ [(i 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α=‘-’] ∧ [SPS.Verify(vk,min, σsps,in) = 0], output ⊥.
Else if [α =‘-’] ∧ [SPS.Verify(vk,min, σsps,in) = 1], set α =‘F ’.

(g) If α =‘-’, output ⊥.
2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Set mout = (vout, st, wout, 0). Compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. B.2. Accumulate.Prog(0,1)

Constants: PPRF keys Ksps,A, Ksps,B , Ksps,E , Ksps,F , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, `inp)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) If (h, `inp) = (h∗, `∗), set vk = vksps-rej,F .
(d) Set m = (v, st, w, 0) and α=‘-’.
(e) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(f) If [α =‘-’] ∧ [`inp 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vk,m, σsps,in) = 0], output ⊥.
Else if [α =‘-’] ∧ [SPS.Verify(vk,m, σsps,in) = 1], set α =‘F ’.

(g) If α =‘-’, output ⊥.
2. (a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. B.3. Change-SPS.Prog(0,1)

2. Next, it creates the punctured PPRF key K(ν)
sps,F {(h∗, `∗)}

$←− F .Puncture(K(ν)
sps,F , (h∗, `∗)) as well as

computes r(ν,`∗)
sps,H = F(K(ν)

sps,F , (h∗, `∗)) and (sk(ν,`∗)
sps,H ,vk(ν,`∗)

sps,H ,vk(ν,`∗)
sps-rej,H) = SPS.Setup(1λ; r(ν,`∗)

sps,H ).
3. It hands A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(0,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F {(h∗, `∗)},vk(ν,`∗)

sps-rej,H ,

h∗, `∗]),
IO(Change-SPS.Prog(0,2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F {(h∗, `∗)},vk(ν,`∗)

sps-rej,H , h
∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the programs Accumulate.Prog(0,2) and Change-SPS.Prog(0,2) are the modifications of the pro-
grams Accumulate.Prog(0,1) and Change-SPS.Prog(0,1) (Figs. B.2 and B.3) and are described in Figs. B.4
and B.5 respectively.

The remaining part of the experiment is analogous to Hyb0,ν−1,1,1.



Short Attribute-Based Signatures for Arbitrary Turing Machines from Standard Assumptions 45

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional ac-
cumulator ppacc, Public parameters for iterator ppitr, PPRF key Ksps,E , Punctured PPRF key Ksps,F {(h∗, `∗)},
Verification key vkH , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F {(h∗, `∗)}, (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α=‘-’]∧ [SPS.Verify(vkH ,min, σsps,in) = 0], output ⊥.
Else if [α =‘-’]∧ [SPS.Verify(vkH ,min, σsps,in) = 1], set α =‘F ’.

(f) If α =‘-’, output ⊥.
2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Set mout = (vout, st, wout, 0). Compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. B.4. Accumulate.Prog(0,2)

Constants: PPRF keys Ksps,A, Ksps,B , Ksps,E , Punctured PPRF key Ksps,F {(h∗, `∗)}, Verification key vkH , SSB hash value
of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F {(h∗, `∗)}, (h, `inp)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp 6= `∗) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’]∧ [SPS.Verify(vkH ,m, σsps,in) = 0], output ⊥.
Else if [α =‘-’]∧ [SPS.Verify(vkH ,m, σsps,in) = 1], set α =‘F ’.

(f) If α =‘-’, output ⊥.
2. (a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. B.5. Change-SPS.Prog(0,2)

Hyb0,ν−1,1,3: This experiment is identical to Hyb0,ν−1,1,2 except that while creating the νth signing key
queried by A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B selects r(ν,`∗)

sps,H
$←− Ypprf, i.e., in other

words, B generates (sk(ν,`∗)
sps,H ,vk(ν,`∗)

sps,H ,vk(ν,`∗)
sps-rej,H) $←− SPS.Setup(1λ), and gives A the signing key
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∗, `∗])

 .

Hyb0,ν−1,1,4: In this experiment, to answer the νth signing key query of A corresponding to TM M (ν) ∈
Mλ with M (ν)(x∗) = 0, B creates all the components as in Hyb0,ν−1,1,3, however, it provides A with the
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signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(0,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F {(h∗, `∗)},vk(ν,`∗)

sps,H , h
∗, `∗]),

IO(Change-SPS.Prog(0,2)[K(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F {(h∗, `∗)},vk(ν,`∗)

sps,H , h
∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B , h

∗, `∗])

 .

The rest of the experiment is the same as Hyb0,ν−1,1,3.

Hyb0,ν−1,1,5: In this experiment, in response to the νth signing key query of A corresponding to TM
M (ν) ∈ Mλ with M (ν)(x∗) = 0, B forms all the components as in Hyb0,ν−1,1,4 except that it com-
putes r

(ν,`∗)
sps,H = F(K(ν)

sps,F , (h∗, `∗)), (sk(ν,`∗)
sps,H ,vk(ν,`∗)

sps,H ,vk(ν,`∗)
sps-rej,H) = SPS.Setup(1λ; r(ν,`∗)

sps,H ), and hands A
the signing key

skabs{M (ν)} =
hk,pp(ν)

acc, w
(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(0,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F {(h∗, `∗)},vk(ν,`∗)

sps,H , h
∗, `∗]),

IO(Change-SPS.Prog(0,2)[K(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F {(h∗, `∗)},vk(ν,`∗)

sps,H , h
∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B , h

∗, `∗])

 .

The rest of the experiment is analogous to Hyb0,ν−1,1,4.

Hyb0,ν−1,1,6: This experiment corresponds to Hyb0,ν−1,2.

Analysis

Let Adv(0,ν−1,1,ϑ)
A (λ) represents the advantage of A, i.e., the absolute difference between 1/2 and A’s

probability of correctly guessing the random bit selected by the challenger B, in Hyb0,ν−1,1,ϑ, for ϑ ∈ [0, 6].
By definition, Adv(0,ν−1,1)

A (λ) ≡ Adv(0,ν−1,1,0)
A (λ) and Adv(0,ν−1,2)

A (λ) ≡ Adv(0,ν−1,1,6)
A (λ). Then, we have

|Adv(0,ν−1,1)
A (λ)− Adv(0,ν−1,2)

A (λ)| ≤
6∑

ϑ=1
|Adv(0,ν−1,1,ϑ−1)

A (λ)− Adv(0,ν−1,1,ϑ)
A (λ)|. (B.2)

Claims B.2–B.7 below will demonstrate that the RHS of Eq. (B.2) is negligible and thus Lemma B.2
follows.

Claim B.2. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT adver-
sary A, for any security parameter λ, |Adv(0,ν−1,1,0)

A (λ)− Adv(0,ν−1,1,1)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The difference between Hyb0,ν−1,1,0 and Hyb0,ν−1,1,1 is the following: In Hyb0,ν−1,1,0, B includes
the programs IO(P0) and IO(P ′0) within the νth signing key returned to A, while in Hyb0,ν−1,1,1, B
includes the programs IO(P1) and IO(P ′1) instead, where

– P0 = Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ] (Fig. 3.3),

– P ′0 = Change-SPS.Prog[K(ν)
sps,A,K

(ν)
sps,E ] (Fig. 3.4),

– P1 = Accumulate.Prog(0,1)[nssb-blk = 2λ,hk, pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗] (Fig. B.2),
– P ′1 = Change-SPS.Prog(0,1)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗] (Fig. B.3).

Now, observe that the programs P0 and P1 clearly have identical outputs for inputs corresponding
to (h, i) 6= (h∗, `∗). Also, by the correctness [Property (vii)] of splittable signature scheme SPS, both
the programs output ⊥ in case SPS.Verify(vksps,E ,min, σsps,in) = 0 for inputs corresponding to (h∗, `∗).
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Thus the programs P0 and P1 are functionally equivalent. A similar argument justifies the functional
equivalence of the programs P ′0 and P ′1.

Thus, by the security of IO, Claim B.2 follows. Ofcourse, we need to consider a sequence of hybrid
experiments to arrive at the result where in each hybrid experiment we change the programs one at a
time. ut

Claim B.3. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfy the correct-
ness under puncturing property, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,1,1)

A (λ)−
Adv(0,ν−1,1,2)

A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The difference between Hyb0,ν−1,1,1 and Hyb0,ν−1,1,2 is the following: In Hyb0,ν−1,1,1, B includes
the programs IO(P0) and IO(P ′0) within the νth signing key returned to A, while in Hyb0,ν−1,1,2, B
includes the programs IO(P1) and IO(P ′1) instead, where

– P0 = Accumulate.Prog(0,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗] (Fig. B.2),
– P ′0 = Change-SPS.Prog(0,1)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗] (Fig. B.3),
– P1 = Accumulate.Prog(0,2)[nssb-blk = 2λ,hk,pp(ν)

acc,pp(ν)
itr,K

(ν)
sps,E ,K

(ν)
sps,F {(h∗, `∗)},vk(ν,`∗)

sps-rej,H , h
∗, `∗]

(Fig. B.4),
– P ′1 = Change-SPS.Prog(0,2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F {(h∗, `∗)},vk(ν,`∗)

sps-rej,H , h
∗, `∗] (Fig. B.5).

Now, by the correctness under puncturing property of the PPRF F , both the programs P0 and P1
have identical outputs on inputs corresponding to (h, i) 6= (h∗, `∗). For inputs corresponding to (h∗, `∗),
P1 uses the hardwired verification key vk(ν,`∗)

sps-rej,H , where in Hyb0,ν−1,1,2,vk(ν,`∗)
sps-rej,H is computed as

(sk(ν,`∗)
sps,H , vk(ν,`∗)

sps,H , vk(ν,`∗)
sps-rej,H) = SPS.Setup(1λ; r(ν,`∗)

sps,H ) and r
(ν,`∗)
sps,H = F(K(ν)

sps,F , (h∗, `∗)). Observe that
these values are exactly the same as those used by the program P0 for inputs corresponding to (h∗, `∗).
Thus, both programs have identical outputs for inputs corresponding to (h∗, `∗) as well. Hence, the two
programs are functionally equivalent. A similar argument will justify that the programs P ′0 and P ′1 are
functionally equivalent.

Therefore, by the security of IO, Claim B.3 follows, considering a sequence of hybrid experiments
where in each hybrid experiment we change the programs one at a time. ut

Claim B.4. Assuming F is a secure puncturable pseudorandom function, for any PPT adversary A, for
any security parameter λ, |Adv(0,ν−1,1,2)

A (λ) − Adv(0,ν−1,1,3)
A (λ)| ≤ negl(λ) for some negligible function

negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,1,2)
A (λ) − Adv(0,ν−1,1,3)

A (λ)| is non-
negligible. We construct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F
using A as a sub-routine. The description of B follows:

• B initializes A on input 1λ and receives a challenge signing attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs

with |x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
4. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,1,2, while if η = ν, then B proceeds as
follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E

$←− F .Setup(1λ).

2. Next, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B sends (h∗, `∗) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back a punctured PPRF key K∗{(h∗, `∗)} and a value r∗ ∈ Ypprf, where either
r∗ = F(K∗, (h∗, `∗)) or r∗ $←− Ypprf. B will implicitly view the key K∗ as the key K(ν)

sps,F .
4. B generates (sk(ν,`∗)

sps,H ,vk(ν,`∗)
sps,H ,vk(ν,`∗)

sps-rej,H) = SPS.Setup(1λ; r∗).
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5. B gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(0,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

∗{(h∗, `∗)},vk(ν,`∗)
sps-rej,H ,

h∗, `∗]),
IO(Change-SPS.Prog(0,2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

∗{(h∗, `∗)},vk(ν,`∗)
sps-rej,H , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.

• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs b̂′ = 1 as
its guess bit in its PPRF selective pseudorandomness experiment if A wins, i.e., if ABS.Verify(ppabs, x

∗,

msg∗, σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs b̂′ = 0 in its PPRF selective
pseudorandomness experiment.

Note that if r∗ = F(K∗, (h∗, `∗)), then B perfectly simulates Hyb0,ν−1,1,2. On the other hand, if
r∗

$←− Ypprf, then B perfectly simulates Hyb0,ν−1,1,3. This completes the proof of Claim B.4. ut

Claim B.5. Assuming SPS is a splittable signature scheme satisfying ‘vksps-rej indistinguishability’, for
any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,1,3)

A (λ)− Adv(0,ν−1,1,4)
A (λ)| ≤ negl(λ) for

some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,1,3)
A (λ) − Adv(0,ν−1,1,4)

A (λ)| is non-
negligible. Below we construct a PPT adversary B that breaks the vksps-rej indistinguishability of SPS
using A as a sub-routine.

• B receives a verification key vk of the splittable signature scheme SPS from its vksps-rej indistin-
guishability challenger C, where vk is either a proper verification key vksps or a reject verification
key vksps-rej. Then, B initializes A on input 1λ and receives a challenge signing attribute string
x∗ = x∗0 . . . x

∗
`∗−1 ∈ Uabs with |x∗| = `∗ from A.

• Upon receiving x∗, B proceeds as follows:
1. B generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
4. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,1,3, while if η = ν, then B proceeds as
follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).

2. Next, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. B creates the punctured PPRF key K(ν)

sps,F {(h∗, `∗)}
$←− F .Puncture(Ksps,F , (h∗, `∗)).

4. B gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(0,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F {(h∗, `∗)},vk, h∗, `∗]),

IO(Change-SPS.Prog(0,2)[K(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F {(h∗, `∗)},vk, h∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.
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• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs b̂′ = 1 as
its guess bit in its vksps-rej indistinguishability experiment if A wins, i.e., if ABS.Verify(ppabs, x

∗,msg∗,
σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs b̂′ = 0 in its vksps-rej
indistinguishability experiment.

Notice that if vk = vksps-rej, then B perfectly simulates Hyb0,ν−1,1,3. On the other hand, if vk = vksps,
then B perfectly simulates Hyb0,ν−1,1,4. This completes the proof of Claim B.5. ut

Claim B.6. Assuming F is a secure puncturable pseudorandom function, for any PPT adversary A, for
any security parameter λ, |Adv(0,ν−1,1,4)

A (λ) − Adv(0,ν−1,1,5)
A (λ)| ≤ negl(λ) for some negligible function

negl.

Proof. The proof of Claim B.6 is similar to that of Claim B.4 with some appropriate changes which can
be readily identified. ut

Claim B.7. Assuming IO is a secure indistinguishability obfuscator for P/poly and Fsatisfies the
correctness under puncturing property, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,1,5)

A (λ)− Adv(0,ν−1,1,6)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim B.7 is analogous to that of Claim B.3 with some appropriate changes that are
easy to determine. ut

ut

Lemma B.3. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, and SPS is a splittable signature scheme satisfying ‘vksps-rej indistin-
guishability’, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,2)

A (λ)−Adv(0,ν−1,3)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. To prove Lemma B.3, we consider the following sequence of `∗ intermediate hybrid experiments
between Hyb0,ν−1,2 and Hyb0,ν−1,3:

Sequence of Intermediate Hybrids between Hyb0,ν−1,2 and Hyb0,ν−1,3

Hyb0,ν−1,2,ι (ι = 0, . . . , `∗ − 1): In this experiment in response to the νth signing key query of A
corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first chooses PPRF keys K(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).

2. After that, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. It provides A with the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(1,ι)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Change-SPS.Prog(1,ι)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν)pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the programs Accumulate.Prog(1,ι) and Change-SPS.Prog(1,ι) are the modifications of the pro-
grams Accumulate.Prog(2) and Change-SPS.Prog(2) (Figs. A.4 and A.5) and are depicted in Figs. B.6
and B.7 respectively.

The rest of the experiment is similar to Hyb0,ν−1,2. Observe that Hyb0,ν−1,2,`∗−1 coincides with hyb0,ν−1,2
and Hyb0,ν−1,2,0 corresponds to hyb0,ν−1,3.
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E , Ksps,F , SSB hash value of challenge
input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗)∨ (i ≤ ι)∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F , vk′sps,F , vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0). If i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).

Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. B.6. Accumulate.Prog(1,ι)

Constants: PPRF keys Ksps,A, Ksps,B , Ksps,E , Ksps,F , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, `inp)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, `inp)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp > `∗)∨ (`inp ≤ ι)∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. (a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. B.7. Change-SPS.Prog(1,ι)

Analysis

Let us denote by Adv(0,ν−1,2,ι)
A (λ) the advantage of A, i.e., the absolute difference between 1/2 and A’s

probability of correctly guessing the random bit selected by the challenger B, in the hybrid experiment
Hyb0,ν−1,2,ι, for ι ∈ [0, `∗ − 1]. Clearly, Adv(0,ν−1,2)

A (λ) ≡ Adv(0,ν−1,2,`∗−1)
A (λ) and Adv(0,ν−1,3)

A (λ) ≡
Adv(0,ν−1,2,0)

A (λ). Hence we have,

|Adv(0,ν−1,2)
A (λ)− Adv(0,ν−1,3)

A (λ)| ≤
`∗−1∑
ι=1
|Adv(0,ν−1,2,ι)

A (λ)− Adv(0,ν−1,2,ι−1)
A (λ)|. (B.3)

Claim B.8 below justifies that the RHS of Eq. (B.3) is negligible and consequently Lemma B.3 follows.

Claim B.8. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, and SPS is a splittable signature scheme satisfying ‘vksps-rej in-
distinguishability’, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,2,ι)

A (λ) −
Adv(0,ν−1,2,ι−1)

A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim B.8 is similar to that of Lemma B.2 with some appropriate modifications
which are easy to find out. ut

ut

Lemma B.4. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, and SPS is a splittable signature scheme satisfying ‘vksps-one indistin-
guishability’, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3)

A (λ)−Adv(0,ν−1,3,0)
A (λ)| ≤

negl(λ) for some negligible function negl.
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Proof. In order to prove Lemma B.4, we consider the following sequence of intermediate hybrid experi-
ments between Hyb0,ν−1,3 and Hyb0,ν−1,3,0.

Sequence of Intermediate Hybrids between Hyb0,ν−1,3 and Hyb0,ν−1,3,0

Hyb0,ν−1,3-I: This experiment coincides with Hyb0,ν−1,3.

Hyb0,ν−1,3-II: In this experiment, to answer the νth signing key query of A corresponding to TM
M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:
1. It first generates all the PPRF keys together with the public parameters for the positional accumulator

and the iterator just as in hyb0,ν−1,3-I.
2. After that, it creates the punctured PPRF key K(ν)

sps,E{(h∗, 0)} $←− F .Puncture(K(ν)
sps,E , (h∗, 0)) as well

as computes r(ν,0)
sps,G = F(K(ν)

sps,E , (h∗, 0)) and (sk(ν,0)
sps,G,vk(ν,0)

sps,G,vk(ν,0)
sps-rej,G = SPS.Setup(1λ; r(ν,0)

sps,G).
3. Then, it sets m(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0) and computes σ(ν,0)

sps,G = SPS.Sign(sk(ν,0)
sps,G,m

(ν)
0,0).

4. B gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog(1)[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, 0)}, σ(ν,0)

sps,G, h
∗]),

IO(Accumulate.Prog(2,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps,G, h

∗, `∗]),
IO(Change-SPS.Prog(2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E{(h∗, 0)},K(ν)

sps,F , h
∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the programs Init-SPS.Prog(1) and Accumulate.Prog(2,1) respectively are the alterations of the
programs Init-SPS.Prog and Accumulate.Prog(2) (Figs. 3.2 and A.4) and are depicted in Figs. B.8
and B.9.

The remaining part of the experiment is similar to Hyb0,ν−1,3-I.

Constants: Initial TM state q0, Accumulator value w0, Iterator value v0, Punctured PPRF key Ksps,E{(h∗, 0)}, Signature
σG, SSB hash value of challenge input h∗

Input: SSB hash value h
Output: Signature σsps,out

1. If h = h∗, output σG.
Else, compute rsps,E = F(Ksps,E{(h∗, 0)}, (h, 0)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

2. Output σsps,out = SPS.Sign(sksps,E , (v0, q0, w0, 0)).

Fig. B.8. Init-SPS.Prog(1)

hyb0,ν−1,3-III: This experiment is analogous to Hyb0,ν−1,3-II with the only exception that while con-
structing the νth signing key queried by A corresponding to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B
selects r(ν,0)

sps,G
$←− Ypprf. More formally, to answer the νth signing key query of A, B creates all the com-

ponents as in Hyb0,ν−1,3-II except that it generates (sk(ν,0)
sps,G,vk(ν,0)

sps,G,vk(ν,0)
sps-rej,G) $←− SPS.Setup(1λ), sets

m
(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0), computes σ(ν,0)

sps,G = SPS.Sign(sk(ν,0)
sps,G,m

(ν)
0,0) and provides A with the signing

key

skabs{M (ν)} =
hk,pp(ν)

acc, w
(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog(1)[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, 0)}, σ(ν,0)

sps,G, h
∗]),

IO(Accumulate.Prog(2,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps,G, h

∗, `∗]),
IO(Change-SPS.Prog(2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E{(h∗, 0)},K(ν)

sps,F , h
∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B , h

∗, `∗])

 .
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, Punctured PPRF key Ksps,E{(h∗, 0)}, PPRF keyKsps,F ,
Verification key vkG, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) If (h, i) 6= (h∗, 0), compute rsps,E = F(Ksps,E{(h∗, 0)}, (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

Else, set vksps,E = vkG.
(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (i = 0) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) Compute r′sps,E = F(Ksps,E{(h∗, 0)}, (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F , vk′sps,F , vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0). If i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).

Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).
5. Output (wout, vout, σsps,out).

Fig. B.9. Accumulate.Prog(2,1)

Hyb0,ν−1,3-IV: This experiment is the same as hyb0,ν−1,3-III with the exception that in response to the
νth signing key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds sa follows:

1. It first generates the full and punctured PPRF keys together with the public parameters for the
positional accumulator and the iterator just as in Hyb0,ν−1,3-III.

2. Next, it creates (sk(ν,0)
sps,G,vk(ν,0)

sps,G,vk(ν,0)
sps-rej,G) $←− SPS.Setup(1λ), sets m(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0), and

forms (σ(ν,0)
sps-one,m(ν)

0,0 ,G
,vk(ν,0)

sps-one,G, sk(ν,0)
sps-abo,G,vk(ν,0)

sps-abo,G) $←− SPS.Split(sk(ν,0)
sps,G,m

(ν)
0,0).

3. B hands A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog(1)[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, 0)}, σ(ν,0)

sps-one,m(ν)
0,0 ,G

, h∗]),

IO(Accumulate.Prog(2,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps-one,G,

h∗, `∗]),
IO(Change-SPS.Prog(2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E{(h∗, 0)},K(ν)

sps,F , h
∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.

Hyb0,ν−1,3-V: In this experiment, in reply to the νth signing key query of A corresponding to TM
M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates all the components just as in Hyb0,ν−1,3-IV and gives A the
signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog(1)[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, 0)}, σ(ν,0)

sps-one,m(ν)
0,0 ,G

, h∗]),

IO(Accumulate.Prog(2,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps-one,G,m

(ν)
0,0 ,

h∗, `∗]),
IO(Change-SPS.Prog(2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E{(h∗, 0)},K(ν)

sps,F , h
∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the program Accumulate.Prog(2,2), described in Fig. B.10, is an alteration of the program
Accumulate.Prog(2,1) (Fig. B.9). The rest of the experiment is similar to Hyb0,ν−1,3-IV.
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, Punctured PPRF key Ksps,E{(h∗, 0)}, PPRF key Ksps,F ,
Verification key vkG, Message m0,0, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) If (h, i) 6= (h∗, 0), compute rsps,E = F(Ksps,E{(h∗, 0)}, (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

Else, set vksps,E = vkG.
(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (i = 0) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) Compute r′sps,E = F(Ksps,E{(h∗, 0)}, (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F , vk′sps,F , vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0).

If [(h, i) = (h∗, 0)] ∧ [min = m0,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, 0)] ∧ [min 6= m0,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,Emout).

5. Output (wout, vout, σsps,out).

Fig. B.10. Accumulate.Prog(2,2)

Hyb0,ν−1,3-VI: In this experiment, in response to the νth signing key query of A corresponding to TM
M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first generates all the full and punctured PPRF keys as well as the public parameters for the
positional accumulator and its iterator as in Hyb0,ν−1,3-V.

2. Next, it forms (sk(ν,0)
sps,G,vk(ν,0)

sps,G,vk(ν,0)
sps-rej,G) $←− SPS.Setup(1λ), sets m(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0), and

computes σ(ν,0)
sps,G = SPS.Sign(sk(ν,0)

sps,G,m
(ν)
0,0).

3. It provides A with the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog(1)[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, 0)}, σ(ν,0)

sps,G, h
∗]),

IO(Accumulate.Prog(2,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps,G,m

(ν)
0,0 ,

h∗, `∗]),
IO(Change-SPS.Prog(2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E{(h∗, 0)},K(ν)

sps,F , h
∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.

The remaining portion of the experiment is identical to hyb0,ν−1,3-V.

hyb0,ν−1,3-VII: In this experiment, while constructing the νth signing key queried by A correspond-
ing to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates everything just as in Hyb0,ν−1,3-VI except that
it computes r(ν,0)

sps,G = F(K(ν)
sps,E , (h∗, 0)), forms (sk(ν,0)

sps,G,vk(ν,0)
sps,G,vk(ν,0)

sps-rej,G) = SPS.Setup(1λ; r(ν,0)
sps,G), and
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provides A with the signing key

skabs{M (ν)} =
hk,pp(ν)

acc, w
(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog(1)[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, 0)}, σ(ν,0)

sps,G, h
∗]),

IO(Accumulate.Prog(2,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps,G,m

(ν)
0,0 , h

∗, `∗]),
IO(Change-SPS.Prog(2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E{(h∗, 0)},K(ν)

sps,F , h
∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B , h

∗, `∗])

 .

The rest of the experiment is analogous to Hyb0,ν−1,3-VI.

Hyb0,ν−1,3-VIII: This experiment corresponds to Hyb0,ν−1,3,0.

Analysis

Let Adv(0,ν−1,3-ϑ)
A (λ) represents the advantage of the adversary A, i.e., the absolute difference between 1/2

and A’s probability of correctly guessing the random bit selected by the challenger B, in Hyb0,ν−1,3-ϑ, for
ϑ ∈ {I, . . . ,VIII}. Clearly, Adv(0,ν−1,3)

A (λ) ≡ Adv(0,ν−1,3-I)
A (λ) and Adv(0,ν−1,3,0)

A (λ) ≡ Adv(0,ν−1,3-VIII)
A (λ).

Therefore, we have

|Adv(0,ν−1,3)
A (λ)− Adv(0,ν−1,3,0)

A (λ)| ≤
VIII∑
ϑ=II
|Adv(0,ν−1,3-(ϑ−I))

A (λ)− Adv(0,ν−1,3-ϑ)
A (λ)|. (B.4)

Claims B.9–B.15 below will justify that the RHS of Eq. (B.4) is negligible and hence Lemma B.4 follows.

Claim B.9. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies the
correctness under puncturing property, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3-I)

A (λ)− Adv(0,ν−1,3-II)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The difference between Hyb0,ν−1,3-I and hyb0,ν−1,3-II is the following: In Hyb0,ν−1,3-I, B includes
the programs IO(P0) and IO(P ′0) within the νth signing key returned to A, while in Hyb0,ν−1,3-II, B
includes the programs IO(P1) and IO(p′1) instead, where

– P0 = Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 , K

(ν)
sps,E ] (Fig. 3.2),

– P ′0 = Accumulate.Prog(2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗] (Fig. A.4),
– P1 = Init-SPS.Prog(1)[q(ν)

0 , w
(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, 0)}, σ(ν,0)

sps,G, h
∗] (Fig. B.8),

– P ′1 = Accumulate.Prog(2,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps,G, h

∗, `∗]
(Fig. B.9).

Now observe that the programs P0 and P1 are functionally equivalent since by the correctness under
puncturing property of the PPRF F , the PPRF output remains the same at all non-punctured points and
at the point of puncturing, i.e., (h∗, 0), the correct signature is hardwired in the program P1. Similarly,
P ′0 and P ′1 are also functionally equivalent by the correctness under puncturing property of F and the
fact that at the point of puncturing i.e., (h∗, 0) the correct verification key is hardwired into the program
P ′1.

Therefore, by the security of IO, Claim B.9 follows. ut

Claim B.10. Assuming F is a secure puncturable pseudorandom function, for any PPT adversary A, for
any security parameter λ, |Adv(0,ν−1,3-II)

A (λ) − Adv(0,ν−1,3-III)
A (λ)| ≤ negl(λ) for some negligible function

negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3-II)
A (λ)− Adv(0,ν−1,3-III)

A (λ)| is non-
negligible. We construct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F
using A as a sub-routine. The description of B follows:

• B initializes A on input 1λ and receives a challenge signing attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs

with |x∗| = `∗ from A.



Short Attribute-Based Signatures for Arbitrary Turing Machines from Standard Assumptions 55

• Upon receiving x∗, B proceeds as follows:
1. B generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
4. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3-II, while if η = ν, then B proceeds as
follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,F

$←− F .Setup(1λ).
2. Next, it generates (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B sends (h∗, 0) as the challenge input to its PPRF selective pseudorandomness challenger
C and receives back a punctured PPRF key K∗{(h∗, 0)} and a value r∗ ∈ Ypprf, where either
r∗ = F(K∗, (h∗, 0)) or r∗ $←− Ypprf. B implicitly views the key K∗ as the key K(ν)

sps,E .
4. B generates (sk(ν,0)

sps,G,vk(ν,0)
sps,G,vk(ν,0)

sps-rej,G) = SPS.Setup(1λ; r∗).
5. Then, B sets m(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0) and computes σ(ν,0)

sps,G = SPS.Sign(sk(ν,0)
sps,G,m

(ν)
0,0).

6. B gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog(1)[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K∗{(h∗, 0)}, σ(ν,0)

sps,G, h
∗]),

IO(Accumulate.Prog(2,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
∗{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps,G, h

∗, `∗]),
IO(Change-SPS.Prog(2)[K(ν)

sps,A,K
(ν)
sps,B ,K

∗{(h∗, 0)},K(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.

• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs b̂′ = 1 as
its guess bit in its PPRF selective pseudorandomness experiment if A wins, i.e., if ABS.Verify(ppabs, x

∗,

msg∗, σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs b̂′ = 0 in its PPRF selective
pseudorandomness experiment.

Note that if r∗ = F(K∗, (h∗, 0)), then B perfectly simulates Hyb0,ν−1,3-II. On the other hand, if
r∗

$←− Ypprf, the B perfectly simulates Hyb0,ν−1,3-III. This completes the proof of Claim B.10. ut

Claim B.11. Assuming SPS is a splittable signature scheme satisfying ‘vksps-one’ indistinguishability,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3-III)

A (λ)−Adv(0,ν−1,3-IV)
A (λ)| ≤ negl(λ)

for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3-III)
A (λ)−Adv(0,ν−1,3-IV)

A (λ)| is non-
negligible. Below we construct a PPT adversary B that breaks the vksps-one indistinguishability of SPS
using A as a sub-routine.

• B initializes A on input 1λ and receives a challenge signing attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs

with |x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
4. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3-III, while if η = ν, then B proceeds
as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).
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2. Next, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B creates the punctured PPRF key K(ν)

sps,E{(h∗, 0)} $←− F .Puncture(K(ν)
sps,E , (h∗, 0)).

4. After that, B sends m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0) as the challenge message to its SPS vksps-one indis-

tinguishability challenger C and receives back a signature-verification key pair (σsps-one,m(ν)
0,0
,vk),

where vk is either a normal verification key vksps or a one verification key vksps-one for the message
m

(ν)
0,0 .

5. B gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog(1)[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, 0)}, σsps-one,m(ν)

0,0
, h∗]),

IO(Accumulate.Prog(2,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk, h∗, `∗]),
IO(Change-SPS.Prog(2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E{(h∗, 0)},K(ν)

sps,F , h
∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.

• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs b̂′ = 1 as
its guess bit in its vksps-one indistinguishability experiment ifA wins, i.e., if ABS.Verify(ppabs, x

∗,msg∗,
σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs b̂′ = 0 in its vksps-one
indistinguishability experiment.

Notice that if vk = vksps, then B perfectly simulates Hyb0,ν−1,3-III. On the other hand, if vk =
vksps-one, then B perfectly simulates Hyb0,ν−1,3-IV. This completes the proof of Claim B.11. ut

Claim B.12. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,3-IV)

A (λ) − Adv(0,ν−1,3-V)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The difference between Hyb0,ν−1,3-IV and hyb0,ν−1,3-V is the following: In Hyb0,ν−1,3-IV, B includes
the program IO(P0) within the νth signing key returned to A, while in Hyb0,ν−1,3-V, B includes the
program IO(P1) instead, where

– P0 = Accumulate.Prog(2,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps-one,G, h

∗, `∗]
(Fig. B.9),

– P1 = Accumulate.Prog(2,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, 0)},K(ν)

sps,F ,vk(ν,0)
sps-one,G,m

(ν)
0,0 , h

∗, `∗]
(Fig. B.10).

Observe that the only inputs for which the programs P0 and P1 can possibly differ are those corre-
sponding to (h, i) = (h∗, 0). However, the verification key hardwired in both the programs is vk(ν,0)

sps-one,G

which only accepts signature for min = m
(ν)
0,0 by the correctness [Properties (i), (iii) and (v)]. This ensures

that for inputs corresponding to (h∗, 0), if min = m
(ν)
0,0 both the programs output an ‘E’ type signature,

else, both output ⊥. Thus, P0 and P1 are functionally equivalent.
Therefore, by the security of IO, Claim B.12 follows. ut

Claim B.13. Assuming SPS is a splittable signature scheme satisfying ‘vksps-one indistinguishability’,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3-V)

A (λ)−Adv(0,ν−1,3-VI)
A (λ)| ≤ negl(λ)

for some negligible function negl.

Proof. The proof of Claim B.13 is similar to that of Claim B.11 with some readily identifiable modifica-
tions. ut

Claim B.14. Assuming F is a secure puncturable pseudorandom function, for any PPT adversary A, for
any security parameter λ, |Adv(0,ν−1,3-VI)

A (λ)−Adv(0,ν−1,3-VII)
A (λ)| ≤ negl(λ) for some negligible function

negl.
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Proof. The proof of Claim B.14 is analogous to that of Claim B.10 with some appropriate changes that
are easy to find out. ut

Claim B.15. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3-VII)

A (λ)− Adv(0,ν−1,3-VIII)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim B.15 is analogous to that of Claim B.9. ut
ut

Lemma B.5. Assuming IO is a secure indistinguishability obfuscator for P/poly, SSB is a somewhere
statistically binding hash function, ACC is a positional accumulator satisfying ‘indistinguishability of write
setup’ and ‘write enforcing’ properties, as well as ITR is a secure cryptographic iterator, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι)

A (λ) − Adv(0,ν−1,3,ι′)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. To prove Lemma B.5, we introduce the following sequence of intermediate hybrid experiments
between Hyb0,ν−1,3,ι and Hyb0,ν−1,3,ι′ :

Sequence of Intermediate Hybrids between Hyb0,ν−1,3,ι and Hyb0,ν−1,3,ι′

Hyb0,ν−1,3,ι,0: This experiment coincides with Hyb0,ν−1,3,ι.

Hyb0,ν−1,3,ι,1: In this experiment the challenger B forms the SSB hash key hk $←− SSB.Gen(1λ, nssb-blk =
2λ, i∗ = ι). The rest of the experiment proceeds in an analogous fashion to Hyb0,ν−1,3,ι,0.

Hyb0,ν−1,3,ι,2: In this experiment, to answer the νth signing key query of A corresponding to TM
M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first generates all the PPRF keys and the public parameters for the iterator just as in hyb0,ν−1,3,ι,1.
2. Next, it forms (pp(ν)

acc, w
(ν)
0 , store(ν)

0
$←− ACC.Setup-Enforce-Write(1λ, nacc-blk = 2λ, ((x∗0, 0), . . . , (x∗ι , ι))).

3. After that, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι,0 = (v(ν)

ι , q
(ν)
0 , w

(ν)
ι , 0).

4. B gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 , h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.

The rest of the experiment is similar to hyb0,ν−1,3,ι,1.

hyb0,ν−1,3,ι,3: In this experiment, in response to the νth signing key query of A corresponding to TM
M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accumulator
and the iterator as in Hyb0,ν−1,3,ι,2.

2. Next, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι+ 1, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)
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– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι,0 = (v(ν)

ι , q
(ν)
0 , w

(ν)
ι , 0) and m

(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

3. It gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 ,m

(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the program Accumulate.Prog(3,ι,1) is a modification of the program Accumulate.Prog(3,ι) (Fig. A.6)
and is described in Fig. B.11.

The rest of the experiment if analogous to Hyb0,ν−1,3,ι,2.

Hyb0,ν−1,3,ι,4: This experiment is identical to Hyb0,ν−1,3,ι,3 with the only exception that while construct-

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional
accumulator ppacc, Public parameters for iterator ppitr, PPRF keys Ksps,E , Ksps,F , Messages mι,0, mι+1,0, SSB
hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Compute rsps,F = F(Ksps,F , (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) Compute r′sps,E = F(Ksps,E , (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) Compute r′sps,F = F(Ksps,F , (h, i+ 1)), (sk′sps,F , vk′sps,F , vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0).

If [(h, i) = (h∗, ι)] ∧ [(min = mι,0)∧ (mout = mι+1,0)], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι)] ∧ [(min 6= mι,0)∨ (mout 6= mι+1,0)], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. B.11. Accumulate.Prog(3,ι,1)

ing the νth signing key queried by A, B generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ).

Hyb0,ν−1,3,ι,5: This experiment is identical to Hyb0,ν−1,3,ι,4 with the only exception that B generates
hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0).

Hyb0,ν−1,3,ι,6: In this experiment, in response to the νth signing key query of A corresponding to TM
M (ν) ∈Mλ with M (ν)(x∗) = 0, B proceeds as follows:

1. It first generates all the PPRF keys as well as the public parameters for the positional accumulator as
in Hyb0,ν−1,3,ι,5.

2. For j = 1, . . . , ι+ 1, it iteratively computes the following:
– aux(ν)

j = ACC.Prep-Write(pp(ν)
acc, store(ν)

j−1, j − 1)
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– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
3. Then, it generates (pp(ν)

itr, v
(ν)
0 ) $←− ITR.Setup-Enforce(1λ, nitr = 2λ, ((q(ν)

0 , w
(ν)
0 , 0), . . . , (q(ν)

0 , w
(ν)
ι , 0))).

4. After that, for j = 1, . . . , ι+ 1, it iteratively computes v(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0)).

5. It sets m(ν)
ι,0 = (v(ν)

ι , q
(ν)
0 , w

(ν)
ι , 0) and m

(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

6. It gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 ,m

(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.

The rest of the experiment if analogous to Hyb0,ν−1,3,ι,5.

Hyb0,ν−1,3,ι,7: In this experiment, to answer the νth signing key query of A corresponding to TM
M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates everything as in Hyb0,ν−1,3,ι,6, however, it hands A the
signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι′)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the program Accumulate.Prog(3,ι′) is depicted in Fig. A.8. The rest of the experiment is similar to
Hyb0,ν−1,3,ι,6.

Hyb0,ν−1,3,ι,8: This experiment is analogous to hyb0,ν−1,3,ι,7 with the only exception that while con-
structing the νth signing key queried by A, B generates (pp(ν)

itr, v
(ν)
0 ) $←− ITR.Setup(1λ, nitr = 2λ). Notice

that this experiment coincides with Hyb0,ν−1,3,ι′ .

Analysis

Let Adv(0,ν−1,3,ι,ϑ)
A (λ) represents the advantage of the adversary A, i.e., the absolute difference between

1/2 and A’s probability of correctly guessing the random bit selected by the challenger B, in Hyb0,ν−1,3,ι,ϑ,
for ϑ ∈ [0, 8]. From the description of the hybrid experiments it follows that Adv(0,ν−1,3,ι)

A (λ) ≡
Adv(0,ν−1,3,ι,0)

A (λ) and Adv(0,ν−1,3,ι′)
A (λ) ≡ Adv(0,ν−1,3,ι,8)

A (λ). Hence, we have

|Adv(0,ν−1,3,ι)
A (λ)− Adv(0,ν−1,3,ι′)

A (λ)| ≤
8∑

ϑ=1
|Adv(0,ν−1,3,ι,ϑ−1)

A (λ)− Adv(0,ν−1,3,ι,ϑ)
A (λ)|. (B.5)

Claims B.16–B.23 below will show that the RHS of Eq. (B.5) is negligible and thus Lemma B.5 follows.

Claim B.16. Assuming SSB satisfies the ‘index hiding’ property, for any PPT adversary A, for any
security parameter λ, |Adv(0,ν−1,3,ι,0)

A (λ)−Adv(0,ν−1,3,ι,1)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι,0)
A (λ)−Adv(0,ν−1,3,ι,1)

A (λ)| is non-
negligible. We construct a PPT adversary B that breaks the index hiding property of SSB using A as a
sub-routine. The description of B follows:



60 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

• B initializes A on input 1λ and receives a challenge signing attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs

with |x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B submits nssb-blk = 2λ and the pair of indices (i∗0 = 0, i∗1 = ι) to its SSB index hiding challenger
C and receives back a hash key hk, where either hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗0 = 0) or
hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗1 = ι).

2. Next, B computes h∗ = Hhk(x∗).
3. Then, B selects a PPRF key K $←− F .Setup(1λ).
4. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
5. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (η)(x∗) = 0, B proceeds exactly as in Hyb0,ν−1,3,ι,0.

• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs b̂′ = 1 as
its guess bit in its SSB index hiding experiment if A wins, i.e., if ABS.Verify(ppabs, x

∗,msg∗, σ∗abs) = 1
and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs b̂′ = 0 in its SSB index experiment.

Note that if hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗0 = 0), then B perfectly simulates Hyb0,ν−1,3,ι,0. On
the other hand, if hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗1 = ι), then B perfectly simulates Hyb0,ν−1,3,ι,1. This
completes the proof of Claim B.16. ut

Claim B.17. Assuming ACC is a positional accumulator satisfying the ‘indistinguishability of write
setup’ property, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι,1)

A (λ) −
Adv(0,ν−1,3,ι,2)

A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι,1)
A (λ)−Adv(0,ν−1,3,ι,2)

A (λ)| is non-
negligible. We construct a PPT adversary B that breaks the indistinguishability of write setup property
of the positional accumulator ACC using A as a sub-routine. The description of B follows:

• B initializes A on input 1λ and receives a challenge signing attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf

with |x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = ι) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
4. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (ν)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι,1, while if η = ν, then B proceeds
as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).
2. After that, B sends nacc-blk = 2λ and the sequence of symbol-index pairs ((x∗0, 0), . . . , (x∗ι , ι))

to its ACC write setup indistinguishability challenger C and receives back (ppacc, w0, store0),
where either (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ) or (ppacc, w0, store0) $←−
ACC.Setup-Enfoce-Write(1λ, nacc-blk = 2λ, ((x∗0, 0), . . . , (x∗ι , ι))).

3. Next, it generates (pp(ν)
itr, v

(ν)
0 ) $←− ITR.Setup(1λ, nitr = 2λ).

4. Then, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w0, 0). For j = 1, . . . , ι, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(ppacc, storej−1, j − 1)

– wj = ACC.Update(ppacc, wj−1, x
∗
j−1, j − 1,aux(ν)

j )
– storej = ACC.Write-Store(ppaccstorej−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , wj−1, 0))

It sets m(ν)
ι,0 = (v(ν)

ι , q
(ν)
0 , wι, 0).
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5. It gives A the signing key

skabs{M (ν)} =

hk,ppacc, w0, store0,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w0, v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι)[nssb-blk = 2λ,hk,ppacc,pp(ν)
itr,K

(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 , h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),ppacc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.

• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs
b̂′ = 1 as its guess bit in its ACC write setup indistinguishability experiment if A wins, i.e., if
ABS.Verify(ppabs, x

∗,msg∗, σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs
b̂′ = 0 in its ACC write setup indistinguishability experiment.

Note that if (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ), then B perfectly simulates
Hyb0,ν−1,3,ι,1. On the other hand, if (ppacc, w0, store0) $←− ACC.Setup-Enforce-Write(1λ, nacc-blk = 2λ,
((x∗0, 0), . . . , (x∗ι , ι))), then B perfectly simulates Hyb0,ν−1,3,ι,2. This completes the proof of Claim B.17.

ut

Claim B.18. Assuming IO is a secure indistinguishability obfuscator for P/poly, SSB possesses the
‘somewhere statistically binding’ property, and ACC is a positional accumulator having the ‘write
enforcing’ property, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι,2)

A (λ) −
Adv(0,ν−1,3,ι,3)

A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The difference between Hyb0,ν−1,3,ι,2 and Hyb0,ν−1,3,ι,3 is the following: In Hyb0,ν−1,3,ι,2, B includes
the program IO(P0) within the νth signing key provided to A, whereas, in Hyb0,ν−1,3,ι,3, B includes the
program IO(P1) instead, where

– P0 = Accumulate.Prog(3,ι)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 , h

∗, `∗] (Fig. A.6),
– P1 = Accumulate.Prog(3,ι,1)[nssb-blk = 2λ,hk,pp(ν)

acc,pp(ν)
itr,K

(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. B.11).

We will argue that the programs P0 and P1 are functionally equivalent, so that, by the security of
IO Claim B.18 follows. The inputs on which the outputs of the two programs can possibly differ are
those corresponding to (h, i) = (h∗, ι). For inputs corresponding to (h∗, ι), the program P1 performs the
additional check ‘mout = m

(ν)
ι+1,0’ to determine the type of the outputted signature. We show that this

check is redundant by demonstrating that for inputs corresponding to (h∗, ι), if min = m
(ν)
ι,0 , then either

both the programs output ⊥ or it must hold that mout = m
(ν)
ι+1,0 and, therefore, both the programs output

signatures of the same type. Notice that min = m
(ν)
ι,0 means vin = v

(ν)
ι , st = q

(ν)
0 , and win = w

(ν)
ι . Thus,

vout = ITR.Iterate(pp(ν)
itr, vin, (st, win, 0)) = ITR.Iterate(pp(ν)

itr, v
(ν)
ι , (q(ν)

0 , w
(ν)
ι , 0)) = v

(ν)
ι+1. Now, recall that

in both experiments hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = ι). Therefore, by the somewhere statistically
binding property of SSB it follows that SSB.Verify(hk, h∗ = Hhk(x∗), ι, symin, πssb) = 1 if and only if
symin = x∗ι . Thus, for inputs corresponding to (h∗, ι), both programs will output ⊥ in case symin 6=
x∗ι . Further, in both the experiments, (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup-Enforce-Write(1λ, nacc-blk =
2λ, ((x∗0, 0), . . . , (x∗ι , ι))). Therefore, by the write enforcing property of ACC it follows that if win = w

(ν)
ι

and symin = x∗ι , then wout = ACC.Update(pp(ν)
acc, win, symin, ι,aux) results in wout = w

(ν)
ι+1 or wout = ⊥.

In case wout = ⊥, then clearly both the programs output ⊥. On the other hand, wout = w
(ν)
ι+1 implies

mout = (vout, st, wout, 0) = (v(ν)
ι+1, q

(ν)
0 , w

(ν)
ι+1, 0) = m

(ν)
ι+1,0 and the two programs have identical outputs

in this case as well. ut

Claim B.19. Assuming ACC is a positional accumulator satisfying the ‘indistinguishability of write
setup’ property, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι,3)

A (λ) −
Adv(0,ν−1,3,ι,4)

A (λ)| ≤ negl(λ) for some negligible function negl.
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Proof. The proof of Claim B.19 is similar to that of Claim B.17 with some appropriate modifications
which can be readily figured out. ut

Claim B.20. Assuming SSB satisfies the ‘index hiding’ property, for any PPT adversary A, for any
security parameter λ, |Adv(0,ν−1,3,ι,4)

A (λ)−Adv(0,ν−1,3,ι,5)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim B.20 is analogous to that of Claim B.16 with certain approximate changes
which are easy to determine. ut

Claim B.21. Assuming ITR satisfies the ‘indistinguishability of enforcing setup’ property, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι,5)

A (λ) − Adv(0,ν−1,3,ι,6)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι,5)
A (λ)−Adv(0,ν−1,3,ι,6)

A (λ)| is non-
negligible. Below, we construct a PPT adversary B that breaks the indistinguishability of enforcing setup
property of the iterator ITR using A as a sub-routine.

• B initializes A on input 1λ and receives a challenge input x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs with |x∗| = `∗ from

A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
4. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι,5, while if η = ν, then B proceeds
as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).
2. Next, it generates (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ).
3. For j = 1, . . . , ι+ 1, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
4. Then, B sends nitr = 2λ along with the sequence of messages ((q(ν)

0 , w
(ν)
0 , 0), . . . , (q(ν)

0 , w
(ν)
ι , 0))

to its ITR enforcing setup indistinguishability challenger C and receives back (ppitr, v0), where
either (ppitr, v0) $←− ITR.Setup(1λ, nitr = 2λ) or (ppitr, v0) $←− ITR.Setup-Enforce(1λ, nitr = 2λ,
((q(ν)

0 , w
(ν)
0 , 0), . . . , (q(ν)

0 , w
(ν)
ι , 0))).

5. For j = 1, . . . , ι + 1, B iteratively computes vj = ITR.Iterate(ppitr, vj−1, (q(ν)
0 , w

(ν)
j−1, 0)). It sets

m
(ν)
ι,0 = (vι, q(ν)

0 , w
(ν)
ι , 0) and m

(ν)
ι+1,0 = (vι+1, q

(ν)
0 , w

(ν)
ι+1, 0).

6. It gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,ppitr, v0,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v0,K

(ν)
sps,E ]),

IO(Accumulate.Prog(3,ι,1)[nssb-blk = 2λ,hk,pp(ν)
acc,ppitr,K

(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 ,m

(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,ppitr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.

• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs
b̂′ = 1 as its guess bit in its ITR enforcing setup indistinguishability experiment if A wins, i.e., if
ABS.Verify(ppabs, x

∗,msg∗, σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs
b̂′ = 0 in its ITR enforcing setup indistinguishability experiment.
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Note that if (ppitr, v0) $←− ITR.Setup(1λ, nitr = 2λ), then B perfectly simulates Hyb0,ν−1,3,ι,5. On the
other hand, if (ppitr, v0) $←− ITR.Setup-Enforce(1λ, nitr = 2λ, ((q(ν)

0 , w
(ν)
0 , 0), . . . , (q(ν)

0 , w
(ν)
ι , 0))), then B

perfectly simulates Hyb0,ν−1,3,ι,6. This completes the proof of Claim B.21. ut

Claim B.22. Assuming IO is a secure indistinguishability obfuscator for P/poly and ITR has the
‘enforcing’ property, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι,6)

A (λ) −
Adv(0,ν−1,3,ι,7)

A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The difference between Hyb0,ν−1,3,ι,6 and Hyb0,ν−1,3,ι,7 is the following: In Hyb0,ν−1,3,ι,6, B includes
the program IO(P0) within the νth signing key provided to A, whereas, in Hyb0,ν−1,3,ι,7, B includes the
program IO(P1) instead, where

– P0 = Accumulate.Prog(3,ι,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι,0 ,m

(ν)
ι+1,0, h

∗, `∗]
(Fig. B.11),

– P1 = Accumulate.Prog(3,ι′)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. A.8).

We will argue that the programs P0 and P1 are functionally identical, so that, by the security of
IO Claim B.22 follows. The only inputs on which the outputs of the two programs can possibly differ
are those corresponding to (h, i) = (h∗, ι). For inputs corresponding to (h∗, ι), the program P0 checks
whether ‘min = m

(ν)
ι,0 ’ and ‘mout = m

(ν)
ι+1,0’ to determine the type of the outputted signature, while the

program P1 only checks whether ‘mout = m
(ν)
ι+1,0’. Thus, the two programs will be functionally equivalent

if we can show that for inputs corresponding to (h∗, ι), mout = m
(ν)
ι+1,0 implies min = m

(ν)
ι,0 . Recall that in

both experiment (pp(ν)
itr, v

(ν)
0

$←− ITR.Setup-Enforce(1λ, nitr = 2λ, ((q(ν)
0 , w

(ν)
0 , 0), . . . , (q(ν)

0 , w
(ν)
ι , 0))). Now,

mout = m
(ν)
ι+1,0 implies vout = v

(ν)
ι+1. Therefore, by the enforcing property of ITR it follows that vin = v

(ν)
ι

and (st, win, 0) = (q(ν)
0 , w

(ν)
ι , 0), which in turn implies that min = (vin, st, win, 0) = (v(ν)

ι , q
(ν)
0 , w

(ν)
ι , 0) =

m
(ν)
ι,0 . ut

Claim B.23. Assuming ITR satisfies the ‘indistinguishability of enforcing setup’ property, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι,7)

A (λ) − Adv(0,ν−1,3,ι,8)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. The proof of Claim B.23 is analogous to that of Claim B.21 with some appropriate modifications
which are easy to determine. ut

ut

Lemma B.6. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, and SPS is a splittable signature scheme satisfying ‘vksps-one indistin-
guishability’, ‘vksps-abo indistinguishability’, as well as ‘splitting indistinguishability’, for any PPT adver-
sary A, for any security parameter λ, |Adv(0,ν−1,3,ι′)

A (λ)−Adv(0,ν−1,3,ι+1)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. In order to establish Lemma B.6, we consider the following sequence of intermediate hybrid ex-
periments between Hyb0,ν−1,3,ι′ and Hyb0,ν−1,3,ι+1:

Sequence of Intermediate Hybrids between Hyb0,ν−1,3,ι′ and Hyb0,ν−1,3,ι+1

Hyb0,ν−1,3,ι′,0: This experiment coincides with Hyb0,ν−1,3,ι′ .

Hyb0,ν−1,3,ι′,1: This experiment is identical to Hyb0,ν−1,3,ι′,0 except that in response to the νth signing
key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B executes the following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accumulator
and the iterator as in Hyb0,ν−1,3,ι′,0.

2. Then, it creates the punctured PPRF keys K(ν)
sps,E{(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,E , (h∗, ι+ 1)) and

K
(ν)
sps,F {(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,F , (h∗, ι+ 1)).
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3. After that, it computes r(ν,ι+1)
sps,G = F(K(ν)

sps,E , (h∗, ι+ 1)), r(ν,ι+1)
sps,H = F(K(ν)

sps,F , (h∗, ι+ 1)), and forms

(sk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps-rej,G) = SPS.Setup(1λ; r(ν,ι+1)

sps,G ), (sk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps,H ,vk(ν,ι+1)
sps-rej,H) = SPS.Setup(1λ;

r
(ν,ι+1)
sps,H ).

4. Next, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι+ 1, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )

– store(ν)
j = ACC.Write-Store(pp(ν)

acc, store(ν)
j−1, j − 1, x∗j−1)

– v
(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

5. It gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},
sk(ν,ι+1)

sps,G , sk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,H ,m

(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι,1)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},vk(ν,ι+1)
sps,G ,

vk(ν,ι+1)
sps,H , h∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the programs Accumulate.Prog(3,ι′,1) and Change-SPS.Prog(3,ι,1) respectively are the modifica-
tions of the programs Accumulate.Prog(3,ι′) and Change-SPS.Prog(3,ι) (Figs. A.8 and A.7) and are
shown in Figs. B.12 and B.13.

Hyb0,ν−1,3,ι′,2: This experiment is analogous to Hyb0,ν−1,3,ι′,1 with the only exception that while con-
structing the νth signing key queried by A, B selects r(ν,ι+1)

sps,G , r
(ν,ι+1)
sps,H

$←− Ypprf, i.e., in other words, B

generates (sk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps-rej,G), (sk(ν,ι+1)

sps,H ,vk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps-rej,H) $←− SPS.Setup(1λ).

Hyb0,ν−1,3,ι′,3: This experiment is identical to Hyb0,ν−1,3,ι′,2 except that in response to the νth signing
key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B executes the following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accumulator
and the iterator as in Hyb0,ν−1,3,ι′,2.

2. Then, it creates the punctured PPRF keys K(ν)
sps,E{(h∗, ι + 1)} $←− F .Puncture(K(ν)

sps,E , (h∗, ι + 1)) and
K

(ν)
sps,F {(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,F , (h∗, ι+ 1)).

3. After that it forms (sk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps-rej,G), (sk(ν,ι+1)

sps,H ,vk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps-rej,H) $←− SPS.Setup(1λ).

4. Next, it computes m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0) just as in Hyb0,ν−1,3,ι′,2.

5. After that, it creates (σ(ν,ι+1)
sps-one,m(ν)

ι+1,0,G
,vk(ν,ι+1)

sps-one,G, sk(ν,ι+1)
sps-abo,G,vk(ν,ι+1)

sps-abo,G) $←− SPS.Split(sk(ν,ι+1)
sps,G ,m

(ν)
ι+1,0)

and (σ(ν,ι+1)
sps-one,m(ν)

ι+1,0,H
,vk(ν,ι+1)

sps-one,H , sk(ν,ι+1)
sps-abo,H ,vk(ν,ι+1)

sps-abo,H) $←− SPS.Split(sk(ν,ι+1)
sps,H ,m

(ν)
ι+1,0).
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public param-
eters for positional accumulator ppacc, Public parameters for iterator ppitr, Punctured PPRF keys
Ksps,E{(h∗, ι+ 1)}, Ksps,F {(h∗, ι+ 1)}, Signing keys skG, skH , Verification keys vkG, vkH , Message mι+1,0,
SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) If (h, i) 6= (h∗, ι+ 1), compute rsps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

Else, set vksps,E = vkG.
(b) If (h, i) 6= (h∗, ι+ 1), compute rsps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).

Else, set vksps,F = vkH .
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) If (h, i) 6= (h∗, ι), compute r′sps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

Else, set sk′sps,E = skG.

(b) If (h, i) 6= (h∗, ι), compute r′sps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, i+ 1)), (sk′sps,F , vk′sps,F , vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
Else, set sk′sps,F = skH .

(c) Set mout = (vout, st, wout, 0). If [(h, i) = (h∗, ι)] ∧ [mout = mι+1,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι)] ∧ [mout 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. B.12. Accumulate.Prog(3,ι′,1)

Constants: PPRF keys Ksps,A, Ksps,B , Punctured PPRF keys Ksps,E{(h∗, ι+ 1)}, Ksps,F {(h∗, ι+ 1)}, Verification keys
vkG, vkH , SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) If (h, `inp) 6= (h∗, ι+ 1), compute rsps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, `inp)), (sksps,E , vksps,E , vksps-rej,E) =

SPS.Setup(1λ; rsps,E).
Else, set vksps,E = vkG.

(b) If (h, `inp) 6= (h∗, ι+ 1), compute rsps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, `inp)), (sksps,F , vksps,F , vksps-rej,F ) =
SPS.Setup(1λ; rsps,F ).
Else, set vksps,F = vkH .

(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp > `∗) ∨ (0 < `inp ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. (a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. B.13. Change-SPS.Prog(3,ι,1)
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6. It gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},
σ

(ν,ι+1)
sps-one,m(ν)

ι+1,0,G
, sk(ν,ι+1)

sps-abo,H ,vk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,H ,m
(ν)
ι+1,0, h

∗, `∗]),

IO(Change-SPS.Prog(3,ι,1)[K(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},vk(ν,ι+1)
sps,G ,

vk(ν,ι+1)
sps,H , h∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


,

where the program Accumulate.Prog(3,ι′,2) is an alteration of the program Accumulate.Prog(3,ι′,1)

(Fig. B.12) and is shown in Fig. B.14.

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional accu-
mulator ppacc, Public parameters for iterator ppitr, Punctured PPRF keysKsps,E{(h∗, ι+1)}, Ksps,F {(h∗, ι+1)},
Signature σG, Signing key skH , Verification keys vkG, vkH , Message mι+1,0, SSB hash value of challenge input
h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) If (h, i) 6= (h∗, ι+ 1), compute rsps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

Else, set vksps,E = vkG.
(b) If (h, i) 6= (h∗, ι+ 1), compute rsps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).

Else, set vksps,F = vkH .
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) If (h, i) 6= (h∗, ι), compute r′sps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) If (h, i) 6= (h∗, ι), compute r′sps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, i+ 1)), (sk′sps,F , vk′sps,F , vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
Else, set sk′sps,F = skH .

(c) Set mout = (vout, st, wout, 0). If [(h, i) = (h∗, ι)] ∧ [mout = mι+1,0], set σsps,out = σG.
Else if [(h, i) = (h∗, ι)] ∧ [mout 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. B.14. Accumulate.Prog(3,ι′,2)

Hyb0,ν−1,3,ι′,4: In this experiment, in response to the νth signing key query of A corresponding to TM
M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates everything as in hyb0,ν−1,3,ι′,3, however, it hands A the
signing key
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The rest of the experiment is analogous to Hyb0,ν−1,3,ι′,3.

Hyb0,ν−1,3,ι′,5: In this experiment, in response to the νth signing key query of A corresponding to
TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B forms all the components just as in Hyb0,ν−1,3,ι′,4, however, it
gives A the signing key
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The rest of the experiment is analogous to Hyb0,ν−1,3,ι′,4.

Hyb0,ν−1,3,ι′,6: In this experiment, to answer the νth signing key query of A corresponding to TM
M (ν) ∈Mλ with M (ν)(x∗) = 0, B creates all the components as in Hyb0,ν−1,3,ι′,5, however, it returns the
signing key
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to A, where the program Accumulate.Prog(3,ι′,3) is a modification of the program Accumulate.Prog(3,ι′,2)

(Fig. B.14) and is depicted in Fig. B.15. The remaining part of the experiment is identical to hyb0,ν−1,3,ι′,5.

Hyb0,ν−1,3,ι′,7: In this experiment, to answer the νth signing key query of A corresponding to TM
M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates all the components exactly as in Hyb0,ν−1,3,ι′,6 except that
it does not generate (σ(ν,ι+1)
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and provides A with the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,3)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},
σ

(ν,ι+1)
sps-one,m(ν)

ι+1,0,G
, sk(ν,ι+1)

sps-abo,G,vk(ν,ι+1)
sps-one,G,vk(ν,ι+1)

sps-abo,G,m
(ν)
ι+1,0, h

∗, `∗]),

IO(Change-SPS.Prog(3,ι,1)[K(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},vk(ν,ι+1)
sps-one,G,

vk(ν,ι+1)
sps-abo,G, h

∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.



68 Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay

Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional accu-
mulator ppacc, Public parameters for iterator ppitr, Punctured PPRF keysKsps,E{(h∗, ι+1)}, Ksps,F {(h∗, ι+1)},
Signature σG, Signing key skH , Verification keys vkG, vkH , Message mι+1,0, SSB hash value of challenge input
h∗, Length of challenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) If (h, i) 6= (h∗, ι+ 1), compute rsps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

Else, set vksps,E = vkG.
(b) If (h, i) 6= (h∗, ι+ 1), compute rsps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).

Else, set vksps,F = vkH .
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗) ∨ (0 ≤ i ≤ ι) ∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) If (h, i) 6= (h∗, ι), compute r′sps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) If (h, i) 6= (h∗, ι), compute r′sps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, i+ 1)), (sk′sps,F , vk′sps,F , vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
Else, set sk′sps,F = skH .

(c) Set mout = (vout, st, wout, 0). If [(h, i) = (h∗, ι)] ∧ [mout = mι+1,0], set σsps,out = σG.
Else if [(h, i) = (h∗, ι)] ∧ [mout 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if [(h, i) = (h∗, ι+ 1)] ∧ [min = mι+1,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι+ 1)] ∧ [min 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. B.15. Accumulate.Prog(3,ι′,3)

The rest of the experiment is the same as Hyb0,ν−1,3,ι′,6.

Hyb0,ν−1,3,ι′,8: In this experiment, in response to the νth signing key query of A corresponding to
TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates all the components as in hyb0,ν−1,3,ι′,7, however, it
returns the signing key
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to A, where the programs Accumulate.Prog(3,ι′,4) and Change-SPS.Prog(3,ι,2) respectively are the modifi-
cations of the programs Accumulate.Prog(3,ι′,3) and Change-SPS.Prog(3,ι,1) (Figs. B.15 and B.13) and are
shown in Figs. B.16 and B.17. The rest of the experiment if identical to Hyb0,ν−1,3,ι′,7.

Hyb0,ν−1,3,ι′,9: This experiments analogous to hyb0,ν−1,3,ι′,8 with the only exception that while con-
structing the νth signing key queried by A corresponding to TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B
generates (sk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps-rej,G) = SPS.Setup(1λ; r(ν,ι+1)
sps,G = F(K(ν)

sps,E , (h∗, ι+ 1))).

Hyb0,ν−1,3,ι′,10: This experiment corresponds to hyb0,ν−1,3,ι+1.

Analysis

Let Adv(0,ν−1,3,ι′,ϑ)
A (λ) represents the advantage of the adversary A, i.e., the absolute difference between

1/2 andA’s probability of correctly guessing the random bit selected by the challenger B, in Hyb0,ν−1,3,ι′,ϑ,
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Constants: Maximum number of blocks for SSB hash nssb-blk = 2λ, SSB hash key hk, Public parameters for positional accu-
mulator ppacc, Public parameters for iterator ppitr, Punctured PPRF keysKsps,E{(h∗, ι+1)}, Ksps,F {(h∗, ι+1)},
Signing key skG, Verification key vkG, Message mι+1,0, SSB hash value of challenge input h∗, Length of chal-
lenge input `∗

Inputs: Index i, Symbol symin, TM state st, Accumulator value win, Auxiliary value aux, Iterator value vin, Signature
σsps,in, SSB hash value h, SSB opening value πssb

Output: (Accumulator value wout, Iterator value vout, Signature σsps-out), or ⊥
1. (a) If (h, i) 6= (h∗, ι+ 1), compute rsps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, i)), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

Else, set vksps,E = vkG.
(b) If (h, i) 6= (h∗, ι+ 1), compute rsps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, i)), (sksps,F , vksps,F , vksps-rej,F ) = SPS.Setup(1λ; rsps,F ).
(c) Set min = (vin, st, win, 0) and α =‘-’.
(d) If SPS.Verify(vksps,E ,min, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(i > `∗)∨ (0 ≤ i ≤ ι+ 1)∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,min, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. If SSB.Verify(hk, h, i, symin, πssb) = 0, output ⊥.
3. (a) Compute wout = ACC.Update(ppacc, win, symin, i, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (st, win, 0)).
4. (a) If (h, i) 6= (h∗, ι), compute r′sps,E = F(Ksps,E{(h∗, ι+ 1)}, (h, i+ 1)), (sk′sps,E , vk′sps,E , vk′sps-rej,E) = SPS.Setup(1λ; r′sps,E).

(b) If (h, i) 6= (h∗, ι), compute r′sps,F = F(Ksps,F {(h∗, ι+ 1)}, (h, i+ 1)), (sk′sps,F , vk′sps,F , vk′sps-rej,F ) = SPS.Setup(1λ; r′sps,F ).
(c) Set mout = (vout, st, wout, 0). If (h, i) = (h∗, ι), compute σsps,out = SPS.Sign(skG,mout).

Else if [(h, i) = (h∗, ι+ 1)] ∧ [min = mι+1,0], compute σsps,out = SPS.Sign(sk′sps,E ,mout).
Else if [(h, i) = (h∗, ι+ 1)] ∧ [min 6= mι+1,0], compute σsps,out = SPS.Sign(sk′sps,F ,mout).
Else if i < `∗, compute σsps,out = SPS.Sign(sk′sps,α,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,E ,mout).

5. Output (wout, vout, σsps,out).

Fig. B.16. Accumulate.Prog(3,ι′,4)

Constants: PPRF keys Ksps,A, Ksps,B , Punctured PPRF keys Ksps,E{(h∗, ι+1)}, Ksps,F {(h∗, ι+1)}, Verification key vkG,
SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) If (h, `inp) 6= (h∗, ι + 1), compute rsps,E = F(Ksps,E{(h∗, ι + 1)}, (h, `inp)), (sksps,E , vksps,E , vksps-rej,E) =

SPS.Setup(1λ; rsps,E).
Else, set vksps,E = vkG.

(b) If (h, `inp) 6= (h∗, ι + 1), compute rsps,F = F(Ksps,F {(h∗, ι + 1)}, (h, `inp)), (sksps,F , vksps,F , vksps-rej,F ) =
SPS.Setup(1λ; rsps,F ).

(c) Set m = (v, st, w, 0) and α=‘-’.
(d) If SPS.Verify(vksps,E ,m, σsps,in) = 1, set α =‘E’.
(e) If [α =‘-’] ∧ [(`inp > `∗)∨ (0 < `inp ≤ ι+ 1)∨ (h 6= h∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,F ,m, σsps,in) = 1], set α =‘F ’.
(f) If α =‘-’, output ⊥.

2. (a) Compute rsps,A = F(Ksps,A, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).
(b) Compute rsps,B = F(Ksps,B , (h, `inp, 0)), (sksps,B , vksps,B , vksps-rej,B) = SPS.Setup(1λ; rdsps,B).
(c) If [(h, `inp) = (h∗, `∗)] ∧ [α =‘F ’], output σsps,out = SPS.Sign(sksps,B ,m).

Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. B.17. Change-SPS.Prog(3,ι,2)

for ϑ ∈ [0, 10]. From the description of the hybrid experiments it follows that Adv(0,ν−1,3,ι′)
A (λ) ≡

Adv(0,ν−1,3,ι′,0)
A (λ) and Adv(0,ν−1,3,ι+1)

A (λ) ≡ Adv(0,ν−1,3,ι′,10)
A (λ). Hence, we have

|Adv(0,ν−1,3,ι′)
A (λ)− Adv(0,ν−1,3,ι+1)

A (λ)| ≤
10∑
ϑ=1
|Adv(0,ν−1,3,ι′,ϑ−1)

A (λ)− Adv(0,ν−1,3,ι′,ϑ)
A (λ)|. (B.6)

Claims B.24–B.33 below will show that the RHS of Eq. (B.6) is negligible and thus Lemma B.6 follows.

Claim B.24. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3,ι′,0)

A (λ)− Adv(0,ν−1,3,ι′,1)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The only difference between Hyb0,ν−1,3,ι′,0 and Hyb0,ν−1,3,ι′,1 is the following: In Hyb0,ν−1,3,ι′,0, B
includes the programs IO(P0) and IO(P ′0) within the νth signing key provided toA, while in hyb0,ν−1,3,ι′,1,
it includes the programs IO(P1) and IO(P ′1) instead, where

– P0 = Accumulate.Prog(3,ι′)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ,K

(ν)
sps,F ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. A.8),
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– P ′0 = Change-SPSProg(3,ι)[K(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F , h

∗, `∗] (Fig. A.7),
– P1 = Accumulate.Prog(3,ι′,1)[nssb-blk = 2λ,hk,pp(ν)

acc,pp(ν)
itr,K

(ν)
sps,E{(h∗, ι + 1)},K(ν)

sps,F {(h∗, ι + 1)},
sk(ν,ι+1)

sps,G , sk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,H ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. B.12),
– P ′1 = Change-SPS.Prog(3,ι,1)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E{(h∗, ι+1)},K(ν)

sps,F {(h∗, ι+1)},vk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,H ,
h∗, `∗] (Fig. B.13).

Observe that by the correctness under puncturing property of the PPRF F , the programs P0 and
P1 are functionally identical for all inputs corresponding to (h, i) 6= (h∗, ι) and (h, i) 6= (h∗, ι + 1). For
inputs corresponding to (h∗, ι),the program P1 uses the hardwired signing keys which are exactly same
as those computed by the program P0. The same is true for the hardwired verification keys used by P1
for inputs corresponding to (h∗, ι + 1). Thus, the programs P0 and P1 are functionally equivalent. A
similar argument shows that the same is correct for programs P ′0 and P ′1. Therefore, by the security of
IO Claim B.24 follows. Ofcourse, we need to consider a sequence of intermediate hybrid experiments to
switch the programs one at a time. ut

Claim B.25. Assuming F is a secure puncturable pseudorandom function, for any PPT adversary A, for
any security parameter λ, |Adv(0,ν−1,3,ι′,1)

A (λ)−Adv(0,ν−1,3,ι′,2)
A (λ)| ≤ negl(λ) for some negligible function

negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι′,1)
A (λ)−Adv(0,ν−1,3,ι′,2)

A (λ)| is non-
negligible. We construct a PPT adversary B that breaks the selective pseudorandomness of the PPRF F
using A as a sub-routine. The description of B is given below. We note that in the following we work
in a model of selective pseudorandomness for PPRF involving two independent punctured keys and two
challenge values for a challenge input, one under each key. However, this model is clearly equivalent to
the original single punctured key and single challenge value model described in Definition 2.2 through a
hybrid argument.

• B initializes A on input 1λ and receives a challenge signing attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs

with |x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
4. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι′,1, while if η = ν, then B proceeds
as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B

$←− F .Setup(1λ).

2. Next, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. B sends (h∗, ι+ 1) as the challenge input to its PPRF selective pseudorandomness challenger C and

receives back two punctured PPRF keys K∗1{(h∗, ι + 1)},K∗2{(h∗, ι + 1)} and two values r∗1 , r∗2 ∈
Ypprf, where either r∗1 = F(K∗1 , (h∗, ι+ 1)), r∗2 = F(K∗2 , (h∗, ι+ 1)) or r∗1 , r∗2

$←− Ypprf. B implicitly
views the keys K∗1 and K∗2 as the keys K(ν)

sps,E and K
(ν)
sps,F respectively.

4. Next, B generates (sk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps-rej,G) = SPS.Setup(1λ; r∗1) and (sk(ν,ι+1)

sps,H ,vk(ν,ι+1)
sps,H ,

vk(ν,ι+1)
sps-rej,H) = SPS.Setup(1λ; r∗2).

5. After that, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι + 1, it iteratively computes the

following:
– aux(ν)

j = ACC.Prep-Write(pp(ν)
acc, store(ν)

j−1, j − 1)
– w

(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).
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6. It gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K∗1{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
∗
1{(h∗, ι+ 1)},K∗2{(h∗, ι+ 1)},

sk(ν,ι+1)
sps,G , sk(ν,ι+1)

sps,H ,vk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,H ,m
(ν)
ι+1,0, h

∗, `∗]),
IO(Change-SPS.Prog(3,ι,1)[K(ν)

sps,A,K
(ν)
sps,B ,K

∗
1{(h∗, ι+ 1)},K∗2{(h∗, ι+ 1)},vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,H ,

h∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,

h∗, `∗])


.

• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs b̂′ = 1 as
its guess bit in its PPRF selective pseudorandomness experiment if A wins, i.e., if ABS.Verify(ppabs, x

∗,

msg∗, σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs b̂′ = 0 in its PPRF selective
pseudorandomness experiment.

Note that if r∗1 = F(K∗1 , (h∗, ι+ 1)), r∗2 = F(K∗2 , (h∗, ι+ 1)), then B perfectly simulates Hyb0,ν−1,3,ι′,1.
On the other hand, if r∗1 , r∗2

$←− Ypprf, the B perfectly simulates Hyb0,ν−1,3,ι′,2. This completes the proof
of Claim B.25. ut

Claim B.26. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,3,ι′,2)

A (λ) − Adv(0,ν−1,3,ι′,3)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The only difference between Hyb0,ν−1,3,ι′,2 and Hyb0,ν−1,3,ι′,3 is the following: In Hyb0,ν−1,3,ι′,2, B
includes the program IO(P0) within the νth signing key provided to A, while in hyb0,ν−1,3,ι′,3, it includes
the program IO(P1) instead, where

– P0 = Accumulate.Prog(3,ι′,1)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι + 1)},K(ν)

sps,F {(h∗, ι + 1)},
sk(ν,ι+1)

sps,G , sk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,H ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. B.12),
– P1 = Accumulate.Prog(3,ι′,2)[nssb-blk = 2λ,hk,pp(ν)

acc,pp(ν)
itr,K

(ν)
sps,E{(h∗, ι + 1)},K(ν)

sps,F {(h∗, ι + 1)},
σ

(ν,ι+1)
sps-one,m(ν)

ι+1,0,G
, sk(ν,ι+1)

sps-abo,H ,vk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,H ,m
(ν)
ι+1,0, h

∗, `∗] (Fig. B.14).

Now, the only inputs on which the outputs of the two programs can possibly differ are those corre-
sponding to (h, i) = (h∗, ι). However, observe that for inputs corresponding to (h∗, ι), if mout = m

(ν)
ι+1,0,

then both programs clearly output the same signature, where P0 computes the signature explicitly and P1
has the signature hardwired into it. On the other hand, by the correctness [Property (ii)] of the splittable
signature SPS defined in Definition 2.6 it follows that the programs P0 and P1 output same signatures
even when mout 6= m

(ν)
ι+1,0 for inputs corresponding to (h∗, ι). Hence, the two programs are functionally

equivalent. Therefore, Claim B.26 follows by the security of IO. ut

Claim B.27. Assuming SPS is a splittable signature scheme satisfying ‘vksps-one indistinguishability’, for
any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι′,3)

A (λ)− Adv(0,ν−1,3,ι′,4)
A (λ)| ≤ negl(λ)

for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι′,3)
A (λ)−Adv(0,ν−1,3,ι′,4)

A (λ)| is non-
negligible. Below we construct a PPT adversary B that breaks the vksps-one indistinguishability of SPS
using A as a sub-routine.

• B initializes A on input 1λ and receives a challenge signing attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs

with |x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
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2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
4. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι′,3, while if η = ν, then B proceeds
as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).
2. Next, it generates (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B creates the punctured PPRF keys K(ν)

sps,E{(h∗, ι+1)} $←− F .Puncture(K(ν)
sps,E , (h∗, ι+1)) and

K
(ν)
sps,F {(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,F , (h∗, ι+ 1)).
4. Next, it sets m(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι+ 1, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

5. After that, B sends m(ν)
ι+1,0 as the challenge message to its SPS vksps-one indistinguishability chal-

lenger C and receives back a signature-verification key pair (σsps-one,m(ν)
ι+1,0

,vk), where vk is either

a normal verification key vksps or a one verification key vksps-one for the message m(ν)
ι+1,0.

6. Next, B generates (sk(ν,ι+1)
sps,H ,vk(ν,ι+1)

sps,H ,vk(ν,ι+1)
sps-rej,H) $←− SPS.Setup(1λ) and forms (σ(ν,ι+1)

sps-one,m(ν)
ι+1,0,H

,

vk(ν,ι+1)
sps-one,H , sk(ν,ι+1)

sps-abo,H ,vk(ν,ι+1)
sps-abo,H) $←− SPS.Split(sk(ν,ι+1)

sps,H ,m
(ν)
ι+1,0).

7. B gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+ 1)},

K
(ν)
sps,F {(h∗, ι+ 1)}, σsps-one,m(ν)

ι+1,0
, sk(ν,ι+1)

sps-abo,H ,vk,vk(ν,ι+1)
sps,H ,m

(ν)
ι+1,0, h

∗, `∗]),

IO(Change-SPS.Prog(3,ι,1)[K(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},vk,
vk(ν,ι+1)

sps,H , h∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,

K
(ν)
sps,B , h

∗, `∗])


.

• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs b̂′ = 1 as
its guess bit in its vksps-one indistinguishability experiment ifA wins, i.e., if ABS.Verify(ppabs, x

∗,msg∗,
σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs b̂′ = 0 in its vksps-one
indistinguishability experiment.

Notice that if vk = vksps, then B perfectly simulates Hyb0,ν−1,3,ι′,3. On the other hand, if vk =
vksps-one, then B perfectly simulates Hyb0,ν−1,3,ι′,4. This completes the proof of Claim B.27. ut

Claim B.28. Assuming SPS is a splittable signature scheme satisfying ‘vksps-abo indistinguishability’, for
any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι′,4)

A (λ)− Adv(0,ν−1,3,ι′,5)
A (λ)| ≤ negl(λ)

for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι′,4)
A (λ)−Adv(0,ν−1,3,ι′,5)

A (λ)| is non-
negligible. Below we construct a PPT adversary B that breaks the vksps-abo indistinguishability of SPS
using A as a sub-routine.
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• B initializes A on input 1λ and receives a challenge signing attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf

with |x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
4. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι′,4, while if η = ν, then B proceeds
as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).

2. Next, it generates (pp(ν)
acc, w

(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B creates the punctured PPRF keys K(ν)

sps,E{(h∗, ι+1)} $←− F .Puncture(K(ν)
sps,E , (h∗, ι+1)) and

K
(ν)
sps,F {(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,F , (h∗, ι+ 1)).
4. Next, it sets m(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι+ 1, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

5. After that, B sends m(ν)
ι+1,0 as the challenge message to its SPS vksps-abo indistinguishability chal-

lenger C and receives back an all-but-one signing key-verification key pair (sksps-abo,vk), where vk
is either a normal verification key vksps or an all-but-one verification key vksps-abo.

6. Next, B generates (sk(ν,ι+1)
sps,G ,vk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps-rej,G) $←− SPS.Setup(1λ) and forms (σ(ν,ι+1)

sps-one,m(ν)
ι+1,0,G

,

vk(ν,ι+1)
sps-one,G, sk(ν,ι+1)

sps-abo,G,vk(ν,ι+1)
sps-abo,G) $←− SPS.Split(sk(ν,ι+1)

sps,G , m
(ν)
ι+1,0).

7. B gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+ 1)},

K
(ν)
sps,F {(h∗, ι+ 1)}, σ(ν,ι+1)

sps-one,m(ν)
ι+1,0,G

, sksps-abo,vk(ν,ι+1)
sps-one,G,vk,m(ν)

ι+1,0, h
∗, `∗]),

IO(Change-SPS.Prog(3,ι,1)[K(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},vk(ν,ι+1)
sps-one,G,

vk, h∗, `∗]),
IO(Constrained-Key.Prog(1)

abs[M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,

K
(ν)
sps,B , h

∗, `∗])


.

• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs b̂′ = 1 as
its guess bit in its vksps-abo indistinguishability experiment ifA wins, i.e., if ABS.Verify(ppabs, x

∗,msg∗,
σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs b̂′ = 0 in its vksps-abo
indistinguishability experiment.

Notice that if vk = vksps, then B perfectly simulates Hyb0,ν−1,3,ι′,4. On the other hand, if vk =
vksps-abo, then B perfectly simulates Hyb0,ν−1,3,ι′,5. This completes the proof of Claim B.28. ut

Claim B.29. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,3,ι′,5)

A (λ) − Adv(0,ν−1,3,ι′,6)
A (λ)| ≤ negl(λ) for some negligible

function negl.
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Proof. The only difference between Hyb0,ν−1,3,ι′,5 and Hyb0,ν−1,3,ι′,6 is the following: In Hyb0,ν−1,3,ι′,5, B
includes the program IO(P0) within the νth signing key returned to A, while in hyb0,ν−1,3,ι′,6, it includes
the program IO(P1) instead, where

– P0 = Accumulate.Prog(3,ι′,2)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι + 1)},K(ν)

sps,F {(h∗, ι + 1)},
σ

(ν,ι+1)
sps-one,m(ν)

ι+1,0,G
, sk(ν,ι+1)

sps-abo,H ,vk(ν,ι+1)
sps-one,G,vk(ν,ι+1)

sps-abo,H ,m
(ν)
ι+1,0, h

∗, `∗] (Fig. B.14),

– P1 = Accumulate.Prog(3,ι′,3)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι + 1)},K(ν)

sps,F {(h∗, ι + 1)},
σ

(ν,ι+1)
sps-one,m(ν)

ι+1,0,G
, sk(ν,ι+1)

sps-abo,H ,vk(ν,ι+1)
sps-one,G,vk(ν,ι+1)

sps-abo,H ,m
(ν)
ι+1,0, h

∗, `∗] (Fig. B.15).

We will argue that the programs P0 and P1 are functionally equivalent, so that, by the security of IO
Claim B.29 holds. First of all observe that the constants hardwired in both the programs are identically
generated. Clearly, the inputs on which the outputs of the programs P0 and P1 can possibly differ are
those corresponding to (h, i) = (h∗, ι + 1). For inputs corresponding to (h∗, ι + 1), let us consider the
following two cases:

(I) (min = m
(ν)
ι+1,0): In this case, using the correctness [Properties (i), (iii) and (vi)] of the splittable

signature SPS described in Definition 2.6 it follows that for both programs either α =‘-’ or α =‘E’.
Now, if α =‘-’, then both programs output ⊥. On the other hand, if α =‘E’, then P0 outputs the
signature σsps,out = SPS.Sign(sk′sps,α,mout) = SPS.Sign(sk′sps,E ,mout), which is the same signature
that P1 is programmed to output in this case. Thus, both programs have identical outputs in this
case.

(II) (min 6= m
(ν)
ι+1,0): In this case, we use the correctness [Property (v)] of SPS described in Definition 2.6

to conclude that α 6=‘E’ and correctness [Properties (i) and (iv)] of SPS confirms that either α =‘-’ or
α =‘F ’. Now, if α=‘-’, then both programs output ⊥ as earlier. Otherwise, if α =‘F ’, then P0 outputs
σsps,out = SPS.Sign(sk′sps,α,mout) = SPS.Sign(sk′sps,F ,mout), which P1 is programmed to output in
this case. Therefore, both programs are functionally equivalent in this case as well.

ut

Claim B.30. Assuming SPS is a splittable signature scheme satisfying ‘splitting indistinguishability’, for
any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,3,ι′,6)

A (λ)− Adv(0,ν−1,3,ι′,7)
A (λ)| ≤ negl(λ)

for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,3,ι′,6)
A (λ)−Adv(0,ν−1,3,ι′,7)

A (λ)| is non-
negligible. Below we construct a PPT adversary B that breaks the splitting indistinguishability of SPS
using A as a sub-routine.

• B initializes A on input 1λ and receives a challenge signing attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Xcprf

with |x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
4. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,3,ι′,6, while if η = ν, then B proceeds
as follows:
1. B first selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E ,K

(ν)
sps,F

$←− F .Setup(1λ).
2. Next, it generates (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ) and (pp(ν)
itr, v

(ν)
0 ) $←−

ITR.Setup(1λ, nitr = 2λ).
3. Then, B creates the punctured PPRF keys K(ν)

sps,E{(h∗, ι+1)} $←− F .Puncture(K(ν)
sps,E , (h∗, ι+1)) and

K
(ν)
sps,F {(h∗, ι+ 1)} $←− F .Puncture(K(ν)

sps,F , (h∗, ι+ 1)).
4. Next, it sets m(ν)

0,0 = (v(ν)
0 , q

(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , ι+ 1, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
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– v
(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
ι+1,0 = (v(ν)

ι+1, q
(ν)
0 , w

(ν)
ι+1, 0).

5. After that, B sends m(ν)
ι+1,0 as the challenge message to its SPS splitting indistinguishability chal-

lenger C and receives back a tuple (σ∗
sps-one,m(ν)

ι+1,0
, vk∗sps-one, sk∗sps-abo,vk∗sps-abo), where

– either (σ∗
sps-one,m(ν)

ι+1,0
,vk∗sps-one, sk∗sps-abo,vk∗sps-abo) =

(σsps-one,m(ν)
ι+1,0

,vksps-one, sksps-abo,vksps-abo)
– or (σ∗

sps-one,m(ν)
ι+1,0

,vk∗sps-one, sk∗sps-abo,vk∗sps-abo) =
(σsps-one,m(ν)

ι+1,0
,vksps-one, sk′sps-abo,vk′sps-abo)

such that (σsps-one,m(ν)
ι+1,0

,vksps-one, sksps-abo,vksps-abo) $←− SPS.Split(sksps,m
(ν)
ι+1,0), (σ′

sps-one,m(ν)
ι+1,0

,

vk′sps-one, sk′sps-abo,vk′sps-abo) $←− SPS.Split(sk′sps,m
(ν)
ι+1,0), sksps and sk′sps being two independently

generated signing keys for SPS.
6. B gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E{(h∗, ι+ 1)}]),

IO(Accumulate.Prog(3,ι′,3)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι+ 1)},

K
(ν)
sps,F {(h∗, ι+ 1)}, σ∗

sps-one,m(ν)
ι+1,0

, sk∗sps-abo,vk∗sps-one,,vk∗sps-abo,m
(ν)
ι+1,0, h

∗, `∗]),

IO(Change-SPS.Prog(3,ι,1)[K(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E{(h∗, ι+ 1)},K(ν)

sps,F {(h∗, ι+ 1)},vk∗sps-one,

vk∗sps-abo, h
∗, `∗]),

IO(Constrained-Key.Prog(1)
abs[M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A,

K
(ν)
sps,B , h

∗, `∗])


.

• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs b̂′ = 1 as
its guess bit in its SPS splitting indistinguishability experiment if A wins, i.e., if ABS.Verify(ppabs, x

∗,

msg∗, σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs b̂′ = 0 in its SPS splitting
indistinguishability experiment.

Notice that if (σ∗
sps-one,m(ν)

ι+1,0
,vk∗sps-one, sk∗sps-abo,vk∗sps-abo) = (σsps-one,m(ν)

ι+1,0
,vksps-one, sk′sps-abo,

vk′sps-abo), then B perfectly simulates Hyb0,ν−1,3,ι′,6. On the other hand, if (σ∗
sps-one,m(ν)

ι+1,0
,vk∗sps-one,

sk∗sps-abo,vk∗sps-abo) = (σsps-one,m(ν)
ι+1,0

, vksps-one, sksps-abo,vksps-abo), then B perfectly simulates
Hyb0,ν−1,3,ι′,7. This completes the proof of Claim B.30. ut

Claim B.31. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,3,ι′,7)

A (λ) − Adv(0,ν−1,3,ι′,8)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The only difference between Hyb0,ν−1,3,ι′,7 and Hyb0,ν−1,3,ι′,8 is the following: In Hyb0,ν−1,3,ι′,7, B
includes the programs IO(P0) and IO(P ′0) within the νth signing key returned toA, while in hyb0,ν−1,3,ι′,8,
it includes the programs IO(P1) and IO(P ′1) instead, where

– P0 = Accumulate.Prog(3,ι′,3)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι + 1)},K(ν)

sps,F {(h∗, ι + 1)},
σ

(ν,ι+1)
sps-one,m(ν)

ι+1,0,G
, sk(ν,ι+1)

sps-abo,G,vk(ν,ι+1)
sps-one,G,vk(ν,ι+1)

sps-abo,G,m
(ν)
ι+1,0, h

∗, `∗] (Fig. B.15),

– P ′0 = Change-SPS.Prog(3,ι,1)[K(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E{(h∗, ι+1)},K(ν)

sps,F {(h∗, ι+1)},vk(ν,ι=1)
sps-one,G,vk(ν,ι+1)

sps-abo,G,
h∗, `∗] (Fig. B.13),

– P1 = Accumulate.Prog(3,ι′,4)[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E{(h∗, ι + 1)},K(ν)

sps,F {(h∗, ι + 1)},
sk(ν,ι+1)

sps,G ,vk(ν,ι+1)
sps,G ,m

(ν)
ι+1,0, h

∗, `∗] (Fig. B.16),
– P ′1 = Change-SPS.Prog(3,ι,2)[K(ν)

sps,A,K
(ν)
sps,B ,K

(ν)
sps,E{(h∗, ι + 1)},K(ν)

sps,F {(h∗, ι + 1)},vk(ν,ι=1)
sps,G , h∗, `∗]

(Fig. B.17).
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We will argue that the programs P0 and P1, as well as , the programs P ′0 and P ′1 are functionally
equivalent, so that, by the security of IO Claim B.31 follows. First consider the programs P0 and P1.
Clearly the only inputs on which the outputs of the two programs can possibly differ are those corre-
sponding to (h, i) = (h∗, ι) and (h, i) = (h∗, ι+ 1). Now, for inputs corresponding to (h∗, ι), the outputs
of the two programs are identical due to the correctness [Property (ii)] of the splittable signature SPS
described in Definition 2.6 and the fact that the hardwired signature σ(ν,ι+1)

sps-one,m(ν)
ι+1,0,G

and the all-but-one

signing key sk(ν,ι+1)
sps-abo,G used by the program P0 for inputs corresponding to (h∗, ι) are obtained by running

SPS.Split(sk(ν,ι+1)
sps,G ,m

(ν)
ι+1,0), while the hardwired signing key used by P1 in this case is sk(ν,ι+1)

sps,G . Simi-
larly, for inputs corresponding to (h∗, ι+ 1), the outputs of the two programs are also identical because
of the correctness [Properties (i), (iii), (v), (iv) and (vi)] of SPS and the fact that the hardwired one and
all-but-one verification keys used by the program P0 for inputs corresponding to (h∗, ι+ 1) are generated
by running SPS.Split(sk(ν,ι+1)

sps,G ,m
(ν)
ι+1,0), while the hardwired verification key used by the program P1 in

this case is vk(ν,ι+1)
sps,G , which is the matching verification key of sk(ν,ι+1)

sps,G . Hence, the two programs are
functionally equivalent. The same type of argument holds for the programs P ′0 and P ′1. ut

Claim B.32. Assuming F is a secure puncturable pseudorandom function, for any PPT adversary A, for
any security parameter λ, |Adv(0,ν−1,3,ι′,8)

A (λ)−Adv(0,ν−1,3,ι′,9)
A (λ)| ≤ negl(λ) for some negligible function

negl.

Proof. The proof of Claim B.32 is analogous to that of Claim B.25 with some appropriate modifications
that are readily identifiable. ut

Claim B.33. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,3,ι′,9)

A (λ)− Adv(0,ν−1,3,ι′,10)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim B.33 is similar to that of Claim B.24 with some appropriate modifications
which are easy to find out. ut

ut

Lemma B.7. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, and SPS is a secure splittable signature scheme satisfying ‘vksps-one in-
distinguishability’, ‘vksps-abo indistinguishability’, as well as ‘splitting indistinguishability’, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,3,(`∗−1)′)

A (λ) − Adv(0,ν−1,4)
A (λ)| ≤ negl(λ) for some

negligible function negl.

Proof. The proof of Lemma B.7 is similar to that of Lemma B.6 with certain appropriate changes which
can be readily determined. ut

Lemma B.8. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, ACC is a secure positional accumulator possessing the ‘indistinguishabil-
ity of read setup’ as well as ‘read enforcing’, and SPS is a secure splittable signature scheme satisfying
‘vksps-one indistinguishability’, ‘vksps-abo indistinguishability’, as well as ‘splitting indistinguishability’,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4)

A (λ) − Adv(0,ν−1,4,0′)
A (λ)| ≤ negl(λ)

for some negligible function negl.

Proof. In order to establish Lemma B.8, we consider the following sequence of intermediate hybrid ex-
periments between Hyb0,ν−1,4 and Hyb0,ν−1,4,0′ :

Sequence of Intermediate Hybrids between Hyb0,ν−1,4 and Hyb0,ν−1,4,0′

Hyb0,ν−1,4-I: This experiment coincides with Hyb0,ν−1,4.

Hyb0,ν−1,4-II: This experiment is identical to Hyb0,ν−1,4-I except that in response to the νth signing
key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B executes the following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accumulator
and the iterator as in Hyb0,ν−1,4-I.
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2. Then, it creates the punctured PPRF keys K(ν)
sps,A{(h∗, `∗, 0)} $←− F .Puncture(K(ν)

sps,A, (h∗, `∗, 0)) and

K
(ν)
sps,B{(h∗, `∗, 0)} $←− F .Puncture(K(ν)

sps,B , (h∗, `∗, 0)).

3. After that, it computes r(ν,0)
sps,C = F(K(ν)

sps,A, (h∗, `∗, 0)), r(ν,0)
sps,D = F(K(ν)

sps,B , (h∗, `∗, 0)), and forms (sk(ν,0)
sps,C ,

vk(ν,0)
sps,C ,vk(ν,0)

sps-rej,C) = SPS.Setup(1λ; r(ν,0)
sps,C), (sk(ν,0)

sps,D,vk(ν,0)
sps,D,vk(ν,0)

sps-rej,D) = SPS.Setup(1λ; r(ν,0)
sps,D).

4. Next, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w

(ν)
0 , 0). For j = 1, . . . , `∗, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(pp(ν)

acc, store(ν)
j−1, j − 1)

– w
(ν)
j = ACC.Update(pp(ν)

acc, w
(ν)
j−1, x

∗
j−1, j − 1,aux(ν)

j )
– store(ν)

j = ACC.Write-Store(pp(ν)
acc, store(ν)

j−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , w

(ν)
j−1, 0))

It sets m(ν)
`∗,0 = (v(ν)

`∗ , q
(ν)
0 , w

(ν)
`∗ , 0).

5. It gives A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog(4,1)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},K(ν)
sps,E , sk(ν,0)

sps,C , sk(ν,0)
sps,D,m

(ν)
`∗,0,

h∗, `∗]),
IO(Constrained-Key.Prog(1,0,1)

abs [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps,C ,vk(ν,0)

sps,D, h
∗, `∗])


,

where the programs Change-SPS.Prog(4,1) and Constrained-Key.Prog(1,0,1)
abs respectively are the modifi-

cations of the programs Change-SPS.Prog(4) and Constrained-Key.Prog(1)
abs (Figs. A.9 and A.1) and are

depicted in Figs. B.18 and B.19.

Constants: Punctured PPRF keys Ksps,A{(h∗, `∗, 0)}, Ksps,B{(h∗, `∗, 0)}, PPRF key Ksps,E , Signing keys skC , skD, Mes-
sage m`∗,0, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, `inp), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Set m = (v, st, w, 0).
(c) If SPS.Verify(vksps,E ,m, σsps,in) = 0, output ⊥.

2. (a) If (h, `inp) 6= (h∗, `∗), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) =
SPS.Setup(1λ; rsps,A).
Else, set sksps,A = skC .

(b) If (h, `inp) 6= (h∗, `∗), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, 0)), (sksps,B , vksps,B , vksps-rej,B) =
SPS.Setup(1λ; rsps,B).
Else, set sksps,B = skD.

(c) If [(h, `inp) = (h∗, `∗)] ∧ [m 6= m`∗,0], output σsps,out = SPS.Sign(sksps,B ,m).
Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. B.18. Change-SPS.Prog(4,1)

Hyb0,ν−1,4-III: This experiment is analogous to Hyb0,ν−1,4-II with the only exception that while construct-
ing the νth signing key queried by A, B selects r(ν,0)

sps,C , r
(ν,0)
sps,D

$←− Ypprf, i.e., in other words, B generates

(sk(ν,0)
sps,C ,vk(ν,0)

sps,C ,vk(ν,0)
sps-rej,C), (sk(ν,0)

sps,D,vk(ν,0)
sps,D,vk(ν,0)

sps-rej,D) $←− SPS.Setup(1λ).

Hyb0,ν−1,4-IV: This experiment is similar to Hyb0,ν−1,4-III except that in response to the νth signing
key query of A corresponding to TM M (ν) ∈Mλ with M (ν)(x∗) = 0, B executes the following steps:

1. It first generates all the PPRF keys as well as the public parameters for the positional accumulator
and the iterator as in Hyb0,ν−1,4-III.
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗, Public
parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,K1, . . . , Kλ,
Punctured PPRF keys Ksps,A{(h∗, `∗, 0)}, Ksps,B{(h∗, `∗, 0)}, Verification keys vkC , vkD, SSB hash value of
challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win, Accumulator
proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or (Header Position posout, Symbol symout, TM state stout, Accumulator value
wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3. (a) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t− 1)), (sksps,A, vksps,A, vksps-rej,A) =

SPS.Setup(1λ; rsps,A).
Else, set vksps,A = vkC .

(b) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t− 1)), (sksps,B , vksps,B , vksps-rej,B) =
SPS.Setup(1λ; rsps,B).
Else, set vksps,B = vkD.

(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4. (a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if stout = qac, perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig, vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig, vksig).
5. (a) Compute wout = ACC.Update(ppacc, win, symout, posin, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6. (a) Compute r′sps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,A, vk′sps,A, vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Compute r′sps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,B , vk′sps,B , vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

Compute σsps,out = SPS.Sign(sk′sps,α,mout).
7. If t+ 1 = 2τ

′
, for some integer τ ′, set seedout = F(Kτ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. B.19. Constrained-Key.Prog(1,0,1)
abs

2. Then, it creates the punctured PPRF keys K(ν)
sps,A{(h∗, `∗, 0)} $←− F .Puncture(K(ν)

sps,A, (h∗, `∗, 0)) and
K
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4. Next, it computes m(ν)
`∗,0 = (v(ν)

`∗ , q
(ν)
0 , w

(ν)
`∗ , 0) just as in Hyb0,ν−1,4-III.
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6. It gives A the signing key
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
,

where the program Change-SPS.Prog(4,2) is an alteration of the program Change-SPS.Prog(4,1)

(Fig. B.18) and is shown in Fig. B.20.

Hyb0,ν−1,4-V: In this experiment, in response to the νth signing key query of A corresponding to TM
M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates all the components as in hyb0,ν−1,4-IV, however, it hands A
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Constants: Punctured PPRF keys Ksps,A{(h∗, `∗, 0)}, Ksps,B{(h∗, `∗, 0)}, PPRF key Ksps,E , Signature σC , Signing key skD,
Message m`∗,0, SSB hash value of challenge input h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, `inp), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Set m = (v, st, w, 0).
(c) If SPS.Verify(vksps,E ,m, σsps,in) = 0, output ⊥.

2. (a) If (h, `inp) 6= (h∗, `∗), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, 0)), (sksps,A, vksps,A, vksps-rej,A) =
SPS.Setup(1λ; rsps,A).

(b) If (h, `inp) 6= (h∗, `∗), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, 0)), (sksps,B , vksps,B , vksps-rej,B) =
SPS.Setup(1λ; rsps,B).
Else, set sksps,B = skD.

(c) If [(h, `inp) = (h∗, `∗)] ∧ [m 6= m`∗,0], output σsps,out = SPS.Sign(sksps,B ,m).
Else if [(h, `inp = (h∗, `∗)] ∧ [m = m`∗,0], output σsps,out = σC .
Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. B.20. Change-SPS.Prog(4,2)

the signing key
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
,

The rest of the experiment is analogous to Hyb0,ν−1,4-IV.

Hyb0,ν−1,4-VI: In this experiment, in response to the νth signing key query of A corresponding to TM
M (ν) ∈Mλ with M (ν)(x∗) = 0, B creates all the components as in hyb0,ν−1,4-V, however, it hands A the
signing key
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
,

The rest of the experiment is similar to Hyb0,ν−1,4-V.

Hyb0,ν−1,4-VII: In this experiment, to answer the νth signing key query of A corresponding to TM
M (ν) ∈ Mλ with M (ν)(x∗) = 0, B generates all the components just as in Hyb0,ν−1,4-VI, but it provides
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A with the signing key
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
,

where the program Constrained-Key.Prog(1,0,2)
abs is a modification of the program Constrained-Key.Prog(1,0,1)

abs
(Fig. B.19) and is shown in Fig. B.21. The rest of the experiment is analogous to Hyb0,ν−1,4-VI.

Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗, Public
parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,K1, . . . , Kλ,
Punctured PPRF keys Ksps,A{(h∗, `∗, 0)}, Ksps,B{(h∗, `∗, 0)}, Verification keys vkC , vkD, Message m`∗,0, SSB
hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win, Accumulator
proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or (Header Position posout, Symbol symout, TM state stout, Accumulator value
wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3. (a) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,A, vksps,A, vksps-rej,A) =

SPS.Setup(1λ; rsps,A).
Else, set vksps,A = vkC .

(b) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,B , vksps,B , vksps-rej,B) =
SPS.Setup(1λ; rsps,B).
Else, set vksps,B = vkD.

(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4. (a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if stout = qac, perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig, vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig, vksig).
5. (a) Compute wout = ACC.Update(ppacc, win, symout, posin, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6. (a) Compute r′sps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,A, vk′sps,A, vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Compute r′sps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,B , vk′sps,B , vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min = m`∗,0], compute σsps,out = SPS.Sign(sk′sps,A,mout).
Else if [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min 6= m`∗,0], compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, for some integer τ ′, set seedout = F(Kτ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. B.21. Constrained-Key.Prog(1,0,2)
abs

Hyb0,ν−1,4-VIII: In This experiment is the same as Hyb0,ν−1,4-VII with the only exception that while creat-
ing the νth signing key queried by A, B generates (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup-Enforce-Read(1λ,
nacc-blk = 2λ, ((x∗0, 0), . . . , (x∗`∗−1, `

∗ − 1)), i∗ = 0).

Hyb0,ν−1,4-IX: In this experiment, to answer the νth constrained key query of A corresponding to TM
M (ν) ∈Mλ with M (ν)(x∗) = 0, B generates all the components just as in hyb0,ν−1,4-VIII, however, it gives
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A the signing key
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
,

where the program Constrained-Key.Prog(1,0,3)
abs is a modification of the program Constrained-Key.Prog(1,0,2)

abs
(Fig. B.22) and is shown in Fig. B.22. The rest of the experiment is analogous to Hyb0,ν−1,4-VIII.

Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗, Public
parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,K1, . . . , Kλ,
Punctured PPRF keys Ksps,A{(h∗, `∗, 0)}, Ksps,B{(h∗, `∗, 0)}, Verification keys vkC , vkD, Message m`∗,0, SSB
hash value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win, Accumulator
proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or (Header Position posout, Symbol symout, TM state stout, Accumulator value
wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3. (a) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,A, vksps,A, vksps-rej,A) =

SPS.Setup(1λ; rsps,A).
Else, set vksps,A = vkC .

(b) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,B , vksps,B , vksps-rej,B) =
SPS.Setup(1λ; rsps,B).
Else, set vksps,B = vkD.

(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗) ∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4. (a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if [stout = qac] ∧ [α =‘A’] ∧ [(h, `inp) = (h∗, `∗)] ∧ [t ≤ 1], output ⊥.
Else if stout = qac, perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig, vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig, vksig).
5. (a) Compute wout = ACC.Update(ppacc, win, symout, posin, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6. (a) Compute r′sps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,A, vk′sps,A, vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Compute r′sps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,B , vk′sps,B , vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min = m`∗,0], compute σsps,out = SPS.Sign(sk′sps,A,mout).
Else if [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min 6= m`∗,0], compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, for some integer τ ′, set seedout = F(Kτ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. B.22. Constrained-Key.Prog(1,0,3)
abs

hyb0,ν−1,4-X: This experiment is identical to Hyb0,ν−1,4-IX with the only exception that while construct-
ing the νth signing key queried by A, B forms (pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup(1λ, nacc-blk = 2λ).

Hyb0,ν−1,4-XI: In this experiment, in response to the νth signing key query of A corresponding to
TM M (ν) ∈ Mλ with M (ν)(x∗) = 0, B creates all the components as in Hyb0,ν−1,4-X except that it
does not generate (σ(ν,0)

sps-one,m(ν)
`∗,0,D

,vk(ν,0)
sps-one,D, skν,0)

sps-abo,D,vk(ν,0)
sps-abo,D) $←− SPS.Split(sk(ν,0)

sps,D,m
(ν)
`∗,0) and
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hands A the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog(4,2)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},K(ν)
sps,E , σ

(ν,0)
sps-one,m(ν)

`∗,0,C
,

sk(ν,0)
sps-abo,C ,m

(ν)
`∗,0, h

∗, `∗]),
IO(Constrained-Key.Prog(1,0,3)

abs [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps-one,C ,vk(ν,0)

sps-abo,C ,m
(ν)
`∗,0, h

∗, `∗])


.

The rest of the experiment is analogous to Hyb0,ν−1,4-X.

hyb0,ν−1,4-XII: In this experiment, to answer the νth signing key query of A corresponding to TM
M (ν) ∈ Mλ with M (ν)(x∗) = 0, B creates all the components as in Hyb0,ν−1,4-XI, but it provides A with
the signing key

skabs{M (ν)} =

hk,pp(ν)
acc, w

(ν)
0 , store(ν)

0 ,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w

(ν)
0 , v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,pp(ν)
acc,pp(ν)

itr,K
(ν)
sps,E ]),

IO(Change-SPS.Prog(4,3)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,E , sk(ν,0)
sps,C , h

∗, `∗]),
IO(Constrained-Key.Prog(1,0,4)

abs [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps,C ,m

(ν)
`∗,0, h

∗, `∗])


,

where the programs Change-SPS.Prog(4,3) and Constrained-Key.Prog(1,0,4)
abs are the alterations of the pro-

grams Change-SPS.Prog(4,2) and Constrained-Key.Prog(1,0,3)
abs (Figs. B.20 and B.22) and are shown in

Figs. B.23 and B.24 respectively. The rest of the experiment is analogous to Hyb0,ν−1,4-XI.

Constants: Punctured PPRF key Ksps,A{(h∗, `∗, 0)}, PPRF key Ksps,E , Signing key skC , SSB hash value of challenge input
h∗, Length of challenge input `∗

Inputs: TM state st, Accumulator value w, Iterator value v, SSB hash value h, Length `inp, Signature σsps,in

Output: Signature σsps,out, or ⊥
1. (a) Compute rsps,E = F(Ksps,E , (h, `inp), (sksps,E , vksps,E , vksps-rej,E) = SPS.Setup(1λ; rsps,E).

(b) Set m = (v, st, w, 0).
(c) If SPS.Verify(vksps,E ,m, σsps,in) = 0, output ⊥.

2. (a) If (h, `inp) 6= (h∗, `∗), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, 0)),
(sksps,A, vksps,A, vksps-rej,A) = SPS.Setup(1λ; rsps,A).

(b) If (h, `inp) = (h∗, `∗), output σsps,out = SPS.Sign(skC ,m).
Else, output σsps,out = SPS.Sign(sksps,A,m).

Fig. B.23. Change-SPS.Prog(4,3)

Hyb0,ν−1,4-XIII: This experiment is analogous to Hyb0,ν−1,4-XII except that while creating the νth signing
key queried byA, B and forms (sk(ν,0)

sps,C ,vk(ν,0)
sps,C ,vk(ν,0)

sps-rej,C) = SPS.Setup(1λ; r(ν,0)
sps,C = F(K(ν)

sps,A, (h∗, `∗, 0))).

Hyb0,ν−1,4-XIV: This experiment corresponds to Hyb0,ν−1,4,0′ .

Analysis

Let Adv(0,ν−1,4-ϑ)
A (λ) represents the advantage of the adversary A, i.e., the absolute difference between

1/2 and A’s probability of correctly guessing the random bit selected by the challenger B, in Hyb0,ν−1,4-ϑ,
for ϑ ∈ {I, . . . ,XIV}. From the description of the hybrid experiments it follows that Adv(0,ν−1,4)

A (λ) ≡
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Constants: TM M = 〈Q,Σinp, Σtape, δ, q0, qac, qrej〉, Time bound T = 2λ, Running time on challenge input t∗, Public
parameters for positional accumulator ppacc, Public parameters for iterator ppitr, PPRF keys K,K1, . . . , Kλ,
Punctured PPRF keys Ksps,A{(h∗, `∗, 0)}, Ksps,B{(h∗, `∗, 0)}, Verification key vkC , Message m`∗,0, SSB hash
value of challenge input h∗, Length of challenge input `∗

Inputs: Time t, String seedin, Header position posin, Symbol symin, TM state stin, Accumulator value win, Accumulator
proof πacc, Auxiliary value aux, Iterator value vin, SSB hash value h, Length `inp, Signature σsps,in

Output: CPRF evaluation F(K, (h, `inp)), or (Header Position posout, Symbol symout, TM state stout, Accumulator value
wout, Iterator value vout, Signature σsps,out, String seedout), or ⊥

1. Identify an integer τ such that 2τ ≤ t < 2τ+1. If [PRG(seedin) 6= PRG(F(Kτ , (h, `inp)))] ∧ [t > 1], output ⊥.
2. If ACC.Verify-Read(ppacc, win, symin, posin, πacc) = 0, output ⊥.
3. (a) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,A, vksps,A, vksps-rej,A) =

SPS.Setup(1λ; rsps,A).
Else, set vksps,A = vkC .

(b) If (h, `inp, t) 6= (h∗, `∗, 1), compute rsps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t − 1)), (sksps,B , vksps,B , vksps-rej,B) =
SPS.Setup(1λ; rsps,B).

(c) Set min = (vin, stin, win, posin) and α =‘-’.
(d) If SPS.Verify(vksps,A,min, σsps,in) = 1, set α =‘A’.
(e) If [α =‘-’] ∧ [(t > t∗)∨ (t ≤ 1)∨ (h 6= h∗) ∨ (`inp 6= `∗)], output ⊥.

Else if [α =‘-’] ∧ [SPS.Verify(vksps,B ,min, σsps,in) = 1], set α =‘B’.
(f) If α =‘-’, output ⊥.

4. (a) Compute (stout, symout, β) = δ(stin, symin) and posout = posin + β.
(b) If stout = qrej, output ⊥.

Else if [stout = qac] ∧ [α =‘B’], output ⊥.
Else if [stout = qac] ∧ [α =‘A’] ∧ [(h, `inp) = (h∗, `∗)] ∧ [t ≤ 1], output ⊥.
Else if stout = qac, perform the following:
(I) Compute rsig = F(K, (h, `inp)), (sksig, vksig) = SIG.Setup(1λ; rsig).

(II) Output (sksig, vksig).
5. (a) Compute wout = ACC.Update(ppacc, win, symout, posin, aux). If wout = ⊥, output ⊥.

(b) Compute vout = ITR.Iterate(ppitr, vin, (stin, win, posin)).
6. (a) Compute r′sps,A = F(Ksps,A{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,A, vk′sps,A, vk′sps-rej,A) = SPS.Setup(1λ; r′sps,A).

(b) Compute r′sps,B = F(Ksps,B{(h∗, `∗, 0)}, (h, `inp, t)), (sk′sps,B , vk′sps,B , vk′sps-rej,B) = SPS.Setup(1λ; r′sps,B).
(c) Set mout = (vout, stout, wout, posout).

If [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min = m`∗,0], compute σsps,out = SPS.Sign(sk′sps,A,mout).
Else if [(h, `inp, t) = (h∗, `∗, 1)] ∧ [min 6= m`∗,0], compute σsps,out = SPS.Sign(sk′sps,B ,mout).
Else, compute σsps,out = SPS.Sign(sk′sps,α,mout).

7. If t+ 1 = 2τ
′
, for some integer τ ′, set seedout = F(Kτ′ , (h, `inp)).

Else, set seedout = ε.
8. Output (posout, symout, stout, wout, vout, σsps,out, seedout).

Fig. B.24. Constrained-Key.Prog(1,0,4)
abs

Adv(0,ν−1,4-I)
A (λ) and Adv(0,ν−1,4,0′)

A (λ) ≡ Adv(0,ν−1,4-XIV)
A (λ). Hence, we have

|Adv(0,ν−1,4)
A (λ)− Adv(0,ν−1,4,0′)

A (λ)| ≤
XIV∑
ϑ=II
|Adv(0,ν−1,4-(ϑ−I))

A (λ)− Adv(0,ν−1,4-ϑ)
A (λ)|. (B.7)

Claims B.34–B.46 below will show that the RHS of Eq. (B.7) is negligible and thus Lemma B.8 follows.

Claim B.34. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,4-I)

A (λ)− Adv(0,ν−1,4-II)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim B.34 uses a similar kind of logic as that employed in the proof of Claim B.24.
We omit the details here. ut

Claim B.35. Assuming F is a secure puncturable pseudorandom function, for any PPT adversary A, for
any security parameter λ, |Adv(0,ν−1,4-II)

A (λ) − Adv(0,ν−1,4-III)
A (λ)| ≤ negl(λ) for some negligible function

negl.

Proof. The proof of Claim B.35 resembles that of Claim B.25 with some suitable changes. The details
are omitted. ut

Claim B.36. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,4-III)

A (λ) − Adv(0,ν−1,4-IV)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. Claim B.36 can be proven using an analogous logic as that used in the proof of Claim B.26. We
omit the details here. ut
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Claim B.37. Assuming SPS is a splittable signature scheme satisfying ‘vksps-one indistinguishability’,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4-IV)

A (λ)−Adv(0,ν−1,4-V)
A (λ)| ≤ negl(λ)

for some negligible function negl.

Proof. The proof of Claim B.37 is similar to that of Claim B.27 and, therefore, we do not provide the
details here. ut

Claim B.38. Assuming SPS is a splittable signature scheme satisfying ‘vksps-abo indistinguishability’,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4-V)

A (λ)−Adv(0,ν−1,4-VI)
A (λ)| ≤ negl(λ)

for some negligible function negl.

Proof. The proof of Claim B.38 proceeds along a similar path to that of Claim B.28. We omit the details
here. ut

Claim B.39. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,4-VI)

A (λ) − Adv(0,ν−1,4-VII)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The proof of Claim B.39 employs the same type of logic as that applied in Claim B.29 and hence
we do not provide the details in this case as well. ut

Claim B.40. Assuming ACC is a positional accumulator satisfying the ‘indistinguishability of read
setup’ property, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4-VII)

A (λ) −
Adv(0,ν−1,4-VIII)

A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. Suppose there exists a PPT adversary A for which |Adv(0,ν−1,4-VII)
A (λ)−Adv(0,ν−1,4-VIII)

A (λ)| is non-
negligible. We construct a PPT adversary B that breaks the indistinguishability of read setup property
of the positional accumulator ACC using A as a sub-routine. The description of B follows:

• B initializes A on input 1λ and receives a challenge signing attribute string x∗ = x∗0 . . . x
∗
`∗−1 ∈ Uabs

with |x∗| = `∗ from A.
• Upon receiving x∗, B proceeds as follows:

1. B first generates hk $←− SSB.Gen(1λ, nssb-blk = 2λ, i∗ = 0) and computes h∗ = Hhk(x∗).
2. Then, B selects a PPRF key K $←− F .Setup(1λ).
3. After that, B computes r∗sig = F(K, (h∗, `∗)) followed by (ŝk∗sig,”vk∗sig) = SIG.Setup(1λ; r∗sig).
4. B returns the public parameters ppabs = (hk, IO(Verify.Progabs[K])) to A.
• For η ∈ [q̂key], in response to the ηth signing key query of A corresponding to TM M (η) ∈ Mλ with
M (η)(x∗) = 0, if η 6= ν, then B proceeds exactly as in Hyb0,ν−1,4-VII, while if η = ν, then B proceeds
as follows:
1. B selects PPRF keys K(ν)

1 , . . . ,K
(ν)
λ ,K

(ν)
sps,A,K

(ν)
sps,B ,K

(ν)
sps,E

$←− F .Setup(1λ).

2. Then, it creates the punctured PPRF keys K(ν)
sps,A{(h∗, `∗, 0)} $←− F .Puncture(K(ν)

sps,A, (h∗, `∗, 0)) and
K

(ν)
sps,B{(h∗, `∗, 0)} $←− F .Puncture(K(ν)

sps,B , (h∗, `∗, 0)).
3. Next, B sends nacc-blk = 2λ, the sequence of symbol-index pairs ((x∗0, 0), . . . , (x∗`∗−1, `

∗ − 1)),
and the index i∗ = 0 to its ACC read setup indistinguishability challenger C and receives
back (ppacc, w0, store0), where either (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ) or
(ppacc, w0, store0) $←− ACC.Setup-Enforce-Read(1λ, nacc-blk = 2λ, ((x∗0, 0), . . . , (x∗`∗−1, `

∗ − 1)), i∗ =
0).

4. After that, it generates (pp(ν)
itr, v

(ν)
0 ) $←− ITR.Setup(1λ, nitr = 2λ).

5. Then, it sets m(ν)
0,0 = (v(ν)

0 , q
(ν)
0 , w0, 0). For j = 1, . . . , `∗, it iteratively computes the following:

– aux(ν)
j = ACC.Prep-Write(ppacc, storej−1, j − 1)

– wj = ACC.Update(ppacc, wj−1, x
∗
j−1, j − 1,aux(ν)

j )
– storej = ACC.Write-Store(ppacc, storej−1, j − 1, x∗j−1)
– v

(ν)
j = ITR.Iterate(pp(ν)

itr, v
(ν)
j−1, (q

(ν)
0 , wj−1, 0))

It sets m(ν)
`∗,0 = (v(ν)

`∗ , q
(ν)
0 , w`∗ , 0).



Short Attribute-Based Signatures for Arbitrary Turing Machines from Standard Assumptions 85

6. After that, it forms (sk(ν,0)
sps,C ,vk(ν,0)

sps,C ,vk(ν,0)
sps-rej,C), (sk(ν,0)

sps,D,vk(ν,0)
sps,D,vk(ν,0)

sps-rej,D) $←− SPS.Setup(1λ)
and generates (σ(ν,0)

sps-one,m(ν)
`∗,0,C

,vk(ν,0)
sps-one,C , sk(ν,0)

sps-abo,C ,vk(ν,0)
sps-abo,C) $←− SPS.Split(sk(ν,0)

sps,C ,m
(ν)
`∗,0),

(σ(ν,0)
sps-one,m(ν)

`∗,0,D
,vk(ν,0)

sps-one,D, sk(ν,0)
sps-abo,D,vk(ν,0)

sps-abo,D) $←− SPS.Split(sk(ν,0)
sps,D,m

(ν)
`∗,0).

7. It gives A the signing key

skabs{M (ν)} =

hk,ppacc, w0, store0,pp(ν)
itr, v

(ν)
0 ,

IO(Init-SPS.Prog[q(ν)
0 , w0, v

(ν)
0 ,K

(ν)
sps,E ]),

IO(Accumulate.Prog[nssb-blk = 2λ,hk,ppacc,pp(ν)
itr,K

(ν)
sps,E ]),

IO(Change-SPS.Prog(4,2)[K(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},K(ν)
sps,E , σ

(ν,0)
sps-one,m(ν)

`∗,0,C
,

sk(ν,0)
sps-abo,D,m

(ν)
`∗,0, h

∗, `∗]),
IO(Constrained-Key.Prog(1,0,2)

abs [M (ν), T = 2λ, t∗(ν),ppacc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,

K
(ν)
sps,A{(h∗, `∗, 0)},K(ν)

sps,B{(h∗, `∗, 0)},vk(ν,0)
sps-one,C ,vk(ν,0)

sps-abo,D,m
(ν)
`∗,0, h

∗, `∗])


.

• For θ ∈ [q̂sign], in reply to the θth signature query of A on message msg(θ) ∈ Mabs under attribute
string x∗, B computes σ(θ)

sig
$←− SIG.Sign(ŝk∗sig,msg(θ)) and provides A with σ

(θ)
abs = (”vk∗sig, σ

(θ)
sig ).

• Finally, A output a signature σ∗abs on some message msg∗ under attribute string x∗. B outputs
b̂′ = 1 as its guess bit in its ACC read setup indistinguishability experiment if A wins, i.e., if
ABS.Verify(ppabs, x

∗,msg∗, σ∗abs) = 1 and msg∗ 6= msg(θ) for any θ ∈ [q̂sign]. Otherwise, B outputs
b̂′ = 0 in its ACC read setup indistinguishability experiment.

Note that if (ppacc, w0, store0) $←− ACC.Setup(1λ, nacc-blk = 2λ), then B perfectly simulates
Hyb0,ν−1,4-VII. On the other hand, if (ppacc, w0, store0) $←− ACC.Setup-Enforce-Read(1λ, nacc-blk =
2λ, ((x∗0, 0), . . . , (x∗`∗−1, `

∗ − 1)), i∗ = 0), then B perfectly simulates Hyb0,ν−1,4-VIII. This completes the
proof of Claim B.40. ut

Claim B.41. Assuming IO is a secure indistinguishability obfuscator for P/poly and ACC is a positional
accumulator satisfying the ‘read enforcing’ property, for any PPT adversary A, for any security parameter
λ, |Adv(0,ν−1,4-VIII)

A (λ)− Adv(0,ν−1,4-IX)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The only difference between Hyb0,ν−1,4-VIII and Hyb0,ν−1,4-IX is the following: In Hyb0,ν−1,4-VIII, B
includes the program IO(P0) within the νth signing key provided to A, while in Hyb0,ν−1,4-IX it includes
the program IO(P1) instead, where

– P0 = Constrained-Key.Prog(1,0,2)
abs [M (ν), T = 2λ, t∗(ν),pp(ν)

acc,pp(ν)
itr,K,K

(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A{(h∗, `∗, 0)},

K
(ν)
sps,B{(h∗, `∗, 0)},vk(ν,0)

sps-one,C ,vk(ν,0)
sps-abo,D,m

(ν)
`∗,0, h

∗, `∗] (Fig. B.21),
– P1 = Constrained-Key.Prog(1,0,3)

abs [M (ν), T = 2λ, t∗(ν),pp(ν)
acc,pp(ν)

itr,K,K
(ν)
1 , . . . ,K

(ν)
λ ,K

(ν)
sps,A{(h∗, `∗, 0)},

K
(ν)
sps,B{(h∗, `∗, 0)},vk(ν,0)

sps-one,C ,vk(ν,0)
sps-abo,D,m

(ν)
`∗,0, h

∗, `∗] (Fig. B.22).

We will argue that the programs P0 and P1 are functionally equivalent, so that, by the security of IO
Claim B.41 follows. Clearly, the only inputs for which the outputs of the two programs might differ are
those corresponding to (h, `inp, t) = (h∗, `∗, 1). For inputs corresponding to (h∗, `∗, 1), P1 is programmed
to output ⊥ in case stout = qac but α =‘A’, whereas, P0 has no such condition in its programming.
Now, observe that for inputs corresponding to (h∗, `∗, 1), both the programs will assign the value ‘A’
to α if and only if SPS.Verify(vk(ν,0)

sps-one,C ,min, σsps,in) = 1, where vk(ν,0)
sps-one,C is generated by running

SPS.Split(sk(ν,0)
sps,C ,m

(ν)
`∗,0). Hence, by the correctness [Properties (i), (iii) and (v)] of the splittable signature

scheme SPS, described in Definition 2.6, it is immediate that for inputs corresponding to (h∗, `∗, 1),
both programs will set α =‘A’ only if min = m

(ν)
`∗,0. Now, min = m

(ν)
`∗,0 means stin = q

(ν)
0 , win = w

(ν)
`∗ ,

and posin = 0. Further, recall that in both the hybrid experiments Hyb0,ν−1,4-VIII and Hyb0,ν−1,4-IX,
(pp(ν)

acc, w
(ν)
0 , store(ν)

0 ) $←− ACC.Setup-Enforce-Read(1λ, nacc-blk = 2λ, ((x∗0, 0), . . . , (x∗`∗−1, `
∗−1)), i∗ = 0).

Therefore, by the read enforcing property of ACC it follows that if win = w
(ν)
`∗ and posin = 0, then

ACC.Verify-Read(pp(ν)
acc, win, symin,posin, πacc) = 1 implies symin = x∗0. Hence, for both the programs,
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for inputs corresponding to (h∗, `∗, 1), α =‘A’ implies stin = q
(ν)
0 and symin = x∗0, which in turn implies

stout 6= qac. Hence, the two programs have identical outputs for inputs corresponding to (h∗, `∗, 1) as
well. Thus, the two programs are functionally equivalent. ut

Claim B.42. Assuming ACC is a positional accumulator satisfying the ‘indistinguishability of read setup’
property, for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4-IX)

A (λ)−Adv(0,ν−1,4-X)
A (λ)| ≤

negl(λ) for some negligible function negl.

Proof. The proof of Claim B.42 is similar to that of Claim B.40 with some appropriate modifications
that are easy to figure out. ut

Claim B.43. Assuming SPS is a splittable signature scheme satisfying ‘splitting indistinguishability’, for
any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4-X)

A (λ) − Adv(0,ν−1,4-XI)
A (λ)| ≤ negl(λ)

for some negligible function negl.

Proof. The proof of Claim B.43 proceeds along a similar path as that of the proof of Claim B.30. We
omit the details here. ut

Claim B.44. Assuming IO is a secure indistinguishability obfuscator for P/poly, for any PPT adversary
A, for any security parameter λ, |Adv(0,ν−1,4-XI)

A (λ) − Adv(0,ν−1,4-XII)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The proof of Claim B.44 employs a similar type of logic as that utilized in the proof of Claim B.31.
We omit the details in this case as well. ut

Claim B.45. Assuming F is a secure puncturable pseudorandom function, for any PPT adversary A,
for any security parameter λ, |Adv(0,ν−1,4-XII)

A (λ) − Adv(0,ν−1,4-XIII)
A (λ)| ≤ negl(λ) for some negligible

function negl.

Proof. The proof of Claim B.45 takes an analogous path as that taken by the proof of Claim B.25. The
details are omitted. ut

Claim B.46. Assuming IO is a secure indistinguishability obfuscator for P/poly and F satisfies
the correctness under puncturing property, for any PPT adversary A, for any security parameter λ,
|Adv(0,ν−1,4-XIII)

A (λ)− Adv(0,ν−1,4-XIV)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Claim B.46 applies the same kind of logic as that employed in the proof of Claim B.24.
The details are again omitted. ut

ut

Lemma B.9. Assuming IO is a secure indistinguishability obfuscator for P/poly, ACC is a secure posi-
tional accumulator, and ITR is a secure cryptographic iterator, for any PPT adversary A, for any security
parameter λ, |Adv(0,ν−1,4,(γ−1)′)

A (λ)− Adv(0,ν−1,4,γ)
A (λ)| ≤ negl(λ) for some negligible function negl.

Proof. The proof of Lemma B.9 follows an analogous path to that of Lemma B.4 of [10] with certain
appropriate modifications that are easy to identify. ut

Lemma B.10. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, ACC is a positional accumulator possessing the ‘indistinguishability of read
setup’ as well as ‘read enforcing’ properties, and SPS is a splittable signature scheme satisfying ‘vksps-one
indistinguishability’, ‘vksps-abo indistinguishability’, as well as ‘splitting indistinguishability’ properties,
for any PPT adversary A, for any security parameter λ, |Adv(0,ν−1,4,γ)

A (λ)−Adv(0,ν−1,4,γ′)
A (λ)| ≤ negl(λ)

for some negligible function negl.

Proof. The proof of Lemma B.10 is similar to that of Lemma B.3 of [10] with some appropriate readily
identifiable changes. ut

Lemma B.11. Assuming IO is a secure indistinguishability obfuscator for P/poly and ACC is a posi-
tional accumulator having ‘indistinguishability of read setup’ and ‘read enforcing’ properties, for any PPT
adversary A, for any security parameter λ, |Adv(0,ν−1,4,(t∗(ν)−1)′)

A (λ)−Adv(0,ν−1,5)
A (λ)| ≤ negl(λ) for some

negligible function negl.
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Proof. The proof of Lemma B.11 is similar to that of Lemma B.5 of [10] with some appropriate changes
that are easy to determine. ut

Lemma B.12. Assuming IO is a secure indistinguishability obfuscator for P/poly, F is a secure punc-
turable pseudorandom function, SPS is a splittable signature scheme possessing the ‘vksps-rej indistin-
guishability’ property, and PRG is a secure injective pseudorandom generator, for any PPT adversary A,
for any security parameter λ, |Adv(0,ν−1,3,5)

A (λ)−Adv(0,ν−1,3,6)
A (λ)| ≤ negl(λ) for some negligible function

negl.

Proof. The proof of Lemma B.12 is similar to that of Lemma B.6 of [10]. ut
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