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Abstract

We present a new paradigm for multi-party private set intersection (PSI) that allows n parties to
compute the intersection of their datasets without revealing any additional information. We explore a
variety of instantiations of this paradigm. Our protocols avoid computationally expensive public-key
operations and are secure in the presence of any number of semi-honest participants (i.e., without an
honest majority).

We demonstrate the practicality of our protocols with an implementation. To the best of our knowl-
edge, this is the first implementation of a multi-party PSI protocol. For 5 parties with data-sets of 220

items each, our protocol requires only 72 seconds. In an optimization achieving a slightly weaker variant
of security (augmented semi-honest model), the same task requires only 22 seconds.

The technical core of our protocol is oblivious evaluation of a programmable pseudorandom function
(OPPRF), which we instantiate in three different ways. We believe our new OPPRF abstraction and
constructions may be of independent interest.

1 Introduction

In the problem of private set intersection (PSI), several parties each hold a set of items and wish to learn
the intersection of these sets and nothing else. Today, two-party PSI is a truly practical primitive, with
extremely fast cryptographically secure implementations [PSSZ15, KKRT16, PSZ16]. Incredibly, these im-
plementations are only a small factor slower than the näıve and insecure method of exchanging hashed values.
Among the specific functions of interest in secure multiparty computation (MPC), PSI is probably one of
the most strongly motivated by practice. Indeed, already today companies such as Facebook routinely use
PSI to share and mine shared information [Ops13, Yun15]. In 2012, (at least some of) this sharing was
performed with insecure näıve hashing, where players send and compare hashes of their set elements. Today,
companies are able and willing to tolerate a reasonable performance penalty, with the goal of achieving
stronger security [Yun15]. We believe that the ubiquity and the scale of private data sharing, and PSI in
particular, will continue to grow as big data becomes bigger and privacy becomes a more recognized issue.
We refer reader to [PSZ14, PSSZ15, PSZ16] for additional discussion and motivation of PSI.

In our work, we consider multi-party PSI in the semi-honest model. By “multi-party” we refer to cases
where more than two parties wish to compute the intersection of their private data sets. This is a natural
generalization of the practically very useful two-party PSI, creating opportunities for much richer data sharing
than what was possible with two-party PSI. Consider, for example, a scenario where several organizations,
e.g., Facebook, an advertiser, and a third-party data provider, wish to combine their data to find a target
audience for an ad campaign. As another application, consider a set of enterprises which have private audit
logs of connections to their corporate networks, and wish to identify similar activities in all networks.
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§Oregon State University, {rosulekm,trieun}@eecs.oregonstate.edu

1



We note that the multi-party setting in secure computation is notoriously difficult to tackle. Existing
protocols in generic MPC, such as garbled circuits, are significantly more complex and costly in the multi-
party case compared to the two-party case. Quite surprisingly, each player in our protocols expend effort
similar to that in the two-party case.

1.1 State of the Art for Two-Party PSI

We focus on the discussion of the state-of-the-art of semi-honest PSI protocols. We note that the earliest PSI
protocols, based on Diffie-Hellman assumptions, can be traced back to the 1980s [Sha80, Mea86, HFH99],
and refer the reader to [PSZ14] for an overview of the many different protocol paradigms for PSI. Protocols
based on oblivious transfer extension have proven to be the fastest in practice. We note that the OT-based
protocols do not have the lowest communication cost. In settings where computation is not a factor, but
communication is at a premium, the best protocols are in [RA17, KLS+17, CLR17]. In the semi-honest
version of these protocols, each party sends only 2n group elements, where n is the number of items in each
set. However, these protocols require a number of exponentiations proportional to the number of items,
making their performance slow in practice. Concretely, [PSSZ15] found Diffie-Hellman-based protocols to
be over 200× slower than the OT-based ones.

Current state-of-the-art semi-honest PSI protocols in the two-party setting are [KKRT16, PSZ16]. They
both use bucketing to reduce the number of comparisons, and rely on oblivious PRF evaluation. Until our
work, these ideas were not used in PSI protocols for the multi-party case.

Most work on concretely efficient PSI is in the random oracle model, and with security against semi-
honest, rather than malicious, adversaries. Some notable exceptions are [FNP04, JL09, HL10] in the standard
model, and [FNP04, DCKT10, DSMRY12, FHNP16, RR17a, PSS16, RR17b] with security against malicious
adversaries.

Lastly, we note that there are efficient constructions for generic MPC [Yao86, Kol05, MR13, AMPR14,
LR15, RR16, KNR+17, WRK17a, WRK17b], which can be used for implementing any functionality. In
particular, these protocols can be used for securely implementing PSI, in either the two-party or multi-
party settings. However, circuits for computing PSI are relatively large. A natural circuit for two-party
PSI performs O(n2) comparisons, whereas more efficient circuits are of size O(n log n) [HEK12, PSZ16].
However, as demonstrated in [PSZ16], secure evaluation of these circuits is about two orders of magnitude
slower than the most efficient PSI protocols.

1.2 State of the Art for Multi-party PSI

A multi-party PSI protocol was first proposed by Freedman, Nissim, and Pinkas [FNP04]. The protocol
of [FNP04] is based on oblivious polynomial evaluation (OPE) which is implemented using additively ho-
momorphic encryption, such as Paillier encryption scheme. The basic idea is to represent a dataset as a
polynomial whose roots are its elements, and send homomorphic encryptions of the coefficients of this pro-
tocol to obliviously evaluate it on the other party’s inputs. Relying on the OPE technique, Kissner and
Song [KS05] proposed a multi-party PSI protocol with quadratic computation and communication complex-
ity in both the size of dataset and the number of parties. The computation overhead is reduced to be linear in
number of participants in [SS08], which was based on bilinear groups. Furthermore, an efficient solution with
quasi-linear complexity in the size of dataset is proposed in [CJS12]. In both [SS08, CJS12], the maximum
number of the corrupted parties are assumed to be n/2. Very recent work [HV17] describes new protocols
which run over a star network topology, and are secure in the standard model against either semi-honest or
malicious adversaries. The basic idea is to designate one party to run a version of the protocol of [FNP04]
with all other parties. The main building block in [HV17] is an additively homomorphic public-key en-
cryption scheme, with threshold decryption, whose key is mutually generated by the parties. The protocol
requires computing a linear number of encryptions and decryptions (namely, exponentiations) in the input
sets. In contrast, our main building block is based on Oblivious Transfer extensions where the number of
exponentiations does not depend on the size of the dataset. [HV17] does not include implementation, but
we expect that our protocols are much faster due to building from symmetric primitives. We describe the
performance of representative multi-party PSI protocols in the semi-honest settings in Table 1.
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Protocol
Communication Computation Corruption Security

Leader Client Leader Client Threshold Model

[KS05] O(tnm log(|X|))λ O(ntm2) n− 1 semi-honest
[CJS12] O((n2m+ nm)λ) O(nm+m) bn/2c semi-honest
[HV17] O(nmλ) O(mλ) O(mn log2(m)) O(m) n− 1 semi-honest

Ours O(nmλ)
O(mλ) O(nκ)

O(κ)
n− 1

augmented semi-honest
O(mtλ) O(tκ) semi-honest

Table 1: Communication (bits) and computation (number of exponentiations) complexities of multi-party
PSI protocols in the semi-honest setting, where n is number of parties, t dishonestly colluding, each with
set size m; X is the domain of the element; and λ and κ are the statistical and computational security
parameters, respectively. In our protocols, the computational complexities are in an offline preprocessing
phase.

We mention that multi-party PSI was also investigated in the server-aided model, based on the existence
of a server which does not collude with clients [MN15, ATD15]. Information-theoretic PSI protocols, possible
in the multi-party setting, are considered in [LW07, PCR08, BA12].

1.3 Our Contributions

We design a modular approach for multi-party PSI that is secure against an arbitrary number of colluding
semi-honest parties. Our approach can be instantiated in a number of ways providing trade-offs for security
guarantees and computation and communication costs.

We implemented several instantiations of our PSI approach. To our knowledge, this is the first imple-
mentation of multi-party PSI. We find that multi-party PSI is practical, for sets with a million items held
by around 15 parties, and even for larger instances. The main reason for our protocol’s high performance
is its reliance on fast symmetric-key primitives. This is in contrast with prior multi-party PSI protocols,
which require expensive public-key operations for each item. Our implementation will be made available on
GitHub.

Our PSI Approach. The main building block of our protocol, which we believe to be of independent
interest, is oblivious, programmable PRF (OPPRF). Recall, oblivious PRF (OPRF) is a 2-party protocol
in which the sender learns a PRF key k and the receiver learns F (k, r), where F is a PRF and r is the
receiver’s input. In an OPPRF, the PRF F further allows the sender to “program” the output of F on a
limited number of inputs. The receiver learns the PRF output as before, but, importantly, does not learn
whether his input was one on which the PRF was programmed by the sender. We propose three OPPRF
constructions, with different tradeoffs in communication, computation, and the number of points that can
be programmed.

Basic idea. Our PSI protocol consists of two major phases. First, in the conditional zero-sharing
phase, the parties collectively and securely generate additive sharings of zero, as follows. Each party Pi
obtains, for each of its items xj , a share of zero, denoted sij . It holds that

∑n
i=1 s

i
j = 0. Namely, if all parties

have xj in their sets then the sum of their obtained shares is zero (else, w.h.p., the sum is non-zero). In
the second phase, parties perform conditional reconstruction of their shares. The idea is for each Pi to
program an instance of OPPRF to output its share sij when evaluated on input xj . Intuitively, if all parties
evaluate the corresponding OPPRFs on the same value xj , then the sum of the OPPRF outputs is zero.
This signals that xj is in the intersection. Otherwise, the shares sum to a random value.

This brief overview ignores many important concerns — in particular, how the parties coordinate shares
and items without revealing the identity of the items. We propose several ways to realize each of the two PSI
phases, resulting in a suite of many possible instantiations. We then discuss the strengths and weaknesses
of different instantiations.

A more detailed overview of the approach and the two phases is presented in Section 5, prior to the
presentation of the full protocol.
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2 Preliminaries

2.1 Secure Computation

The security of a secure multi-party protocol is formally defined by comparing the distribution of the outputs
of all parties in the execution of the protocol π to an ideal model where a trusted third party is given the
inputs from the parties, computes f and returns the outputs. The idea is that if it is possible to simulate
the view of the adversary in the real execution of the protocol, given only its view in the ideal model (when
it only sees its input and output), then the adversary cannot do in the real execution anything that is
impossible in the ideal model, and hence the protocol is said to be secure.

We work in the multi-party setting where the corrupt parties collude. This is modeled by considering a
single monolithic adversary that obtains the views of all corrupt parties. The protocol is secure if the joint
distribution of those views can be simulated.

Functionalities. We define a particular secure computation task by formally describing the behavior of
the ideal functionality (trusted third party). The ideal functionality for multi-party PSI is given in Figure 1.

Augmented semi-honest model. We present an optimized variant of our protocols that is in a slightly
weaker security model. In the augmented semi-honest model the adversary is allowed to change the inputs
of corrupted parties (but thereafter run the protocol honestly on those inputs).

In the specific case of multi-party PSI, this additional power is relatively harmless. One can think of a
multi-party PSI as computing XH ∩XC , where XH is the intersection of all honest parties’ sets and XC is
the intersection of all corrupt parties’ sets. The augmented semi-honest model simply allows an adversary
to choose XC , rather than being bound to whatever XC was chosen by the environment. Without loss of
generality, an augmented semi-honest adversary can simply set all corrupt parties to have the same input
set XC .

We note that the augmented semi-honest model is well known [HL10, Gol09] and was used in previous
work on multi-party PSI and related functionalities [FNP04, GOW12]. We define and discuss this security
notion at length in Appendix A.

2.2 Cuckoo Hashing

We review the basics of Cuckoo hashing [PR01], specifically the variant of Cuckoo hashing that involves a
stash [KMW08]. In basic Cuckoo hashing, there are m bins, a stash, and several random hash functions
h1, . . . , hk (often k = 2), each with range [m]. The invariant is that any item x stored in the Cuckoo hash
table is stored either in the stash or (preferably) in one of the bins {h1(x), . . . , hk(x)}. Each non-stash bin
holds at most one item. To insert and element x into a Cuckoo hash table, we place it in bin hi(x), if this
bin is empty for any i. Otherwise, choose a random i ∈R [k], place x in bin hi(x), evict the item currently
in hi(x), and recursively insert the evicted item. After a fixed number of evictions, give up and place the
current item in the stash.

3 Programmable OPRF

Our PSI approach builds heavily on the concept of oblivious PRFs (OPRF). We review the concepts here
and also introduce our novel programmable variant of an OPRF.

3.1 Definitions

Oblivious PRF. An oblivious PRF (OPRF) [FIPR05] is a 2-party protocol in which the sender learns a
PRF key k and the receiver learns F (k, q1), . . . , F (k, qt), where F is a PRF and (q1, . . . , qt) are inputs chosen
by the receiver. Note that we are considering a variant of OPRF where the receiver can obtain several PRF
outputs on statically chosen inputs. We describe the ideal functionality for an OPRF in Figure 2.

Instantiation and Security Details. While many OPRF protocols exist, we focus on the protocol of
Kolesnikov et al. [KKRT16]. This protocol has the advantage of being based on oblivious-transfer (OT)
extension. As a result, it uses only inexpensive symmetric-key cryptographic operations (apart from a
constant number of initial public-key operations for base OTs). The protocol efficiently generates a large
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Parameters: The number of parties n, and the size of the parties’ sets m.

Functionality:

• Wait for an input Xi = {x1i , . . . , xmi } ⊆ {0, 1}∗ from each party Pi.

• Give output
n⋂
i=1

Xi to all parties.

Figure 1: PSI ideal functionality.

Parameters: A PRF F and bound t.

Behavior: Wait for input (q1, . . . , qt) from the receiver R. Sample a random PRF seed k and give it
to the sender S. Give (F (k, q1), . . . , F (k, qt)) to the receiver.

Figure 2: The OPRF ideal functionality FF,toprf

Parameters: A programmable PRF F , and upper bound n on the number of points to be pro-
grammed, and bound t on the number of queries.

Behavior: Wait for input P from the sender S and input (q1, . . . , qt) from the receiver R, where
P = {(x1, y1), . . . , (xn, yn)} is a set of points. Run (k, hint) ← KeyGen(P) and give (k, hint) to the
sender. Give (hint, F (k, hint, q1), . . . , F (k, hint, qt)) to the receiver.

Figure 3: The OPPRF ideal functionality FF,t,nopprf

number of OPRF instances, which makes it a particularly good fit for our eventual PSI application that
uses many OPRF instances. Concretely, the amortized cost of each OPRF instance costs roughly 500 bits
in communication and a few symmetric-key operations.

Technically speaking, the protocol of [KKRT16] achieves a slightly weaker variant of OPRF than what
we have defined in Figure 2. In particular, (1) PRF instances are are generated with related keys, and (2)
the protocol reveals slightly more than just the PRF output F (k, q). We stress that in the resulting PRF
of [KKRT16] the construction remains secure even under these restrictions. More formally, let leak(k, q)
denote the extra information that the protocol leaks to the receiver. [KKRT16] gives a security definition for
PRF that captures the fact that outputs of F , under related keys k1, . . . , kn, are pseudorandom even given
leak(ki, qi). Our OPPRF constructions are built on this OPRF, and as a result our constructions would
inherit analogous properties as well.

For ease of presentation and reasoning, we work with the cleaner security definitions that capture the
main spirit of programmable OPRF. We emphasize that, although cumbersome, it is possible to incorporate
all of the [KKRT16] relaxations into the definitions. We stress that our eventual application of PSI is secure
in the standard sense when built from such relaxed OP[P]RF building blocks.

Programmable PRF. We introduce a new notion of a programmable oblivious PRF. Intuitively, the
functionality is similar to OPRF, with the additional feature that it allows the sender to program the output
of the PRF on a set of points chosen by the sender. Before presenting the definition of this functionality, we
discuss a PRF that supports being programmed in this way.

A programmable PRF consists of the following algorithms:

• KeyGen(1κ,P) → (k, hint): Given a security parameter and set of points P = {(x1, y1), . . . , (xn, yn)}
with distinct xi-values, generates a PRF key k and (public) auxiliary information hint. We often omit
the security parameter argument when it is clear from context.

• F (k, hint, x)→ y: Evaluates the PRF on input x, giving output y. We let r denote the length of y.

A programmable PRF satisfies correctness if (x, y) ∈ P, and (k, hint)← KeyGen(P), then F (k, hint, x) =
y. For the security guarantee, we consider the following experiment/game:
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ExpA(X,Q, κ):

for each xi ∈ X, chose random yi ← {0, 1}r
(k, hint)← KeyGen(1κ, {(xi, yi) | xi ∈ X})
return A

(
hint, {F (k, hint, q) | q ∈ Q}

)
We say that a programmable PRF is (n, t)-secure if for all |X1| = |X2| = n, all |Q| = t, and all polynomial-
time A: ∣∣∣Pr[ExpA(X1, Q, κ)⇒ 1]− Pr[ExpA(X2, Q, κ)⇒ 1]

∣∣∣
is negligible in κ

Intuitively, it is hard to tell what the set of programmed points was, given the hint and t outputs of the PRF,
if the points were programmed to random outputs. Note that this definition implies that unprogrammed
PRF outputs (i.e., those not set by the input to KeyGen) are pseudorandom.

The reason for including a separate “hint” as part of the syntax is that our protocol constructions will
naturally leak this hint to the receiver (in addition to the receiver’s PRF output). We propose a definition
that explicitly models this leakage and ensures that it is safe.

Oblivious Programmable PRF (OPPRF). The formal definition of an oblivious programmable PRF
(OPPRF) functionality is given in Figure 3. It is similar to the plain OPRF functionality except that (1)
it allows the sender to initially provide a set of points P which will be programmed into the PRF; (2) it
additionally gives the “hint” value to the receiver.

We now give several constructions of an OPPRF, with different tradeoffs in parameters.

3.2 A Construction Based on Polynomials

Our polynomial-based construction is presented in Figure 4. We first describe the underlying programmable
PRF. Let F be a PRF and define our new programmable PRF F̂ as follows:

• KeyGen(P = {(x1, y1), . . . , (xn, yn)}): Choose a random key k for F . Interpolate a degree n − 1
polynomial p over the points {(x1, y1 ⊕ F (k, x1)), . . . , (xn, yn ⊕ F (k, xn))}. Let hint be the coefficients
of p.

• F̂ (k, hint, q) = F (k, q)⊕ p(q).

It is not hard to see that F̂ satisfies correctness since for xi ∈ P it holds that F̂ (k, hint, xi) = F (k, xi)⊕p(xi) =
F (k, xi)⊕ yi ⊕ F (k, xi). Security follows from the fact that when the yi values are distributed uniformly, so
is the hint p. This is true regardless of the number of queries the receiver makes.

Finally, the OPPRF protocol for F̂ is straightforward if there is an OPRF protocol for F : the parties simply
invoke FF,toprf on their inputs. The sender obtains k and uses it to generate the hint as above, and sends it to the

receiver. The receiver, obtaining F (k, qi) from FF,toprf, can compute its output F̂ (k, hint, qi) = F (k, qi)⊕ p(qi).
The description of the OPPRF protocol is given in Figure 4. Simulation is trivial, as the parties’ views in
the protocol are exactly the OPPRF output.

Costs. The main advantage of this construction is that the only message that needs to be sent in addition
to the Foprf protocol is the polynomial p whose length is exactly that of n values. This seems the minimal
communication overhead that is needed to achieve OPPRF from OPRF. On the other hand, the interpolation
of the polynomial takes time O(n2) which can be expensive for large n.

3.3 A Construction Based on Bloom Filters

Garbled Bloom filters (GBF) were introduced in [DCW13] in the context of PSI protocols. A GBF is an
array GBF [1 . . . N ] of strings, associated with a collection of hash functions h1, . . . , hk : {0, 1}∗ → [N ]. The
GBF implements a key-value store, where the value associated with key x is:⊕k

j=1GBF [hj(x)]. (?)

A GBF can be programmed to map specific keys to chosen values:
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Input of S: n points P = {(x1, y1), . . . , (xn, yn)}, where xi ∈ {0, 1}∗, xi 6= xj ; and yi ∈ {0, 1}r

Input of R: Q = (q1, . . . , qt) ∈ ({0, 1}∗)t.

Protocol:

1. R sends Q to FF,toprf. The sender receives k and receiver receives F (k, q) for q ∈ Q.

2. S interpolates the unique polynomial p of degree n − 1 over the points {(x1, y1 ⊕
F (k, x1)), . . . , (xn, yn ⊕ F (k, xn))}.

3. S sends the coefficients of p to R.

4. R outputs (p, F (k, q1)⊕ p(q1), . . . , F (k, qt)⊕ p(qt)).

Figure 4: Polynomial-based OPPRF protocol

1. Initialize array GBF with all entries equal to ⊥

2. For each key-value pair (x, v), let J = {hj(x) | GBF [hj(x)] = ⊥} be the relevant positions of GBF
that have not yet been set. Abort if J = ∅. Otherwise, choose random values for GBF [J ] subject to
the lookup equation (?) equaling the desired value v.

3. For any remaining GBF [j] = ⊥, replace GBF [j] with a randomly chosen value.

It is clear that, unless this procedure aborts, it produces a GBF with the desired key-value mapping.
In [DCW13] it was observed that the procedure aborts when processing item x if and only if x is a false
positive for a plain Bloom filter containing the previous items (think of the plain Bloom filter obtained by
interpreting a ⊥ in GBF as 0 and anything else as 1). The false-positive probability for a plain Bloom
filter has been well analyzed. In particular, to bound the probability by 2−λ, one can use a table with
N = nλ log2 e entries to store n items. In that case, the optimal number of hash functions is λ. If we set
λ = 40, we get that the table size is about 60n and the number of hash functions is k = 40. In addition,
by doing less hashing[KM08], each insert only requires two hash functions h1(x) and h2(x). The additional
k − 2 hash functions hi(x), i ∈ [3, k], is simulated by hi(x) = h1(x) + i× h2(x).

Given the GBF construction, an OPPRF construction is relatively straightforward and similar to the
polynomial-based construction. Instead of the mappings xi 7→ yi ⊕ F (k, xi) being stored in a polynomial,
they are stored in a GBF. The construction is defined in Figure 5. Security holds naturally, since if the yi
points are chosen randomly, all positions in the GBF are uniformly distributed.

Costs. The advantage of the Bloom filter based construction, compared to the polynomial-based con-
struction, is that the insertion algorithm runs in time O(n) rather O(n2), and is also very efficient in practice.
The communication is still O(n) but the constant coefficient is high (the actual communication is 60n items
rather than n) and therefore communication might be a bottleneck, especially on slow networks.

3.4 Table-Based Construction

The previous OPPRF constructions can be instantiated with any underlying OPRF that allows the receiver
to evaluate the PRF on any number t of points. The resulting OPPRF constructions will inherit the same t.
Meanwhile, our most efficient OPRF building block from [KKRT16] only supports t = 1. In this section we
describe a construction tailored for the case of t = 1, and for small values of n (the number of programmed
points).

The main idea behind this construction is as follows. For each pair (xi, yi) the sender S uses F (k, xi) as
an encryption key to encrypt the corresponding value yi. Let T be the collection of these encryptions; then
T comprises the OPPRF hint. At a high level, the receiver can obtain F (k, q) and use it as a key to decrypt
the appropriate ciphertext from T .

The main challenges are: (1) R should not know whether he is getting random or programmed output
values (i.e. whether x = xi for some i), and (2) R must learn which ciphertext from T to decrypt. We

7



Input of S: n points P = {(x1, y1), . . . , (xn, yn)}, where xi ∈ {0, 1}∗, xi 6= xj and yi ∈ {0, 1}r

Input of R: Q = (q1, . . . , qt) ∈ ({0, 1}∗)t.

Protocol:

1. R sends Q to FF,toprf. The sender receives k and receiver receives F (k, q) for q ∈ Q.

2. S inserts the n pairs
{(x1, y1 ⊕ F (k, x1)), . . . , (xn, yn ⊕ F (k, xn))}

into a garbled Bloom filter denoted as G, with entries which are each r bits long. It fills the
remaining empty entries with random values.

3. S sends G to R as well as the k hash functions (the functions need not be sent explicitly, and
can be defined by setting some context dependent prefixes to inputs of a known hash function).

4. For i = 1 to t, R computes zi = F (k, qi)⊕
⊕k

j=1G[hj(qi)]. Finally R outputs (G, z1, . . . , zt).

Figure 5: Bloom-filter-based OPPRF protocol

Input of S: n points P = {(x1, y1), . . . , (xn, yn)}, where xi ∈ {0, 1}∗, xi 6= xj ; and yi ∈ {0, 1}r

Input of R: q ∈ {0, 1}∗.

Parameters: random oracle H : {0, 1}∗ → {0, 1}m, where m = 2dlog(n+1)e.

Protocol:

1. R sends q to FF,toprf. The sender receives k and receiver receives F (k, q).

2. S samples v ← {0, 1}κ until {H(F (k, xi)‖v) | i ∈ [n]} are all distinct.

3. For i ∈ [n], S computes hi = H(F (k, xi)‖v), and sets Thi
= F (k, xi)⊕ yi.

4. For j ∈ {0, 1}m \ {hi | i ∈ [n]}, S sets Tj ← {0, 1}r.

5. S sends T and v to R.

6. R computes h = H(F (k, q)‖v), and outputs (T, v, Th ⊕ F (k, q)).

Figure 6: Basic table-based OPPRF protocol.

achieve both properties by using F (k, q) to derive a pointer into the table T . In order to achieve property
(1), R must always decrypt some ciphertext of T , even if x 6= xi.

Concretely, suppose n is 20, so that S needs to program only 20 points. S will make a table T of size
25 = 32 (next power of 2 greater than 20). S will choose a random nonce v ∈ {0, 1}κ until {H(F (k, xi)‖v) |
i ≤ 20} are all distinct, where H : {0, 1}∗ 7→ {0, 1}5 is a hash function modeled as a random oracle. For
each i ∈ [n], S computes hi = H(F (k, xi)‖v), and sets Thi

= F (k, xi) ⊕ yi. The remaining entries of T
(32− 20 = 12 of them in this case) are chosen uniformly. S sends this nonce v together with the table T to
the the receiver as part of the hint.

From the receiver’s point of view, on input x he will use F (k, q) to decrypt the ciphertext in position
H(F (k, q)‖v) of the table. The distinctness of the H(F (k, xi)‖v) values allows the sender to place encryptions
of the yi values at appropriate positions in T without any conflicts. The details are given in Figure 6. Note
that the OPPRF protocol is restricted to the case of t = 1. Because of that, it suffices to use one-time pad
encryption for the table entries.

Security & parameters. The underlying programmable PRF satisfies security based on two observa-
tions: The easy observation is that table T itself is uniformly distributed when the yi values are uniformly
distributed (as in the security definition for programmable PRF).
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Next, we must argue that the nonce v leaks no information about the set of programmed points. Fix
a candidate v and define zi = H(F (k, xi)‖v). The sender tests this candidate v by seeing whether there is
a collision among {zi} values. The receiver sees at most one value of the form F (k, xi). So by the PRF
security of F , at least n− 1 of the other F outputs are distributed randomly from the receiver’s perspective.
Since H is a random oracle, it follows that at least n− 1 of the zi values are distributed independent of the
receiver’s view (even when the receiver has oracle access to H). Finally, the condition of a collision among
randomly chosen {zi} values is independent of any single zi. Hence, the probability of a candidate v being
chosen (and thus the overall distribution of v) is the same regardless of whether the receiver queried F on
one of the sender’s programming points.

It is important to discuss the parameter choice m (length of H output), as it greatly affects performance
(the number of retries in step 2 of the protocol). We can calculate the probability that for a random v, the
{H(si‖v) | i ∈ [n]} values are distinct:

Prunique =
∏n−1
i=1

(
1− i

2m

)
(1)

The expected number of restarts when sampling v is 1/Prunique.
Looking ahead to our PSI protocol, the OPPRF will be programmed with n items, where n is the number

of items hashed into a particular bin. Different bins will have a different number of items. We must set m
in terms of the worst case number of items per bin, so that no bin exceeds 2m items with high probability.
However, on average, a bin will have very few items.

Concretely, for PSI of 220 items we choose hashing parameters so that no bin exceeds 30 items with high
probability. Hence we set m = 5 (so T has 32 entries). Yet, the expected number of items in a bin is roughly
3. For the vast majority of bins, the sender programs the OPPRF on at most 7 points. In such a bin, only 2
trials are expected before finding a suitable v.

Costs. This OPPRF construction has favorable communication and computational cost. It requires
communicating a single nonce v along with a table whose length is that of O(n) items. The constant in the
big-O is at most 2 (the number of items is rounded up to the nearest power of 2). The computational cost
of the protocol is to evaluate a random oracle H, nτ times, where τ is the number of restarts in choosing v.
While these computational costs can be large in the worst case, the typical value of τ in our PSI protocol
is a small constant when averaged over all of the instances of OPPRF. Our experiments confirm that this
table-based OPPRF construction is indeed fast in practice.

4 Extending OPPRF to Many Queries

The OPPRF constructions in the previous section are efficient when n (the number of programmed points)
is small. When built from the efficient OPRF protocol of [KKRT16], they allow the receiver to evaluate the
programmable PRF on only t = 1 point. We now show how to use a hashing technique to overcome both of
these limitations. We show how to extend OPPRF constructions described in the previous section to support
both a large n and a large t.

At the high level, the idea is that each party hashes their items into bins. Each bin contains a small
number of inputs which allows the two parties to evaluate OPPRF bin-by-bin efficiently. The particular
hashing approach we have in mind is as follows. Suppose the receiver has items (q1, . . . , qt) on which he
wants to evaluate an OPPRF. The sender has a set P = {(x1, y1), . . . , (xn, yn)} of points to program.

Cuckoo hashing. The receiver uses Cuckoo hashing (Section 2.2) to hash his items into bins. We will
use a variant of Cuckoo hashing with k hash functions h1, . . . , hk, and m bins denoted as B[1 · · ·m]. Each
item q is placed in exactly one of {B[h1(q)], . . . , B[hk(q)]}. Based on t and k, the parameter m is chosen
so that every bin can contain at most one item with probability 1 − 2−λ for a security parameter λ. We
note that previous applications of Cuckoo hashing to PSI [PSZ14, PSSZ15] have used a variant of Cuckoo
hashing that involves an additional stash (a place to put items when insertion fails). However, a stash renders
our scheme much less efficient (every item in one party’s stash must be compared to every item of another
party). Instead, we propose a variant of Cuckoo hashing that avoids a stash by using 3 “primary” Cuckoo
hash functions, and then falling back to 2 “supplementary” Cuckoo hash functions when the first 3 fail. We
empirically determine the parameters used in our hashing scheme to ensure that the hashing succeeds except
with the probability less than 2−λ. The details are in Appendix B.
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Probability
Bin scale & set size n

Max Bin Size 212 214 216 220 224

2−30

ζ1 1.15 1.13 1.13 1.13 1.12
ζ2 0.14 0.14 0.14 0.15 0.16
β1 28 28 29 30 31
β2 63 63 63 63 63

2−40

ζ1 1.17 1.15 1.14 1.13 1.12
ζ2 0.15 0.16 0.16 0.17 0.17
β1 27 28 29 30 31
β2 63 63 63 63 63

Table 2: Required number of bins m1 = nζ1,m2 = nζ2 to mapping n items using Cuckoo hashing, and
required bin size β1, β2 to mapping n items into m1 and m2 bins using Simple hashing.

Simple hashing. Using the same set of hash functions, the sender then maps his points {x1, . . . , xn}
into bins, with each item being mapped under all of the Cuckoo hash functions (i.e., each of the sender’s
items appears k times in the hash table). Using standard balls-and-bins calculations based on n, k, and m,
one can deduce an upper bound β such that no bin contains more than β items except with probability 1/2λ.

Denote by m1,m2 the number of bins used in 3-way “primary” Cuckoo hashing and 2-way “supplemen-
tary” Cuckoo hashing, respectively. Let β1, β2 denote the maximum bin size when using Simple hashing
to map n items to m1 and m2 bins with no overflow, respectively. The parameters m = m1 + m2 and
β ∈ {β1, β2} presented in Table 2. The details of how we obtained these numbers are given in Appendix B.

Now within each bin, the receiver has at most one item q and the sender has at most β, call them
{(x1, y1), . . . , (xβ , yβ)}. They can therefore run the basic OPPRF protocol on these inputs. Note that each
of the sender’s points (x, y) is mapped to several bins. The OPPRF in each of those bins will be programmed
with the same (x, y). That way, if the receiver does have some qi = x, then no matter which of the possible
bins it is mapped to in Cuckoo hashing, the receiver will receive the correct output y.

The formal description of this protocol is given in Figure 7. The protocol requires m invocations of a
single-query OPPRF, where m = O(n) is the number of Cuckoo hash bins.

In sum, we are able to evaluate OPPRF for large number of programmed points n and large number
of queries simply by having players hash their inputs into bins, and evaluate OPPRF per bin on small-size
instances.

Caveats. One subtlety in analyzing our construction has to do with the security definition for a pro-
grammable PRF. Recall that in that definition (Section 3.1), the programmed output (y values) are chosen
randomly. Yet in our protocol the sender programs different bins with correlated outputs. In particular,
when an xi is mapped to several bins, the OPPRF in each bin is programmed with the same (xi, yi) point.
To deal with this, we must use the fact that the receiver is guaranteed to never query two bins on the same
q (corresponding to the fact that his Cuckoo hashing assigns each q to a unique bin).

5 Multi-Party PSI

We now present our main result, an application of OPPRF to multi-party PSI. We use the following notation
in this section. We denote the n parties by P1, . . . , Pn, and use subscripts i and j to refer to individual
parties. Let Xi ⊆ {0, 1}∗ denote the input set of party Pi. The goal is to securely compute the intersection⋂
iXi. For sake of simplicity, we assume each set has m items and write Xi = {xi1, . . . , xim}. We use subscript

k to refer to a particular item xik.
As discussed at the Introduction (cf. Section 1.3), our PSI protocol proceeds in two consecutive phases,

conditional zero-sharing and conditional reconstruction of secrets. Importantly, OPPRF is efficient
even when run on large input sets, thanks to our use of Cuckoo hash as discussed in Section 4.
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Input of S: n points P = {(x1, y1), . . . , (xn, yn)}, where xi ∈ {0, 1}∗, xi 6= xj and yi ∈ {0, 1}r

Input of R: Q = (q1, . . . , qt) ∈ ({0, 1}∗)t.

Parameters:

• Hash function h1, . . . , h5, number of bins m ∈ {m1,m2}, and max bin size β ∈ {β1, β2}, suitable
for our hashing scheme (Table 2)

Protocol:

1. R hashes items Q into m bins using the Cuckoo hashing scheme defined in Section 4. Let BR[b]
denote the item in the receiver’s bth bin (or a dummy item if this bin is empty).

2. S hashes items {x1, . . . , xn} into m1 bins under 3 hash functions h1, h2, h3, and hashes items
{x1, . . . , xn} into m2 bins under 2 hash functions h4, h5. Let BS [b] denote the set of items in the
sender’s bth bin.

3. For c ∈ [1, 2], for each bin b ∈ [mc]:

(a) S computes Pb = {(xi, yi) | (xi, yi) ∈ P and xi ∈ BS [b]}, then pads Pb with dummy pairs
to the maximum bin size βc

(b) Parties invoke an instance of FF,1,βc

opprf with inputs Pb for the sender and BR[b] for the receiver.

(c) S receives output (kb, hintb), and R receives output (hintb, F (kb, hintb, BR[b])).

4. For each item qi ∈ Q, let zi = F (kb, hintb, qi) where b is the bin to which R has hashed qi. The
receiver outputs (hint1, . . . , hintm), (z1, . . . , zt)

Figure 7: Hashing-based OPPRF protocol

5.1 Conditional Zero-Sharing

We will first describe the end goal of conditional zero-sharing and then discuss how we use multi-query OPPRF
of Section 4 to achieve it. At the end of this phase, each party Pi will have a mapping Si : Xi → {0, 1}∗ that
associates each of its items xik ∈ Xi with an additive secret share Si(x

i
k). We require the following property:

if x ∈
⋂
iXi (i.e., x is in the intersection), then the corresponding shares {Si(x) | i ∈ [n]} will XOR to zero.

To achieve this, first consider the case of two parties P1 and P2. For each item x1k ∈ X1, party P1 will
choose a random string sk and record the mapping S1(x1k) = sk. Then the parties can use an instance of
multi-query OPPRF as follows. P1 programs the OPPRF using points {(x1k, sk) | k ∈ [m]}, and P2 acts
as receiver with input queries X2. As a result, P2 will obtain for every x2k ∈ X2 a corresponding OPPRF
output, which we will denote S2(x2k). From the properties of an OPPRF, the mappings S1 and S2 have the
desired property. If the parties share an item x1k then both will have S1(x1k) = S2(x1k) = sk, corresponding
to an XOR-additive sharing of 0. The properties of the OPPRF ensure that P2 does not know whether he is
receiving real shares or random values for any item.

The case of n parties is similar. Each party Pi will act as dealer for each of their items xik ∈ Xi, generating

a random additive sharing of zero: si,1k ⊕· · ·⊕s
i,n
k = 0. Then each pair of parties Pi and Pj use an instance of

OPPRF as follows. Pi programs the OPPRF using points {(xik, s
i,j
k ) | k ∈ [m]}, and Pj acts as receiver with

input queries Xj . In other words, si,jk is the share that is conditionally sent from party Pi to Pj pertaining
to item xik.

Now each Pj has acted as OPPRF receiver for all other parties. For each item xjk ∈ Xj , the party has an

OPPRF output from every sender Pi, along with their own share sj,jk . Denote by Sj(x
j
k) the XOR of all of

these values. It is easy to see that these Sj mappings satisfy the desired property. If some x is shared by all
parties, then all pairs of parties will exchange shares corresponding to that item. All shares generated by a
single party XOR to zero, so all of the Sj(x) values XOR to zero as desired.
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Parameters: n parties P1, . . . , Pn.

Input: Party Pi has input Xi = {xi1, . . . , xim} ⊆ {0, 1}∗

Protocol:

1. For all i ∈ [n] and all k ∈ [m], party Pi chooses random {si,jk | j ∈ [n]} values subject to⊕
j s
i,j
k = 0.

2. For all i, j ∈ [n], parties Pi and Pj invoke an instance of FF,m,mopprf where:

• Pi is sender with input {(xik, s
i,j
k ) | k ∈ [m]}.

• Pj is receiver with input Xj .

For xjk ∈ Xj , let ŝi,jk denote the corresponding output of Fopprf obtained by Pj .

3. For all i ∈ [n] and k ∈ [m], party Pi sets Si(x
i
k) = si,ik ⊕

⊕
j 6=i ŝ

j,i
k .

4. For i = 2 to n, parties Pi and P1 invoke an instance of FF,m,mopprf where:

• Pi is sender with input {(xik, Si(xik) | k ∈ [m]}.
• P1 is receiver with input X1.

For x1k ∈ X1, let yik denote the corresponding output for x1k of Fopprf involving Pi.

5. Party P1 announces {x1k ∈ X1 | S1(x1k) =
⊕

i6=1 y
i
k}.

Figure 8: Multi-Party PSI Protocol

5.2 Conditional Reconstruction

The second phase of the protocol is a conditional reconstruction of secrets. In this phase party P1 acts
as a centralized “dealer.” For each item x ∈ X1 belonging to the dealer, he would like to determine whether
x is in the intersection. It suffices for him to obtain all Si(x) values from all the parties. However, since
some parties may not hold item x, they may not have a well-defined Si(x) value.

This problem can again be solved with an OPPRF. Each party Pi programs an OPPRF instance on points
{(x, Si(x)) | x ∈ Xi}, and P1 acts as receiver with PRF queries X1. Hence, for each item x ∈ X1, dealer P1

learns an associated value yi from the OPPRF with party i. If x is indeed in the intersection, then we expect⊕
i6=1 y

i = S1(x). Otherwise the left-hand-side will be a random value.

5.3 Details and Discussion

A formal description of the protocol is in Figure 8.
Correctness. From the preceding high-level description, it is clear that the protocol is correct except

in the event of a false positive — i.e., S1(x1k) =
⊕

i y
i
k for some x1k ∈ X1 not in the intersection. Let Pi

be a party who did not have x1k in their input set. That party will not program their OPPRF in Step 4
on the point x1k. As a result, the term yik is pseudorandom. Hence the probability that of a false positive
involving x1k is 2−`. By setting ` = λ+ log2(m), a union bound shows that the probability of any item being
erroneously included in the intersection is 2−λ.

Theorem 1. The protocol of Figure 8 is secure in the semi-honest model, against any number of corrupt,
colluding, semi-honest parties.

Proof. Let C and H be a coalition of corrupt and honest parties, respectively. To show how to simulate C’s
view in the ideal model, we consider two following cases based on whether all parties in C have item x:
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• All parties in C have x and not all parties in H have x: if H contains only one honest party Pi, then
Pi does not have x. From the output of set intersection, C can deduce that Pi does not have x. Thus,
there is nothing to hide about whether Pi has x in this case.

Consider the case that H has more than one honest party, say Pi and Pj . Suppose Pi has x, while
party Pj does not. So, x does not appear in the intersection. We must show that the protocol must
hide the identity of which honest party is missing x.

In Step 2 of the protocol, there is an OPPRF instance with Pj as sender and Pi as receiver. Pj will not
program the OPPRF at point x, so Pi will receive a pseudorandom output for x that is independent of
the corrupt coalition’s view. This causes Si(x) to be independent of the coalition’s view.

Later in Step 4, if the dealer is corrupt, both Pi and Pj act as OPPRF senders with the dealer. Pi pro-
grams the OPPRF at x using the pseudorandom value Si(x). Pj doesn’t program the OPPRF at point
x. The security of OPPRF is that programming the PRF at x with a random output is indistinguish-
able from not programming at x at all. In other words, parties Pi and Pj have indistinguishable effect
on the conditional reconstruction phase. If dealer is honest, the corrupt coalition’s view is simulated
from Step 2 based on the functionality of OPPRF.

• Not all corrupt parties in C have x: we must show that C should learn nothing about whether any of
the honest parties hold x.

Any honest party Pi who holds x generates corresponding shares si,j , to be conditionally distributed in
Step 2. But some corrupt party does not query the OPPRF on x in step 2. This makes all the si,j shares
corresponding to x distributed uniformly. All honest parties Pj who hold x will therefore have Sj(x)
uniformly distributed of the coalition’s view. In Step 4, the honest parties that hold x will program
the OPPRF on (x, Sj(x)). The honest parties that don’t hold x will not program the OPPRF on point
x. As above, programming the PRF with a random output is indistinguishable from not programming
at that point at all. Hence all honest parties have indistinguishable effect on the reconstruction phase.

Cost and Optimizations. In the conditional sharing phase, each party performs a multi-query OPPRF
with every other party. In the reconstruction phase, each party performs just one multi-query OPPRF with
the leader P1. Recall that the cost of each of these is one instance of single-query OPPRF per Cuckoo-hashing
bin.

The multi-query OPPRF scales well when sender and receiver have different number of elements. There-
fore, our multi-party PSI protocol allows each party’s set to have different size. The number of OPPRF
instance depends on the number of bins for Cuckoo-hashing, and the OPPRF receiver is the one using
Cuckoo hashing (sender uses plain hashing). Thus, our PSI protocol is more efficient by setting the leader
P1 as the party with the smallest input set.

We note that all of the OPPRF instances in the conditional sharing phase can be done in parallel, and
all the OPPRF instances in the reconstruction phase can as well. This leads to a constant-round protocol.

Finally, recall that the multi-query OPPRF uses Cuckoo hashing. It is safe for all such instances, between
all pairs of parties, to use the same Cuckoo hash functions. That way, a party only needs to hash their input
set twice at the beginning of the protocol (once with Cuckoo hashing for when they are OPPRF receiver,
and once with simple hashing for when they are OPPRF sender).

Generalization. Suppose we wish to secure the protocol against the possibility of at most t corrupt
(colluding) parties. The default case is to consider t = n − 1. For smaller t, we can simplify the protocol.
The idea is to modify the conditional zero-sharing protocol so that party Pi generates shares of zero only
for {Pi+1, . . . , Pi+t+1} (where indices on parties are mod n). The security analysis applies also to this
generalization, based on the fact that if Pi is honest, then at least one of Pi+1, . . . , Pi+t+1 must also be
honest.
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Initialization: Each party Pi picks random seeds ri,j for j = i+ 1, . . . , n and sends seed ri,j to Pj

Generate zero-sharing: Given an index ind, each Pi computes

Si(ind) =

 i−1⊕
j=1

F (rj,i, ind)

⊕
 n⊕
j=i+1

F (ri,j , ind)


Figure 9: The zero-sharing protocol

6 Further Optimizations

6.1 PSI in Augmented Semi-Honest Model

In this section we show an optimization to our PSI protocol which results in a protocol secure in the
augmented semi-honest model (cf. Section 2 and Appendix A).

Unconditional zero-sharing. The previous protocol starts with a conditional zero-sharing phase, where
parties obtain shares of zero or shares of a random value, based on whether they share an input item x. In
this section we propose an unconditional zero-sharing technique in which the parties always receive shares
of zero.

We describe a method for generating an unlimited number of zero-sharings derived from short seeds that
can be shared in a one-time initialization step. The protocol is described in Figure 9. The protocol is based
on an initialization step where each pair of parties exchange keys for a PRF F , after which each party knows
n − 1 keys. Then, whenever zero-sharing is needed, party Pi generates a share as Si(ind) =

⊕
r F (r, ind),

where ind is an index which identifies this protocol invocation, and r ranges over all the keys shared with
other parties.

We first observe that the XOR of all Si(ind) shares is indeed 0, since each term F (ri,j , ind) appears
exactly twice in the expression. As for security, consider a coalition of t < n− 1 corrupt parties, and let Pk
be the honest party with smallest index. Pk sends random seeds to all other honest parties. These seeds
are independent of all other seeds, and are unknown to the corrupt coalition. They result in set of n− t− 1
pseudorandom terms that are included in the shares of all honest parties other then Pk. Therefore the shares
of the honest parties look pseudorandom to the coalition (subject to all shares XORing to zero).

Plugging into the PSI protocol. Suppose we modify our main PSI protocol (Figure 8) in the following
ways:

• Instead of steps 1-3, the parties perform the unconditional zero-sharing phase of Figure 9. That is,
they run the initialize phase to exchange seeds and then set their Si mappings accordingly.

• Then they continue with Figure 8 starting at step 4.

The modification significantly reduces the cost of the zero-sharing phase (which was the most expensive
part of Figure 8) with a zero-sharing phase that costs almost nothing. Our experiments confirm that this
modified protocol is faster than the standard semi-honest-secure protocol, by a significant constant factor.

Correctness of the modified protocol follows from the same reasons as for the unmodified protocol.
Namely, if some party Pi does not have an item x, then they will not program their OPPRF with P1 at point
x. This causes P1 to obtain a random value in the reconstruction phase and subsequently not include x in
the output.

Theorem 2. The modified protocol (with unconditional zero-sharing) is secure in the augmented semi-honest
model.

Proof Sketch. Consider a coalition C of corrupt parties. We must show how to simulate C’s view in the
ideal model. If P1 6∈ C then, assuming that the underlying OPRF protocol is secure, the view of C consists
only of the output of the invocations of the OPRF protocol (acting as sender in each one), and is therefore
random. If the leader P1 ∈ C then the simulator sends to the ideal PSI functionality the set X1 as the input
of every corrupt party (this is the advantage given to the simulator in the augmented security model). Let
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Z denote the output of the functionality (the intersection of all sets). P1’s view contains OPPRF outputs
from all honest parties, corresponding to every x ∈ X. For x ∈ Z, simulate a random sharing of zero as
the corresponding OPPRF outputs. For x ∈ X1 \ Z, simulate random values for the corresponding OPPRF
outputs.

Let us give an intuition on why this protocol achieves security only in the augmented model. In this
modified protocol, the zero-sharing for each candidate x is generated non-interactively by the parties. So
even though a corrupt party Pi does not have an item x, he can non-interactively imagine what his correct
share Si(x) would be. When colluding with P1, this allows the adversary to learn exactly what would have
happened if Pi included x in its set (but only if x ∈ X1 as well).

In the semi-honest protocol (Section 5), however, a corrupt party interacts with honest parties to generate
a zero-sharing corresponding to x. At the time of the interaction, the corrupt party Pi “commits” to having
x in its input set or not, depending on whether it queries the OPPRF on x. If during the (conditional)
zero-sharing phase Pi does not have x in its input set, then there is no way to later guess what the “correct
share” would have been.

6.2 Reducing OPPRF Hint Size

In this section we look inside the several layers of abstraction in our PSI protocol, and use a global view
of things to find room for optimization. We focus on the multi-query OPPRF construction from Section 4.
Recall that it works in the following way:

• The OPPRF receiver hashes their queries into m bins via a Cuckoo hashing method.

• The OPPRF sender hashes their programming-points into m bins using simple hashing, for each Cuckoo
hash function (i.e., assigning a single item to many bins).

• In each bin, the parties perform a single-query OPPRF instance, where the receiver queries on their
(unique) item in that bin.

Now look even further inside those single-query OPPRF instances. In each one, the parties invoke an
OPRF instance and furthermore the sender gives a “hint” that contains the information to correct/program
the OPRF outputs to the desired values.

There are two possible approaches for sending the hints that are required for these OPPRF computations.
The straightforward approach sends a separate hint per OPPRF invocation, namely per bin. The other
approach sends a single combined hint for all bins. Namely, this combined hint is a single polynomial or
Bloom filter, which provides for each of the m possible inputs of Pi the correct “hint” for changing the
output of the corresponding OPRF invocation.

The advantage of the “separate hints” approach is that in each OPPRF invocation each party Pi has only
S = O(logm/ log logm) points and therefore computing the hint might be more efficient. This is relevant for
the polynomial-based hint, since its computation time is quadratic in the size of the set of points. Therefore,
the overhead of computing a single combined hint polynomial is O(m2) whereas the overhead of computing
hints for all bins is only O(m log2m/ log2(logm)). On the other hand, when computing a hint per bin, the
total number of points is O(m logm/ log logm), whereas if a combined hint is used, the total number of
points is O(m). We expect (and validate in the experiments in Section 7), that a combined hint works better
for the Bloom filter-based OPPRF, since the cost of this method is linear in the total number of points.
On the other hand, the bottleneck of the polynomial-based OPPRF is the quadratic overhead of polynomial
interpolation, thus when using that OPPRF it is preferable to use separate hints per bin.

Improvements: We can add the following improvements to the basic protocol:

• In polynomial-based OPPRF with “separate hints”, the OPPRF sender does not need to pad with
dummy items to the maximum bin size β before interpolating a polynomial over β pairs per bin.
Instead of that, he interpolates a polynomial p1(x) over k < β real pairs (xi, yi) and then add it with a

polynomial p2(x) of degree (β − 1). p2(x) can be efficiently implemented as R(x)
∏k
i=1(x− xi), where

R(x) is a random polynomial of degree (β − 1 − k). Using example hashing parameters from Section
5, the expected value of k is only 3, while the worst-case β = 30. This optimization reduces the cost
of expensive polynomial interpolation.
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Parameters: 3 parties P1, P2, P3.

Input: Party Pi has input Xi = {xi1, . . . , xim} ⊆ {0, 1}∗

Protocol:

1. For all k ∈ [m], party P1 chooses random distinct {e1k | k ∈ [m]} values.

2. Party P1 and P2 invoke with an instance of FF,m,mopprf where:

• P1 is sender with input {(x1k, e1k) | k ∈ [m]}.
• P2 is receiver with input X2.

For x2k ∈ X2, let ê2k denote the corresponding output of Fopprf obtained by P2.

3. In turn, each party Pi, i ∈ {2, 3}, invokes with Pi+1 an instance of FF,m,mopprf where:

• Pi is sender with input {(xik, êik) | k ∈ [m]}.
• Pi+1 is receiver with input Xi+1.

For xi+1
k ∈ Xi+1, let êi+1

k denote the corresponding output of Fopprf obtained by Pi+1 (indices are
mod n)

4. Party P1 announces {x1k ∈ X1 | e1k = ê1k}.

Figure 10: Optimized Three-party PSI Protocol

• In polynomial-based OPPRF with combined hints, the OPPRF sender can send a combined hint for
each hash function hi. That is, for each Cuckoo hash function hi, the sender computes a hint that
reflects all of the bin-assignments under that specific hi. The receiver hashes its items with Cuckoo
hashing, and places each item according to exactly one hash function hi. For each item, the receiver
can therefore use the combined hint for that specific hi.

• In Bloom filter-based OPPRF invocation, each of sender’s item appears 5 times in hash table, there are
5 different OPRF values F (khi

, x)). Instead of inserting 5 pairs of the form (x, y ⊕ F (khi
, x)) into the

GBF, the sender can instead insert the concatenated value (x, (y ⊕ F (kh1
, x))|| . . . ||(y ⊕ F (kh5

, x))).
This reduces the number of the GBF insertions.

6.3 3-party PSI in Standard Semi-Honest Model

Our idea for three-party PSI (3-PSI) is to have all 3 players perform an (encrypted) incremental computation
of the intersection. Namely, P1 and P2 will first let P2 obtain an encoding of partial intersection X12 =
X1 ∩X2. Then P2 and P3 will allow P3 to obtain some encoding of X123 = X12 ∩X3. In the end, P1 will
decode the output X123 = X1 ∩X2 ∩X3.

To do this, the leader P1 chooses a random encoding e1k for each of his inputs x1k. P1 then acts as a sender
in OPPRF, programming it on points {(x1k, e1k) | k ∈ [m]}. P2 acts as a receiver in OPPRF using his input
set X2, and obliviously receives either one of these encodings (if his input was a corresponding match) or a
random string. Denote by ê2k the value that P2 obtains for each of his items x2k. The process repeats: P2 will
play the role of OPPRF sender with receiver P3. P2 will program the OPPRF on points {(x2k, ê2k) | k ∈ [m]}
and P3 will query the OPPRF on his input set X3. Denote by ê3k the value that P3 obtains for each of his
items x3k.

Finally, P3 acts as OPPRF sender and programs the OPPRF on points {(x2k, ê2k) | k ∈ [m]}, while P1 acts
as receiver and queries the OPPRF on points X1. It is clear that if x1k is in the intersection, then P1 will
receive e1k (a value he initially chose) as OPPRF output; otherwise he will receiver a random value. A formal
description of the protocol is in Figure 10.

Extending the above to n > 3 parties faces the following difficulty: If P1 and Pj collude, they will learn
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the partial intersection X1 ∩ · · · ∩Xj . Indeed, as an OPPRF receiver, Pj will receive the set of values which
can be cross-checked with the encodings generated by P1. More generally, colluding players Pi and Pj can
compute partial intersection Xi ∩ · · · ∩Xj by comparing their encodings.

We note that this is not an issue in 3-PSI, since colluding P1 and P2 can compute X1 ∩ X2 anyway;
colluding P2 and P3 cannot learn any information about the decrypted key e1i held by P1 thus the corrupted
parties compute X2 ∩X3 anyway; and colluding P1 and P3 can compute X1 ∩X2 ∩X3 which is the desired
PSI output.

With the above optimization, our 3-PSI protocol needs only 3 OPPRF executions, compared to the 4
OPPRF executions for the general protocol described in Section 5. The performance gain of the optimized
protocol is not very strong when the network is slow since parties invoke OPPRF in turn and they have
to wait for the previous OPPRF completed. We implemented both 3-PSI protocol variants and found this
optimized variant to be 1.2− 1.7× faster.

7 Implementation and Performance

In order to evaluate the performance of our multi-party PSI protocols, we implement many of the variants
described here. We do a number of experiments on a single server which has 2x 36-core Intel Xeon 2.30GHz
CPU and 256GB of RAM. We run all parties in the same network, but simulate a network connection using
the Linux tc command: a LAN setting with 0.02ms round-trip latency, 10 Gbps network bandwidth; a WAN
setting with a simulated 96ms round-trip latency, 200 Mbps network bandwidth.

In our protocol, the offline phase is conducted to obtain an 128 base-OTs using Naor-Pinkas construc-
tion [NP01]. Our implementation uses OPRF code from [KKRT16, Rin]. All evaluations were performed with
a item input length 128 bits, a statistical security parameter λ = 40 and computational security parameter
κ = 128. The running times recorded are an average over 10 trials. Our complete implementation is available
on GitHub: https://github.com/osu-crypto/MultipartyPSI

7.1 Optimized PSI, Augmented Model

In this section we discuss the PSI protocol from Section 6 that is optimized for the augmented semi-honest
model. We implemented and tested the following variants (see Section 6.2 for discussion on variant techniques
of sending hints) on different set sizes m ∈ {212, 214, 216, 220}:

• BLOOM FILTER: where the OPPRF used a single combined garbled Bloom filter hint. In our hashing-
to-bin scheme (Appendix B), sender uses h = 5 hash functions to insert m items into bins. With the
optimization in Section 6.2, there are only m pairs inserted into the table which has mλ log2 e entries.
The table uses an array of h(λ+ log2(m))-bit strings.

• POLYNOMIAL combined: where the OPPRF used combined polynomial hints per hash index. Poly-
nomial interpolation was implemented using the NTL library[Sho03]. Each polynomial is built on m
points. The coefficients of the polynomial are λ+ log2(m)-bit strings.

• POLYNOMIAL separated: where the OPPRF used a separate polynomial hint per bin. The coefficient
of the polynomial has λ+ log2(m)-bit strings. The degree of polynomial is β1 for each bin in first mζ1
bins, and β2 for each bin in last mζ2 bins. Here ζ1, ζ2, β1 and β2 are discussed in Table 2.

• TABLE: where the OPPRF used a separate table hint per bin. The table has 2dlog2(β1)e entries for each
bin in first mζ1 bins, and 2dlog2(β2)e entries for each bin in last mζ2 bins. Each row has λ+ log2(m)-bit
strings.

The running times and communication overhead of our implement with 5 parties are shown in Table 3.
The leader party uses up to 4 threads, each operates OPPRF with other parties. As expected, our table-
based protocol achieves the fastest running times in comparison with the other OPPRF constructions. Our
experiments show that it takes only one second to sample vector v and check uniqueness for all 220 bins.
Thus, the table-based PSI protocol costs only 22 seconds for the set size m = 220. The polynomial-based
PSI protocol with separated hint is the next fastest protocol which requires a total time of 38 seconds, a
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Protocol
Running time (second) Communication (MB)

Set Size m
212 214 216 220 212 214 216 220

BLOOM FILTER 0.37 0.98 3.41 51.46 8.56 34.26 137.01 2496.2
POLY (combined hint) 7.36 194.96 - - 0.43 1.74 - -
POLY (separate hints) 0.32 0.74 2.33 37.89 1.46 5.98 24.30 447.44
TABLE 0.29 0.57 1.48 21.93 1.64 6.52 25.93 467.66

Table 3: The total runtime and communication of our Multi-Party PSI in augmented semi-honest model in
LAN setting. The communication cost which ignore the fixed cost of base OTs for OT extension is on the
client’s side. Cells with − denote trials that either took longer than hour or ran out of memory.

Setting
Number Threshold Set Size m
Parties n Corruption t 212 216 220 224

LAN

3 {1, 2} 0.21 (0.99)* 1.34 (1.19)* 25.81 (25.23)* 409.90 (399.67)*
0.30 (0.16) 2.14 (1.97) 41.64 (41.10) 702.3 (69.69)

4
1 0.25 (0.12) 1.80 (1.60) 28.86 (28.27) 484.3 (478.2)

{2, 3} 0.34 (0.21) 3.16 (2.92) 52.25 (51.65) 865.7(859.4)

5
1 0.26 (0.12) 1.99 (1.79) 32.13 (31.49) 505.2 (499.2)
2 0.32 (0.19) 3.44 (3.23) 49.17 (48.54) -
4 0.39 (0.26) 4.87 (4.61) 71.28 (70.60) -

10
1 0.39 (0.17) 2.97(2.71) 46.08 (45.28) -
5 0.83 (0.55) 8.79 (8.47) 136.48 (135.44) -
9 1.01 (0.72) 12.33 (11.98) 182.8 (181.60) -

15
1 0.46 (0.23) 4.28 (3.97) 64.28 (63.27) -
7 1.37 (0.77) 13.47 (12.79) 201.12 (199.34) -
14 1.85 (1.32) 20.61 (20.02) 304.36 (302.17) -

WAN

3 {1, 2} 2.82 ( 2.34)* 10.48 (9.96)* 129.45 (128.64)* -
3.12 (2.64) 11.25 (10.73) 158.50 (157.64) -

4
1 2.65 (1.97) 12.40 (11.71) 151.9 (150.9) -

{2, 3} 3.18 (2.51) 17.47 (16.74) 233.1 (232.1) -

5
1 2.66 (1.99) 13.76 (13.06) 185.5 (184.5) -
2 3.21 (2.53) 20.29 (19.56) 290.9 (289.8) -
4 3.45 (2.78) 25.52 (24.79) 378.5 (377.4) -

10
1 3.30 (2.63) 26.42 (25.73) 400.9 (399.8) -
5 5.67 (4.98) 76.43 (75.78) 1,194 (1,193) -
9 7.81 (7.14) 112.8 (112.1) 1,915 (1,914) -

15
1 3.63 (3.15) 39.11 (38.60) 664.08 (662.80) -
7 9.87 (9.38) 150.85 (150.31) 2641 ( 2,640) -
14 16.42 (15.96) 263.20 (262.67) - -

Table 4: Total running time and online time (in parenthesis) in second of our semi-honest Multi-Party PSI
for the number of parties n, t < n dishonestly colluding, each with set size m. Number with ∗ shows the
performance of the optimized 3-PSI protocol described in Section 6.3. Cells with − denote trials that either
took longer than hour or ran out of memory.

1.7× slowdown. The slowest protocol is the polynomial-based protocol with combined hint per hash index,
whose running time clearly grows quadratically with the set size. However, this protocol has the smallest
communication overhead. For small set size m = 214, the polynomial-based PSI protocol with combined hint
requires only 1.74MB for communication.

7.2 Standard Semi-Honest PSI

In this section we discuss the standard semi-honest variant of our protocol, using conditional zero-sharing
(Section 5). From the empirical results discussed in the previous section, the most efficient OPPRF instanti-
ation is the TABLE-based hint. Thus, the OPPRF was instantiated using the TABLE-based protocol in this
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Figure 11: Total running time of our semi-honest Multi-Party PSI for the number of parties n, t < n
dishonestly colluding, each with set size 220, in LAN setting.

Number Threshold Set Size m
Parties n Corruption t 212 216 220 224

3 {1, 2}
3.28 51.87 935.32

14,860{4, 5}
1{10, 15} -

4 {2, 3} 4.92 77.80 1,402 22,290

5
2 4.92 77.80 1,402 -
4 6.56 103.74 1,870 -

10
5 9.84 155.61 2,805 -
9 14.76 233.41 4,208 -

15
7 13.12 207.48 3,741 -
14 22.96 363.09 6,547 -

Table 5: The numerical communication (in MB) of our Multi-Party PSI in semi-honest setting. The cost
is on the client’s side for the number of parties n, t < n dishonestly colluding, each with set size m.
Communication costs ignore the fixed cost of base OTs for OT extension. Cells with − denote trials that
either took longer than hour or ran out of memory.

section.
To understand the scalability of this protocol, we evaluate it on the range of the number parties n ∈

{3, 4, 5, 10, 15} on the set size m ∈ {212, 216, 220, 224}. We also wanted to understand the performance effect
of the generalization discussed in Section 5.3 in which the protocol is tuned to tolerate an arbitrary number
t of corrupted parties. In our experiments, we used t ∈ {1, bn/2c, n− 1}.

Our protocol scales well using multi-threading between n parties. In our implementation, the leader P1

uses n−1 threads and other parties use min{t+1, n−1} threads so that each party operates OPPRF protocol
with other parties at the same time. However, we use a single thread to perform the OPPRF subprotocol
between two parties.

We proposed a better “hashing to bin” scheme (Appendix B) than the state-of-art two-party PSI [KKRT16].
Specifically, our hashing scheme removes the stash bins which consume nontrivial cost of the protocol [KKRT16]
for sufficiently small sets. For example of 212 set size, we see that our protocol requires 168 milliseconds
compared to 211 milliseconds by [KKRT16], a difference of 1.2×.

Results. Table 4 presents the running time of our PSI protocol in both LAN and WAN setting. We
report the running time for the total time and online phase. The offline phase consists of all operations
which do not depend on the input sets. In the three-party case, our protocol supports the full corrupted
majority. For m = 220, our general 3-PSI protocol ( Section 5) in LAN setting costs 42 seconds while the
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optimized protocol (Section 6.3) takes 26 seconds which is 1.6× faster. When evaluating our 3-PSI in WAN
setting, we found this optimized variant to be 1.2× faster. This is primarily due to the need to wait for
previous OPPRF completed.

To address the possibility of at most t parties colluding, each party performs OPPRF with min{t+1, n−1}
other parties. Therefore the cost of the protocol is the same for t = n− 1 as t = n− 2. Hence, we report the
protocol performance with the n = 4 and t ∈ {2, 3} on the same row of the Table 4.

As we can see in the table 4, our protocol requires only 72 seconds to compute a PSI of n = 5 parties for
m = 220 elements. For the same set size, when increasing the number of parties to n = 10, our total running
time is 3 minutes and if n = 15 our protocol takes around 5 minutes. Figure 11 shows that our protocol’s
cost is linear in the size of number parties. When assuming only one corrupt party, our protocol takes only
64 seconds to compute PSI of 15 parties for m = 220 elements. For the small set size of m = 212, the PSI
protocol of n = 15 parties takes an total time of 1.85 seconds with the online phase taking 1.32 seconds. We
find that our protocol also scales to large input sets (m = 224) with n ∈ {3, 4, 5} participants.

Table 5 reports the numerical communication costs of our implementation. The protocol is asymmetric
with respect to the leader P1 and other parties. Because the leader plays the role of receiver in most OPPRFs,
the majority of his communication costs can be done in an offline phase. Hence we report the communication
costs of the clients, which reflects the online cost of the protocol. For the small set size of m = 212, only
3.28MB communication was required in 3-PSI protocol on the client’s sides. The communication complexity
of our protocols is O(mtλ) bits. Thus, our protocol requires gigabytes of communication for a large set
size (m ∈ {220, 224}). Concretely, for the large input set m = 224, our 3-PSI protocol uses 14.8GB of
communication, roughly 0.88KB per item.
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A The Augmented Semi Honest Model

The unconditional zero-sharing protocol is secure in the augmented semi-honest model. Informally, in this
model the parties controlled by the adversary are allowed to change their inputs at the beginning of the
computation. (The main “power” given to the simulator in proofs in this model, is that after reading the
inputs of the parties from their input tapes it can change them before sending inputs to the trusted party.)

The reason for the usage of this model, is the star-like communication infrastructure that is used by the
protocols, where all parties independently interact with a single party (the “dealer”). A star structure is a
very appealing communication pattern, since it does not require most parties to interact with each other or
to coordinate a time in which they are all online. However, it is clear (as was demonstrated by a lower bound
of [HLP11]) that a coalition of the dealer with some corrupt parties can “save” the state of the protocol after
the interaction between all honest parties and the dealer, and then continue running the protocol from that
state using different options for the inputs of the corrupt parties. Note, however, that in the PSI setting the
only useful input for the corrupt coalition is where the input of all its members is equal to the input that the
dealer used in its interactions with the honest parties. Therefore even though they can choose other inputs
and run the protocol with those inputs, they know in advance that the corresponding output will be the
empty set.

This additional “power” that is given to the adversary is essential in our protocol since (in order to keep a
simple communication infrastructure) not all parties interact with each other. Therefore two corrupt parties
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which only interact with each other may assume the power to “use” any input they would like during their
execution.

We emphasize, though, that the in our protocol the corrupt parties can only set their input once, and
that the only “useful” input strategy that they can use when computing the multi-party PSI functionality,
is to use the same input set for all corrupt parties, since any value which is not in the intersection of the
inputs of the corrupt parties will surely not be in the final PSI output.

A detailed discussion of the “power” of the augmented semi-honest model can be found in [HL10] Sec.
2.2.3. We present here the formal definition of this model (Def. 7.4.24 of [Gol09]). We note that this
model was implicitly used by multiple other works related to OT, such as the private equality test protocol
in [GOW12] or the multi-party PSI protocol in [FNP04].

Definition 3. (the augmented semi-honest model): Let Π be a two-party protocol. An augmented semi-honest
behavior (with respect to Π) is a (feasible) strategy that satisfies the following conditions:

• Entering the execution (this is the only part of the definition which differs than the standard definition
of semi-honest behavior): Depending on its initial input, denoted u, the party may abort before taking
any step in the execution of Π. Otherwise it enters the execution with any input u′ ∈ {0, 1}|u| of its
choice. From this point on, u′ is fixed.

• Proper selection of a random-tape: The party selects the random tape to be used in Π uniformly among
all strings of the length specified by Π. That is, the selection of the random-tape is exactly as specified
by Π.

• Proper message transmission or abort: In each step of Π, depending on its view of the execution so
far, the party may either abort or send a message as instructed by Π. We stress that the message is
computed as Π instructs based on input u′, the selected random-tape and all the messages received so
far.

• Output: At the end of the interaction, the party produces an output depending on its entire view of the
interaction. We stress that the view consists of the initial input u, the selected random tape, and all
the messages received so far.

B Hashing Schemes and Parameter Analysis

In this section we describe a new variant of Cuckoo hashing that avoids a stash. We analyze its parameters.
There are three parameters[KMW08] that affect the Cuckoo hashing failure probability: the number of

bins ζn, the number of hash functions h, and the stash size s. Let Prn,ζ,h(S ≥ s) denote the probability that
when hashing n items into ζn bins (for 1 < ζ < 2) using h hash functions, the stash size exceeds s. [PSZ16]
proved that asymptotically, Prn,ζ,h(S ≥ s) = O(n(1−h)(s+1)) when h ≥ 2ζ ln( e

ζ−1 ).

Our new variant works as follows to insert an item x. There are (ζ1 + ζ2)n bins.

• First, use traditional Cuckoo hashing with h1 hash functions to insert x into one of the first ζ1n bins.

• If the first phase fails, then use Cuckoo hashing with h2 = 2 hash functions to insert the final evicted
item into the last ζ2n bins.

The overall procedure fails if the second phase fails to find a suitable location for the final item. Note that
the probability that s items will require a second phase of hashing is exactly Prn,ζ1,h1(S ≥ s). Hence, the
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Figure 12: Required number of bins nζ1 in first step of bucket allocation of our hashing scheme. The solid
lines shows the actual measurements, the dashed lines were extrapolated using linear regression.

failure probability of the overall procedure is:

Pr
n,ζ1,ζ2

(S ≥ 0) =

n∑
s=1

(
Pr

n,ζ1,h1

(S1 ≥ s) Pr
s,ζ2,h2=2

(S2 ≥ 0)
)

(2)

=

n∑
s=1

(
O(n(1−h1)(s+1))O(s−1)

)
=

n∑
s=1

O(
n(1−h1)(s+1)

s
)

≤
∞∑
s=1

O(
n(1−h1)(s+1)

s
)

≤ O(n1−h1 log2(
nh1

nh1 − n
))

Equation 2 allows us empirically estimate a concrete failure probability given a set of parameters
{n, h1, h2, ζ1, ζ2}. We first fix the number of hash functions h1 = 3, and determine necessary the scale
of bins ζ1, ζ2 such that no stash is required (i.e. s = 0) except with probability < 2−λ.

To obtain concrete numbers of ζ1 when ζ2 fixed, we run 230 repetition of our Cuckoo hashing scheme,
where we mapped n ∈ {27, 28, 29, 210, 211} items to nζ1 bins using h1 hash functions and then mapping all
failed items to nζ2 bins using h2 hash functions. We recorded the scale ζ1 in Figure 12 with the solid line.

To achieve the failure probability for larger n, we use linear regression by a variable n′ = n−2 log2( n3

n3−n )
to extrapolate the ζ1. We substitute n′ back to n and show the relationship between n and the predicted
ζ1 by the dash line in Figure 12. Table 2 shows the extrapolated scale ζ1 for the Cuckoo hashing failure
probability {230, 240}. We observe that for n = 220, our hashing scheme needs 1.3n bins with no stash size.

Simple hashing bounds. Moreover, we also need to guarantee that the maximum bin size β1, β2 is
small when using Simple hashing to map n items to nζ1 bins and nζ2 bins with no overflow. [PSZ16] shows
that the probability of “n balls are mapped at random to m bins, and the most occupied bin has at least k
balls” is

Pr(∃bin with ≥ k balls) ≤ m(
en

mk
)k (3)

We evaluate Eq. 3 with the set sizes n ∈ {212, 216, 220, 224}, and depict the maximum bin size {βi | i ∈ {1, 2}}
for the Simple hashing failure probability {230, 240} in Table 2.
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