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Abstract. A universal circuit (UC) can be programmed to simulate any circuit up to a given size n by
specifying its program bits. UCs have several applications, including private function evaluation (PFE).
The asymptotical lower bound for the size of a UC is proven to be Ω(n logn). In fact, Valiant
(STOC’76) provided two theoretical UC constructions using so-called 2-way and 4-way constructi-
ons, with sizes 5n log2 n and 4.75n log2 n, respectively. The 2-way UC has recently been brought into
practice in concurrent and independent results by Kiss and Schneider (EUROCRYPT’16) and Lip-
maa et al. (Eprint 2016/017). Moreover, the latter work generalized Valiant’s construction to any
k-way UC.
In this paper, we revisit Valiant’s UC constructions and the recent results, and provide a modular
and generic embedding algorithm for any k-way UC. Furthermore, we discuss the possibility for a more
efficient UC based on a 3-way recursive strategy. We show with a counterexample that even though it is
a promising approach, the 3-way UC does not yield an asymptotically better result than the 4-way UC.
We propose a hybrid approach that combines the 2-way with the 4-way UC in order to minimize the
size of the resulting UC. We elaborate on the concrete size and depth of all discussed UC constructions
and show that our hybrid UC yields on average 3.65% improvement in size over the 2-way UC. We
implement the 4-way UC in a modular manner based on our proposed embedding algorithm, and show
that our methods for programming the UC can be generalized for any k-way construction.
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1 Introduction

Universal circuits (UCs) are Boolean circuits that can be programmed to simulate any Boolean
function f(x) up to a given size by specifying a set of program bits pf . The UC then receives
these program bits as input besides the input x to the functionality, and computes the result as
UC(x, pf ) = f(x). This means that the same UC can evaluate multiple Boolean circuits, only the
different program bits are to be specified.

Valiant proposed an asymptotically size-optimal construction in [Val76] with size Θ(n log n) and
depth O(n), where n is the size of the simulated Boolean circuit description of f(x). He provides two
constructions, based on 2-way and 4-way recursive structures. A depth-optimal construction with
depth O(d) that simulates circuits with depth d was proposed in [CH85], but it has a significantly
larger size of O( n3d

logn). Recently, optimizations of Valiant’s size-optimized construction appeared in
concurrent and independent works of [KS16] and [LMS16,Sad15]. Both works implement Valiant’s
2-way recursive construction.

1.1 Applications of Universal Circuits

Size-optimized universal circuits have many applications. We review some of them here and refer
to [KS16,LMS16] for further details.
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Private Function Evaluation (PFE). One of the most prominent applications of UCs is private
function evaluation (PFE), firstly proposed in [AF90]. Secure two-party computation or secure
function evaluation (SFE) provides interactive protocols for evaluating a public function f(x, y) on
two parties’ private inputs x and y. However, in some scenarios, the function f is a secret input
of one of the parties. This setting is called private function evaluation (PFE). PFE of f(x) can be
achieved by running SFE of UC(x, pf ), where the UC is a public function and the program bits pf
– and therefore f – are kept private due to the properties of SFE. Protocols designed especially
for PFE such as [MS13,BBKL17] achieve the same asymptotic complexity O(n log n) as PFE using
UCs, where n is the size of the function f .1 However, to the best of our knowledge, they have not
yet been implemented, and they are not as generally applicable as PFE with UCs.

UC-based PFE can be easily integrated into any SFE framework and can directly benefit from
recent optimizations. For instance, the fact that SFE can be outsourced to two or more computing
servers [KR11] implies that outsourcing UC-based PFE is also directly possible [KS16]. The non-
interactive secure computation protocol of [AMPR14] can also be generalized to obtain a non-
interactive PFE protocol [LMS16].

PFE can be applied in scenarios where one of the parties wants to keep the evaluated function
private. One of the first applications for PFE was privacy-preserving checking for credit worthi-
ness [FAZ05], where not only the loanee’s data, but also the loaner’s function that computes if the
loanee is eligible for a credit needs to be kept private. PFE allows for running proprietary software on
private data, such as privacy-preserving software diagnosis [BPSW07], medical programs [BFK+09],
or privacy-preserving intrusion detection [NSMS14]. UCs can be applied to obliviously filter remote
streaming data [OI05] and for hiding queries in private database management systems such as Blind
Seer [PKV+14,FVK+15].

Applications Beyond PFE. Universal circuits can be applied for program obfuscation. Candida-
tes for indistinguishability obfuscation are constructed using a UC as a building block in [GGH+13a,
BV15]. The algorithm of [GGH+13a] has been implemented in [BOKP15], which can be improved
using Valiant’s UC implementation [KS16]. Direct program obfuscation was proposed in [Zim15],
where the circuit is a secret key to a UC. [LMS16] mentions that UCs can be applied for se-
cure two-party computation in the batch execution setting, where the cost of evaluating Yao’s
garbled circuits is amortized if the same circuit – a UC – is evaluated [HKK+14, LR15], which
has been made round-optimal in [MR17]. It can be applied for efficient verifiable computation as
described in [FGP14], and for multi-hop homomorphic encryptionwith function privacy [GHV10].
Ciphertext-policy Attribute-Based Encryption was proposed in [Att14], where the policy circuit is
hidden [GGH+13b,GVW13].

1.2 Related Work on Universal Circuits

Valiant defined universal circuits in [Val76] and gave two size-optimized constructions. The con-
structions are based on so-called edge-universal graphs (EUGs) and utilize either a 2-way or a
4-way recursive structure, also called 2-way or 4-way UCs. Both achieve the asymptotically optimal
size Θ(n log n) [Val76,Weg87], where n is the size of the simulated circuit. Wegener was the first

1There also exist PFE protocols with linear complexity O(n) which are based on public-key primitives [KM11,
MS13,MSS14]. However, the concrete complexity of these protocols is worse than that of the protocols based on
(mostly) symmetric-key primitives, i.e., the OT-based PFE protocols of [MS13,BBKL17] or PFE using UCs.
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to describe the key ideas behind Valiant’s 2-way construction more clearly in [Weg87]. The con-
crete complexity of the 4-way UC is ∼ 4.75n log2 n which is smaller than that of the 2-way UC of
∼ 5n log2 n [Val76].

The first modular UC construction was proposed by Kolesnikov and Schneider in [KS08b]. This
construction achieves a non-optimal asymptotic complexity of O(n log2 n). However, this was the
first implementation of UCs and provides some efficient building blocks. A generalization of UCs
for n-input gates was given by Sadeghi and Schneider in [SS08].

Recently, two independent works have optimized and implemented Valiant’s 2-way UC [KS16,
LMS16]. Kiss and Schneider in [KS16] mainly focus on the most prominent application of UCs,
i.e., private function evaluation (PFE). Due to the free-XOR optimization of [KS08a] in the SFE
setting, they optimize the size of the UC for the number of AND gates in the resulting UC im-
plementation and provide a framework for PFE using UCs as public function. They also propose
hybrid constructions for circuits with a large number of inputs and outputs, utilizing efficient buil-
ding blocks from [KS08b]. Lipmaa et al. in [LMS16] also provide an (unpublished) implementation
of the 2-way UC. While keeping the number of AND gates minimal, they additionally optimize for
the total number of gates, i.e., include optimizations to also reduce the number of XOR gates. They
adapt the construction to arithmetic circuits and generalize the design to a k-way construction in a
modular manner, for k ≥ 2.

Both papers utilize 2-coloring of the underlying graphs for defining the program bits pf for any
given functionality f . Generally, 2-coloring can be utilized for any 2i-way construction. [LMS16]
calculate the optimal value for k to be 3.147, and conclude that the two candidates for the most
efficient 2i-way constructions are the 2-way and 4-way UCs, of which the 4-way construction results
in an asymptotically smaller size.

In conclusion, so far only Valiant’s 2-way UC has been implemented and the not yet implemented
4-way construction was postulated to be the most efficient one. Moreover, the concrete sizes of k-way
constructions for k 6= 2 and k 6= 4 have also not been investigated.

1.3 Outline and Our Contributions

In summary, we provide the first implementation and detailed evaluation of Valiant’s 4-way UC and
propose an even more efficient hybrid UC. We elaborate on the size of the generalized k-way UCs
for k 6= 2 and k 6= 4.

After revisiting Valiant’s UC construction [Val76,KS16] and its k-way generalization [LMS16]
in §2, we provide the following contributions:

Our modular programming algorithm (§3): We detail a modular algorithm that provides the
description of the input function f as program bits pf to the UC, both for Valiant’s 4-way UC as
well as for the k-way UC of Lipmaa et al. [LMS16].

New universal circuit constructions (§4): We start with a new 3-way UC. After providing
modular building blocks for this UC, we show that it is asymptotically larger than Valiant’s UCs.
Then, we propose a hybrid UC construction that can efficiently combine k-way constructions for
multiple values of k.2 With this, we combine Valiant’s 2-way and 4-way UCs to achieve the smallest
UC known so far.

2Our hybrid UC is orthogonal to that of [KS16], who combine Valiant’s UC with building blocks from [KS08b]
for the inputs and outputs.

3



Special-purpose PFE UC-based PFE using Yao
n [MS13] [BBKL17] 2-way UC [KS16] Our 4-way UC Our Hybrid UC
103 3.5 MB 2.0 MB 0.6 MB 0.6 MB 0.6 MB
104 44.8 MB 26.3 MB 8.4 MB 8.4 MB 8.2 MB
105 549.6 MB 324.0 MB 109.6 MB 107.8 MB 106.2 MB
106 6 509.9 MB 3 847.9 MB 1 360.3 MB 1 308.4 MB 1 308.4 MB
107 75 236.5 MB 44 562.1 MB 16 038.8 MB 15 677.7 MB 15 413.7 MB

Table 1: Comparison of overall communication between special-purpose PFE protocols and UC-
based ones for simulated circuits of size n. The numbers are for 128 bit symmetric security. The
underlying SFE protocol for UC-based PFE is Yao’s protocol [Yao86] with the garbled row reduction
optimization [NPS99] and X- and Y-switching blocks are instantiated using free XORs as described
in [KS08a]. This yields one ciphertext per X- and Y-switching block, and three ciphertexts per
universal gate.

Size and depth of UCs (§5): We compare the asymptotic and concrete sizes and depths of
Valiant’s (2-way and 4-way) UC constructions and that of different k-way UCs. We show that of all
k-way UCs, Valiant’s 4-way UC provides the best results for large circuits. Moreover, our hybrid UC
in most cases improves over the 2-way UC by up to around 4.5% in its size, and over the 4-way UC
by up to 2% (for large input circuits). In Table 1 we compare the concrete communication of PFE
using SFE and our new UC implementation to the previous works on special-purpose OT-based
PFE protocols.

Implementation of Valiant’s 4-way UC and experiments (§6): We implement Valiant’s
4-way UC and describe how our implementation can directly be used in the PFE framework
of [KS16]. We experimentally evaluate the performance of our UC generation and programming
algorithm with a set of example circuits and compare it on the same platform with the 2-way UC
compiler of [KS16]. We also discuss the modifications needed to be included for implementing our
hybrid construction.

2 Preliminaries

In this section, we summarize the existing UC constructions. We provide necessary background
information in §2.1, explain Valiant’s construction [Val76] in §2.2 and the improvements of [KS16,
LMS16] on the 2-way, 4-way and k-way UCs in §2.3, §2.4 and §2.5, respectively.

2.1 Preliminaries to Valiant’s UC Constructions

Let G = (V,E) be a directed graph with set of nodes V and edges E ⊆ V × V . The number of
incoming [outgoing] edges of a node is called its indegree [outdegree]. A graph has fanin [fanout ] d
if the indegree [outdegree] of all its nodes is at most d. In the following, we denote by Γd(n) the
set of all acyclic graphs with fanin and fanout d having n nodes. Similarly, the fanin [fanout] of a
circuit can be defined based on the maximal number of incoming [outgoing] wires of all its gates,
inputs and outputs.

Let G = (V,E) ∈ Γd(n). A mapping ηG : V → {1, . . . , n} is called topological order if (ai, aj) ∈
E ⇒ ηG(ai) < ηG(aj) and ∀a1, a2 ∈ V : ηG(a1) = ηG(a2) ⇒ a1 = a2. A topological order in
G ∈ Γd(n) can be found with computational complexity O(dn).
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Fig. 1: Fig. 1a shows an example Γ2(5) graph G. Figs. 1b-1c show the edge-embedding of G into two
U5(Γ1) instances with poles (p1, . . . , p5). Fig. 1d shows the edge-embedding of G into one U5(Γ2)
graph.

A circuit Ck∗u,v with u inputs, k∗ gates and v outputs and fanin or fanout d > 2 can be reduced to
a circuit with fanin and fanout 2. Shannon’s expansion theorem [Sha49,Sch08] describes how gates
with larger fanin can be reduced to gates with two inputs by adding additional gates. [Val76,KS16]
describe the process of adding copy gates in order to eliminate larger fanout and elaborate on the
implied overhead (k ≤ 2k∗ + v). [KS08b,KS16] implement these methods and we thus assume that
our input Boolean circuit Cku,v has fanin and fanout 2 for all its u inputs, k gates and v outputs.
We transform Cku,v with u inputs, v outputs and k gates into a Γ2(n) graph G with n = u+ v + k

by creating a node for each input, gate and output, and an edge for each wire in Cku,v.
Edge-embedding is a mapping from graph G = (V,E) into G′ = (V ′, E′) with V ⊆ V ′ and E′

containing a path for each e ∈ E, such that the paths are pairwise edge-disjoint. A graph Un(Γd) =
(VU , EU ) is an Edge-Universal Graph (EUG) for Γd(n) if every graph G ∈ Γd(n) can be edge-
embedded into Un(Γd).3 Un(Γd) has distinguished nodes called poles {p1, . . . , pn} ⊆ VU where each
node a ∈ V is mapped to exactly one pole with a mapping ϕ, such that every node in G has a
corresponding pole in Un(Γd). This mapping is defined by a concrete topological order ηG of the
original graph G, i.e., ϕ : V → VU with ϕ(a) = pηG(a). Besides the poles, Un(Γd) might have
additional nodes that enable the edge-embedding. For each edge (ai, aj) ∈ E we then define a
disjoint path between the corresponding poles (ϕ(ai), . . . , ϕ(aj)) = (pηG(ai), . . . , pηG(aj)) in Un(Γd),
i.e., without using any edge in Un(Γd) in more than one path.

Let Un(Γ1) be an EUG for graphs in Γ1(n) with poles P = {p1, . . . , pn}. We require that the
poles have fanin and fanout 1, while all other nodes have fanin and fanout 2. An EUG Un(Γd)
for d ≥ 2 can be created by taking d instances of Un(Γ1) EUGs, and merging each pole pi with its
multiple instances, allowing the poles to have fanin-fanout d. Let Un(Γd) = (V ′U , E

′
U ) be an EUG

with fanin and fanout d, constructed with Un(Γ1)1 = (V1, E1), . . . , Un(Γ1)d = (Vd, Ed). P contains

3For the sake of simplicity, we denote this graph with Un(Γd) instead of U(Γd(n)).
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Fig. 2: Switching Blocks

the merged poles and V ′U = P ∪di=1 Vi\Pi and E′U = ∪di=1Ei. Now, every pole in Un(Γd) has at
most d, and every node has at most two inputs and outputs.

We give an example for better understanding. Let G = (V,E) be the graph with 5 nodes
in Fig. 1a. Our aim is to edge-embed G into EUG U5(Γ2). Therefore, we use two instances of U5(Γ1):
U5(Γ1)1 in Fig. 1b and U5(Γ1)2 in Fig. 1c. The edges (a1, a4), (a2, a3) and (a3, a5) are embedded
in U5(Γ1)1, and the edges (a1, a3) and (a3, a4) in U5(Γ1)2. Merging the poles of U5(Γ1)1 and U5(Γ1)2
produces U5(Γ2) shown in Fig. 1d.

2.2 Valiant’s UC Constructions

The size of a function f represented by a circuit Cku,v with fanin and fanout 2 is n = u + v + k.
In the following, we describe Valiant’s UC construction [Val76,Weg87] that can be programmed to
evaluate any function of size n. Circuit Cku,v is represented as a graph G ∈ Γ2(n) (cf. §2.1).

Valiant’s UC is based on an EUG Un(Γ2) = (VU , EU ) with fanin and fanout 2, which can be
transformed to a Boolean circuit. P ⊆ VU contains the poles of Un(Γ2) (cf. §2.1). These poles
correspond to the inputs, gates and outputs of Cku,v, i.e., poles {1, . . . , u} correspond to the inputs,
{(u+ 1), . . . , (u+ k)} to the gates, {(u+ k + 1), . . . , n} to the outputs. The edges of the graph
of the circuit G = (V,E) have to be embedded into Un(Γ2). After the transformations described
in §2.1, every node in G has fanin and fanout 2, and we denote a topological order on V by ηG. We
briefly describe the edge-embedding process in §2.3 and §3.

Translating a Un(Γ2) into a Universal Circuit. Every node w ∈ VU fulfills a task when Un(Γ2)
is translated to a UC. Programming the UC means specifying its control bits along the paths defined
by the edge-embedding and by the gates of circuit Cku,v. Depending on the number of incoming and
outgoing edges and its type, a node is translated to:

G1 If w is a pole and corresponds to an input or output in G, then w is an input or output in Un(Γ2)
as well.

G2 If w is a pole and corresponds to a gate in G, w is programmed as a universal gate (UG). A
2-input UG supports any of the 16 possible gate types represented by the 4 control bits of the
gate table (c1, c2, c3, c4). It implements function ug: {0, 1}2 × {0, 1}4 → {0, 1} that computes:

ug(x1, x2, c1, c2, c3, c4) = x1x2c1 + x1x2c2 + x1x2c3 + x1x2c4 (1)

Generally, a UG can be implemented with 3 AND and 6 XOR gates (resp. with a two-input gate
when using Yao’s protocol for SFE) [KS16].
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G3 If w is no pole and has indegree and outdegree 2, w is programmed as an X-switching block, that
computes fX : {0, 1}2×{0, 1} → {0, 1}2 with fX((x1, x2), c) = (x1+c, x2−c) as shown in Fig. 2a.
The inputs of an X-switching block are forwarded to its outputs, switched or not switched,
depending on control bit c. This block can be implemented with 1 AND and 3 XORs (resp. a
one-input gate with Yao) [KS08a].

G4 If w is no pole and has indegree 2 and outdegree 1, w is programmed as a Y-switching block
that computes fY : {0, 1}2×{0, 1} → {0, 1} with fY ((x1, x2), c) = x1+c as visualized in Fig. 2b.
The inputs of a Y-switching block are forwarded to its output depending on the control bit c. A
Y-switching block provides the functionality of a 2-input multiplexer, and can be implemented
with 1 AND and 2 XORs (resp. a one-input gate with Yao) [KS08a].

G5 If w is no pole and has indegree 1 and outdegree 2, this node has been placed to copy its input
to its two outputs. Therefore, when translated to a UC, w is replaced by multiple outgoing
wires in the parent node (as described in [KS16]), since the UC itself does not have the fanout 2
restriction. In Un(Γ2), w is added due to the fanout 2 restriction in the EUG necessary for the
edge-embedding.

G6 If w is no pole and has indegree and outdegree 1, w is removed and replaced by a wire between
its parent and child nodes.

The nodes programmed as UG (G2), X-switching block (G3) or Y-switching block (G4) are
so-called programmable blocks. This means that a programming bit or vector is necessary besides
the two inputs to define their behavior as described above. These programming bits and vectors
that build up the programmig of the UC pf are defined by the paths in the edge-embedding of G
(the graph of circuit Cku,v describing f) into Un(Γ2).

Recursion Base. Valiant’s construction is recursive, and the recursion base is reached when the
number of poles is between 1 and 6. These recursion base graphs are shown in [Val76,KS16]. U1(Γ1)
is a single pole, U2(Γ1) and U3(Γ1) are two and three connected poles, respectively. U4(Γ1) is
constructed with 3 additional nodes which are between 2 poles, i.e. there is alternatively a pole
and a node from top to bottom. Valiant provides hand-optimized EUG constructions for U5(Γ1)
and U6(Γ1) [Val76], with 7 and 9 additional nodes, respectively.

2.3 Valiant’s 2-Way UC Construction

We described in §2.1 that a Un(Γd) EUG can be constructed of d instances of Un(Γ1) EUGs.
Therefore, Valiant provides an EUG for Γ1(n) graphs, two of which can build an EUG for Γ2(n)
graphs. Let P = {p1, . . . , pn} be the set of poles in U (2)

n (Γ1) that have indegree and outdegree 1.
Valiant’s 2-way EUG construction for Γ1(n) graphs of size ∼ 2.5n log2 n is shown in Fig. 3, where
we emphasize the poles as large circles and the additional nodes as small circles or rectangles. The
corresponding UC has twice the size ∼ 5n log2 n, since it corresponds to the EUG for Γ2(n) graphs.

The rectangles are special nodes that build up the set of poles in the next recursion step,
i.e., R1

dn
2
−1e = {r11, . . . , r1dn

2
−1e} and R2

dn
2
−1e = {r

2
1, . . . r

2
dn
2
−1e}. Another EUG is built with these

poles which produces new subgraphs with size d d
n
2
−1e
2 −1e, s.t. we have four subgraphs at this level.

This construction is called the 2-way EUG or UC construction since there are two sets of recur-
sion nodes at each recursion step. An open-source implementation of this construction optimized for
PFE is provided in [KS16]. Independently, [LMS16] also implemented this 2-way UC, additionally
optimizing for the total number of gates.

7



p2i+1

p2i+2

r1i r2i

r1i+1 r2i+1
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(b) Body Block (1)

p1
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r11 r21

(c) Head Block

pn−1

pn

r1dn
2
−1e r2dn

2
−1e

(d) Tail Block (2)

pn

r1dn
2
−1e

(e) Tail Block (1)

Fig. 3: Fig. 3a shows Valiant’s 2-way EUG U
(2)
n (Γ1) [Val76]. Fig. 3c shows the corresponding head

block, Fig. 3b and Figs. 3d–3e show body and tail blocks, respectively, for different numbers of
poles.

2.4 Valiant’s 4-Way UC Construction

Valiant provides another, so-called 4-way EUG or UC construction [Val76]. U (4)
n (Γ1) has a 4-way

recursive structure, i.e., at each recursion step, nodes in special sets R1
dn
4
−1e, R

2
dn
4
−1e, R

3
dn
4
−1e and

R4
dn
4
−1e are the poles in the next recursion step (cf. Fig. 5a on p. 10). The recursion base is the

same as for the 2-way UC construction described in §2.2. This construction results in UCs of smaller
size ∼ 4.75n log2 n but has not been implemented before due to its more complicated structure and
programming algorithm.

2.5 Lipmaa et al.’s Generalized k-Way UC Construction

In [LMS16], Lipmaa et al. generalize Valiant’s approach by providing a UC with any number of
recursion points k, the so-called k-way EUG or UC construction. We note that their construction
slightly differs from Valiant’s EUG construction, since they do not consider the restriction on the
fanout of the poles, i.e., the nodes in the EUG that correspond to universal gates or inputs (cf. §2.2).
This optimization has also been included in [KS16] when translating an EUG to a UC, but including
it in the block design leads to better sizes for the number of XOR gates.

The idea is to split n = u + v + k in m = dnk e blocks as shown in Fig. 4. Every block i
consists of k inputs r1i , r

2
i , . . . , r

k
i and k outputs r1i+1, r

2
i+1, . . . , r

k
i+1 as well as k poles, except for

the last block which has a number of poles depending on n mod k. For every j ≤ k, the list of
all rji builds the poles of the jth subgraph of the next recursion step, i.e. we have k subgraphs.
Additionally, every block begins and ends with a Waksman permutation network [Wak68] such that
the inputs and outputs can be permuted to every pole. A Y-switching block is placed in front of
every pole pi which is connected to the ith output of the permutation network as well as the ith

output of a block-intern EUG Uk(Γ1). This means that [LMS16] reduce the problem of finding an
efficient k-way EUG U

(k)
n (Γ2) to the problem of finding the smallest EUG Uk(Γ1). Their solution

is to build the block-intern EUG with the UC construction of [KS08b], which was claimed to be
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Fig. 4: k-way EUG construction U (k)
n (Γ1) [LMS16].

more efficient for smaller circuits than [Val76]. However, they calculate the optimal k value to be
around 3.147, which implies that the best solutions are found using small EUGs, for which Valiant
provides hand-optimized solutions (i.e., for k = 2, 3, 4, 5, 6) [Val76].

3 Our Modular Edge-Embedding Algorithm

The detailed embedding algorithm and the open-source UC implementation of [KS16] was specifi-
cally built for the 2-way UC, dealing with the whole UC skeleton as one block. In contrast, based on
the modular design of [LMS16], we modularize the edge-embedding task into multiple sub-tasks and
describe how they can be performed separately. In this section, we detail this modular approach for
edge-embedding a graph into Valiant’s 4-way EUG: the edge-embedding can be split into two parts,
which are then combined. In §3.1, we describe our modular approach based on the edge-embedding
algorithm of [KS16] for Valiant’s 2-way EUG construction. This can be generalized to any 2i-way
EUG construction. Moreover, the same modular edge-embedding algorithm can be applied with a
few modifications for Lipmaa et al.’s k-way recursive generalization [LMS16], which we describe
in §3.2.

3.1 Edge-Embedding in Valiant’s 4-Way UC

Similar to the 2-way EUG construction (cf. §2.3), Valiant provides a 4-way EUG construction
for Γ1(n) graphs which can be extended to an EUG for Γ2(n) graphs by utilizing two instan-
ces U (4)

n (Γ1)1 and U
(4)
n (Γ1)2 as described in §2.1. The construction with our optimizations is vi-

sualized in Fig. 5. Valiant offers the main, so-called Body Block (Fig. 5a) consisting of 4 poles
(large circles), 15 nodes (small circles) as well as 8 recursion points (squares). These body blocks
are connected such that the 4 top [bottom] recursion points of one block are the 4 bottom [top]
recursion points of the next block. Similarly to the 2-way EUG, 4 sets are created for n no-
des, i.e., R1

dn
4
−1e = {r

1
1, . . . , r

1
dn
4
−1e}, R

2
dn
4
−1e = {r21, . . . , r2dn

4
−1e}, R

3
dn
4
−1e = {r31, . . . , r3dn

4
−1e}, and

R4
dn
4
−1e = {r

4
1, . . . , r

4
dn
4
−1e} which are the poles of 4 Udn

2
e−1(Γ1) EUGs in the next recursion step.

Then, these also create 4 subgraphs until the recursion base is reached, cf. §2.2.
We note that the top [bottom] block does not need the upper [lower] recursion points since its

poles are the inputs [outputs] in the block. Therefore, we provide so-called Head and Tail Blocks.
A Head Block occurs at the top of a chain of blocks (cf. Fig. 5e), it has 4 poles, no inputs, 4 output
recursion points and 10 nodes, of which the first one (denoted by a filled circle) has one input and
therefore translates to wires in the UC.

As a counterpart, Tail Blocks occur at the bottom of a chain of blocks, have at most 4 poles,
4 input recursion points, no outputs and at most 10 nodes depending on the number of poles. The
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p4i+1

p4i+2

p4i+3

p4i+4

r1i r2i r3i r4i

r1i+1 r2i+1 r3i+1 r4i+1

(a) Body Block (4)
. . . . . .

r1dn
4
−1e r2dn

4
−1e r3dn

4
−1e

(b) Body/Head Block (3)
. . .

r1dn
4
−1e r2dn

4
−1e

(c) Body/Head Block (2)
. . .

r1dn
4
−1e

(d) Body/Head Block (1)

p1

p2

p3

p4

r11 r21 r31 r41

(e) Head Block (4)

pn−3

pn−2

pn−1

pn

r1dn
4
−1e r2dn

4
−1e r3dn

4
−1e r4dn

4
−1e

(f) Tail Block (4)

pn−2

pn−1

pn

r1dn
4
−1e r2dn

4
−1e r3dn

4
−1e

(g) Tail Block (3)

pn−1

pn

r1dn
4
−1e r2dn

4
−1e

(h) Tail Block (2)

pn

r1dn
4
−1e

(i) Tail Block (1)

Fig. 5: Fig. 5a shows Valiant’s 4-way EUG U
(4)
n (Γ1) [Val76]. Fig. 5e shows our head block con-

struction, Figs. 5a–5d and Figs. 5f–5i show our body and tail block constructions, respectively, for
different numbers of poles.
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4 tail block constructions are depicted in Figs. 5f–5i and are used, based on the remainder of n
modulo 4, with the respective body or head blocks when n ∈ {5, 6, 7}, the lower parts of which are
shown in Figs. 5a–5d.

Block Edge-Embedding. In this first part of the edge-embedding process, we consider the 4 top
[bottom] recursion points of the block as intermediate nodes where the inputs [outputs] of the block
enter [leave]. The blocks are built s.t. any of these inputs can be forwarded to exactly one of the 4
poles of the block and the output of any pole can be forwarded to exactly one output or another
pole having a higher topological order.

We formalize this behaviour as follows: In U
(4)
n (Γ1) = (VU , EU ), let B be the block visuali-

zed in Fig. 5a with poles p4i+1, . . . , p4i+4. Let mapping ηU : VU → N+ denote a topological or-
der of all nodes and poles in VU . Then, the nodes r1i , . . . , r

4
i and r1i+1, . . . , r

4
i+1 denote the input

and output recursion points of block B. Additionally, let in = (in1, . . . , in4) ∈ {0, . . . , 4}4 and
out = (out1, . . . , out4) ∈ {0, . . . , 7}4 denote the input and output vectors of B. The value 0 of the
input and output vectors is a dummy value which is used if an input [a pole] is not forwarded to
any pole [output] of B. The output vector has a larger value range, since a pole can be forwarded
to another pole or an output recursion point. Therefore, we use values 1, 2 and 3 for poles p2, p3
and p4 and values 4, 5, 6 and 7 for the output recursion points. Pole p1 cannot be a destination for
a path in B, since ηU (p1) is less than the topological order of any other pole in B. Additionally,
the values of in and out need to be pairwise different or 0. Every combination of input and output
vector covering the conditions formalized below in Eqs. 2–6 are valid for B. A pair (rli, pj) ∈ P
or (pj , r

l
i+1) ∈ P is a path from rli to pj or pj to rli in the set of all paths P in B. Then, PB ⊆ P

denote the paths that are to be edge-embedded (cf. 6.1).

∀l ∈ {1, . . . , 4} : inl 6= 0→(rli, pinl
) ∈ PB, (2)

outl 6= 0 ∧ outl < 4→(pj , p1+outl) ∈ PB ∧ η
U (pj) < ηU (p1+outl), (3)

outl > 3→(pj , r
l−3
i+1) ∈ PB. (4)

∀ini, inj ∈ in : i 6= j →ini = 0 ∨ ini 6= inj . (5)
∀outi, outj ∈ out : i 6= j →outi = 0 ∨ outi 6= outj . (6)

Recursion Point Edge-Embedding. The block edge-embedding covers only the programming of
the nodes within a block. Another task left is to program the recursion points. We use the supergraph
construction of [KS16] which, in every step, splits a Γ2(n) graph in two Γ1(n) graphs, which are
merged to two Γ2(dn2 − 1e) graphs. [KS16] use this for defining the paths in Valiant’s 2-way EUG.
For Valiant’s 4-way EUG, we use every second step of their algorithm with a minor modification.

Let Cku,v be the Boolean circuit computing function f that our UC needs to compute, and
G ∈ Γ2(n) its graph representation (cf. §2.2).

1. Splitting G ∈ Γ2(n) in two Γ1(n) graphs G1 and G2: As described in §2.1, Valiant’s UC is derived
from an EUG for Γ2(n) graphs, which consists of two EUGs for Γ1(n) graphs merged by their poles.
Therefore, G is split into two Γ1(n) graphs G1 and G2. G1 and G2 then need to be edge-embedded
into EUGs (U

(4)
n (Γ1))1 and (U

(4)
n (Γ1))2, respectively. G = (V,E) ∈ Γ2(n) is split by 2-coloring its

edges as described in [Val76,KS16], which can always be done due to Kőnig’s theorem [Kő31,LP09].
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After 2-coloring, E is divided to sets E1 and E2, using which we buildG1 = (V,E1) andG2 = (V,E2),
with the following conditions:

∀e ∈ E :(e ∈ E1 ∨ e ∈ E2) ∧ ¬(e ∈ E1 ∧ e ∈ E2). (7)
∀e = (v1, v2) ∈ E1 :¬∃e′ = (v3, v4) ∈ E1 : v2 = v4 ∨ v1 = v3. (8)
∀e = (v1, v2) ∈ E2 :¬∃e′ = (v3, v4) ∈ E2 : v2 = v4 ∨ v1 = v3. (9)

2. Merging a Γ1(n) graph into a Γ2(dn2 − 1e) graph: In an EUG, the number of poles decreases
in each recursion step and therefore, merging a Γ1(n) graph into a Γ2(dn2 − 1e) graph provides
information about the paths to be taken. Let G1 = (V,E) ∈ Γ1(n) be a topologically ordered graph
and Gm = (V ′, E′) ∈ Γ2(dn2 e) be a graph with nodes v′1, . . . , v′dn

2
e. We define two labellings ηin and

ηout on Gm with ηin(vi) = i and ηout(vi) = ηin(vi)− 1 = i− 1. Additionally, we define a mapping θV
that maps a node vi ∈ V to a node vj ∈ V ′ with θV (vi) = v′d i

2
e. That means two nodes in G1 are

mapped to one node in Gm. At last, we define a mapping θE that maps an edge ei = (vi, vj) ∈ E to
an edge ej ∈ E′ with θE((vi, vj)) = (vηin(θV (vi)), vηout(θV (vj))). That means every edge inG1 is mapped
to an edge in Gm as follows: e = (vi, vj) ∈ E is mapped to e′ = (v′k, v

′
l) ∈ E′, s.t. v′k = θV (vi), but v′l

is not the new node of vj in Gm but v′l+1. Gm = (V ′, E′) is built as follows: V = {v′1, . . . , v′dn
2
e}

and E′ =
⋃
e∈E θE(e). Then for all e = (v′i, v

′
j) ∈ E′ and j < i, e is removed from E′, along with

the last node vdn
2
e (due to the definition of θE , it does not have any incoming edges). The resulting

Gm is a topologically ordered graph in Γ2(dn2 − 1e).

3. The supergraph for Valiant’s 4-way EUG construction: In the first step, G is split to two Γ1(n)
graphs G1 and G2. G1 and G2 contain all the edges that should be embedded as paths between
poles in the first and second EUGs for Γ1(n), respectively. We now explain how to edge-embed the
Γ1(n) graph G1 into an EUG U

(4)
n (Γ1) (for G2 it is the same).

For embedding in a 2-way UC, G1 is firstly merged to a Γ2(dn2 e) graph Gm. Gm is then 2-colored

and split into two Γ1(dn2 e) graphs G1
1 and G2

1 [KS16]. These get merged to two Γ2(d
dn
2
−1e
2 − 1e)

graphs G1
m and G2

m. G1
1 is the first and G2

1 is the second subgraph of G1. Then Gψ◦11 and Gψ◦21

denote the first and second subgraph of Gψ1 , respectively. These steps are repeated until the Γ1
subgraphs have at most 4 nodes.

In Valiant’s 4-way EUG construction [Val76], a supergraph that creates 4 subgraphs in each step
is necessary. We require a merging method where a Γ1(n) graph is merged to a Γ4(dn4 − 1e) graph
where 4 nodes build a new node, and 4-color this graph to retrieve 4 subgraphs. However, this can
directly be solved by using the method described above from [KS16]: after repeating the 2-coloring
and the merging twice, we gain 4 subgraphs (G11

1 , G12
1 , G21

1 and G22
1 ). These can be used as if they

were the result of 4-coloring the graph obtained by merging every 4 nodes into one.
However, there is a modification in this case: the first 2-coloring is a preprocessing step, which

does not map to an EUG recursion step. Therefore, we have to define another labelling ηoutP (v) =
ηin(v), since in this preprocessing step we need to keep node vdn

2
e. Then the creation of the super-

graph for the 4-way EUG construction works as follows: We merge G1 to a Γ2(dn2 e) graph with
labelling ηin and ηoutP and get Gm. After that, we split Gm into two Γ1(dn2 e) graphs G1

1 and G2
1.

These get merged to Γ2(dn4 e−1) graphs G1
m and G2

m using the ηin and ηout labellings. Finally, these
two graphs get splitted into 4 Γ1(dn4 − 1e) graphs G11

1 , G12
1 , G21

1 and G22
1 . These are the relevant

graphs for the first recursion step in Valiant’s 4-way EUG construction. Now we continue for all 4
subgraphs until we reach the recursion base with 4 or less nodes.
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Listing 1: Edge-embedding algorithm for Valiant’s 4-way EUG
1 procedure edge−embedding (U , G1 = (V,E))
2 Let S be the s e t o f the 4 Γ1 subgraphs o f G1 in the supergraph
3 Let R be the 4 r e cu r s i on step graphs
4 Let B be the s e t o f b locks in U
5 for a l l e = (vi, vj) ∈ E do
6 Let i′ and j′ denote the p o s i t i o n s o f vi and vj in t h e i r b locks
7 bi ← d i4 e , bj ← d j4 e // number o f b l o c k in which vi and vj are
8 Let out [ r1 ] denote the output vec to r [ r e cu r s i on po in t s ] o f Bbi
9 Let in [ r0 ] denote the the input vec to r [ r e cu r s i on po in t s ] o f Bbj

10 i f bi = bj do // vi and vj are in the same b l o c k
11 i f vi 6= vj do
12 outi′ ← j′ − 1
13 end i f
14 else // vi and vj are in d i f f e r e n t b l o c k s
15 Let s = (V ′, E′) ∈ S denote the Γ1 graph with e′ = (pbi , pbj−1

) ∈ E′ and e′ i s not marked
16 Mark e′

17 Let x denote the number with s = Sx

18 Set the con t r o l b i t o f rx0 to 1
19 i f bj = bi + 1 do // bj and bi are neighbours
20 y ← 0
21 else
22 y ← 1
23 end i f
24 Set the con t r o l b i t o f rx1 to y
25 outi′ ← x+ 4 , inx ← j′

26 end i f
27 end for
28 Edge−embed a l l b locks in U // edge−embed a l l sub−b l o c k s
29 for i = 1 to 4 do
30 i f Si e x i s t s do
31 ca l l edge−embedding (Ri , Si )
32 end i f
33 end for
34 end procedure

4-way Edge-Embedding Algorithm. In Listing 1, we combine block edge-embedding and re-
cursion point edge-embedding:

Let U denote the part of U (4)
n (Γ1) without recursion steps (the main chain of blocks) and

G1 = (V,E) be the Γ1(n) graph which is to be edge-embedded in U (4)
n (Γ1). S denotes the set of the

4 subgraphs of G1 in the supergraph, i.e. S = {G11
1 , G

12
1 , G

21
1 , G

22
1 }. A recursion step graph of U is

one of the graphs having one of the 4 sets of recursion points as poles (e.g. r11, . . . , r1dn
4
−1e) without

the recursion steps. R denotes the set of all 4 recursion step graphs of U , and B denotes the set of
all blocks in U .

We give a brief explanation of Listing 1 that describes the edge-embedding process. For any
edge e = (vi, vj) ∈ E in G1, bi and bj denote the block numbers in which vi and vj are. There are
2 cases:

1. vi and vj are in the same block: bi = bj. The edge-embedding can be solved within the block
and no recursion points have to be programmed for this path. Therefore, vector out of block Bbi
is set accordingly.

2. vi and vj are in different blocks: bi 6= bj. There is an edge e′ = (bi, bj−1) in one of the four
Γ1(dn4 − 1e) subgraphs of G1 that is not yet used for an edge-embedding. This determines that
the path in the next recursion step has to be between poles pbi and pbj−1

. We denote with s ∈ S
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the subgraph of G1 which contains e′, and x denotes its number in S, i.e. Sx = s. This implies in
which of the 4 recursion step graphs we need to edge-embed the path from pbi to pbj−1

, and so
which recursion points we need to program. We first set the programming bit of the x-th input
[output] recursion points to 1 since the path between the poles with labelling i and j enters
[leaves] the next recursion step over this recursion point. A special case to be considered here
is when blocks Bbi and Bbj are neighbours (i.e. bj = bi + 1). Then, the path enters and leaves
the next recursion step graph at the same node, whose programming bit thus has to be 0. The
output vector of block Bbi is the i′th value to the xth recursion point and the input vector of
block Bbj is the xth value to the j′th pole in this block.

We repeat these steps for all edges e ∈ E. Since all in- and output vectors of all blocks in B
are set, they can be embedded with the block edge-embedding. For all 4 subgraphs of G1 in the
supergraph and in the EUG, we call the same procedure with Si ∈ S, Ri ∈ R, 1 ≤ i ≤ 4.

3.2 Edge-Embedding in Lipmaa et al.’s k-way UC

In this section, we extend the recent work of [LMS16] by providing a detailed and modular embedding
mechanism for any k-way EUG construction described in §2.5. We provide the main differences to
the edge-embedding of the 4-way EUG construction detailed in §3.1.

k-way Block Edge-Embedding. In this setting, our main block is a programmable block B of
size x with k poles p1, . . . , pk, and k input [output] recursion points r10, . . . , rk0 [r11, . . . , rk1 ]. B is
topologically ordered with mapping ηU as defined in §2.1. Vectors in = (in1, . . . , ink) ∈ {0, . . . , k}k,
and out = (out1, . . . , outk) ∈ {0, . . . , 2k − 1}k denote the input and output vectors of B, respectively.
Values k, . . . , 2k− 1 in out denote the recursion point targets r11, . . . , rk1 (cf. §3.1). We formalize the
setting of in and out in Eqs. 10–14. We denote with P the set of all paths in B, and the PB ⊆ P
the paths that get edge-embedded in B.

∀i ∈ {1, . . . , k} : ini 6= 0→(ri0, pini) ∈ PB, (10)

outi 6= 0 ∧ outi < k →(pi, p1+outi) ∈ PB ∧ ηU (pi) < ηU (p1+outi) (11)

outi > k − 1→(pi, r
i−k+1
1 ) ∈ PB. (12)

∀ini, inj ∈ in : i 6= j →ini = 0 ∨ ini 6= inj . (13)
∀outi, outj ∈ out : i 6= j →outi = 0 ∨ outi 6= outj . (14)

k-way Recursion Point Edge-Embedding. G ∈ Γ2(n) denotes the transformed graph of a
Boolean circuit Cku,v, where n = u+ k + v.

1. Splitting G ∈ Γ2(n) in two Γ1(n) graphs G1 and G2: Similarly as in §3.1, we first split G into
two Γ1(n) graphs G1 and G2 with 2-coloring.

2. Merging a Γ1(n) graph into a Γk(dnk − 1e) graph: G1 = (V,E) ∈ Γ1(n) is merged into a
Γk(dnk − 1e) graph Gm = (V ′, E′) (same for G2). Therefore, we redefine mapping θV (cf. §3.1)
that maps node vi ∈ V to node vj ∈ V ′. In this scenario, k nodes in V build one node in V ′,
so θV (vi) = vd i

k
e. The mapping of the edges θE is the same as in the 4-way EUG construction, and

(v′i, v
′
j) ∈ E′ where j < i edges are removed along with vdn

k
e in the end. Gm is then a topologically

ordered graph in Γ1(dnk − 1e).

14



3. The supergraph for Lipmaa et al.’s k-way EUG construction: The next step of the construction
is to split Gm ∈ Γ1(dnk − 1e) into k Γ1(dnk − 1e) graphs. This is done with k-coloring: a directed
graph K = (V,E) can be k-colored, if k sets E1, . . . , Ek ⊆ E cover the following conditions:

∀i, j ∈{1, . . . , k} : i 6= j → Ei ∩ Ej = ∅. (15)
∀e ∈E : ∃i ∈ {1, . . . , k} : e ∈ Ei. (16)
∀i ∈{1, . . . , k} : ∀e = (v1, v2) ∈ Ei :
¬∃e′ = (v3, v4) ∈ Ei : v2 = v4 ∨ v1 = v3. (17)

According to Kőnig’s theorem [Kő31,LP09], Γk(n) graphs can always be k-colored efficiently with
a dedicated algorithm (cf. Appendix A). The rest of the supergraph construction and the way it is
used for edge-embedding is the same as for the 4-way EUG construction as described in §3.1.

k-way Edge Embedding Algorithm. The edge-embedding algorithm is the same as shown in
Listing 1, after replacing every 4 with k.

4 New Universal Circuit Constructions

Here, we describe our ideas for novel, potentially more efficient, UC constructions. Firstly, in §4.1,
we describe modular building blocks for a 3-way UC. We show that Valiant’s optimized U3(Γ1)
cannot directly be applied as a building block in the construction due to the fact that it must
have an additional node to be a generic EUG. We prove that the EUG without this node is not
a valid EUG by showing a counterexample. Therefore, it actually results in a worse asymptotic
size than Valiant’s 2-way and 4-way UC constructions. Secondly, in §4.2, we propose a hybrid UC
construction, utilizing both Valiant’s 2-way and 4-way UC constructions so that the overall size of
the resulting hybrid UC is minimized, and is at least as efficient as the better construction for the
given size.

4.1 3-way Universal Circuit Construction

The optimal k value for minimizing the size of the k-way UC was calculated to be 3.147 in [LMS16].
We describe our idea of a 3-way UC construction. Intuitively, based on an optimization by Vali-
ant [Val76], this UC should result in the best asymptotic size. The asymptotic size of any k-way UC
depends on the size of its modular body block Bk (e.g., Fig. 5a for the 4-way UC). Once it is determi-
ned, the size of the UC is size(U (k)

n (Γ2)) = 2 ·size(U (k)
n (Γ1)) ≈ 2 · size(Bk)

k n logk n = 2 · size(Bk)
k log2(k)

n log2 n.
The modular block consists of two permutation networks P (k), an EUG Uk(Γ1), and (k − 1)
Y-switching blocks (cf. §2.5, [LMS16]).

Size of Body Block B3 with Valiant’s Optimized U3(Γ1). According to Valiant [Val76],
an EUG U3(Γ1) with 3 poles contains only 3 connected poles (used as recursion base in §2.2).
An optimal permutation network P (3) that achieves the lower bound has 3 nodes as well. This
implies that size(B3) = 2 · P (3) + size(U3(Γ1)) + (3 − 1) = 11. Then, the size of the UC becomes
≈ 2 · 11

3 log2 3
n log2 n ≈ 4.627n log2 n, which means an asymptotically by around 2.5% smaller size

than that of the 4-way UC.
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(a) Body Block with Valiant’s U3(Γ1)
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p3i+2

p3i+3
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(b) Body Block with our generic U3(Γ1)

Fig. 6: Body block construction for our 3-way EUG U
(3)
n (Γ1).

However, there is a flaw in this initial design. Valiant’s U3(Γ1) only works as an EUG for 3 nodes
under special conditions, e.g., when it is a subgraph within a larger EUG construction. There are 3
possible edges in a topologically ordered graph G = (V,E) in Γ1(3): (1, 2), (2, 3) and (1, 3). (1, 2) and
(2, 3) can be directly embedded in U3(Γ1) using (p1, p2) and (p2, p3), respectively. (1, 3), however,
has to be embedded as a path through node 2, i.e., as a path ((p1, p2), (p2, p3)). When U3(Γ1) is a
subgraph of a bigger EUG, this is possible by programming p2 accordingly. However, when we use
this U3(Γ1) as a building block in our EUG construction, it cannot directly be applied. A generic
U3(Γ1) that can embed (1, 3) without going through p2 as before has an additional Y-switching
block.

We depict in Fig. 6a the 3-way body block that uses Valiant’s optimized U3(Γ1) in the k-way
block design of [LMS16]. Assume that the output of pole p3i+1 has to be directed to pole p3i+3.
Then, it needs to go through pole p3i+2, which means that the edge going in to p3i+2 is used by this
path. However, there might be an other edge coming from the permutation network as an input to
p3i+2, e.g., from p3i from the preceding block. This cannot be directed to p3i+2 anymore as shown
in Fig. 6a. Therefore, in the 3-way body block construction, it does not suffice to use Valiant’s
optimized U3(Γ1) [Val76].

Size of Body Block B3 with Our Generic U3(Γ1). In Fig. 6b, we show the 3-way body block
with the generic U3(Γ1) that allows the output from p3i+1 to be directed to p3i+3 without having to
go through p3i+2. This results in size(B3) = 2 ·P (3)+ size(U3(Γ1))+(3−1) = 12, which implies that
the asymptotic size of the UC is ≈ 2· 12

3 log2 3
n log2 n ≈ 5.047n log2 n. Unfortunately, this is worse than

the asymptotic size of the 2-way construction, and we therefore conclude that the asymptotically
most efficient known UC construction is Valiant’s 4-way UC construction.
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Listing 2: Hybrid construction algorithm
1 procedure hybrid (p1, . . . , pn , K = {2, 4})
2 Let s i z e (Uhybrid

n′ (Γ1)) be the func t i on c a l c u l a t i n g the s i z e o f the sma l l e r hybrid c on s t ru c t i on s
↪→ with s i z e n′ ≤ n

3 for a l l k ∈ K do // Number o f po l e s in the l a s t b l o c k f o r a l l k
4 i f n | k do
5 mk ← k
6 else
7 mk ← n mod k
8 end i f
9 sk ← size(Headk(k)) +

(
dn
k
e − 3

)
· size(Bodyk(k)) + size(Bodyk(rk)) + size(Tailk(mk)) +

↪→ m2 · size
(
size(Uhybrid

dn
2
−1e(Γ1))

)
+ ((k −mk) · size

(
size(Uhybrid

bn
k
−1c(Γ1))

)
10 end for
11 si ← min(sk : k ∈ K) // Choose the b e t t e r cons t ruc t i on
12 Create sk e l e t on for i−way cons t ruc t i on with n po l e s
13 ca l l hybrid

(
r11 , . . . , r

1
dn

i
−1e,K

)
, . . . , hybrid

(
r
mi
1 , . . . , r

mi
dn

i
−1e,K

)
14 i f (i−mi) > 0 do
15 ca l l hybrid

(
r
mi
1 , . . . , r

mi
bn

i
−1c,K

)
, . . . , hybrid

(
ri1, . . . , r

i
bn

i
−1c,K

)
16 end i f
17 end procedure

4.2 Hybrid Universal Circuit Construction

In this section, we detail our hybrid UC that minimizes its size based on Valiant’s 2-way and 4-way
UCs, which are asymptotically the smallest UCs to date. Given the size of the input circuit Cku,v,
i.e., n = u+k+v, we can calculate at each recursion step if it is better to create 2 subgraphs of size
dn2 − 1e and utilize the 2-way recursive skeleton, or it is more beneficial to create a 4-way recursive
skeleton with 4 subgraphs of size dn4 − 1e.

We assume that for every n, we have an algorithm that computes the size (size(Uhybrid
n (Γ1)))

of the hybrid construction for sizes smaller than n. We give details on how it is computed in §5.
Then, Listing 2 describes the algorithm for constructing a hybrid UC, at each step based on which
strategy is more efficient. We note that our hybrid construction is generic, and given multiple k-way
UC constructions as parameter K (K = {2, 4} in our example), it minimizes the concrete size of
the resulting UC.

5 Size and Depth of UC Constructions

Lipmaa et al.’s k-way UC construction is depicted in a modular manner in [LMS16, Fig. 12] and
discussed briefly in §2.5 and Fig. 4. They show that a k-way body block consists of two permutation
networks P (k), an EUG for k nodes, i.e., Uk(Γ1), and additionally, (k − 1) Y-switching blocks. In
this section, we recapitulate the sizes (Table 2) and depths (Table 3) of the k-way EUG and give an
estimate for the leading constant for Lipmaa et al.’s EUG construction with size O(n log2 n) and
depth O(n), for k ∈ {2, . . . , 8}. We conclude that the best asymptotic size is achieved by Valiant’s
4-way UC. This result does not exclude the possibility for a more efficient UC in general, but it
shows that the most efficient UC using Lipmaa et al.’s k-way UC from [LMS16] is the 4-way UC.
Two k-way EUGs for Γ1(n) graphs build up an EUG for Γ2(n) graphs as described in §2.1. Therefore,
the leading constant for the size of the UC is twice that of the EUG U

(k)
n (Γ1), which is summarized

in the same table.
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k Uk(Γ1) U
KS08(k) P l(k) PW(k) BW

k U
(k)
n (Γ1) (·n log2 n) UC (·n log2 n)

2 2 2 1 1 5 2.5 5
3 4 6 3 3 12 ≈ 2.524 ≈ 5.047
4 6 7 5 5 19 2.375 4.75
5 10 11 7 8 30 ≈ 2.584 ≈ 5.168
6 13 14 10 11 40 ≈ 2.579 ≈ 5.158
7 19 19 13 14 53 ≈ 2.697 ≈ 5.394
8 23 21 16 17 62 ≈ 2.583 ≈ 5.167

Table 2: The leading factors of the asymptotic O(n log2 n) size for k-way edge-universal graphs
(U

(k)
n (Γ1)) and universal circuits (UC) for k ∈ {2, . . . , 8}. n denotes the size of the input Γ2(n)

circuit, Uk(Γ1) the size of Valiant’s edge-universal graph with k poles, UKS08(k) the size of the UC
of [KS08b], P l(k) the lower bound for the size of a permutation network for k nodes, and PW(k)
the size of Waksman’s permutation network [Wak68]. BW

k is the size of the body block.

5.1 Asymptotic Size and Depth of k-Way UC Constructions

We review the sizes of the building blocks of a k-way body block, i.e., the size of an EUG Uk(Γ1)
for k, and the size of a permutation network P (k) with k inputs and outputs, as well as the size of
the resulting UCs.

Edge-Universal Graph with k Poles.

Size: Valiant optimized EUGs up to size 6 by hand in [Val76]: for k = 2, U2(Γ1) has two connected
poles, for k = 3 we discussed in §4.1 that an additional node is necessary. For k ∈ {4, 5, 6} the sizes
are {6, 10, 13}, as shown in [KS16, Fig. 1] (note that the nodes noted as empty circles disappear in
the UC and therefore are not counted here). For k = 7 and k = 8, we observe that Valiant’s 2-way
UC construction results in a better size than that of the 4-way UC construction due to the smaller
permutation network and less recursion nodes. Therefore, we use these constructions to compute the
size of U7(Γ1) and U8(Γ1). As mentioned in [LMS16], another possibility is to use the UC of [KS08b]
instead of these EUGs since they have better sizes for small circuits. These UCs UKS08(k) are built
from two smaller UKS08(k2 ), a P (

k
2 ) and

k
2 parallel Y switches. It results in a smaller size of 21 for

k = 8.
Depth: The depth of the hand-optimized EUGs for k ∈ {2, 3, 4, 5, 6} are respectively {2, 4, 5, 7, 10}

as shown in [KS16, Fig. 1]. The depth of U7(Γ1) and U8(Γ1) becomes respectively 16 and 19 with
Valiant’s 2-way UC, and 14 and 16 with the UC from [KS08b].

Permutation Networks.

Size: Waksman in [Wak68] showed that the lower bound for the size of a permutation network is
dlog2(k!)e for k elements. We present this lower bound in Table 2 as P l(k). The permutation network
with the smallest size is Waksman’s permutation network PW(k) [Wak68,BD02]. For k ∈ {2, 3, 4}
its size reaches the lower bound, but for larger k values, his permutation network utilizes additional
nodes. Since these are the smallest existing permutation networks, we use these when calculating the
size of the UC. Even with the lower bound P l(k), for k ∈ {5, 6, 7, 8} we would have the respective
leading terms {4.824, 4.900, 5.190, 5}, which are larger than 4.75 for k = 4.
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k Uk(Γ1) U
KS08(k) P l(k) PW(k) BW

k U
(k)
n (Γ1) (·n) UC (·n)

2 2 2 1 1 6 3 3
3 4 5 3 3 13 ≈ 4.333 ≈ 4.333
4 5 6 3 3 15 3.75 3.75
5 7 9 4 5 22 4.4 4.4
6 10 12 4 5 26 ≈ 4.333 ≈ 4.333
7 16 14 4 5 31 ≈ 4.429 ≈ 4.429
8 19 16 4 5 34 4.25 4.25

Table 3: The leading factors of the asymptotic O(n) depth for k-way edge-universal graphs
(U

(k)
n (Γ1)) and universal circuits (UC) for k ∈ {2, . . . , 8}. n denotes the size of the input Γ2(n)

circuit, Uk(Γ1) the depth of Valiant’s edge-universal graph with k poles, UKS08(k) the depth of the
UC of [KS08b], P l(k) the lower bound for the depth of a permutation network for k nodes, and
PW(k) the depth of Waksman’s permutation network [Wak68]. BW

k is the depth of the k-way body
block.

Depth: The depth of a permutation network has lower bound log2(k) + 1, since each input has
to have a path to each output, where switches have only two inputs and two outputs. We show these
as the depth of P l(k) in Table 3. Waksman’s permutation network achieves the lower bound when
k ∈ {2, 3, 4}, but utilizes additional nodes for larger k values.

Body Blocks. A body block BW
k is built of (k − 1) Y-switching blocks, an EUG for k nodes, and

two permutation networks [LMS16] (cf. Fig. 4).

Size: The size of the body block with Waksman’s permutation network BW
k is the sum of the sizes

of its building blocks, i.e., size(BW
k ) = min

(
size(Uk(Γ1)), size(UKS08(k))

)
+2 · size(PW (k)) + k− 1.

Depth: The depth of BW
k is the number of edges in its building blocks, the additional edges

between the different blocks and the recursion nodes. This means that in total depth(BW
k ) =

min
(
depth(Uk(Γ1)), depth(UKS08(k))

)
+ 2 · depth(PW (k)) + k − 1 + 1.

Edge-Universal Graphs and Universal Circuits with n Poles.

Size: The asymptotic size of EUG U
(k)
n (Γ1) is determined as size(U (k)

n (Γ1)) =
size(BW

k )
k log2 k

n log2 n
and the leading factor for a UC is twice this number.

Depth: The depths of the EUG and of the UC depend only on the depth of the outest skeleton,
not on the subgraphs, since the longest path is between p1 and pn in the outest skeleton. Therefore,
the asymptotic depths of EUG U

(k)
n (Γ1) and the corresponding UC are calculated as depth(BW

k )
k .

5.2 Concrete Size and Depth of UC Constructions

Both the size and depth of Lipmaa et al.’s k-way universal circuits depends on the size and depth
of their building blocks [LMS16]. More concretely, finding either better edge-universal graphs for
small number of nodes or optimal permutation networks could improve the sizes and depths of
these UCs. Lipmaa et al. calculated the optimal k value for minimizing the size of a k-way UC to
be 3.147 [LMS16].
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Table 2 shows that the smallest sizes are achieved by the 4-way, followed by the 2-way UCs. The
3-way UC, as mentioned in §4.1, is less efficient due to the additional node in U3(Γ1). We observe
that the sizes grow with increasing k values due to the large permutation networks and EUGs. The
depth is minimal for the 2-way, followed by the 4-way UCs as shown in Table 3.

Concrete Sizes and Depths of 4-Way and 2-Way UCs. We realize that based on the parity
(2-way UC) and the remainder modulo 4 (4-way UC), not only the size of the outest skeleton, but
also that of the smaller subgraphs can be optimized. Kiss and Schneider considered this in their
2-way UC in [KS16], and we now generalize the approach for k-way UCs. We provide a recursive
formula for the concrete size of the optimized k-way EUG as follows. Let mk be defined as

mk :=

{
n mod k if k - n,
k if k | n.

(18)

Then, given the designed Head, Body and Tail blocks with sizes and depths shown in Table 4, we
can compute the size by calculating the size of all the components of the outest skeleton, and the
sizes of the smaller subgraphs with the recursive formula shown in Eq. 19.4

size(U (k)
n (Γ1)) = size(Head(k)) +

(⌈n
k

⌉
− 3
)
· size(Body(k))+

size(Body(mk)) + size(Tail(mk))+

mk · size
(
U

(k)

dnk−1e
(Γ1)

)
+ (k −mk) · size

(
U

(k)

bnk−1c
(Γ1)

)
. (19)

The depth of a k-way universal circuit also requires the above defined mk, the Head, Tail and Body
blocks, but does not rely on the subgraphs. Therefore, it can be calculated using the closed formula
shown in Eq. 20.

depth(U (k)
n (Γ1)) = depth(Head(k)) +

(⌈n
k

⌉
− 3
)
· depth(Body(k))+

depth(Body(mk)) + depth(Tail(mk)). (20)

Concrete Size and Depth of our Hybrid UC. We provide a hybrid UC in §4.2 for minimizing
the size of the resulting UC. This construction chooses at each step the skeleton that results in the
smallest size and therefore, we provide the recursive algorithm for determining its size in Eq. 21. Its
depth is the depth of the outest skeleton. size(Headk(i)), size(Tailk(i)) and size(Bodyk(i)) are the
values from Table 4 for k = 2 and k = 4. The size of the hybrid UC is minimized as

size(Uhybrid
n (Γ1)) = min

(
size(Headk(k)) +

(⌈n
k

⌉
− 3
)
· size(Bodyk(k))+

size(Bodyk(mk)) + size(Tailk(mk)) +mk · size
(
Uhybrid
dnk−1e

(Γ1)

)
+

(k −mk) · size
(
Uhybrid
bnk−1c

(Γ1)

)
; k ∈ {2, 4}

)
, (21)

which can be computed using a dynamic programming algorithm.
4We note that for k ≥ 3, there exist Head(k−1), . . . , Head(1) blocks. These are used for only one n, e.g., Head(1)

is used when n = k+1, and Head(k−1) when n = 2k. For the sake of simplicity, we consider these as special recursion
base numbers in our calculations, but the formula can be adapted to include these as well.
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Block Head Body Tail
k\Poles 4 3 2 1 4 3 2 1 4 3 2 1
Fig. - - 3c - - - 3a 3b - - 3d 3e
2-way size - - 4 - - - 5 5 - - 4 1
2-way depth - - 4 - - - 6 6 - - 4 1
Fig. 5e 5g 5h 5i 5a 5b 5c 5d 5f 5g 5h 5i
4-way size 14 14 13 12 19 19 18 17 14 9 4 1
4-way depth 11 11 10 10 15 15 14 14 11 9 4 1

Table 4: The sizes and depths of building blocks of the 2-way and 4-way UCs (cf. Figs. 3, 5).

Improvement of 4-way Construction. The bottom (blue) line in Fig. 7 shows the concrete
improvement in percentage of the 4-way UC construction over the 2-way UC construction up to ten
million nodes in the simulated input circuit. From the asymptotic leading factors in Table 2, we
expect an improvement of up to 1 − 4.75

5 = 5%. For the smallest n values (n ≤ 15), the 2-way UC
is up to 33.3% better than the 4-way UC. However, from n = 212 on, the 4-way UC construction is
better, except for some short intervals as shown in Fig. 7 (the difference in these intervals, however,
is at most 3.45%). From here on, the 4-way UC is on average 3.12% better in our experiments, where
the biggest improvement is 4.48%. Moreover, from n = 10 885 on, the 4-way UC always outperforms
the 2-way UC.

Improvement of Hybrid Construction. The improvement achieved by our hybrid construction
(cf. §4.2) is depicted in the same Fig. 7, as the top (green) line. For some n values the hybrid
UC achieves the same size as the 2- or 4-way UCs, but due to its nature, it is never worse. This
means that the improvement of our hybrid UC is always nonnegative, and greater than or equal
to the improvement achieved by the 4-way UC. Moreover, in most cases the hybrid UC results in
better sizes than any of the other two constructions: this means that some subgraphs are created
for an n for which the 2-way UC is smaller, and therefore the 2-way recursive structure is utilized.
The overall improvement for all n values is on average 3.65% and at most 4.48% over the 2-way UC
construction.

6 Implementation and Evaluation

The first implementation of Valiant’s 2-way UC, along with a toolchain for PFE (cf. §1.1) was given
in [KS16]. The 4-way UC has smaller asymptotic size ∼ 4.75n log2 n, but has not been implemented
before due to its more complicated structure and embedding algorithm.

In this work, we improve the implementation of the open-source framework of [KS16] by using
the 4-way UC construction that can directly be applied in the PFE framework. Our improved
implementation is available at http://encrypto.de/code/UC. Firstly, the functionality is translated
to a Boolean circuit using the Fairplay compiler [MNPS04,BNP08]. This is then transformed into a
circuit in Γ2(n), i.e., with at most two incoming and outgoing wires for each gate, input and output.
This is done in a preprocessing step of the framework in [KS16]. The input circuit description of
our UC implementation is the same as that of the UC compiler of [KS16], and we also adapt our
output UC format to that of [KS16] that includes the gate types described in §2.2. This format is
compatible with the ABY framework [DSZ15] for secure function evaluation.
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Fig. 7: Improvement of our hybrid and Valiant’s 4-way UC over Valiant’s 2-way UC for 15 ≤ n ≤ 107

with logarithmic x axis.

We discuss our implementation of Valiant’s 4-way UC in §6.1 and give experimental results
in §6.2. We describe future work in §6.3.

6.1 Our 4-Way Universal Circuit Implementation

The architecture of our UC implementation is the same as that of [KS16], and therefore, we describe
our UC design based on the steps described in [KS16, Fig. 6]. Our implementation gets as input a
circuit with u inputs, v outputs and k gates, and outputs a 4-way UC with size n = u + k + v, as
well as the programming pf corresponding to the input circuit (cf. §1).

Transforming circuit Cku,v into Γ2(u+ k + v) graph G. As a first step, we transform the ci-
rcuit Cku,v into a Γ2(n) graph G = (V,E) with n = u+k+v (cf. §2.1). Then, we define a topological
order ηG on the nodes of G s.t. every input node vi has a topological order of 1 ≤ ηG(vi) ≤ u and
every output node vj is labelled with u+ k + 1 ≤ ηG(vj) ≤ u+ k + v.

Creating an EUG U
(4)
n (Γ2) for Γ2(n) graphs. An EUG U

(4)
n (Γ2) is constructed by creating

two instances of U (4)
n (Γ1) as shown in §2.2. The two instances get merged to U (4)

n (Γ2) so that one
builds the left inputs and outputs and the other builds the right inputs and outputs of the gates
(based on the two-coloring of G). We create the EUGs with Valiant’s 4-way EUG [Val76] with our
optimized blocks from §3.1 (cf. Fig. 5).

Programming U (4)
n (Γ2) to compute Cku,v. We edge-embed graphG into U (4)

n (Γ2) as described
in §3.1. [KS16] use their supergraph construction to define the paths between the poles uniquely for
Valiant’s 2-way EUG. We modify this supergraph as described in §3.1 for Valiant’s 4-way EUG and
perform the edge-embedding as described in Listing 1. The programming bits of the nodes are set
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Circuit n Circuit size (#AND gates) UC generation (ms)
u + v + k 2-way

UC [KS16]
Our 4-

way UC
Our Hy-
brid UC

2-way
UC [KS16]

Our 4-
way UC

AES-non-exp 46 847 2.96 · 106 2.93 · 106 2.86 · 106 9 008.9 10 325.8
AES-exp 38 518 2.39 · 106 2.38 · 106 2.31 · 106 6 961.7 8 361.3
DES-non-exp 31 946 1.96 · 106 1.92 · 106 1.89 · 106 5 563.8 6 599.5
DES-exp 32 207 1.98 · 106 1.94 · 106 1.90 · 106 5 654.0 6 765.0
md5 66 497 4.42 · 106 4.26 · 106 4.26 · 106 14 805.5 14 897.8
sha-256 201 206 1.49 · 107 1.46 · 107 1.44 · 107 81 889.1 57 439.0

add_32 342 9.58 · 103 9.55 · 103 9.44 · 103 29.6 35.3
add_64 674 2.21 · 104 2.27 · 104 2.17 · 104 53.9 89.6
comp_32 216 5.53 · 103 5.54 · 103 5.49 · 103 17.7 21.2
mult_32x32 12 202 6.54 · 105 6.50 · 105 6.35 · 105 1 639.2 2 177.1

Branching_18 200 4.92 · 103 5.07 · 103 4.88 · 103 21.0 24.2
CreditChecking 82 1.50 · 103 1.51 · 103 1.49 · 103 3.1 12.7
MobileCode 160 3.65 · 103 3.88 · 103 3.61 · 103 10.6 29.0

Table 5: Comparison of the sizes of the UCs (2-way, 4-way, and hybrid) for sample circuits
from [TS15]. Bold numbers denote if the 2-way or the 4-way UC is smaller; the smallest size is
always achieved by our hybrid UC. The UC generation time is given for both implemented UCs.

during the edge-embedding process along the paths between the poles. The block edge-embedding
is done by analyzing the possible input values and defining the valid paths as described in §3.1.

Outputting a universal circuit with its programming. As a final step, EUG U
(4)
n (Γ2) is

topologically ordered and output in the UC format of [KS16]. The programming bits pf defined by
the embedding are also output in a separate file based on the topological order.

6.2 Our Experimental Results

In order to show the improvement of our method, we ran experiments on a Desktop PC, equipped
with an Intel Haswell i7-4770K CPU with 3.5 GHz and 16 GB RAM, and provide our results
in Table 5. To compare with the runtime of the UC compiler of [KS16], we ran the same experiments
on the same platform using their 2-way UC implementation.

As [KS16], we use a set of real-life circuits from [TS15] for our benchmarks, and compare the
sizes of the resulting circuits and the generation and embedding runtimes. We can see that from the
2-way and 4-way UC constructions, the 4-way UC, as expected, is always smaller for large circuits
than the 2-way UC. However, it is sometimes better even for small circuits, e.g., for 32-bit addition
with n = 342. The hybrid construction always provides the smallest UC for our example circuits.

In the last two columns, we report the runtime of the UC compiler of [KS16] and our 4-way
UC implementation for generating and programming the universal circuit corresponding to the
example circuits. Table 5 shows that the differences in runtime are not significant, and due to its
more complicated structure, the 4-way UC takes more time to generate and program in general.
However, we can see from the largest example, i.e., SHA-256 with more than 200 000 nodes in the
input circuit, that asymptotically, the 4-way UC results in a runtime improvement as well, as less
nodes need to be programmed.
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6.3 Future Work: Hybrid Universal Circuit Implementation

We leave implementing our hybrid UC as future work. Note that adapting the edge-embedding
algorithm is straightforward with our methods: the block edge-embedding is the same, depending
on k and the block type at each step (cf. Listing 2). The recursion point edge-embedding can also
be adapted easily: First, we need to split the input Γ2(n) graph into two Γ1(n) graphs as before.
Then, if k = 2 in the next recursion step, we do the splitting and merging of [KS16]. If k = 4, we
include the preprocessing step. We continue recursively until we reach the recursion base.

Though it can be implemented straightforwardly, the UC generation and programming might
take slightly longer for the hybrid UC. One reason for this is that for any value of n, to be able to
decide on which k to use at each step, we need the size of the smaller hybrid construction. Therefore,
we need to run an algorithm (cf. Eq. 21) that generates the sizes of the hybrid UC up to n nodes
before we can start building our UC. However, this can be pre-computed efficiently using a dynamic
programming algorithm and hence is a one-time expense.
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A Algorithm for k-Coloring Graphs with Fanin and Fanout k

Kiss and Schneider in [KS16] show that the first step for 2-coloring a graph with fanin and fa-
nout 2 is to transform the graph G = (V,E) with n nodes (V = {v1, . . . , vn}) to a bipartite graph
G = (V ,E) with V = {w1, . . . , wn, z1, . . . , zn}. The edges are set such that (wi, zj) ∈ E if and
only if (ni, nj) ∈ E. We can easily see that the fanin and fanout of the resulting bipartite graph is
also 2. This transformation can be easily generalized to graphs in Γk(n), in which case the resulting
bipartite graph will have fanin and fanout k.

Kőnig’s theorem was used in [KS16,LMS16] to provide the 2-coloring algorithm for a graph with
fanin and fanout 2. In its proposed form, however, Kőnig’s theorem [Kő31, LP09] applies also for
k-coloring any graph with at most k incoming and outgoing edges for each of its nodes. We review
this theorem and the corresponding algorithm which can be used for embedding any graph into any
k-way UC as described in §3.2.

Kőnig’s theorem. If G is bipartite and its nodes have at most k incoming and outgoing edges, then
the number of colors necessary to color G is k.

Proof and algorithm. Take colors {1, . . . , k}, and greedily color edges. Let us assume that at some
point the coloring stops because we cannot color more edges. In this step, (wi, zj) is an uncolored
edge. If we look at the colors of the neighbours of wi and zj , we can define the set of available colors
for both nodes. There is at least one color both for wi and zj due to the fanin and fanout restriction,
but there is no color which is available for both nodes, otherwise we could color (wi, zj).

There is a color that is used in an edge incident to wi, e.g., color a, but not on an edge incident
to zj . In the same way, we can find another color b, that is used in an edge incident to zj , but not
to wi. Take the longest unique path P from wi that uses colors a and b alternatingly.

Indirectly, assume that this path also contains zj , then it terminates in zj due to the fact that zj
is not incident with an edge colored with a. Then, P ∪ (wi, zj) is an odd cycle, which is impossible
since G is bipartite. Therefore, p does not contain zj , and we can exchange colors a and b on path P
and color (wi, zj) with color a.

This process is continued until there are no uncolored edges in G.
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B Notations

UC Universal circuit, a circuit that can be programmed to evaluate any circuit up to a
given size.

f Function to be privately evaluated using a universal circuit.
pf Programming bits for a universal circuit to compute function f .
u Number of inputs in simulated Boolean circuit.
v Number of outputs in simulated Boolean circuit.
k Number of gates in simulated Boolean circuit.
Cku,v The Boolean circuit that describes f with fanin and fanout 2.
G The graph of Cku,v where every input, output and gate is represented with a node and

every wire is represented with an edge.
n Size of the simulated circuit Cku,v and its graph G, sum of its u inputs, v outputs and

k gates.
G = (V,E) G graph with node set V = {1, . . . , n} and set of edges E ⊆ V × V .
Γd(n) The set of all graphs with fanin and fanout d and n nodes.
Un(Γd) Edge-universal graph for Γd(n) graphs, used generically and for the recursion base

EUGs.
U

(k)
n (Γd) k-way edge-universal graph for Γd(n) graphs.

Uhybrid
n (Γd) Hybrid edge-universal graph for Γd(n) graphs.

pi Distinguished nodes in Un(Γd), called poles, with fanin and fanout d.
P Set of all poles in Un(Γd).
UG A universal gate that computes any function with two inputs and one output, using

four control bits c0, c1, c2, c3 as in Eq. 1.
fX A two-output X-switching block that returns its two input values either in the same

or in reversed order depending on control bit c.
fY A one-output Y-switching block that returns one of the two input values depending

on control bit c.
Bk Body block of k-way EUG.
P (k) Permutation network for k nodes.
P l(k) Lower bound on the size of the permutation network for k nodes.
PW (k) Size of the Waksman’s permutation network [Wak68] for k nodes.
UKS08(k) The size of the UC of [KS08b].

27


	More Efficient Universal Circuit Constructions

