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Abstract. Hidden vector encryption (HVE), introduced by Boneh and Waters in TCC’07, is an
expressive sub-class of predicate encryption, that allows conjunctive, subset, range and compar-
ison queries over encrypted data. All existing HVE constructions in the cryptographic literature
use bilinear pairings over either composite order or prime order groups. In this paper, we ad-
dress the open problem of constructing a lightweight symmetric-key HVE scheme that does not
use bilinear pairings, but only efficient cryptographic primitives such as pseudo-random func-
tions (PRFs) and block ciphers. The relevance of this problem stems from the implementation
and performance overheads for bilinear pairings over composite/prime order groups, which are
significantly larger than that for PRFs and block ciphers, in both software and hardware. While
lightweight symmetric-key constructions exist for keyword search on encrypted data, we aim to
expand the scope of such constructions to support a richer set of query predicates.

In this direction, we present the first lightweight symmetric-key HVE construction that does
not use bilinear pairings. Our construction only uses a PRF and a PCPA-secure symmetric-
key encryption algorithm, making it amenable to both hardware and software implementations
in real-life resource-constrained environments. We prove the selective-simulation-security and
adaptive-simulation-security of our construction in the standard model and ideal cipher model,
respectively, against probabilistic polynomial-time adversaries that can make an unrestricted
number of ciphertext generation and secret-key generation queries.

Keywords: Hidden Vector Encryption, Symmetric-Key, Simulation-Security, Searchable En-
cryption, Predicate Encryption

1 Introduction

Traditional predicate encryption schemes [1–3] in the public-key setting allow a single public-key
to be associated with multiple secret-keys (also referred to as tokens), where each secret-key skf
corresponds to a Boolean predicate f : Σ −→ {0, 1} over a set of attributes Σ. Each of these secret-
keys are derived from a single master-secret-key msk, which is known only to a trusted third party.
A plaintext is defined an attribute-payload message pair (I,M) ∈ Σ ×M, where M is the payload
message space. Decryption works as follows: given a ciphertext C corresponding to a plaintext (I,M),
a secret-key skf successfully decrypts C and recovers M if and only if f(I) = 1. If f(I) = 0, decryption
returns the failure symbol ⊥.

Symmetric-Key Predicate Encryption. Predicate encryption can be equivalently defined in the
symmetric-key setting as well [4–6]. In this setting, there is no trusted third-party; the data owner
herself possesses the master-secret-key msk, and uses it for both secret-key generation and encryption.
In particular, an adversary does not have unrestricted access to an encryption oracle, since there is
no publicly available encryption key. The semantics for decryption, however, are the same as in the
public-key setting.



A Generic Framework for Searchable Encryption. Predicate encryption provides a generic
framework for searchable encryption over a rich set of query predicates [1, 3]. Consider a scenario
where a mail server receives a stream of messages encrypted with the recipient’s public key, and
is expected to selectively forward a message to the recipient’s urgent folder if it contains certain
keywords. Providing the mail server with the recipient’s secret-key for decryption, although simple, is
not a desirable solution from the point of view of security. Similarly, consider a credit card payment
gateway that handles encrypted transactions, and is required to raise a flag if a certain transaction
exceeds a threshold amount. Once again, storing the secret-key on the payment gateway leads to
potential security vulnerabilities. A third example is where a data owner stores an encrypted database
on the cloud, and requires an untrusted service provider to search for all records that satisfy a certain
search predicate f . Predicate encryption aims to provide a generic solution to each of these problems.
It allows generation of multiple secret-keys/tokens, that can be used by third parties to evaluate
encrypted data without the knowledge of the master-secret-key. The plaintext data typically serves as
the attribute I, while the payload message M could be some auxiliary information (for example, the
recipient-folder name or the flag value in our aforementioned examples).

Identity-Based Encryption and Keyword Search. Identity-based encryption (IBE) [7–9] is the
simplest sub-class of public-key predicate encryption. IBE supports a set of equality predicates of the
form fid : Σ −→ {0, 1} defined as fid(x) = 1 if and only if x = id. The relationship between IBE and
public-key encryption schemes supporting keyword search has been studied in [10, 9]. However, for
many applications such as the ones described above, merely supporting keyword search on encrypted
data is insufficient. This leads to the need for searchable encryption schemes supporting a more
expressive class of predicates.

Hidden Vector Encryption (HVE). Hidden vector encryption (HVE), introduced by Boneh and
Waters [1], is a more expressive class of predicate encryption, that supports, in addition to keyword
search, conjunctive, subset, range and comparison queries over encrypted data. HVE is essentially
a generalization of anonymous IBE [9] and was a precursor to inner-product encryption (IPE) [2, 3]
that remains, till date, the most expressive class of predicate encryption schemes to be concretely
realized. In HVE, each attribute I is a polynomial-length vector over an alphabet Σ, while a secret-
key skf corresponds to a predicate vector f over the augmented alphabet Σ? = Σ ∪ {?}, containing
the wildcard character ?. Decryption succeeds if the attribute I matches the predicate vector f in
every coordinate that is not ?. An HVE system is said to be efficient if the overhead for ciphertexts
and secret-keys is at most polynomial in the security parameter of the system. In addition, an HVE
scheme is said to provide attribute-hiding security if an adversary, that can convince the system
owner to generate ciphertexts and secret-keys corresponding to plaintexts and query predicates of its
choice, learns nothing more than the outcomes of evaluating these secret-keys on the corresponding
ciphertexts.

1.1 Background and Related Work

In this section, we review existing constructions for HVE in the cryptographic literature, and identify
common characteristics for these constructions. We also look at more generic predicate encryption
schemes such as inner-product encryption (IPE) that subsume HVE, and corresponding constructions
in the literature. Finally, we enumerate the unsolved challenge with respect to HVE constructions
that we address in this paper.

HVE Constructions from Bilinear Pairings. The first concrete HVE construction was pro-
posed by Boneh and Waters [1]. Their construction is based on bilinear pairings over composite order
groups, and is selectively indistinguishability-secure, under the restriction that the probabilistically

2



polynomial-time adversary can only make non-matching queries to the secret-key generation oracle.
For a challenge pair of attribute I0 and I1, a non-matching query corresponds to a predicate f such
that f (I0) = f (I1) = 0. Caro et al. [11] subsequently proposed an HVE construction, once again
based on composite order bilinear pairings, that removes this restriction, while being adaptively se-
cure. There also exist adaptively indistinguishability-secure HVE constructions based on prime order
bilinear pairings; the most notable such construction being that by Park et al. [12]. Their HVE con-
struction achieves constant overhead for secret-keys, and also requires only a constant number of
pairing computations for decryption. Finally, while composite order pairings are usually less efficient
that their prime-order counterparts, there exist generic techniques by Freeman [13] and, more recently,
by Lewko [14] that allow instantiating composite order pairings over prime order bilinear groups.

To the best of our knowledge, the only existing simulation-secure HVE construction was proposed
by Caro et al. in [15]. Their scheme is adaptively simulation-secure in the standard model, for a
pre-bounded number of ciphertext queries, and an unbounded number of secret-key queries by a
probabilistically polynomial-time algorithm. Their construction is again based on composite order
bilinear groups. In summary, all existing HVE constructions in the literature are based on bilinear
pairings over either composite order or prime order groups, and afford varying efficiency levels in terms
of the number of group elements in the ciphertexts and secret-keys, as well as their encryption and
decryption performances.

HVE from Inner-Product Encryption. HVE is naturally subsumed by inner-product encryption
(IPE) [3]. Nearly all IPE constructions in the literature are based on either bilinear pairings [3, 16–19],
or on lattices [2, 20, 21]. In particular, there exist a number of symmetric-key IPE constructions [4,
22, 5, 6] that achieve strong indistinguishability-security guarantees under standard hardness assump-
tions. With regards to simulation-security, the general result of Gorbunov et al. [23] allows deriving
simulation-secure constructions for a large class of functions subsuming both IPE and HVE; however,
such generic constructions are often less efficient than constructions targeting specific functionalities.

1.2 Our Motivation: Symmetric-Key HVE Constructions without Pairings

The Open problem. In this paper, we address the open problem of constructing a lightweight
symmetric-key HVE scheme that does not use bilinear pairings, but only efficient cryptographic prim-
itives such as pseudo-random functions (PRFs) and block ciphers. The relevance of this problem stems
from the implementation and performance overheads for bilinear pairings over composite/prime order
groups, which are significantly larger than that for PRFs and block ciphers, in both software and
hardware. We provide concrete evidence for the same in the forthcoming discussion.

Practical Validation. We choose bilinear pairing modules from the open-source library for pairing-
based cryptography (PBC) 1, and compare the execution time for various group and pairing operations,
with that for PRFs and block cipher modules chosen from the open-source cryptographic library
Libgcrypto 2. We present results for both prime and composite order bilinear pairing modules, which
is compared against encryption/decryption timings for AES-128, and output generation timing for
a PRF constructed by cascading a SHA-256 module with two AES-128 modules in parallel. Quite
evidently, a single pairing operation requires around 104x to 105x more computation time than a
block cipher encryption/decryption or a PRF operation. From an implementation perspective, these
observations motivate the design of lightweight HVE schemes that do not use pairings. While such
symmetric-key constructions exist specifically for single and multi-keyword search on encrypted data
[24–27], we aim to expand the scope of lightweight constructions to support a richer set of query
predicates. Hence, we choose HVE as our target class of predicate encryption schemes.

1 https://crypto.stanford.edu/pbc/
2 https://www.gnupg.org/software/libgcrypt/index.html
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Table 1: Performance Comparison on an Intel Core i5-4570 CPU(RAM: 4 Gb, Clock Frequency: 1.6 GHz)

Cryptographic Module Library Specification Operation Time Required (in seconds)

Composite-Order Bilinear Pairing PBC
E(Fq) : y2 = x3 + x Group Multiplication tG,0 = 2.98× 10−4

q: 1024 bit prime Group Exponentiation tG,1 = 6.31× 10−3

Order #(G) = p1p2: product of 512 bit primes Pairing Operations tPairing = 1.25× 10−1

Prime-Order Bilinear Pairing PBC
E(Fq) : y2 = x3 + b Group Multiplication tG,0 = 4.02× 10−5

q: 160 bit prime Group Exponentiation tG,1 = 3.91× 10−4

Order #(G) = r: 160 bit prime Pairing Operations tPairing = 2.40× 10−2

Block Cipher Libgcrypt AES-128
Encryption tSKE.Encrypt = 6.15× 10−7

Decryption tSKE.Decrypt = 6.15× 10−7

Pseudo-Random Function Libgcrypt SHA-256 + AES-128 ×2 (in parallel) Pseudo-Random Output Generation tPRF = 2.32× 10−6

Table 2: Performance and Overhead Comparison of HVE Constructions: Width = l

HVE Scheme
Overhead Complexity

Master-Key Size Ciphertext Size Secret-Key Size

BW-HVE [1] O(l · λ) O(l · λ) O(l · λ)

KSW-HVE [3] O(l · λ) O(l · λ) O(l · λ)

CIP-HVE [11] O(l · λ) O(l · λ) O(l · λ)

CIJNPP-HVE [15] O(l · λ) O(l · λ) O(l · λ)

PLSL-HVE [12] O(l · λ) O(l · λ) O(λ)

Our HVE O(λ) O(l · λ) O(l · λ)

(a) Spatial Overhead Comparison

HVE Scheme
Time Complexity for Algorithms

KeyGen Enc Dec

BW-HVE [1] O (l · tG) a O (l · tG + tPairing) O (l · tPairing)

KSW-HVE [3] O (l · tG) O (l · tG + tPairing) O (l · tPairing)

CIP-HVE [11] O (l · tG) O (l · tG + tPairing) O (l · tPairing)

CIJNPP-HVE [15] O (l · tG) O (l · tG + tPairing) O (l · tPairing)

PLSL-HVE [12] O (l · tG) O (l · tG + tPairing) O (l · tG + tPairing)

Our HVE O (l · tPRF) O (l · tPRF + tSKE.Encrypt) O (l · tXOR + tSKE.Decrypt)
b

(b) Timing Performance Comparison

a tG = tG,0 + tG,1
b tXOR denotes the time required to XOR two λ-bit

quantities

1.3 Main Technical Results

In this paper, we present the first lightweight symmetric-key HVE construction that does not use
bilinear pairings. Our construction only uses a PRF and a PCPA-secure symmetric-key encryption
algorithm, making it amenable to both hardware and software implementations in real-life resource-
constrained environments. We prove the selective-simulation-security and adaptive-simulation-security
of our construction in the standard model and ideal cipher model, respectively, against probabilistic
polynomial-time adversaries that can make an unrestricted number of ciphertext generation and secret-
key generation queries.

Tables 2(a) and 2(b) present a comparison of the spatial overhead and timing performance of our
proposed HVE construction with that of existing HVE constructions in the literature. While the
spatial overhead complexity for our HVE scheme is comparable with that for existing constructions,
it has superior timing performance owing to the fact that it avoids all pairing operations, which are
more expensive than block cipher and PRF operations, as depicted in Table 1.
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1.4 Organization of the Paper

The rest of the paper is organized as follows. Section 2 presents notations, preliminary background
material and definitions for symmetric-key predicate encryption that are used throughout the rest
of the paper. Section 3 formally defines symmetric-key hidden vector encryption and associated se-
curity notions. Section 4 presents our proposed SHVE construction without pairings, and presents
the corresponding proofs of security. Finally, Section 5 concludes the paper and presents several open
problems.

1.5 Notations Used

We write x
R←− χ to represent that an element x is sampled uniformly at random from a set X . The

output a of a deterministic algorithm A is denoted by x ← A and the output a′ of a randomized

algorithm A′ is denoted by x′
R←− A′. We refer to λ ∈ N as the security parameter, and denote by

exp(λ), poly(λ) and negl(λ) any generic (unspecified) exponential function, polynomial function and
negligible function in λ respectively. Note that a function f : N→ N is said to be negligible in λ if for
every positive polynomial p, f(λ) < 1/p(λ) when λ is sufficiently large. Finally, for a, b ∈ Z such that
a ≤ b, we denote by [a, b] the set of integers lying between a and b (both inclusive).

2 Background, Preliminaries and Definitions

This section presents basic cryptographic primitives and preliminary background material for symmetric-
key predicate encryption that are used throughout the rest of the paper.

Pseudo-Random Function. A pseudo-random function (PRF) is a polynomial-time computable
function PRF : {0, 1}λ × {0, 1}n −→ {0, 1}m such that for all polynomial-size algorithms A,∣∣∣Pr

[
APRF(K,·) = 1 : K

R←− {0, 1}λ
]
− Pr

[
Ag(·) = 1 : g

R←− Func(n,m)
]∣∣∣ ≤ negl(λ)

where the probabilities are taken over all possible choices of K and g.

Symmetric-Key Encryption. A symmetric-key encryption system SKE may be described as an
ensemble of the following polynomial-time algorithms:

• SKE.KeyGen(1λ): A probabilistic algorithm that takes the security parameter λ as input and out-
puts a secret-key K.

• SKE.Encrypt(K,x): A deterministic algorithm that takes as input a key K and a plaintext x.
Outputs a ciphertext c.

• SKE.Decrypt(K, c): A deterministic algorithm that takes as input a key K and a ciphertext c.
Outputs the decrypted plaintext x.

In the standard model, we assume that SKE satisfies the security notion of pseudo-randomness against
chosen plaintext attacks (PCPA), that guarantees that ciphertexts output by SKE are indistinguishable
from the output of a pseudo-random permutation (PRP).
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The Ideal Cipher Model. A more idealized model of computation for symmetric-key encryption
schemes is the ideal cipher model, which is somewhat similar to the well-known random oracle model.
While in the random oracle model, one has a publicly accessible random function, in the ideal cipher
model, one has a publicly accessible ideal symmetric-key cipher. This ideal cipher is chosen uniformly
at random among the family of all possible symmetric-key ciphers that support λ-bit keys, and n-bit
plaintext/ciphertext pairs, for some λ, n ∈ N. This is essentially equivalent to having a family of 2λ

independent permutations from {0, 1}n to {0, 1}n. All parties, including the adversary can make both
encryption and decryption queries to the ideal cipher, for any given key. Several existing cryptographic
schemes have been proven secure in the ideal cipher model [28–30]. While it is possible to design
artificial schemes that are secure in this model while being insecure for any concrete instantiations
[31], a security proof in the ideal cipher model seems useful because it shows that a scheme is secure
against generic attacks, that do not exploit any specific weaknesses of the underlying symmetric-key
cipher [32]. The ideal cipher model has been proven to be equivalent to the random oracle model [33,
32]; in particular, one can construct an ideal cipher from a random oracle, and vice versa.

Symmetric-Key Predicate Encryption. A symmetric-key predicate encryption scheme for a class
of predicates F over an attribute space Σ and a payload-message space M is a quadruple of proba-
bilistic polynomial time algorithms Π = (Setup,KeyGen,Enc,Dec), described as follows:

• Π · Setup
(
1λ
)
: The setup algorithm takes as input the security parameter λ, and generates the

master secret-key msk.

• Π · KeyGen (msk, f): The key-generation algorithm takes as input the master secret-key msk and
a predicate f ∈ F , and generates a secret-key skf corresponding to f .

• Π · Enc (msk, I,M): The encryption algorithm takes as input the master secret-key msk, an at-
tribute I ∈ Σ and a payload-message M ∈M, and outputs the corresponding ciphertext C.

• Π ·Dec (C, skf ): The decryption algorithm takes as input a ciphertext C and a secret-key skf , and
outputs either a payload-message M ∈M or the failure symbol ⊥.

Correctness. A symmetric-key predicate encryption scheme Π is said to be functionally correct if for
any security parameter λ, for any predicate f ∈ F , for any attribute I ∈ Σ and any payload-message
M ∈M, the following hold with probability at least 1− negl(λ):

1. If f(I) = 1, we have Dec (Enc (msk, I,M) ,KeyGen (msk, f)) = M .
2. If f(I) = 0, we have Dec (Enc (msk, I,M) ,KeyGen (msk, f)) = ⊥.

where the probability is taken over the internal randomness of Setup,KeyGen, Enc, and Dec.

3 Symmetric-Key Hidden Vector Encryption (SHVE)

In this section, we formlly define a specific subclass of symmetric-key predicate encryption, namely
symmetric-key hidden vector encryption (SHVE), that supports conjunctive query predicates. The
basic framework for HVE in the public-key setting was first introduced by Boneh and Waters in
[1]; the definitions introduced in this section are a natural adaptation of the same framework in
the symmetric-key setting. Let Σ be an alphabet, and let Σ? = Σ ∪ {?} be an augmented alphabet
comprising of the wildcard character ?. Let λ be a security parameter, and let l ≤ poly(λ) be a pre-
defined constant. An SHVE scheme ΠSHVE = (Setup,KeyGen,Enc,Dec) comprises of attributes of the
form I = (x1, · · · , xl) ∈ Σl, and query predicates of the form f = (y1, · · · , yl) ∈ Σl?, such that:

f(I) =

{
1 if

∧j=l
j=1 (yj = xj

∨
yj = ?)

0 otherwise
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Essentially, f(I) = 1 if and only if the attribute I matches the predicate vector f in every coordinate
that is not ?. The constant l is denoted as the width of the SHVE scheme.

3.1 Security Definitions for SHVE

This section formally defines the security of an SHVE scheme. We begin by presenting the following
auxiliary definitions for an SHVE scheme ΠSHVE = (Setup,KeyGen,Enc,Dec) of width l defined over
an alphabet Σ and a payload message space M:

Definition 3.1 (Query History). Let (I,M) ∈ Σl ×M be an attribute-message pair for ΠSHVE, and
let f1, · · · , fQ ∈ Σl? be a set of query predicates. A query history H for ΠSHVE is a tuple of the form
((I,M) , f1, · · · , fQ).

Definition 3.2 (Wildcard Pattern). Given a query history H = ((I,M) , f1, · · · , fQ) for ΠSHVE, let
fj = (yj,1, · · · , yj,l) for each j ∈ [1, Q], where l is the width of ΠSHVE. The wildcard pattern α (H) is a
set of boolean values {αj,k}j∈[1,Q],k∈[1,l] such that:

αj,k =

{
1 if yj,k = ?
0 otherwise

Definition 3.3 (Query Pattern). Given a query history H = ((I,M) , f1, · · · , fQ) for ΠSHVE, let
fj = (yj,1, · · · , yj,l) for each j ∈ [1, Q], where l is the width of ΠSHVE. The query pattern δ (H) is a set
of boolean values {δi,j,k}i,j∈[1,Q],k∈[1,l] such that:

δi,j,k =

{
1 if yi,k = yj,k
0 otherwise

Definition 3.4 (Decryption Pattern). Given a query history H = ((I,M) , f1, · · · , fQ) for ΠSHVE,
let skfj be the secret-key corresponding to the predicate fj, where j ∈ [1, Q]. Also, let C denote a
ciphertext obtained upon encryption of the plaintext (I,M). The decryption pattern χ (H) is a set of
values {χ1, · · · , χQ}, such that, for j ∈ [1, Q], χj is the output of decrypting C using skfj .

The Leakage Pattern for SHVE. Consider an adversary against an SHVE scheme that can obtain
the ciphertext C corresponding to a plaintext (I,M), and has access to a secret-key generation oracle
which it can query with polynomially many query vectors f1, · · · , fQ. Quite evidently, the decryption
pattern χ (H) corresponding to the query history H = ((I,M) , f1, · · · , fQ) is a trivial leakage, since
the adversary can easily observe the outcome of decrypting the ciphertext C using the secret-keys
{skfj}j∈[1,Q] generated by the oracle. In addition, for an SHVE scheme with a deterministic secret-key
generation algorithm, as presented in this paper, the query pattern δ (H) is also leaked [26]. Finally,
the wildcard pattern is also a trivial leakage in most existing HVE schemes in the literature [1, 11, 12].
Constructing HVE schemes that hide the wildcard pattern is an open problem [34], and is not the
main focus of this paper. Consequently, in this paper, we consider the allowable leakage pattern for
an SHVE scheme corresponding to a query history H to be the tuple (α (H) , δ (H) , χ (H)). In other
words, these leakages are trivial and do not constitute a threat to the security of an SHVE scheme.

We now formally define the security notions for SHVE in the simulation-based setting. The defini-
tion comprises of a pair of experiments - a real experiment and a simulation experiment. In the real
experiment, a probabilistic polynomial time algorithm A interacts with a challenger who knows the
master-secret-key for the SHVE scheme. The algorithm A makes polynomially many ciphertext gen-
eration and secret-key generation queries to the challenger, based on a query history comprising of
plaintexts and predicates chosen by A. In the simulation experiment, the role of the challenger is
played by a probabilistic polynomial time simulator algorithm S that only has access to the leak-
age pattern corresponding to the query history chosen by A, and not the master-secret-key. The
simulation-security of the SHVE scheme is defined in terms of the computational indistinguishability
of the views of algorithm A in the two experiments.
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Adaptively Simulation-Secure SHVE. We first define the adaptive notion of simulation-security
for SHVE. For a security parameter λ ∈ N, an SHVE scheme ΠSHVE = (Setup,KeyGen,Enc,Dec),
and a non-uniform probabilistic polynomial-time algorithm A = (A0, · · · ,AQ′+Q−1) (where Q′, Q ≤
poly(λ)), we define the experiment Exptada,real

ΠSHVE,A(λ) as follows:

1. msk
R←− ΠSHVE · Setup

(
1λ
)

2. ((I1,M1) , stateA)
R←− A0

(
1λ
)
.

3. C1
R←− ΠSHVE · Enc (msk, I,M).

4. For i ∈ [2, Q′]:

(a) ((Ii,Mi) , stateA)
R←− Ai−1 (C1, · · · , Ci−1, stateA)

(b) Ci
R←− ΠSHVE · Enc (msk, Ii,Mi)

5. (f1, stateA)
R←− AQ′ (C1, · · · , CQ′ , stateA)

6. skf1
R←− ΠSHVE · KeyGen (msk, f1)

7. For j ∈ [2, Q]:

(a) (fj , stateA)
R←− AQ′+j−1

(
C1, · · · , CQ′ , skf1 , · · · , skfj−1

, stateA
)

(b) skfj
R←− ΠSHVE · KeyGen (msk, fj)

8. Output
(
{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA

)
Observe that the algorithm A can specify the query vectors f1, · · · , fQ adaptively, after seeing the
secret-keys corresponding to the previously queried vectors. Also, note that the variable stateA cap-
tures the updated state of the algorithm A at various stages during the experiment.

Now, let S = (S0, · · · ,SQ′+Q−1) be a non-uniform probabilistic polynomial-time simulator, and let
Hi,j denote the query history ((Ii,Mi) , f1, · · · , fj) for i ∈ [1, Q′] and j ∈ [1, Q]. We define a second

experiment Exptada,sim
ΠSHVE,A,S(λ) (where A is the same non-uniform probabilistic poly-time algorithm as

described above) as follows:

1. ((I1,M1) , stateA)
R←− A0

(
1λ
)
.

2. (C1, stateS)
R←− S0

(
1λ
)

3. For i ∈ [2, Q′]:

(a) ((Ii,Mi) , stateA)
R←− Ai−1 (C1, · · · , Ci−1, stateA)

(b) (Ci, stateS)
R←− Si−1 (stateS)

4. (f1, stateA)
R←− AQ′ (C, stateA)

5. (skf1 , stateS)
R←− SQ′

(
{α (Hi,1) , δ (Hi,1) , χ (Hi,1)}i∈[1,Q′], stateS

)
6. For j ∈ [2, Q]:

(a) (fj , stateA)
R←− AQ′+j−1

(
C, skf1 , · · · , skfj , stateA

)
(b)

(
skfj , stateS

) R←− SQ′+j−1

(
{α (Hi,j) , δ (Hi,j) , χ (Hi,j)}i∈[1,Q′], stateS

)
7. Output

(
{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA

)
Once again, the variable stateS captures the updated state of the simulator S at various stages during
the experiment.

Definition 3.5 (Adaptively Simulation-Secure SHVE). An SHVE scheme ΠSHVE is said to be adap-
tively simulation-secure if for any non-uniform probabilistic polynomial-time algorithm A = (A0, · · · ,AQ′+Q−1),
there exists a non-uniform probabilistic polynomial time simulator S = (S0, · · · ,SQ′+Q−1), such that
the ensemble distribution:(

{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA
) R←− Exptada,real

ΠSHVE,A(λ)
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and the ensemble distribution:(
{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA

) R←− Exptada,sim
ΠSHVE,A,S(λ)

are computationally indistinguishable.

Selectively Simulation-Secure SHVE. We also define the weaker, selective notion of simulation
security for SHVE where the adversary must specify the entire query history non-adaptively at the
beginning of both the real and simulation experiments. For a security parameter λ ∈ N, an SHVE
scheme ΠSHVE = (Setup,KeyGen,Enc,Dec), and a uniform probabilistic polynomial-time algorithm A,

we define the experiment Exptsel,real
ΠSHVE,A(λ) as follows:

1. msk
R←− ΠSHVE · Setup

(
1λ
)

2. ((I1,M1) , · · · , (IQ′ ,MQ′) , f1, · · · , fQ, stateA)
R←− A

(
1λ
)

3. For i ∈ [1, Q′], Ci
R←− ΠSHVE · Enc (msk, Ii,Mi)

4. For j ∈ [1, Q], skfj
R←− ΠSHVE · KeyGen (msk, fj)

5. Output
(
{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA

)
where Q′, Q ≤ poly(λ). Once again, the variable stateA captures the updated state of the algorithm
A at various stages during the experiment. Observe that in this experiment, the algorithm A must
specify the query vectors f1, · · · , fQ non-adaptively, before seeing the secret-keys corresponding to
any of them.

Now, let S be a uniform probabilistic polynomial-time simulator. Also, recall that Hi,j denotes the
query history ((Ii,Mi) , f1, · · · , fj) for i ∈ [1, Q′] and j ∈ [1, Q]. We define a second experiment

Exptsel,sim
ΠSHVE,A,S(λ) (where A is the same non-uniform probabilistic poly-time algorithm as described

above) as follows:

1. ((I1,M1) , · · · , (IQ′ ,MQ′) , f1, · · · , fQ, stateA)
R←− A

(
1λ
)

2.
(
{Ci}i∈[1,Q′], {skfj}j∈[1,Q]

) R←− S
(
1λ, {α (Hi,Q) , δ (Hi,Q) , χ (Hi,Q)}i∈[1,Q′]

)
3. Output

(
{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA

)
Definition 3.6 (Selectively Simulation-Secure SHVE). An SHVE scheme ΠSHVE is said to be selec-
tively simulation-secure if for any uniform probabilistic polynomial-time algorithm A, there exists a
uniform probabilistic polynomial time simulator S, such that the ensemble distribution:(

{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA
) R←− Exptsel,real

ΠSHVE,A(λ)

and the ensemble distribution:(
{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA

) R←− Exptsel,sim
ΠSHVE,A,S(λ)

are computationally indistinguishable.

4 Our SHVE Construction without Pairings

In this section, we present our SHVE construction ΠSHVE-1 in the standard model. Unlike existing
HVE constructions in the literature, our construction does not use bilinear pairings. Instead it ues the
following cryptographic primitives:

• A pseudo-random function PRF : {0, 1}λ × {0, 1}λ+log λ −→ {0, 1}λ.
• A PCPA-secure symmetric-key encryption scheme SKE with both the key-space and the plaintext-

space being {0, 1}λ.

where λ ∈ N is the security parameter. This makes our construction more lightweight and efficiently
implementable than its existing pairing-based counterparts.
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4.1 Construction Details

The detailed construction for our proposed SHVE scheme ΠSHVE-1 of width l < poly(λ), defined over
an alphabet Σ = {0, 1}λ and a message space M ⊂ {0, 1}λ, is presented next. For simplicity of
presentation, we initially assume thatM is a small subset of {0, 1}λ; in particular, |M| < 2λ/poly(λ).
Subsequently, we present a discussion on how this restriction may be relaxed in our construction.

• ΠSHVE-1 · Setup
(
1λ
)
: On input the security parameter λ, the setup algorithm uniformly samples

msk
R←− {0, 1}λ, and outputs the same.

• ΠSHVE-1 ·KeyGen (msk, f): The key-generation algorithm takes as input the master secret-key msk
and a predicate f = (y1, · · · , yl), such that yj ∈ {0, 1}λ ∪ {?}, for each j ∈ [1, l]. The algorithm
generates a secret-key:

skf = ((d1, b1) , · · · , (dl, bl))

such that for each k ∈ [1, l], we have dk = PRF (msk, yk||k), while bk = 1 if yk = ?, and 0 otherwise.
The secret-key skf is produced as the output.

• ΠSHVE-1 · Enc (msk, I,M): The encryption algorithm takes as input the master secret-key msk, an

attribute I = (x1, · · · , xl) ∈ Σl and a payload-message M ∈ M. It uniformly samples K
R←−

SKE.KeyGen(1λ), and breaks it into l random shares K1, · · · ,Kl such that:

K = K1 ⊕K2 ⊕ · · · ⊕Kl

It then outputs the ciphertext C =
(
{ck,0, ck,1}k∈[1,l], cl+1

)
such that:

ck,0 = PRF (msk, xk||k)⊕Kk for k ∈ [1, l]

ck,1 = PRF (msk, ?||k)⊕Kk for k ∈ [1, l]

cl+1 = SKE.Encrypt (K,M)

• ΠSHVE-1·Dec (C, skf ): The decryption algorithm takes as input a ciphertext C =
(
{ck,0, ck,1}k∈[1,l], cl+1

)
and a secret-key skf = ((d1, b1) , · · · , (dl, bl)). It first computes:

K ′ = (c1,b1 ⊕ d1)⊕ (c2,b2 ⊕ d2)⊕ · · · ⊕ (cl,bl ⊕ dl)

and then M ′ = SKE.Decrypt (K ′, cl+1). If M ′ ∈ M, it outputs M ′, else it outputs the failure
symbol ⊥.

Correctness. Consider a ciphertext C =
(
{ck,0, ck,1}k∈[1,l], cl+1

)
corresponding to an attribute I =

(x1, · · · , xl) and a secret-key skf = ((d1, b1) , · · · , (dl, bl)) corresponding to a query-predicate f =
(y1, · · · , yl). The following observations establish the correctness of ΠSHVE-1:

1. If f(I) = 1, for each k ∈ [1, l], we have either yk = xk, or yk = ?. It is straightforward to observe
that in such a case, for each k ∈ [1, l], if bk = 0, then ck,0 = dk ⊕ Kk, while if bk = 1, then
ck,1 = dk ⊕Kk. Hence, we have:

K ′ = (c1,b1 ⊕ d1)⊕ (c2,b2 ⊕ d2)⊕ · · · ⊕ (cl,bl ⊕ dl)
= K1 ⊕K2 ⊕ · · · ⊕Kl

= K

which in turn implies that M ′ = SKE.Decrypt (K, cl+1) = M . Thus, if f(I) = 1, the payload
message is recovered correctly.
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2. If f(I) = 0, then there must exist some k ∈ [1, l] such that yk 6= xk and yk 6= ?. Consequently,
it follows that bk = 0, and ck,0 = dk ⊕K ′k, for some uniformly random K ′k 6= Kk. This, in turn,
implies that K ′ = K ⊕Kk ⊕K ′k, hence the recovered message M ′ = SKE.Decrypt (K ′, cl+1) is a
uniformly random string in {0, 1}λ. Since the payload message space M is assumed to be small,
the probability that a uniformly random M ′ lies in M is negligible. In other words, if f(I) = 0,
the decryption algorithm returns ⊥ with overwhelmingly large probability.

Relaxing the Restriction on |M|. Note that our proposed SHVE scheme ΠSHVE-1 can be easily
modified to remove the aforementioned restriction on the size of the payload message space M. In
particular, the ciphertext C may be augmented to also contain an additional component H(K), where
H is a collision-resistant hash function and K is the secret-key used to encrypt the payload message M .
The decryption procedure is modified accordingly: upon computing K ′ = (c1,b1 ⊕ d1)⊕· · ·⊕(cl,bl ⊕ dl)
as described above, the decryptor checks if H(K) = H(K ′). If yes, the decryptor returns the payload
message M ′ = SKE.Decrypt (K ′, cl+1). Else, it returns ⊥. The collision resistance of H ensures that
the event H(K ′) = H(K) for K ′ 6= K occurs with negligible probability. The modified construction
can thus accommodate the unrestricted payload message space M = {0, 1}λ.

4.2 Selective Simulation-Security of Our Proposed Scheme in the Standard Model

We state and prove the following theorem for the selective security of ΠSHVE-1:

Theorem 4.1 The SHVE scheme ΠSHVE-1 is selectively simulation-secure in the standard model under
the assumption that PRF is a pseudo-random function and SKE is a PCPA-secure symmetric-key
encryption scheme.

Proof. We present the detailed proof of security. In particular, we show that for any uniform proba-
bilistic polynomial-time algorithm A, there exists a uniform probabilistic polynomial time simulator
S, such that the ensemble distribution:(

{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA
) R←− Exptsel,real

ΠSHVE,A(λ)

and the ensemble distribution:(
{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA

) R←− Exptsel,sim
ΠSHVE,A,S(λ)

are computationally indistinguishable, where the experiments Exptsel,real
ΠSHVE,A(λ) and Exptsel,sim

ΠSHVE,A,S(λ) are

as described in Section 3.1. In particular, we construct the simulator S in the experiment Exptsel,sim
ΠSHVE,A,S(λ).

We first consider the simplified scenario where A makes Q′ = 1 ciphertext queries, and Q ≤ poly(λ)
secret-key queries. We then present a generalized argument to show that the simulator algorithm can
be easily extended to also answer polynomially many ciphertext queries.

The Inputs to the Simulator S. Since Q′ = 1, we assume that the algorithm A0 queries the
simulator with a query history of the form H = ((I,M) , f1, · · · , fQ). The simulator S receives as
advice the security parameter 1λ, along with the tuple (α (H) , δ (H) , χ (H)), that is, the wildcard
pattern, the query pattern and the decryption pattern, respectively, corresponding to H. For clarity
of presentation, we recall the details for α (H), δ (H) and χ (H) below:

• In the query history H = ((I,M) , f1, · · · , fQ), let fj = (yj,1, · · · , yj,l) for j ∈ [1, Q], where
l is the width of ΠSHVE. The wildcard pattern α (H) received by S is a set of boolean values
{αj,k}j∈[1,Q],k∈[1,l] such that:

αi,j =

{
1 if yj,k = ?
0 otherwise
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• In the query history H = ((I,M) , f1, · · · , fQ), let fj = (yj,1, · · · , yj,l) for j ∈ [1, Q], where
l is the width of ΠSHVE. The query pattern δ (H) received by S is a set of boolean values
{δi,j,k}i,j∈[1,Q],k∈[1,l] such that:

δi,j,k =

{
1 if yi,k = yj,k
0 otherwise

• Let skfj be the secret-key corresponding to fj in H = ((I,M) , f1, · · · , fQ), where j ∈ [1, Q].
Also, let C denote a ciphertext obtained upon encryption of the plaintext (I,M). The decryption
pattern χ (H) received by S is a set of values {χ1, · · · , χQ}, such that, for j ∈ [1, Q], χj is the
output of decrypting C using skfj . Quite evidently, if fj(I) = 1, χj is M , else χj = ⊥.

Simulating the Secret-Keys. The simulator S now generates the secret-keys {skfj}j∈[1,Q] using the
procedure described in Phase-1 of Algorithm 1. Note that since the secret-key generation algorithm
ΠSHVE-1 · KeyGen. is deterministic, the simulator must ensure that the secret-keys generated are con-
sistent with the inter-relations between the corresponding predicate vectors, as well as the locations
of the wildcard characters. This is achieved in Algorithm 1 using the wildcard pattern and the query
pattern. In particular, the values A1, A2, · · · , Al are used to simulate PRF (msk, ?||k) for k ∈ [1, l],
while the consistency check Line 7 ensures that, if two predicate vectors fi and fj match in the kth

coordinate, then the corresponding secret-keys skfi and skfj also match in the kth coordinate. This is
in accordance with the deterministic nature of ΠSHVE-1 · KeyGen.

Simulating the Ciphertext. The final step for the simulator S is to simulate the ciphertext C. Note
that the plaintext (I,M) is not known to S; the only available information are the various leakage
patterns, and the secret-keys simulated as described above. As we demonstrate next, this information
is enough to simulate C:

• Observe that if for some j ∈ [1, Q], fj(I) = 1, then the attribute I must match fj in all co-
ordinates that do not contain wildcard characters. In particular, suppose I = (x1, · · · , xl) and
fj = (yj,1, · · · , yj,l), such that fj(I) = 1. If for some k ∈ [1, l], yj,k 6= ?, it must be the case that
xk = yj,k. Additionally, the information that fj(I) = 1 can be easily inferred by S from the fact
that χj 6= ⊥; while the information of whether the coordinate yj,k 6= star in fj is available from
the wildcard pattern entry αj,k. This information allows S to simulate the ciphertext component
ck,0 for k ∈ [1, l] as follows:

1. S first checks for an fj = (yj,1, · · · , yj,l) such that such that fj(I) = 1 and yj,k 6= ? (see
Step 22 of Algorithm 1). If such a matching fj is found, S uses the corresponding secret-
key component dj,k from Phase-1 to simulate ck,0. This ensures that decrypting C using skfj
correctly recovers the payload message M .

2. If no such matching fj is found for a given k, it must be the case that for all j ∈ [1, Q], either
fj(I) = 0 or, fj(I) = 1 but the corresponding component yj,k = ?. In either of these scenar-
ios, the output of decrypting C using skfj is independent of ck,0; consequently, the simulator
randomly samples ck,0.

• The next step is to simulate the components ck,1, for k ∈ [1, l]. As already mentioned, the values
A1, A2, · · · , Al are used by S to simulate PRF (msk, ?||k) , and hence, ck,1, for k ∈ [1, l].

• The final step is to simulate the ciphertext component cl+1. Recall that the decryption pattern
is a set of values {χ1, · · · , χQ}, such that, for j ∈ [1, Q], χj is the output of decrypting C using
skfj . If, for some j ∈ [1, Q], fj(I) = 1, then χj reveals M to S, which is used to generate the
component cl+1 = SKE.Encrypt (K,M) as in the real world. This ensures that decrypting C using
skfj , the payload message M is recovered correctly. If, on the other hand, fj(I) = 0 for each
j ∈ [1, Q], decrypting C with any of the secret-keys {skfj}j∈[1,Q] anyways returns ⊥. Hence, in
such a scenario, S uses a uniformly random M ′ for simulating cl+1.
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Algorithm 1 Simulator S for Single Ciphertext Query and Q Secret-key Queries

Input:
(
1λ, α (H) , δ (H) , χ (H)

)
, where H = ((I,M) , f1, · · · , fQ)

Output:
(
C, {skfj}j∈[1,Q]

)
1: Choose A1, A2, · · · , Al

R←− {0, 1}λ

Phase 1 - Simulation of Secret-Keys

2: Initialize a Q× l matrix d to empty
3: for each j ∈ [1, Q] do
4: for each k ∈ [1, l] do
5: if αj,k = 1 then
6: dj,k ← Ak
7: else if there exists i ∈ [1, j − 1] such that δi,j,k = 1 then
8: dj,k ← di,k
9: else

10: dj,k
R←− {0, 1}λ

11: end if
12: end for
13: skfj ← ((dj,1, αj,1) , · · · , (dj,l, αj,l))
14: end for

Phase 2 - Simulation of Ciphertext

15: if there exists j ∈ [1, Q] such that χj 6= ⊥ then
16: M ← χj
17: else
18: M

R←− {0, 1}λ
19: end if
20: Uniformly sample K

R←− SKE.KeyGen(1λ), and break it into l random shares K1, · · · ,Kl

21: for each k ∈ [1, l] do
22: if there exists j ∈ [1, Q] such that χj 6= ⊥ and αj,k = 0 then
23: ck,0 ← dj,k ⊕Kk

24: else
25: ck,0

R←− {0, 1}λ
26: end if
27: ck,1 ← Ak ⊕Kk

28: end for
29: cl+1 ← SKE.Encrypt (K,M)
30: C ←

(
{ck,0, ck,1}k∈[1,l], cl+1

)
Final Output

31: Return
(
C, {skfj}j∈[1,Q]

)
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Functional Correctness of the Simulation. The consistency properties adhered to by S when
generating the ciphertext C and the secret-keys {skfj}j∈[1,Q] suffice to ensure that decrypting C using
these secret-keys yields the desired outputs. In particular, for each j ∈ [1, Q] such that fj(I) = 1,
decryption will successfully recover the payload message M , while in the remaining cases, decryption
will return ⊥ with overwhelmingly large probability.

The Indistinguishability Argument. It remains to argue that a probabilistic polynomial-time

distinguisher D cannot computationally distinguish
(
C, {skfj}j∈[1,Q], stateA

) R←− Exptsel,real
ΠSHVE,A(λ) from(

C, {skfj}j∈[1,Q], stateA
) R←− Exptsel,sim

ΠSHVE,A,S(λ). We present the following arguments to establish this
indistinguishability property:

• Since the state variable stateA does not include the master-secret-key msk with all but negligible
probability, the secret-keys generated in the real mode of the experiment using the pseudo-random
function PRF are indistinguishable from the uniformly random secret-keys generated by the sim-
ulator S. Otherwise, one could distinguish between the output of PRF and a uniformly random
string of size λ without knowing the corresponding secret-key msk. By the same argument, the
components {ck,0}k∈[1,l] and {ck,1}k∈[1,l] of the ciphertext C in the real experiment must also be
indistinguishable from those generated by the simulator S.

• Finally, if there exists at least one j ∈ [1, Q] such that fj(I) = 1, S gains the knowledge of the
payload message M , which is used to generate the component cl+1 = SKE.Encrypt (K,M) as in
the real world. In this case, indistinguishability holds trivially. If, on the other hand, fj(I) = 0
for each j ∈ [1, Q], decrypting C with any of the secret-keys {skfj}j∈[1,Q] does not reveal the
secret-key K used to encrypt M . Now, since the state variable stateA does not include K with all
but negligible probability, the PCPA security of SKE guarantees the indistinguishability of cl+1 in
the real and simulation experiments.

Generalization to Polynomially many Ciphertext Queries. The simulator S can be extended
to address polynomially many ciphertext queries of the form {(Ii,Mi)}i∈[1,Q′]. The detailed simulation
algorithm for the generalization is presented in Appendix A; we provide a brief overview here. The sim-
ulator S essentially repeats the same ciphertext simulation phase in Algorithm 1 for each such query.
As per our security definition, the simulator S receives as input the decryption pattern corresponding
to each ciphertext query (Ii,Mi). Hence, it can either infer the corresponding payload message Mi

from the decryption pattern, or randomly sample the same, as in Steps 16 through 19 of Algorithm
1. Additionally, the components for Ci are chosen consistently with the secret-keys {skfj}j∈[1,Q], fol-
lowing Steps 22 through 26 of Algorithm 1. This ensures that, if fj(Ii) = 1 for some j ∈ [1, Q], then
decrypting Ci using skfj correctly recovers Mi. Also, the ciphertext components corresponding to the
wildcard characters are simulated consistently as in Step 27 of Algorithm 1. Finally, since a different
random Ki will be used to mask the components of each ciphertext Ci (see Step 20 of Algorithm 1),
the simulation of two ciphertexts Ci and Ci′ can proceed independent of whether the corresponding
attributes Ii and Ii′ match in one or more components. . This completes the proof of Theorem 4.1.

ut

4.3 Adaptive Simulation-Security of Our Proposed Scheme in the Ideal Cipher Model

In the previous subsection, we have established the selective security of our proposed scheme ΠSHVE-1

in the standard model. Interestingly, the same scheme may be proved to be adaptively secure, albeit
in the ideal cipher model. We briefly explain the proof intuition, followed by the detailed proof.
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Proof Intuition: Using the Ideal Cipher Model. We provide a brief intuition as to why an
adaptive proof of security is possible in the ideal cipher model, and not in the standard model. In
the adaptive experiment Exptada,sim

ΠSHVE,A,S(λ), the simulator S0 must generate the ciphertext C, without
possessing any information about the corresponding plaintext (I,M) chosen by the algorithm A. For
a functionally correct simulation in the standard model, the simulator must correctly guess M , which
occurs with negligible probability. A wrong guess, on the other hand, would result in a ciphertext C
that is not well-formed with respect to M , which can be readily inferred by decrypting C using a
secret-key skfj generated by the simulator at a later stage of the experiment, such that fj(I) = 1.
Hence, so long as the block cipher is assumed to be only PCPA-secure, it seems difficult to prove the
adaptive security of our scheme.

However, in the ideal cipher model, the simulator can control the mapping between a plaintext and
a ciphertext for a given key. Consequently, the ciphertext C may be initially generated uniformly
randomly by the simulator S0 without knowing M . If a subsequent key-generation query made by the
algorithm A corresponds to a predicate fj such that fj(I) = 1, the corresponding simulator algorithm
Sj infers M from the decryption pattern, and creates the appropriate plaintext-ciphertext mapping
to ensure that C is well-formed with respect to M . The only concern is that prior to knowing M , the
simulator might fail to ascertain the appropriate response to certain encryption/decryption queries
from the algorithm A, in which case it must abort. We formally prove the probability of this abortion
to be negligible in the security parameter λ.

The Formal Proof. We state and prove the following theorem:

Theorem 4.2 The SHVE scheme ΠSHVE-1 is adaptively simulation-secure in the ideal cipher model
under the assumption that PRF is a pseudo-random function and SKE is modeled as an ideal symmetric-
key encryption scheme.

Proof. We present the detailed proof of security. In particular, we show that for any non-uniform prob-
abilistic polynomial-time algorithm A = (A0, · · · ,AQ′+Q−1), there exists a non-uniform probabilistic
polynomial time simulator S = (S0, · · · ,SQ′+Q−1), such that the ensemble distribution:(

{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA
) R←− Exptada,real

ΠSHVE,A(λ)

and the ensemble distribution:(
{Ci}i∈[1,Q′], {skfj}j∈[1,Q], stateA

) R←− Exptada,sim
ΠSHVE,A,S(λ)

are computationally indistinguishable, where the experiments Exptada,real
ΠSHVE,A(λ) and Exptada,sim

ΠSHVE,A,S(λ) are
as described in Section 3.1. In particular, we construct the simulator S = (S0, · · · ,SQ′+Q−1). Once
again, we first consider the simplified scenario where A makes a single ciphertext query of the form
(I,M), and Q ≤ poly(λ) secret-key queries for f1, · · · , fQ. We then present a generalized argument to
show that the simulator algorithm can be easily extended to also answer polynomially many ciphertext
queries. Note that in the forthcoming discussion, we use the notation H to denote the query history
((I,M) , f1, · · · , fQ), and Hj to denote the partial query history ((I,M) , f1, · · · , fj), for j ∈ [1, Q].

• S0

(
1λ
)
: Since Q′ = 1, the simulator S0 needs to generate a single ciphertext C corresponding to

the plaintext query (I,M). It samples A1, A2, · · · , Al
R←− {0, 1}λ and B1, B2 · · · , Bl

R←− {0, 1}λ.

It also samples K
R←− {0, 1}λ and breaks it into l random shares K1, · · · ,Kl. It then sets the

following:

ck,0 ← Bk ⊕Kk for k ∈ [1, l]

ck,1 ← Ak ⊕Kk for k ∈ [1, l]

cl+1
R←− {0, 1}λ
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As in the proof of selective security, the values A1, A2, · · · , Al are used to simulate the determin-
istic values corresponding to PRF (msk, ?||k) for k ∈ [1, l]. Additionally, the values B1, B2, · · · , Bl
are used to simulate PRF (msk, xk||k) for k ∈ [1, l], where xk is the kth component of the attribute I
chosen by algorithm A. Finally, since S0 has no information about the payload message M chosen
by the algorithm A, it uniformly samples cl+1. The rationale behind this step will be explained
subsequently.

Note that since SKE is modeled as an ideal cipher in this proof, at any point of time, the algorithm
A is allowed to make encryption/decryption queries using plaintext-key/ciphertext-key pairs of its
choice. The simulator S0 initializes a table T , referred to as the SKE-table, comprising of tuples of
the form (ki,mi, ci) ∈ {0, 1}λ × {0, 1}λ × {0, 1}λ. When A issues an encryption-query of the form
(k,m) (equivalently, a decryption query of the form (k, c)), S0 looks up the table T for a match-
ing tuple. If such a tuple is found, it responds with the corresponding ciphertext (equivalently,
plaintext) entry. Otherwise, if k 6= K, it uniformly samples a random string in {0, 1}λ, returns the
same to A, and adds the resulting triplet as a new entry to the SKE-table.

If k = K, S0 must abort. Note that the tuple (K,M, cl+1) should ideally exist in the SKE-table
T ; however, S0 has no information about the payload message M chosen by the algorithm A at
this point. Upon encountering an encryption query of the form (K,m), S0 can correctly guess if
M = m with only negligible probability; hence it cannot ascertain if the corresponding ciphertext
c to be returned should be cl+1 or a random string in {0, 1}λ. A similar argument may be made
for the case of a decryption query as well.

Finally, S0 outputs the simulated ciphertext C =
(
{ck,0, ck,1}k∈[1,l], cl+1

)
and the state variable

stateS =
(
{Ak, Bk}k∈[1,l],K, cl+1, T

)
.

• S1 (α (H1) , δ (H1) , χ (H1) , stateS): Recall that the notation H1 is used to denote the query history
((I,M) , f1). Let f1 = (y1,1, y2,1 · · · , yl,1) and stateS =

(
{Ak, Bk}k∈[1,l],K, cl+1, T

)
. S1 sets the

secret-key skf1 = ((d1,1, α1,1) , · · · , (d1,l, α1,l)), such that for each k ∈ [1, l], :

d1,k =


Ak if α1,k = ?
Bk if α1,k 6= ? and χ1 6= ⊥
r

R←− {0, 1}λ otherwise

The generation of d1,k follows the same logic as discussed in the proof of selective security. The
coordinates of f1 that contain the wildcard character ? are readily inferred from the wildcard
pattern α and set accordingly. If χ1 6= ⊥, that is, f1(I) = 1, the predicate vector f1 must match
the attribute I in all components that are not ⊥; hence they are generated consistently with the
ciphertext to allow correct decryption. The remaining components are generated at random since
they play no role in decryption irrespective of χ1.

Observe that unlike S0, S1 potentially learns the payload message M from the decryption pat-
tern χ (H1). In particular, if χ1 6= ⊥, that is, f1(I) = 1, S1 sets M = χ1 and adds the tuple
(K,M, cl+1) to the SKE-table T . It answers encryption and decryption queries in the same way as
S0, except that if the entry (K,M, cl+1) has already been added to T , it no longer needs to abort
on any encryption/decryption query. Finally, S1 outputs the secret-key skf1 and the updated state
variable stateS =

(
{Ak, Bk}k∈[1,l],K, cl+1, T

)
, containing the augmented SKE-table T .

• Sj (α (Hj) , δ (Hj) , χ (Hj) , stateS) for j ∈ [2, Q]: Again, let fj = (y1,j , y2,j · · · , yl,j) and stateS =(
{Ak, Bk}k∈[1,l],K, cl+1, T

)
. Sj sets the secret-key skfj = ((dj,1, αj,1) , · · · , (dj,l, αj,l)), such that
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for each k ∈ [1, l], :

dj,k =


Ak if αj,k = ?
Bk if αj,k 6= ? and χj = 1
di,k if there exists i ∈ [1, j − 1] such that δi,j,k = 1

r
R←− {0, 1}λ otherwise

The generation of the secret-key components addresses the same consistency requirements as in the
case of S1. An additional check based on the query pattern δ is made in view of the deterministic
nature of the secret-key generation algorithm KeyGen in the real world experiment. Once again,
if χj 6= ⊥ and the tuple (K,M, cl+1) is not already present in T , Sj sets M = χj and adds
the tuple (K,M, cl+1) to T . All encryption and decryption queries are answered following the
same procedure as S1. Finally, Sj outputs the secret-key skfj and the augmented state variable
stateS =

(
{Ak, Bk}k∈[1,l],K, cl+1, T

)
, containing the augmented SKE-table T .

Functional Correctness of the Simulation. As in the proof of selective security, the consis-
tency properties adhered to by S0, · · · ,SQ when generating the ciphertext C and the secret-keys
{skfj}j∈[1,Q], as well as maintaining the SKE-table T , suffice to ensure that decrypting C using these
secret-keys yields the desired outputs. In particular, for each j ∈ [1, Q] such that fj(I) = 1, decryption
will successfully recover the payload message M , while in the remaining cases, decryption will return
⊥ with overwhelmingly large probability.

Indistinguishability Argument. In the absence of an abortion, a probabilistic polynomial-time

distinguisher D cannot computationally distinguish
(
C, {skfj}j∈[1,Q], stateA

) R←− Exptada,real
ΠSHVE,A(λ) from(

C, {skfj}j∈[1,Q], stateA
) R←− Exptada,sim

ΠSHVE,A,S(λ). As in the proof of selective security, since the state
variable stateA does not include the master-secret-key msk with all but negligible probability, the
secret-keys as well as the components {ck,0}k∈[1,l] and {ck,1}k∈[1,l] of the ciphertext C in the real
experiment must be indistinguishable from those generated by the simulator algorithms S0, · · · ,SQ.
Otherwise, one could distinguish between the output of PRF and a uniformly random string of size λ
without knowing the corresponding secret-key msk. Finally, if there exists at least one j ∈ [1, Q] such
that fj(I) = 1, the corresponding simulator Sj gains the knowledge of the payload message M , and
adds the tuple (K,M, cl+1) to the SKE-table T . This ensures that decrypting C with skfj recovers M ,
as in the real experiment. If, on the other hand, fj(I) = 0 for each j ∈ [1, Q], decrypting C with any of
the secret-keys {skfj}j∈[1,Q] does not reveal the secret-key K used to encrypt M . Now, since the state
variable stateA does not include K with all but negligible probability, and cl+1 is sampled uniformly
at random, the indistinguishability of cl+1 in the real and simulation experiments is guaranteed.

Bounding the Probability of Abortion. It remains to bound the probability that any of the
simulators S0, · · · ,SQ has to abort. Observe that abortion can only happen if the algorithm A makes
an encryption query of the form (K,m) or a decryption query of the form (K, c), where K is the
secret-key used to encrypt M in the ciphertext C. In addition, such a query must be made before a
secret-query is made for a predicate fj such that fj(I) = 1; otherwise the corresponding simulator
Sj learns M from the decryption pattern and no longer needs to abort. However, the algorithm A
also does not know the secret-key K; indeed, it can recover K via decryption only after receiving
a secret-key skfj such that fj(I) = 1. Prior to this, it must guess K to force any of the simulator
algorithms to abort, which happens with negligible probability.

Generalization to Polynomially many Ciphertext Queries. We now argue that the simulator
S can be extended to address polynomially many ciphertext queries of the form {(Ii,Mi)}i∈[1,Q′].
The simulators S0 through SQ′−1 essentially follow the same procedure as S0 in the aforementioned
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description to simulate the ciphertexts C1 through CQ′ . Note that none of the corresponding pay-
load messages M1, · · · ,MQ′ are known to the respective simulators; consequently, each of the final
ciphertext components ci,l+1 for i ∈ [1, Q′] are initially sampled uniformly at random. The secret-key
simulation phase also proceeds as described above, in consistence with the previously generated ci-
phertexts. As and when the decryption pattern reveals a given payload message Mi, the look-up table
T for the ideal cipher SKE is updated accordingly with the tuple (Ki,Mi, ci,l+1). The probability
of abortion on an encryption/decryption query to the ideal cipher can be similarly bounded to be
negligible in λ; in particular, since Q′ ≤ poly(λ), the probability that the adversary correctly guesses
any Ki for i ∈ [1, Q′] without an appropriate secret-key skfj such that fj(Ii) = 1, is negligible in λ.

There, however, remains a final issue to be addressed. Consider a scenario in which two attribute
vectors Ii and Ii′ queried by A match in some coordinate k ∈ [1, l], but the corresponding PRF
outputs Bi,k and Bi′,k are simulated as distinct values. This happens with high probability since, in
the ciphertext generation phase, the simulator has no prior information about the plaintext attributes.
This could lead to an ambiguity during the subsequent secret-key generation phase, specifically if the
algorithm A queries with an fj such that fj(I) = fj(I

′) = 1. This is tackled as follows: without loss
of generality, assume that i < i′. The simulator preserves the ciphertext Ci as is, and generates skfj
to be consistent with Ci. The other ciphertext Ci′ , is now made semantically consistent with both
Ci and skfj by re-adjusting the corresponding mask components that were XOR-ed with the PRF
outputs. In particular, the mask share Ki′,k is now changed to K ′i′,k = Bi,k ⊕Bi′,k ⊕Ki′,k. However,
this now implies that the payload message Mi′ should be encrypted using a different overall secret-key
K ′i′ = Ki′ ⊕Ki′,k ⊕K ′i′,k. Since SKE is modeled as an ideal cipher, this can again be made consistent
by replacing the tuple (Ki′ ,Mi′ , ci′,l+1) with (K ′i′ ,Mi′ , ci′,l+1) in the SKE-table T ; provided a tuple of
the form (K ′i′ ,Mi′ , ·) does not already exist. Finally, as already argued before, the probability that the
adversary A has already made an encryption/decryption query with either Ki′ or K ′i′ before receiving
skfj is negligible in λ. This concludes the proof of Theorem 4.2. ut

5 Conclusion and Open Problems

Hidden vector encryption (HVE), introduced by Boneh and Waters in [1], is an expressive sub-class
of predicate encryption, that allows conjunctive, subset, range and comparison queries over encrypted
data. All existing HVE constructions in the cryptographic literature use bilinear pairings over either
composite order or prime order groups. In this paper, we addressed the open problem of construct-
ing a lightweight symmetric-key HVE scheme that does not use bilinear pairings, but only efficient
cryptographic primitives such as pseudo-random functions (PRFs) and block ciphers. The relevance
of this problem stems from the implementation and performance overheads for bilinear pairings over
composite/prime order groups, which are significantly larger than that for PRFs and block ciphers, in
both software and hardware. While lightweight symmetric-key constructions exist for keyword search
on encrypted data, we aimed to expand the scope of such constructions to support a richer set of query
predicates. In this direction, we presented the first lightweight symmetric-key HVE construction that
does not use bilinear pairings. Our construction only uses a PRF and a PCPA-secure symmetric-
key encryption algorithm, making it amenable to both hardware and software implementations in
real-life resource-constrained environments. We proved the selective-simulation-security and adaptive-
simulation-security of our construction in the standard model and ideal cipher model, respectively,
against probabilistic polynomial-time adversary can make an unrestricted number of ciphertext gen-
eration and secret-key generation queries. The following open problems arise out of our work:

• An interesting open problem is to design a lightweight SHVE scheme that is adaptively simulation-
secure/enhanced-simulation-secure in the standard model. While known impossibility results do
not rule out such a construction [35, 36], especially if the number of ciphertext queries were re-
stricted, it seems challenging to achieve such a construction in practice.
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• Another interesting problem is to achieve a lightweight SHVE scheme with short secret-keys and/or
ciphertexts. This would lead to implementations with even lesser implementation/performance
overhead. Unfortunately, discarding pairings implies sacrificing the nice mathematical properties
of bilinear groups, which makes it difficult to combine multiple secret-key/ciphertext components
into a single component of constant overhead.
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A Generalized Simulator in the Proof of Theorem 4.1

Algorithm 2 is the generalized form of the simulator algorithm 1 that answers Q′ ≤ poly(λ) ciphertext
queries in addition to Q ≤ poly(λ) secret-key queries.

Algorithm 2 Generalized Simulator S for Q′ Ciphertext Queries and Q Secret-key Queries

Input:
(
1λ, {α (Hi,Q) , δ (Hi,Q) , χ (Hi,Q)}i∈[1,Q′]

)
Output:

(
{Ci}i∈[1,Q′], {skfj}j∈[1,Q]

)
1: Choose A1, A2, · · · , Al

R←− {0, 1}λ

Phase 1 - Simulation of Secret-Keys

2: Initialize a Q× l matrix d to empty
3: for each j ∈ [1, Q] do
4: for each k ∈ [1, l] do
5: if αj,k = 1 then
6: dj,k ← Ak
7: else if there exists i ∈ [1, j − 1] such that δi,j,k = 1 then
8: dj,k ← di,k
9: else

10: dj,k
R←− {0, 1}λ

11: end if
12: end for
13: skfj ← ((dj,1, αj,1) , · · · , (dj,l, αj,l))
14: end for

Phase 2 - Simulation of Ciphertexts

15: for each i ∈ [1, Q′] do
16: if there exists j ∈ [1, Q] such that χi,j 6= ⊥ then
17: Mi ← χi,j
18: else
19: Mi

R←− {0, 1}λ
20: end if
21: Uniformly sample Ki

R←− SKE.KeyGen(1λ), and break it into l random shares Ki,1, · · · ,Ki,l

22: for each k ∈ [1, l] do
23: if there exists j ∈ [1, Q] such that χi,j 6= ⊥ and αj,k = 0 then
24: ci,k,0 ← dj,k ⊕Ki,k

25: else
26: ci,k,0

R←− {0, 1}λ
27: end if
28: ci,k,1 ← Ak ⊕Ki,k

29: end for
30: ci,l+1 ← SKE.Encrypt (Ki,Mi)
31: Ci ←

(
{ci,k,0, ci,k,1}k∈[1,l], ci,l+1

)
32: end for

Final Output

33: Return
(
{Ci}i∈[1,Q′], {skfj}j∈[1,Q]

)
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