
Lattice-Based Techniques for Accountable Anonymity:
Composition of Abstract Stern’s Protocols and Weak

PRF with Efficient Protocols from LWR

Rupeng Yang1,2 ⋆, Man Ho Au2 ⋆⋆, Junzuo Lai3, Qiuliang Xu1 ⋆ ⋆ ⋆, and Zuoxia Yu2 †

1 School of Computer Science and Technology, Shandong University,
Jinan, 250101, China

orbbyrp@gmail.com, xql@sdu.edu.cn
2 Department of Computing, The Hong Kong Polytechnic University,

Hung Hom, Hong Kong
csallen@comp.polyu.edu.hk, zuoxia.yu@gmail.com

3 College of Information Science and Technology, Jinan University,
Guangzhou, 510632, China
laijunzuo@gmail.com

Abstract. In an accountable anonymous system, a user is guaranteed anonymity
and unlinkability unless some well-defined condition is met. A line of research
focus on schemes that do not rely on any trusted third party capable of de-
anonymising users. Notable examples include k-times anonymous authentication
(k-TAA), blacklistable anonymous credentials (BLAC) and linkable ring signa-
tures (LRS). All instances of these schemes are based on traditional number the-
oretic assumptions, which are vulnerable to quantum attacks.
One common feature of these schemes is the need to limit the number of times
a key can be (mis-)used. Traditionally, it is usually achieved through the use of
a pseudorandom function (PRF) which maps a user’s key to a pseudonym, along
with a proof of correctness. However, existing lattice-based PRFs do not interact
well with zero-knowledge proofs. To bridge this gap, we propose and develop the
following techniques and primitives:
• We formalize the notion of weak PRF with efficient protocols, which al-

lows a prover to convince a verifier that the function F is evaluated correctly.
Specifically, we provide an efficient construction based on the learning with
rounding problem, which uses abstract Stern’s Protocol to prove y = Fk(x) and
y , Fk(x) without revealing x, y or k.

• We develop a general framework, which we call extended abstract Stern’s
protocol, to construct zero-knowledge arguments system for statements formed
by conjunction and disjunction of sub-statements, who (or whose variants) are
provable using abstract Stern’s Protocol. Specifically, our system supports ar-
bitrary monotonic propositions and allows a prover to argue polynomial rela-
tionships of the witnesses used in these sub-statements.

⋆ This work was mainly done when doing the internship at The Hong Kong Polytechnic Univer-
sity.

⋆⋆ Corresponding author.
⋆ ⋆ ⋆ Corresponding author.

† The second to the fifth authors are sorted in the alphabetical order.

As many existing lattice-based primitives also admit proofs using abstract Stern’s
protocol, our techniques can easily glue different primitives together for privacy-
enhancing applications in a simple and clean way. Indeed, we propose three new
schemes, all of which are the first of its kind, in the lattice setting. They also
enjoy additional advantages over instances of the number-theoretic counterpart.
Our k-TAA and BLAC schemes support concurrent enrollment while our LRS
features logarithmic signature size without relying on a trusted setup. Our tech-
niques enrich the arsenal of privacy-enhancing techniques and could be useful
in the constructions of other schemes such as e-cash, unique group signatures,
public key encryption with verifiable decryption, etc.

Keywords: Lattice-Based Cryptography, Zero-Knowledge Arguments of Knowl-
edge, Privacy-Preserving Protocol, Accountable Anonymity

2

Table of Contents

1 Introduction . 4
1.1 Our Results . 6
1.2 Overview . 7

2 Preliminaries . 9
2.1 Cryptographic Assumptions . 10
2.2 Cryptographic Primitives . 11
2.3 The Abstract Stern’s Protocol . 11

3 The Extended Abstract Stern’s Protocol . 12
3.1 The Overview . 12
3.2 Protocols for The Inequality Variant of An Abstract Stern’s Relation . . . 13
3.3 Protocols for The Monotone Span Program Composition of Abstract

Stern’s Relations and Linear Equations of Witnesses 14
4 Weak Pseudorandom Function with Efficient Protocols 16

4.1 The Definition . 16
4.2 The Construction . 17

5 Applications . 19
5.1 Linkable Ring Signature . 19
5.2 k-times Anonymous Authentication . 20
5.3 Blacklistable Anonymous Credentials . 22

A Useful Tools for Handling Vectors and Defining Permutations 28
B Related Works . 30
C Omitted Protocols in Sec. 3 . 32

C.1 An Alternative Protocol Proving x , 0 . 32
C.2 Protocols for The Monotone Span Program Composition of Abstract

Stern’s Relations and Polynomial Equation of Witnesses 33
D Concrete ZKAoKs for wPRF with Efficient Protocols . 37
E Formal Definitions of Applications . 40

E.1 Definition of The Linkable Ring Signature . 40
E.2 Definition of The k-times Anonymous Authentication 42
E.3 Definition of The Blacklistable Anonymous Credentials 45

F Omitted Security Proofs for Applications . 49
F.1 Proof of Theorem 5.1 . 50
F.2 Proof of Theorem 5.2 . 53
F.3 Proof of Theorem 5.3 . 58

1 Introduction

Anonymity is usually a favorable property when conducting authentication protocols.
However, fully anonymity will lead to Deindividuation [Zim69,MB00], and consequen-
tially misbehaviors ensue. For instance, Wikipedia has allowed users to edit content
anonymously, but several anonymous users have misbehaved by posting inappropriate
content, and ultimately, the Wikipedia block users attempting to edit contents with an
open proxy [wik]. Therefore, in practice, we need ways to revoke anonymity. One ap-
proach, as have done in the group signature, revokable anonymous credential, etc., is
to employ an opening authority to complete this task, but the anonymity of users in
such systems is totally compromised if the opening authority is corrupted or broken. So
solutions without relying on a trusted party are preferable.

In another line of research, Privacy-Preserving Authentication schemes with Ac-
countable Anonymity (P2A3), which provide ways to detect, block or even trace and re-
voke users with misbehaviors without relying on a trusted party, and guarantee anonymity
and unlinkability of users as long as they do not perform some well-defined misbehav-
iors, are constructed. This includes linkable ring signature [LWW04], k-times anony-
mous authentication [TFS04], blacklistable anonymous credential [TAKS07] etc. Gen-
erally, in a P2A3 scheme, the number of times of a key can be (mis-)used is limited. To
count the number of times that a key has been (mis-)used, a tag, which will bind the
key in an anonymous and unlinkable manner, is employed. In this way, the verifier can
limit the number of times a user can use his key by limiting the number of bases that
can generate tags, and can limit the number of times a user can misuse his key by re-
quiring the user to prove that a limited number of tags labeled as misused are generated
by him. To ensure that the introduction of the tag will not compromise the anonymity
and the unlinkability of the user, the tag must be pseudorandom; to ensure that the tag
can bind the key, no two keys are allowed to be mapped to the same tag. Besides, to
guarantee that each user generates the correct tag, proof for the correct generation of
the tag should also be provided; and to allow the user to prove that most tags are not
generated by him, proof for the fact that “key does not map the tag” is needed. Apart
from the tag, we may also need a signature scheme with efficient protocols (in this paper
we call it “CL signature” for short) or an accumulator scheme to enable certification of
users. Besides, as the statements needed to prove in P2A3 schemes are quite complex
and often involve logic relations beyond conjunction, we also need a proof composition
technique here.

One common problem of all current P2A3 schemes is that they are built on tradi-
tional number-theoretical assumptions, which are vulnerable to quantum attacks. Even
worse, security of most of them schemes relies more or less on some non-standard
assumptions, e.g. strong RSA assumption, q-Strong Diffie-Hellman assumption etc,
which may bring potential security issues. Lattice-based cryptography seems promising
to solve these problems. First, it is widely believed that lattice-based hard problems are
resistant to quantum attacks. Then, commonly used problems, e.g. the Shortest Integer
Solution (SIS) problem [Ajt96] and the Learning With Error (LWE) problem [Reg05],
are as hard as some worst-case standard lattice problems. Besides, there are numerous
works constructing lattice-based privacy-preserving authentication schemes currently.
Especially, in recent works, lattice-based accumulator scheme [LLNW16] and lattice-

4

based CL signature scheme [LLM+16a], are constructed. But the remaining techniques
and primitives are still missing in the lattice-based setting, thus we need:

– A suitable function for generating the tag. In current schemes, the tag is generated
by mapping the secret key to a group element via deterministic functions, and the
correct generation of the tag is proved by employing suitable techniques proving
equations over group. We also need such a deterministic function admitting efficient
proof in the lattice-based setting. To simplify the construction and security analy-
sis, we hope to use this function as an abstract primitive. One may hope lattice-based
pseudorandom function [BPR12] could work, but it is not known whether they admit
an efficient proof since complex structures are introduced in their construction, also
adaptively pseudorandomness seems overkill for our purpose. It is a folklore that
such functions can be formalized as a Verifiable Random Function (VRF) [MRV99].
However, we observe that the VRF, and even the simulatable VRF [CL07], which
has been used in constructing E-Cash [BCKL09], is not suitable for our purpose.
The main reason is that they do not bind the secret key to the output of the function,
which is crucial for enabling various security guarantees, e.g. non-frameability, au-
thenticity, traceability etc. Moreover, some security properties, e.g. security without
common reference string, which prevent simple and efficient constructions for VRF,
are not needed in our applications. Besides, they do not provide a proper interface for
the zero-knowledge proofs, which may bring inconvenience when used in practice.
Therefore, we still need to define a suitable cryptographic primitive admitting effi-
cient construction in the lattice-based setting to complete the task of tag generation.

– A proof for the inequality in the lattice-based setting. Current schemes use the proof
of “inequality of discrete logarithms” [CS03] to prove “key does not map the tag”.
However, the idea used in [CS03] seems not applicable here due to lack of corre-
sponding algebraic structure in the lattice-based setting. So, we need new approaches
to complete this task.

– A new general framework for combining lattice-based zero-knowledge proofs. Cur-
rent efficient frameworks supporting logic compositions of proofs [CDS94, DSD-
CPY94, CPS+16a, CPS+16b] seem unsuited for combining lattice-based proofs in
practice. To see this, recall that when using those frameworks to construct proofs for
compound statements, the resulting proof only guarantees that the prover knows cor-
rect witnesses for enough many sub-statements. However, in practical applications,
it is usually required to additionally prove that different sub-statements share com-
munal witnesses. In traditional number theoretical settings, this gap can be closed
by committing these communal witnesses and additionally prove equivalent of com-
mitted values. But in the lattice-based settings, witnesses in different arguments may
be (linearly) encoded via different methods. So, instead of proving that committed
values are identical, we need to prove that committed values satisfy some linear
equations. However, current lattice-based commitment schemes [KTX08, JKPT12,
XXW13,BKLP15,BDOP16], though additively homomorphic, cannot support scalar
multiplication of large values. Therefore, we need a new framework that can simulta-
neously prove logic compositions of sub-statements and linear relations of witnesses.

5

1.1 Our Results

In this paper, we bridge the gap between lattice-based assumptions and the P2A3 schemes
via developing the following techniques and primitives.
– A Lattice-Based Weak Pseudorandom Function with Efficient Protocols. We de-

fine the weak PseudoRandom Function (wPRF) with efficient protocols. Here we
write the function as y = Fk(x) for secret key k, input x and output y. The wPRF
admits efficient ZKAoK proving that y = Fk(x) and that y , Fk(x). We also require
the uniqueness of secret key, namely, for any output y and nearly any inputs x, there
exists at most one secret key k satisfies y = Fk(x). We also construct it from lattice-
based assumptions. Our new primitive is mainly used to generate public keys and
“tags” when constructing P2A3 schemes in this work, and can be used to construct
some other schemes, e.g. E-Cash, unique group signature etc. Especially, the ZKAoK
proving y , Fk(x) is essential for enabling blacklist-based accountable anonymity,
and is also applicable to construct some other schemes, e.g. public key encryption
with verifiable decryption. Besides, we can also use it to explain how tags work in
previous constructions of P2A3 schemes.

– A General Framework for Combining Lattice-Based Zero-Knowledge Proofs.
We present a general framework to construct Zero-Knowledge Arguments of Knowl-
edge (ZKAoK) for statements combined by a set of sub-statements, each of which
is either of the form ((P, v), x) ∈ LR or of the form ((P, v), x) < LR for a relation R
provable under the abstract Stern’s protocol presented in [LLM+16a], and witnesses
of these sub-statements satisfy some linear/polynomial equations. The framework
could greatly reduce the complexity for constructing applications in this work (and
relevant cryptographic primitives in future works), and enable the researchers to fo-
cus more on the ideas and less on the details of the constructed primitives. Another
advantage of our general framework is that it provides a simple and efficient way
to prove correct evaluation of arithmetic operations on secret values, thus is poten-
tially useful in constructing applications such as blacklistable anonymous credential
with reputation etc. The general framework contains three layers. First, we develop
a compiler transforming a statement of the form M · z , u into the form P · x = v,
where the latter is provable under the abstract Stern’s protocol. Then, we present an
argument for statements combined by sub-statements via monotone span programs,
where each sub-statement is of the form P · x = v, and witnesses of these sub-
statements satisfy some linear equations. Finally, we also improve this argument to
further support polynomial relations of witnesses.

Based on the wPRF and the general framework, we can construct a variety of P2A3

schemes, which are based on standard lattice problems with stronger security guaran-
tees. Via the introduction of the general framework, these schemes can be constructed
in a simple and clean way. In summary, the constructed applications include:
– A linkable ring signature scheme, which is also the first one that achieves a logarith-

mic signature size in the cardinality of the ring without relying on a trusted setup.
– A K-times anonymous authentication protocol, which is also the first one that sup-

ports concurrent enrollment.
– A blacklistable anonymous credential system, which is also the first one that supports

concurrent enrollment.

6

1.2 Overview

The Composition of the abstract Stern’s Protocols. To transform relations of the form
P · x , v into the form provable under abstract Stern’s protocol, we adopt the technique
presented in [LNSW13] to prove that the difference between P · x and v is not zero.
Observe that the technique in [LNSW13] extends the witness in a specific manner when
proving a vector is not zero, which makes it not applicable in some cases. To solve this
problem, we present two new alternative techniques, which do not require a specific
extension technique and are suitable for more scenarios. The first one is based on the
fact that a vector is not zero iff its hamming weight is not zero, and introduces only
an additional overhead logarithmic in the length of the vector, but cannot be used in
the setting whose moduli is smaller than the length of the vector. The second technique
relies on the fact that the inner product between a zero vector and any vector is zero,
and does not require any additional condition, but will introduce an additional overhead
linear in the length of the vector.

The general framework for combining lattice-based zero-knowledge proofs will
transform a set of ZKAoKs following the abstract Stern’s protocol, each of which
proves statements of the form ((Pi, vi), xi) ∈ Ri, into a new ZKAoK that follows the
abstract Stern’s protocol. The transformation works in three steps. In the first step, it
generates a proof that can “prove” all sub-statement of a given statement. The main
problem to complete this step is to “prove” the false sub-statements. In [CDS94], this
problem is solved by assigning randomness for false sub-statements in advance to en-
able simulation proofs for them. Here in our setting, where each sub-statement is true iff
it satisfies Pi · xi = vi, we can “prove” any sub-statement (in a fake manner) via proving
that Pi · (bi · xi) = bi · vi, or alternatively (Pi,−vi) · (bi · x⊺i , bi)⊺ = 0, where bi is 0 if the
sub-statement is false. The output of the first step is a simple concatenation of all these
fake proofs. In the second step, we need to additionally prove that set of indices of true
statements can be accepted by the given monotone span program defined by a matrix M
and a map ρ. Recall that this monotone span program accepts a set iff there exists vector
g that M⊺ · g = (1, 0, . . . , 0)⊺ and g[i] = 0 if ρ(i) is outside the set. So, it is sufficient
to additionally prove that there exists g satisfying M⊺ · g = (1, 0, . . . , 0)⊺ and g[i] is a
multiple of bρ[i]. After these two steps, the resulting argument is still under the abstract
Stern’s protocol. So, we can plug linear equation indicating relations of witnesses into
it easily, and that completes the task.

To upgrade the general framework to supporting polynomial relations of witnesses,
the main problem is to prove the correctness of non-linear equations, namely equa-
tions of the form z0 = z1 · z2 . . . · zt, where t is a positive integer, and for i ∈ [0, t], zi

is one bit. One may hope to complete this task by extending the technique presented
in [LLM+16b], which can prove that a bit is the product of two bits, to the higher
degree cases directly. However, this will introduce an additional communication cost
exponential in t. Here, we observe that as each variable in this non-linear equation
is either 0 or 1, we can define ℓ = t − ∑t

i=1 zi and reduce the task to proving that
(ℓ , 0 ∧ z0 = 0) ∨ (ℓ = 0 ∧ z0 = 1). The new statement can be handled by our general
framework and the technique of proving the inequality, and only a communication cost
that is logarithmic in t is introduced.

7

Weak Pseudorandom Function with Efficient Protocols. Our wPRF with efficient pro-
tocols can be viewed as a variant of the VRF, but it additionally requires that for nearly
all input output pair, there exists at most one secret key that can evaluate the input to the
output. This property is very useful in constructing advanced schemes. To demonstrate
this, we take our construction of linkable ring signature, where the secret key of a user
is the secret key of the wPRF, and his public key and tag are outputs of the wPRF on
some public random input, as an example. Also, we assume that for the used wPRF,
there exist some “bad” keys that can be sampled with only a negligible probability, but
for any input/output pair, one can efficiently find a “bad” key to explain it.4 In this way,
the adversary can obtain one more opportunity to sign via using the “bad” secret key
mapped to his public key; he can even sign on behalf of a group of users without him
via using the “bad” secret key mapped to the public key of a valid user; besides, he
can frame an honest user via using the “bad” secret key mapped to her tag to sign one
more message. Also, for sake of flexibility, supporting arguments are defined separately
from the definition of the function. To make it versatile in practice, we require that the
supporting arguments of the wPRF could work in different cases, including the basic
case where only the secret key needs to be hidden, the case that both the secret key and
the input need to be hidden, the case that both the secret key and the output needs to
be hidden, and finally the case that the secret key, the input and the output need to be
hidden. Besides, to enable simple and efficient constructions, similar to the definition of
the simulatable VRF [CL07], we define wPRF with efficient protocols in the public pa-
rameters model; we also only require a weak pseudorandomness, which is also required
in the weak VRF defined in [BGRV09].

Our construction of wPRF with efficient protocols is based on the Learning With
Rounding (LWR) assumption[BPR12], which is as hard as the LWE assumption if suit-
able parameters are chosen. Recall that the LWR assumption states that (A, ⌊p/q · A ·
s⌉) c≈ (A,u) for uniformly chosen A, s and u. This immediately leads to a wPRF with
secret key s, input A, and output ⌊p/q · A · s⌉. The weak pseudorandomness comes from
the LWR assumption directly. To ensure that there exists at most one secret key that
maps the input to the output for any output and for all but a negligible fraction of inputs,
we require that the inputs are “tall” matrices. In this way, the products of an input and
different secret keys distribute sparsely in the space and are not likely to be rounded to
the same result after scaling. The ZKAoK proving the correct evaluation of the function
is just arguments for the LWR relation (in different cases). The main problem to deal
with LWR relations is that we have to handle equations of real numbers. Here, we solve
this problem by requiring that q/p is an integer and transforming LWR relations into
equivalent equations in Zq, which only consist of integers. The transformed equations
are of the form A · s+e = v, which looks identical to the LWE relation. However, in our
proofs, we also need to guarantee the unique provability for the output of the function
(even when the output is hidden). This is achieved by proving that each element in v
is a multiple of q/p. In this way, there exists only one small enough e that satisfies the
equation. Having guaranteed the two points, we can use the techniques in [LLM+16b]

4 Such wPRF can be constructed easily. Let F be a secure wPRF, then we can construct a wPRF
G satisfies the condition by defining Gk1 ,k2 (x) that outputs k2 if all bits in k1 are 0 and Fk2 (x)
otherwise, where k1 is a long enough bit string.

8

to transform the statement into the relation provable under the abstract Stern’s protocol.
To prove the inequality of the output of the function and a given vector, we use the tech-
nique proving M · z , u to transform the equation A · s+ e = v. One subtle issue here is
to guarantee the correctness of e. Here, we solve this issue by additionally proving that
e can lead to a properly generated v, namely multiple of q/p.

Applications. When constructing our applications, we will use the secret key of the
wPRF with efficient protocols as the secret key of the application, and use the output
on a public random input as the public key. Validity of a user is proved via proving that
the public key is well certified. In the linkable ring signature scheme, this is done by
proving that the user’s public key is one of the public keys in the selected ring, and to
accelerate the proof, we use the accumulator scheme in [LLNW16]. Note that public pa-
rameters of the used accumulator scheme can be sampled from a public random source,
so our linkable ring signature scheme can achieve a logarithmic signature size without
relying on a trusted setup. In the k-times anonymous authentication protocol and in the
blacklistable anonymous credential system, public keys are signed by the group man-
agers with the CL signature scheme in [LLM+16a], and in each authentication, the user
needs to prove that he has the secret key for a properly signed public key. Note that in
our construction, the group manager sign on the public key of the user, so we do not
need the “Issue↔Obtain” protocol in these two constructions, and thus the constructed
schemes can achieve the concurrent enrollment property. The tag is the output of the
wPRF on some random inputs, where we guarantee the uniformity of each used input
by letting it be the output of some cryptographic hash function, which will be modeled
as a random oracle in the proof. To prove that no tags are generated by the user in the
blacklistable anonymous credential system, we will use the proof of inequality for the
LWR relation.

2 Preliminaries

Notations. In this paper, we will use bold lower-case letters (e.g. v) to denote vectors,
and use bold upper-case letters (e.g. A) to denote matrices. All elements in vectors and
matrices are integers unless otherwise specified. Also, we define function M2V(·) that
takes as input a matrix A ∈ Zm×n and outputs a vector a = (A[1]⊺∥ . . . ∥A[n]⊺)⊺, where
A[j] is the j-th column of the matrix A for j ∈ [1, n]. For a vector v of length n, we use
∥v∥∞ to denote the infinity norm of v, and use ∥v∥1 to denote the 1 norm of v, and we
also use v[i] to denote the ith element of v for i ∈ [1, n]. For a bit b, we use b̄ to denote
the negation of b.

Let S be a finite set, then we use s
$← S to denote sampling an element s uniformly

from set S. Also, for a distribution D, we use d ← D to denote sampling d according
toD. We write negl(·) to denote a negligible function. For two random variables, say X
and Y, we write X c≈ Y to denote that X and Y are computationally indistinguishable.
Let R be a binary relation, we use LR to denote the language characterized by R.

Besides, in this paper, we will also use the monotone span programM = (F,M, ρ),
where F is a field, M ∈ Fm×n, ρ is a map from integers in [1,m] to integers in [1,m′], and
m, n,m′ are poitive integers. The monotone span program can define an access structure

9

A ⊆ 2{1,...,m
′} consisting of sets S ⊆ [1,m′] that (1, 0, 0, . . . , 0)⊺ ∈ Fn is in the space

spaned by rows of MS, where MS is a submatrix of M that the ith row in M is also in
MS iff ρ(i) ∈ S for i ∈ [1,m].

2.1 Cryptographic Assumptions

We will build our wPRF with efficient protocols from the LWR assumption with un-
bounded polynomial samples, which is described as follows.

Definition 2.1 (LWR [BPR12]). Let n be the security parameter, and moduli q ≥ p ≥ 2
be integers. For a vector s ∈ Zn

q, define the LWR distribution Ls to be the distribution

over Zn
q × Zp obtained by choosing a vector a

$← Zn
q, and outputting (a, b = ⌊a⊺ ·

s⌉p). The decisional LWRn,q,p problems is to distinguish between any desired number of

independent samples (ai, bi)
$← Ls and the same number of samples drawn uniformly

and independently from Zn
q × Zp, where s

$← Zn
q. Here, as that in [BPR12], we define

⌊x⌉p = ⌊(p/q) · x⌉ in this paper.

As proved in [BPR12], solving the decisional LWRn,q,p problem is at least as hard
as solving the decisional LWEn,q,χ problem (described in Definition 2.2 below) with an
efficiently sampleable B-bound distribution χ over Z, as long as q ≥ p ·B ·nω(1), namely
q is super-polynomially large. Subsequently, there are also some works [AKPW13,
BGM+16, ASA16] considering how to improve the parameters in the reduction, how-
ever, all of them needs an a-priori bound on the number of samples, which makes it not
suitable for constructing pseudorandom functions.

Definition 2.2 (LWE [Reg05]). Let n be the security parameter, and moduli q ≥ 2 be
integers. Let χ be a distribution on Z. For a vector s ∈ Zn

q, define the LWE distribution

Ls to be the distribution over Zn
q × Zq obtained by choosing a vector a

$← Zn
q, an

integer e ← χ, and outputting (a, b = a⊺ · s + e). The decisional LWEn,q,χ problems is

to distinguish between any desired number of independent samples (ai, bi)
$← Ls and

the same number of samples drawn uniformly and independently from Zn
q × Zq, where

s
$← Zn

q.

We will also use the SIS assumption, which is described as follows.

Definition 2.3 (SIS [Ajt96]). The SIS∞n,m,q,β problem is to find a non-zero vector x ∈ Zm

such that ∥x∥∞ ≤ β and A · x = 0 mod q given a matrix A
$← Zn×m

q .

As summarized in [P+16], let q ≤ 2poly(n), χ be (discretized) Gaussian error dis-
tribution of parameter αq ≥ 2

√
n, γ = Õ(n/α), where 0 < α < 1, then solving the

decision-LWEn,q,χ problem is at least as hard as quantumly solving the GapSVPγ and
the SIVPγ on arbitrary n-dimensional lattices; let q ≥ βÕ(

√
n), γ = βÕ(

√
n), then solv-

ing the SIS∞n,m,q,β problem is at least as hard as solving the GapSVPγ and the SIVPγ on
arbitrary n-dimensional lattices.

10

2.2 Cryptographic Primitives

In this section, we review several cryptographic primitives used in this paper.
Zero-knowledge proof of knowledge. In a zero-knowledge proof of knowledge [GMR89]
system, a prover proves to a verifier that he possesses the witness for a statement with-
out revealing any additional information. When deployed in our applications, we will
in fact use non-interactive zero-knowledge proof of knowledge, and require it to have
security properties of completeness, soundness, zero-knowledge, extractability, simu-
lation soundness and simulation extractability. To construct a proof system satisfying
those properties, one can apply the well-known Fiat-Shamir heuristic [FS86] to trans-
form a three round public coin interactive zero-knowledge proof of knowledge (sigma
protocol) into a non-interactive one. One advantage led by the Fiat-Shamir transform is
that the transformed non-interactive proof system can additionally admit a message as
input, thus it is also called signature proof of knowledge (SPK), and is usually written
as S PK{(w) : S}[m], where S is the statement to be proved, w is the witness, and m
is the message. For convenience, the message m can be omitted if it is not explicitly
indicated in context.
Accumulator. An accumulator scheme [BDM93] can accumulate a large set of inputs
into a small value (the accumulator), and provide a short witness for each element in
the accumulated set. Security of accumulator requires that no one can generate a valid
witness for an element not in the accumulated set.
CL Signature Schemes. A CL signature scheme [CL01, CL02] is a signature scheme
that allows a signer to sign on the commitment of a message, and allows one to prove
the possession of a valid message signature pair in a zero-knowledge manner. Thus it
can provide both the authentication and the privacy of message.

2.3 The Abstract Stern’s Protocol

In [LLM+16a], an abstract Stern’s Protocol for a large class of relations are proposed.
More precisely, let q ≥ 2,D, L be postive integers, let VALID⊆ {−1, 0, 1}L, and let

Rabstract = {(P, v), x ∈ ZD×L
q × ZD

q × VALID : P · x = v mod q}

Also, let S be a finite set and for each π ∈ S, let Tπ be a permutation on L elements. We
say (S, T) is “valid” for Rabstract if they satisfy the following two conditions:∀π ∈ S, x ∈ VLAID⇐⇒ Tπ(x) ∈ VALID

∀x ∈ VALID, if π
$← S, then Tπ(x) is uniformly distributed in VALID.

(1)

Then, we have

Lemma 2.1 ([LLM+16a]). Based on finite set S, and permutation T, which are valid
for Rabstract, one can construct statistical ZKAoK for the relation Rabstract with perfect
completeness, soundness error 2/3, and communication cost Õ(L log q).

Therefore, to employ the abstract Stern’s protocol to prove a statement, one needs
to first transform the statement into the form of the abstract relation Rabstract, then spec-
ify a valid permutation family (S, T). Note that the second term in Condition (1) im-
plies that for all vectors in VALID, the numbers of −1, 0, 1 must be constant, thus we

11

must also guarantee this after the transformation. Serveral tools, which are developed in
recent works on Stern’s protocol [LNSW13, LLNW14, ELL+15, LLNW16, LLM+16a,
LLM+16b] can be used to complete these two tasks, and review these tools in Appendix
A.

3 The Extended Abstract Stern’s Protocol

3.1 The Overview

In this section, we present the extended abstract Stern’s protocol that can combine ab-
stract Stern’s protocols.

Let q,D, L be positive integers, VALID⊆ {−1, 0, 1}L be a set, and R = {((P, v),
x) ∈ ZD×L

q × ZD
q ×VALID : P · x = v mod q} be an abstract Stern’s relation. We define

the “Inequality variant” of R as R̄ = {((P, v), x) ∈ ZD×L
q × ZD

q × VALID : P · x , v
mod q}. Our extended abstract Stern’s protocol aims to prove relations combined by
multiple relations, each of which is either an abstract Stern’s relation or its inequality
variant.

More precisely, the combined relation RA,F can be defined by a family of access
control policies A, which defines how the relations combine, and a family of functions
F, which defines relations of witnesses, as following. Let t, k, q be positive integers. For
i ∈ [1, t], let Di, Li be positive integers, let di ∈ {0, 1} be a bit, let VALIDi ⊆ {−1, 0, 1}Li

be a set, let Ri,0 = {((P, v), x) ∈ ZDi×Li
q ×ZDi

q ×VALIDi : P · x = v mod q} be an abstract
Stern’s relation, let Ri,1 = {((P, v), x) ∈ ZDi×Li

q × ZDi
q × VALIDi : P · x , v mod q} be

the inequality variant of Ri,0, and let Ri = Ri,di . Also, let A : 2{1,2,...,t} → {0, 1} be an
access control policy in A, F : {−1, 0, 1}

∑t
i=1 Li → Zk

q be a function in F and let c ∈ Zk
q.

Then, a tuple ((P1, v1, . . . , Pt, vt), (x1, . . . , xt)) ∈ RA,F iff
T = {i | i ∈ [1, t] ∧ ((Pi, vi), xi) ∈ Ri}
A(T) = 1
F(x⊺1 , . . . , x

⊺
t) = c

(2)

We construct the ZKAoK protocols for the new relation RA,F in two steps. First,
in Sec. 3.2 we present a method that can transform an inequality variant R̄ of an ab-
stract Stern’s relation R into another abstract Stern’s relation R′. Moreover, given the
abstract Stern’s protocol for R, we can construct the abstract Stern’s protocol for R′.
By using this method, we can transform the relation RA,F into the relation R′

A,F, which
is combined by abstract Stern’s relations via the relation combiner A and the witnesses
combiner F. Then, in Sec. 3.3, we construct an abstract Stern’s protocol for the relation
R′
A,F given the abstract Stern’s protocols for the underlying abstract Stern’s relations,

when A is the monotone span program and F is the linear function. Therefore, we have

Theorem 3.1. Let A be the monotone span program, F be the linear function, and RA,F
defined as above. Then given abstract Stern’s protocols proving relation Ri,0 for i ∈ [1,
t], one can construct an abstrct Stern’s protocol for RA,F.

12

We also construct in Appendix C.2 an abstract Stern’s protocol for the relation R′
A,F

given the abstract Stern’s protocols for the underlying abstract Stern’s relations, when
A is the monotone span program and F is the mulivariate polynomial with binary input.
As a result, we have

Theorem 3.2. Let A be the monotone span program, F be the mulivariate polynomial
with binary input, and RA,F defined as above. Then given abstract Stern’s protocols
proving relation Ri,0 for i ∈ [1, t], one can construct an abstrct Stern’s protocol for
RA,F.

3.2 Protocols for The Inequality Variant of An Abstract Stern’s Relation

In this section, we present an abstract Stern’s protocol proving the inequality variant of
an abstract Stern’s relation.

More precisely, let D′, L′, q be positive integers, let VALID′ ⊆ {−1, 0, 1}L′ be a set,
and let R′ = {((P, v), x) ∈ ZD′×L′

q × ZD′
q × VALID′ : P · x = v mod q} be an abstract

Stern’s relation. Then, given common input P′ ∈ ZD′×L′
q , v′ ∈ ZD′

q , and prover’s secret
input x′ ∈ VALID′, the prover needs to prove that he knows a vector x′ ∈ VALID′ that
P′ · x′ , v′ mod q.

Now, let u = P′ · x′ mod q, and u′ = v′ − u mod q, then it is sufficient to prove
that

P′ · x′ − u = 0 mod q

u + u′ = v′ mod q

u′ , 0 mod q
(3)

Here, the third term in Equation (3) can be handled by the method proposed by
Ling et.al in [LNSW13], which is used to prove the SIS relation. With this method, to
prove that u′ is not equal to 0, we need to extend the decomposition of u′ in a special
manner, namely, extending the vector with one less 0. 5 In more detail, let Ḋ = D′δq−1,
then we define ũ′ = DecD′,q−1(u′). Assume that there are n0 0s and n1 1s in ũ′, then we
append Ḋ − n0 − 1 0s and Ḋ − n1 1s to ũ′ and denote the resulting vector, which has
Ḋ − 1 0s and Ḋ 1s, as û′. We also define K̂

′
D′,q−1,2 = (KD′,q−1∥0m×Ḋ−1), which satisfies

u′ = K̂
′ · û′. Note that û′ can only be generated when ũ′ is not 0, i.e. when u′ is not

0. Then, we decompose and extend the remaining part of Equation (3) and define the
following matrices and vectors.

û = DecEnc2D′,q−1(u), x = (x′⊺∥û⊺∥û′⊺)⊺

P =
(

P′ −ĴD′,q−1,2 0D′×2Ḋ−1

0D′×L′ ĴD′,q−1,2 K̂
′
D′,q−1,2

)

v = ((0D′)⊺∥v′⊺)⊺

5 Since one needs to extend the target vector in a specific manner when using the method, it may
be inconvenient to use this method in some cases. So, we also present an alternative method
proving that a vector is not 0 in Sec. C.1, which may be of independent interest.

13

Then, we can transform Equation (3) as follows,

P · x = v mod q

and define VALID= VALID′ ×DḊ × {w ∈ {0, 1}2Ḋ−1 | ∥w∥1 = Ḋ} that is a set of vectors
of length L = L′ + 4Ḋ − 1. Obviously, x ∈VALID. It can be easily verified that this
statement is equivalent to the original statement.

Then we need to specify the permutation used in the protocol. As the relation R′ can
be proved under the abstract Stern’s protocol, there exists S′, T′ that are valid for R′.
Then we define S = S′ × {0, 1}Ḋ × P2Ḋ−1. For π = (π1, b2, π3) ∈ S, where π1 ∈ S′, and
b2 ∈ {0, 1}Ḋ and π3 ∈ P2Ḋ−1, and w = (w⊺1 ∥w

⊺
2 ∥w

⊺
3)⊺ where w1 is of length L′, w2 is of

length 2Ḋ and w3 is of length 2Ḋ−1, we define Tπ(w) = (T′π1
(w1)⊺, Fb2 (w2)⊺, π3(w3)⊺)⊺.

It is not hard to check that S and T are valid.

3.3 Protocols for The Monotone Span Program Composition of Abstract Stern’s
Relations and Linear Equations of Witnesses

In this section, we present an abstract Stern’s protocol for the relation combined by
abstract Stern’s relations via a monotone span program and a linear function, i.e. the
protocol proves that the indices of true statements in a set of statements, each of which
is about an abstract Stern’s relation, satisfy a monotone span program, and witnesses of
these statements satisfy a linear equation.

More precisely, let t, q, k be positive integers, q′ be a positive prime and q̃ = lcm(q,
q′); let γ = q̃/q and γ′ = q̃/q′; let M = (Zq′ ,M, ρ) be a monotone span program
accepting an access structure A ⊆ 2{1,...,t}, where M ∈ Zℓ1×ℓ2q′ ; for i ∈ [1, t], let Di, Li be
positive integers, let VALIDi ⊆ {−1, 0, 1}Li be a set, and let Ri = {((P, v), x) ∈ ZDi×Li

q ×
ZDi

q × VALIDi : P · x = v mod q} be an abstract Stern’s relation; let B ∈ Zk×(
∑t

i=1 Li)
q

and c ∈ Zk
q. Then, given common input Pi ∈ ZDi×Li

q , vi ∈ ZDi
q , and prover’s secret input

xi ∈ VALIDi for i ∈ [1, t], the prover needs to prove that
T = {i | i ∈ [1, t] ∧ ((Pi, vi), xi) ∈ Ri}
T ∈ A
B · (x⊺1 ∥ . . . ∥x

⊺
t)⊺ = c mod q

(4)

Now, let bi be a bit that equals to 1 iff i ∈ T for i ∈ [1, t]. Note that if bi = 1,
then Pi · xi = vi, thus we have bi · (Pi · xi − vi) = 0 for i ∈ [1, t]. Also, let g = (g1,
. . . , gℓ1)⊺ ∈ Zℓ1q′ be a vector that g⊺ · M = (1, 0, . . . , 0) mod q′ and gi = 0 if bρ(i) = 0
for i ∈ [1, ℓ1].6 Then we rewrite Equation (4) as follows. Note that to handle equations
under different modulars, we employ the technique in [YAY17].

6 Since T satisfy M, we have that rows of M that are mapped by ρ to those is that bi = 1,
span the row vector (1, 0, . . . , 0). Thus, one can compute a valid g efficiently by solving linear
equations.

14

γ · P̂ −γ · V̂ γ · B
γ′ · M⊺

 ·

b1 · x1
...

bt · xt

b1
...

bt

x1
...
xt

g

=

 0D̂

γ · c
γ′ · e

 mod q̃ (5)

where in this section, we define D̂ =
∑t

i=1 Di, L̂ =
∑t

i=1 Li, e = (1, 0, . . . , 0)⊺ ∈ {0, 1}ℓ2 ,
and define

P̂ =

P1
. . .

Pt

 V̂ =

v1
. . .

vt

Next, we need to decompose and extend Equation (5), and we first define the fol-

lowing matrices and vectors.

x́ = (b1 · x⊺1 ∥ . . . ∥bt · x⊺t)⊺, x̀ = (b̄1 · x⊺1 ∥ . . . ∥b̄t · x⊺t)⊺

b́ = (b1, . . . , bt)⊺, b̀ = (b̄1, . . . , b̄t)⊺

∀i ∈ [1, ℓ1], ĝi = DecEnc21,q′−1(g[i])
ǵ = (bρ(1) · ĝ⊺1 ∥ . . . ∥bρ(ℓ1) · ĝ⊺

ℓ1
)⊺, g̀ = (b̄ρ(1) · ĝ⊺1 ∥ . . . ∥b̄ρ(ℓ1) · ĝ⊺

ℓ1
)⊺

x = (x́⊺∥x̀⊺∥b́⊺∥b̀⊺∥ ǵ⊺∥ g̀⊺)⊺

P =

γ · P̂ 0D̂×L̂ −γ · V̂ 0D̂×t 0D̂×2ℓ1δq′−1 0D̂×2ℓ1δq′−1

γ · B γ · B 0k×t 0k×t 0k×2ℓ1δq′−1 0k×2ℓ1δq′−1

0ℓ2×L̂ 0ℓ2×L̂ 0ℓ2×t 0ℓ2×t γ′ · M⊺ · Ĵℓ1,q′−1,2 0ℓ2×2ℓ1δq′−1

v = ((0D̂)⊺∥γ · c⊺∥γ′ · e⊺)⊺

Then, we can transform Equation (5) as follows,

P · x = v mod q̃

15

and define

VALID = {(w⊺1,1∥ . . . ∥w
⊺
1,t∥w

⊺
2,1∥ . . . ∥w

⊺
2,t∥w

⊺
3,1∥ . . . ∥w

⊺
3,t∥

w⊺4,1∥ . . . ∥w
⊺
4,t∥w

⊺
5,1∥ . . . ∥w

⊺
5,ℓ1
∥w⊺6,1∥ . . . ∥w

⊺
6,ℓ1

)⊺ |
∀i ∈ [1, t],∀ j ∈ [1, ℓ1] that ρ(j) = i,

(w1,i ∈ VALIDi ∧ w2,i ∈ 0Li ∧ w3,i = 1 ∧ w4,i = 0∧
w5, j ∈ Dδq′−1 ∧ w6, j ∈ 02δq′−1)∨
(w1,i ∈ 0Li ∧ w2,i ∈ VALIDi ∧ w3,i = 0 ∧ w4,i = 1∧
w5, j ∈ 02δq′−1 ∧ w6, j ∈ Dδq′−1)}

that is a set of vectors of length L = 2L̂ + 2t + 4ℓ1δq′−1. Obviously, x ∈VALID. Note
that for any i ∈ [1, t], we have bi · xi + b̄i · xi = xi, thus here we do not need to include
x1, . . . , xt explicitly in the witness. Besides, since g[j] = 0 if bρ(j) = 0 for j ∈ [1, ℓ1],
we have Ĵℓ1,q′−1,2 · ǵ = Ĵℓ1,q′−1,2 · ĝ = g, where we use ĝ to denote (ĝ⊺1 ∥ . . . ∥ ĝ

⊺
ℓ1

)⊺ here. It
can be easily verified that this statement is equivalent to the original statement indicated
by Equation (4).

Then we need to specify the permutation used in the protocol. As each relation
Ri can be proved under the abstract Stern’s protocol, there exists Si, T

(i) that are valid
for Ri for i ∈ [1, t]. Then we define S = {0, 1}t × S1 × S2 × . . . × St × ({0, 1}δq′−1)ℓ1 .
For π = (b0, π1, π2, . . . , πt, b1, . . . , bℓ1) ∈ S, where b0 ∈ {0, 1}t, πi ∈ Si for i ∈ [1, t],
and b j ∈ {0, 1}δq′−1 for j ∈ [1, ℓ1], and w = (w⊺1,1, . . . ,w

⊺
1,t,w

⊺
2,1, . . . ,w

⊺
2,t,w

⊺
3,1, . . . ,w

⊺
3,t,

w⊺4,1, . . . ,w
⊺
4,t,w

⊺
5,1, . . . ,w

⊺
5,ℓ1
,w⊺6,1, . . . ,w

⊺
6,ℓ1

)⊺ where for i ∈ [1, t], w1,i,w2,i is of length
Li, w3,i,w4,i is of length 1, and for j ∈ [1, ℓ1] w5, j,w6, j is of length 2δq′−1, we de-
fine Tπ(w) = (w′⊺1,1, . . . ,w

′⊺
1,t,w

′⊺
2,1, . . . ,w

′⊺
2,t,w

′⊺
3,1, . . . ,w

′⊺
3,t,w

′⊺
4,1, . . . ,w

′⊺
4,t,w

′⊺
5,1, . . . ,

w′⊺5,ℓ1 ,w
′⊺
6,1, . . . ,w

′⊺
6,ℓ1

)⊺ that for i ∈ [1, t], w′1,i = T(i)
πi (w1+b0[i],i), w′2,i = T(i)

πi (w2−b0[i],i),
w′3,i = w3+b0[i],i, w′4,i = w4−b0[i],i, and for j ∈ [1, ℓ1], w′5, j = Fb j (w5+b0[ρ(j)], j), w′6, j =
Fb j (w6−b0[ρ(j)], j). It is not hard to check that S and T are valid.

4 Weak Pseudorandom Function with Efficient Protocols

In this section, we define and construct weak pseudorandom function with efficient pro-
tocols, which can be used to generate tags when constructing P3A2 schemes. Compared
to a normal wPRF, the new primitive admits a series of ZKAoK protocols proving
the correct evaluation of the function in different scenarios. Besides, it also has the
“uniqueness” property, which can bind the secret key of the function to its output. To
construct wPRF with efficient protocols, we start with the wPRF constructed implicitly
in [BPR12]. Then we adapt the parameters of their consturction to achieve (different lev-
els) of uniqueness. To complete the construction, we also develop a series of ZKAoKs
proving the correct evaluation of the function under the abstract Stern’s protocol.

4.1 The Definition

Formally, a wPRF with efficient protocols consists of two algorithms:

16

– sk ← KeyGen(1λ). On input a security parameter 1λ, the key generation algorithm
outputs the secret key sk for the function.

– y = Eval(sk, x). On input a secret key sk and an input x, the evaluation algorithm
outputs the output y of the function. Usually, we write this procedure as y = Fsk(x).

Besides, it also consists of following ZKAoK protocols:

– A set of protocols proving y = Fsk(x) with either hidden sk, or hidden (sk, x), or
hidden (sk, y), or hidden (sk, x, y).

– A set of protocols proving y , Fsk(x) with either hidden sk, or hidden (sk, x), or
hidden (sk, y), or hidden (sk, x, y).

We require that a wPRF with efficient protocols has the following properties:

– Weak Pseudorandomness. Let sk ← KeyGen(1λ); let O0,sk() be an oracle that
answers each query with a tuple (x, y) where x is sampled freshly and uniformly
from the domain of the function, and y = Eval(sk, x); let O1,sk() be an oracle that
answers each query with a tuple (x, y) where x, y are sampled freshly and uniformly
from the domain of the function and the range of the function respectively. Then for

any probabilistic polynomial time adversary A, Pr[b
$← {0, 1}; b′ ← AOb,sk (); b =

b′] ≤ 1/2 + negl(λ).
– Uniqueness. Let x be an input sampled uniformly at random from the domain of

the function, then Pr[∃sk1, sk2, sk1 , sk2 ∧ Fsk1 (x) = Fsk2 (x)] ≤ negl(λ), where the
probability takes over the randomly chosen of the input x.

The uniqueness requires that for all but a negligible fraction of inputs, the output
can bind the secret key when fixing the input. In some scenarios, a stronger version of
the uniqueness, which requires that the output bounds the secret key even without fixing
the input, is needed, and we define this stronger uniqueness as follows:
– Strong Uniqueness. Let x1, x2 be two inputs sampled independently and uniformly

at random from the domain of the function, then Pr[∃sk1, sk2, sk1 , sk2 ∧ Fsk1 (x1) =
Fsk2 (x2)] ≤ negl(λ), where the probability takes over the randomly chosen of the
inputs x1, x2.

4.2 The Construction

Now, we present the construction of the wPRF with efficient protocols from the LWR
assumption. The constructed scheme F, which is described below, works with a domain
Zm×n

q , a range Zm
p , and a key space Zn

q, where n,m, p, q are positive integers that n is
the security parameter, p ≥ 2, γ = q/p ∈ nω(1) is an odd integer, and m ≥ n · (log q +
1)/(log p − 1).

– KeyGen. The key generation algorithm samples s
$← Zn

q and outputs sk = s.

– Eval. On input an input A
$← Zm×n

q , the evaluation algorithm outputs y = ⌊A · s⌉p.

17

Next, we present ZKAoK proving the correct evaluation of the function, i.e. given
s ∈ Zn

q, A ∈ Zm×n
q and y ∈ Zm

p , proving that

⌊A · s⌉p = y mod p (6)

Let e = γ · y − A · s, then we rewrite Equation (6) as follows.

A · s + e = γ · y mod q (7)

Note that if Equation (6) holds, then we have e ∈ [−β, β]m, where we define β = ⌊γ/2⌋
in this section. Also, if there exists e ∈ [−β, β]m satisfying Equation (7), then we can
also conclude that Equation (6) holds. Thus, proving Equation (6) is equal to proving
that there exists e ∈ [−β, β]m satisfying Equation (7). We give the concrete proof of
statements for Equation (7) with different requirements (namely, with hidden s, with
hidden s, y, with hidden s, A, and with hidden s, A, y) in Appendix D.

Then we move on proving the incorrect evaluation of the function, i.e. given s ∈ Zn
q,

A ∈ Zm×n
q and y ∈ Zm

p , proving that

⌊A · s⌉p , y mod p (8)

We can also transform Equation (8) as follows.

A · s + e , γ · y mod q (9)

However, proving that there exists e ∈ [−β, β]m satisfying Equation (9) does not lead
to Equation (8). This is because even Equation (8) does not hold (i.e. ⌊A · s⌉p = y
mod p), one can make Equation (9) to hold by using a fake e. So, we must also prove
the correctness of e, namely, the real number vector e

γ
being the correct rounding error

for 1
γ
· A · s. This can be done by proving that A · s + e equals to a vector with all

elements being a multiple of γ, which implies that 1
γ
· A · s + e

γ
= y′ mod p for some

vector in Zm
p , i.e. e is the correct rounding error for 1

γ
· A · s. In summary, we reduce

the task of proving Equation (8) to the task of proving that there exists e ∈ [−β, β]m and
y′ ∈ Zm

p satisfying Equation Equation (10) defined as follows. A · s + e − γ · y′ = 0 mod q

A · s + e , γ · y mod q
(10)

This can be handled by the extended abstract Stern’s protocol defined in Sec. 3, and we
only need to provide abstract Stern’s protocols for underlying abstract Stern’s relations,
which has already been provided in Appendix D. Note that, we should always use the
protcol proving a relation with hidden output for the first equation.

Security of F is guaranteed by Theorem 4.1 stated as follows.

Theorem 4.1. If the LWRn,q,p assumption holds, and m ≥ n · (log q+1)/(log p−1), then
F is a secure wPRF.

Proof. Weak pseudorandomness of F comes from the LWRn,q,p assumption directly.

18

The uniqueness property requires that for a matrix A
$← Zm×n

q , the probability that
∃s1, s2 ∈ Zn

q satisfying s1 , s2 mod q and ⌊A · s1⌉p = ⌊A · s2⌉p mod p is negligible.
Note that the latter equation implies that ∃e ∈ (−γ, γ)m that e = A · (s1 − s2) mod q.
So, it is sufficient to prove that the probability p that ∃d ∈ Zn

q, e ∈ (−γ, γ)m satisfying
d , 0 mod q and A · d = e mod q is negligible. Note that for each fixed e, the
probability that ∃d , 0 that e = A · d is less than nqn

qm . This is caculated in two cases:
1) if e = 0, then it means that A has a rank less than n, which is of probability less
than nqn−1

qm ; 2) if e , 0, then it means that (e, A) has a rank less than n + 1, which is of

probability less than nqn

qm (note that e is a fixed non-zero vector). Finally, by the union

bound, the probability p ≤ (2γ−1)m·n·qn

qm ≤ 2m·n·qn

pm ≤ n·qn

2n(log q+1) =
n
2n , which is negligible in n.

That completes the proof. □

Moreover, if we further require that m ≥ 2n · (log q + 1)/(log p − 1), then we can
prove that the constructed wPRF with efficient protocol has strong uniqueness:

Proof. The strong uniqueness property requires that for two matrices A1, A2
$← Zm×n

q ,
the probability that ∃s1, s2 ∈ Zn

q satisfying s1 , s2 mod q and ⌊A1 · s1⌉p = ⌊A2 · s2⌉p
mod p is negligible.7. Note that the latter equation implies that ∃e ∈ (−γ, γ)m that
e = A1 · s1 − A2 · s2 mod q. So, it is sufficient to prove that the probability p that ∃d,
∈ Z2n

q , e ∈ (−γ, γ)m satisfying d , 0 mod q and A · d = e mod q is negligible, where
A = (A1, A2). The remaining part is identical to that in the proof of Theorem 4.1, but as
the random matrix A is uniform in Zm×2n

q now, we need m ≥ 2n · (log q + 1)/(log p − 1)
to enable the inequalities. □

5 Applications

In this section, we demonstrate how to employ techniques and primitives presented in
this work to construct concrete applications. In particular, we focus on the constructions
of the linkable ring signature scheme, k-times anonymous authentication protocol, and
blacklistable anonymous credential systems. Our construction follows the classical de-
sign principle of these schemes [ACST06, TFS04, TAKS07], and enjoys many features
achieved by current constructions. Moreover, due to the primitives and techniques in-
troduced in this work, our constructions are simple and clean in concept. Besides, the
use of lattice also brings some new advantages comapred to previous constructions of
these schemes.

In the remianing part of this secion, we only provide constructions of these schemes.
The formal definition and security model of these schemes are provided in Appendix E,
and the detailed security proof of the constructions are given in Appendix F.

7 Here, we can prove an even stronger version, which does not reuqire s1 , s2 mod q, but only
require that either s1 , 0 mod q or s2 , 0 mod q

19

5.1 Linkable Ring Signature

A linkable ring signature is a signature scheme that allows a user to sign on behalf
of a spontaneous group of users, including himself, anonymously and allows anyone
to link signatures signed by the same user. Here, we use the syntax and the security
model in [ACST06], which are recalled in Appendix E.1. Our constructed linkable ring
signature, which is built on the wPRF with efficient protocols F = (KeyGen′, Eval′)
constructed in Sec. 4, the accumulator scheme Acc = (TS etup′,T Acc′,TWitness′,
TVeri f y′) constructed in [LLNW16], and the supporting ZKAoKs, works as follows.

– Setup. Let n,m, p, q, k1, k2 be positive integers that n is the security parameter, p ≥
2, γ = q/p ∈ nω(1) is an odd integer, m ≥ n · (log q + 1)/(log p − 1), k1 = ⌈log p⌉,
and k2 = ⌈log q⌉. Let (A, B, D1, D2)

$← Zm×n
q × Zm×n

q × Zn×mk1
q × Zn×2nk2

q , which
can be sampled from some public random source, where A, B are random inputs
for the wPRF with efficient protocol, D1 is used to map an output of the wPRF
with efficient protocol to the value space (values that can be accumulated by the
accumulator) of the accumulator, and D2 is for the accumulator.

– KeyGen. On input a security parameter 1n, the key generation algorithm runs s ←
KeyGen′(1n), computes y = Eval′(s, A), and outputs sk = s and pk = y.

– Sign. On input a secret key s, a message m, and a set R of public keys that y =
Fs(A) ∈ R, the signing algorithm first generates a set R′ consisting of y′

i
= bin(D1 ·

bin(yi)) for each element yi ∈ R, and computes y′ = bin(D1 · bin(y)). Then it
computes t = Fs(B), u = T Acc′D2

(R′), and w = TWitness′D2
(R′, y′). Finally, it

computes

Π = S PK{(s, y, y′,w) : y = Fs(A) ∧ t = Fs(B)
∧ Gn,q−1 · y′ = D1 · bin(y) mod q ∧ TVeri f y′D2

(u, y′,w) = 1}[m]

, and outputs the signature Σ = (t, Π). Note that the term y = Fs(A) and the term
t = Fs(B) can be proved under the abstract Stern’s protocol as shown in Sec. 4; the
term TVeri f y′D2

(u, y′,w) = 1 can also be proved under the abstract Stern’s protocol
as shown in [LLNW16]; and the term Gn,q−1 ·y′ = D1 ·bin(y) mod q can be proved
by the abstract Stern’s protocol [LLM+16a] directly. Thus, the whole proof can be
generated by the extended abstract Stern’s protcol proposed in Sec. 3.

– Verify. On input a messagem, a set R of public keys, and a signature Σ = (t, Π), the
verification algorithm first generates u as in the signing algorithm, then it checks
the validity of the proof Π (with the help of u, t) and returns 1 iff Π is valid.

– Link. On input two signatures Σ1 = (t1, Π1) and Σ2 = (t2, Π2), the link algorithm
outputs 1 iff t1 = t2.

The Security. Security of the constructed linkable ring signature scheme is guaranteed
by Theorem 5.1 stated as following, whose proof is put in Appendix F.1.

Theorem 5.1. If F and Acc are secure wPRF with efficient protocols and secure ac-
cumulator scheme respectively, the underlying ZKAoK are secure, and the SIS∞n,mk1,q,1
assumption holds, then the linkable ring signature constructed here is a secure one.

20

5.2 k-times Anonymous Authentication

A k-times anonymous authentication protocol allows users to authenticate themselves
to an application provider in an anonymous and unlinkable manner after registering to
a group manager, but up to k times. Here, we use the syntax and the security model in
[TFS04], which are recalled in Appendix E.2. Our constructed k-times anonymous au-
thentication protocol, which is built on the wPRF with efficient protocols (with strong
uniqueness) F = (KeyGen′, Eval′) constructed in Sec. 4, the accumulator scheme Acc =
(TS etup′,T Acc′,TWitness′,TVeri f y′) constructed in [LLNW16], the CL signature
CLS = (KeyGen′, S ign′,Veri f y′) constructed in [LLM+16a], a cryptographic hash
functionH : {0, 1}∗ → Zm×n

q × Zm×n
q , and the supporting ZKAoK, works as follows.

– Public Parameters. Let n,m, p, q, k1, k2, ℓ be positive integers that n is the security
parameter, p ≥ 2 is a prime, γ = q/p ∈ nω(1) is an odd integer, m ≥ 2n · (log q +
1)/(log p − 1), k1 = ⌈log p⌉, k2 = ⌈log q⌉, and ℓ = Θ(n). Let (A, E1, E2, B̃,G0,G1,

D0, D1)
$← Zm×n

q ×Zn×2mnk2
q ×Zn×2nk2

q ×Zn×2nk2
q ×Zn×ℓ

q ×Zn×4nk2
q ×Z2n×4nk2

q ×Z2n×2mk1
q ,

which can be sampled from some public random source, where A is random inputs
for the wPRF with efficient protocols, E1 is used to map a pair of inputs of the
wPRF with efficient protocols to the value space of the accumulator, E2 is for the
accumulator, and (B̃,G0,G1, D0, D1) are public parameters of the CL signature
scheme. Here, we adapt the dimension of D1, to fit the length of the output of F,
which will be signed in the registration phase. This will not affect the security of
the CL signature scheme.

– Setup. In the setup procedure, the group manager generates the public key, secret
key pair PKCL, S KCL of the CL signature scheme, and sets the group public key as
PKCL and the group secret key as S KCL.

– Join. In this protocol, a user uid first generates his secret key s ← KeyGen′(1n),
then computes y = Eval′(s, A). Then he sends y to the group manager. If y has not
appeared in the identification list, the group manager adds (uid, y) to the identifica-
tion list and sign on y with S KCL. It then sends the signature σ back to uid. Finally,
the secret key of uid is s and his public key is (y, σ).

– Bound Announcement. In this protocol, an application provider AP publish (IDAP,
kAP), where IDAP is its identification and kAP is the upper bound for each user to
access its service. In this way, everyone in the system can compute the tag bases
set B of the application provider, which consists of (Bi, B̌i) = H(IDAP, kAP, i) for
i ∈ [1, k].

– Authentication. In this protocol, a user uid with secret key s and public key (y,
σ), who would like to access services of an application provider AP, first checks
if he has already authenticated kAP times to AP. If not, assuming that this is his
ith time to access the services for AP, he then computes (B, B̌) = H(IDAP, kAP,
i). He also generates a set B′ consisting of b′

j
= bin(E1 · bin(M2V(B j∥B̌ j))) for

each element (B j, B̌ j) ∈ B, and computes b′ = bin(E1 · bin(M2V(B∥B̌))). Then
he computes u = T Acc′E2

(B′), and w = TWitness′E2
(B′, b′). After that, he makes

a request to AP. and gets a challenge (c,m)
$← Zp × {0, 1}n back. Then the user

21

computes t = Fs(B), ť = Fs(B̌) + c · y mod p, and

Π = S PK{(s, y, B, B̌, ť′, b′,w, σ) : y = Fs(A) ∧ Veri f y′(PKCL, y, σ) = 1

∧ t = Fs(B) ∧ ť′ = Fs(B̌) ∧ γ · ť′ + γ · c · y = γ ť mod q

∧ Gn,q−1 · b′ = E1 · bin(M2V(B∥B̌)) mod q ∧ Tveri f y′E2
(u, b′,w) = 1}[m]

He then sends (t, ť, Π) to AP. Note that the term y = Fs(A), the term t = Fs(B) and
the term ť′ = Fs(B̌) can be proved under the abstract Stern’s protocol as shown in
Sec. 4; the term Veri f y′(PKCL, y, σ) = 1 can be proved under the abstract Stern’s
protocol as shown in [LLM+16a]; the term TVeri f y′E2

(u, b′,w) = 1 can also be
proved under the abstract Stern’s protocol as shown in [LLNW16]; and the term
Gn,q−1 · b′ = E1 · bin(M2V(B∥B̌)) mod q and the term γ · ť′ + γ · c · y = γ ť mod q
can be proved by the abstract Stern’s protocol [LLM+16a] directly. Thus, the whole
proof can be generated by the extended abstract Stern’s protcol proposed in Sec. 3.
On receiving the response (t, ť, Π), AP first computes u in the same way as what
the user uid did. Then it checks if Π is valid (with the help of u, t, ť) and stores
(t, ť, c,m, Π) to its authentication log if this is the case. After that it checks if t has
appeared before and accepts uid if t has not appeared and Π is valid.

– PublicTracing. On input an authentication log {(t i, ť i, ci,mi, Πi)}Li=1 of L elements
and an identification list, the algorithm first initilize an empty set C. Then for each
pair i, j ∈ [1, L] that t i = t j, ci , c j and both Πi and Π j are valid, the algorithm
first computes y = (ci − c j)−1 · (ť i − ť j). Note that since p is a prime, and ci , c j,
ci − c j is invertible. Then it searches y in the identification list and puts uid in C if it
finds an item (uid, y) in the identification list. Otherwise, it puts GM in C. Finally,
the algorithm outputs the set C.

The Security. Security of the constructed k-times anonymous authentication protocol
is guaranteed by Theorem 5.2 stated as following, whose proof is put in Appendix F.2.

Theorem 5.2. If F, ACC, and CLS are secure wPRF with efficient protocols with stong
uniqueness, secure accumulator scheme, and secure CL singature scheme respectively,
the underlying ZKAoK are secure, the SIS∞n,mk1,q,1

assumption holds, and H is modeled
as a random oracle, then the k-times anonymous authentication protocol constructed
here is also secure.

5.3 Blacklistable Anonymous Credentials

In a blacklistable anonymous credential system, users register themselves to a group
manager, and then they can authenticate themselves to service providers in an anony-
mous and unlinkable manner, while those service providers can put misbehaved users
into a blacklist to forbid them from accessing their services. Here, we use the syn-
tax and the security model in [TAKS07], which are recalled in Appendix E.3. Our
constructed blacklistable anonymous credential system, which is built on the wPRF
with efficient protocols F = (KeyGen′, Eval′) constructed in Sec. 4, the CL signa-
ture CLS = (KeyGen′, S ign′,Veri f y′) constructed in [LLM+16a], a cryptographic hash
functionH : {0, 1}n → Zm×n

q , and the supporting ZKAoK, works as follows.

22

– Public Parameters. Let n,m, p, q, k1, k2, ℓ be positive integers that n is the security
parameter, p ≥ 2, γ = q/p ∈ nω(1) is an odd integer, m ≥ n · (log q + 1)/(log p − 1),

k1 = ⌈log p⌉, k2 = ⌈log q⌉, and ℓ = Θ(n). Let (A, B̃,G0,G1, D0, D1)
$← Zm×n

q ×
Zn×2nk2

q ×Zn×ℓ
q ×Zn×4nk2

q ×Z2n×4nk2
q ×Z2n×2mk1

q , which can be sampled from some public
random source, where A is random inputs for the wPRF with efficient protocols,
and (B̃,G0,G1, D0, D1) are public parameters of the CL signature. Here, we adapt
the dimension of D1, to fit the length of the output of F, which will be signed in the
registration phase. This will not affect the security of the CL signature scheme.

– Setup. In the setup procedure, the group manager generates the public key, secret
key pair PKCL, S KCL of the CL signature scheme, and sets the group public key as
PKCL and the group secret key as S KCL.

– Registration. In this protocol, a user uid first generates his secret key s← KeyGen′(1n),
then computes y = Eval′(s, A). Then he sends y to the group manager. The group
manager signs on y with S KCL. It then sends the signature σ back to uid. Finally,
the secret key of uid is s and his public key is (y, σ).

– Authentication. In this protocol, a user with secret key s and public key (y, σ)
first make a request to the service provider, and gets a challenge m as well as a
blacklist BL = {µi, t i}i∈[1,∥BL∥] back. Then for i ∈ [1, ∥BL∥], the user computes
Bi = H(µi) and checks if ti = Fs(Bi). He returns “failure” back to the service
provider and aborts if such element in BL exists, and proceeds otherwise. Next,

the user samples µ
$← {0, 1}n, computes B = H(µ), t = Fs(B), and generates

Π = S PK{(s, y, σ) : Veri f y′(PKCL, y, σ) = 1

∧ y = Fs(A) ∧ t = Fs(B) ∧ (
∥BL∥∧
i=1

t i , Fs(Bi))}[m]

Then he returns (µ, t, Π) to the service provider. Note that the term y = Fs(A), the
term t = Fs(B) and the term ti , Fs(Bi) can be proved under the abstract Stern’s
protocol as shown in Sec. 4; and the term Veri f y′(PKCL, y, σ) = 1 can be proved
under the abstract Stern’s protocol as shown in [LLM+16a]. Thus, the whole proof
can be generated by the extended abstract Stern’s protcol proposed in Sec. 3.
On receiving the response (µ, t, Π), the service provider accepts the user iff Π is
valid. Note that the tuple (µ, t), which is the ticket for this authentication event, will
be put in the blacklist of the service provider if the user misbehaves when accessing
the services afterwards.

The Extensions. We remark that via slightly modifying the behavior of the user in
the authentication protocol, we can upgrade the system to supporting fine-grained
policies. For instance, to support a “d-strikes-out” policy, the user works identically
to that in the basic case except that he returns “failure” only if its secret key is
related to more than d items in the blacklist, and prove the following statement
instead of the original one.

Π = S PK{(s, y, σ) : y = Fs(A) ∧ Veri f y′(PKCL, y, σ) = 1
∧ t = Fs(B) ∧ ∥{i | i ∈ [1, ∥BL∥], t i , Fs(Bi)}∥ ≥ (∥BL∥ − d)}[m]

23

Note that the term ∥{i | i ∈ [1, ∥BL∥], t i , Fs(Bi)}∥ ≥ (∥BL∥ − d) is in fact a
threshold combination of underlying sub-statements (i.e. statements of of the form
t i , Fs(Bi)), and can be expressed by a monotone span program. Thus, the user
can complete via applying our extended abstract Stern’s protocol.

The Security. Security of the constructed blacklistable anonymous credential sys-
tem is guaranteed by Theorem 5.3 stated as following, whose proof is put in Ap-
pendix F.3.

Theorem 5.3. If F and CLS are secure wPRF with efficient protocols and secure
CL singature scheme respectively, the underlying ZKAoK are secure, and H is
modeled as a random oracle, then the blacklistable anonymous credential system
constructed here is also secure.

References

[ACST06] Man Ho Au, Sherman SM Chow, Willy Susilo, and Patrick P Tsang. Short
linkable ring signatures revisited. In European Public Key Infrastructure
Workshop, pages 101–115. Springer, 2006.

[Ajt96] Miklós Ajtai. Generating hard instances of lattice problems. In STOC,
pages 99–108. ACM, 1996.

[AK12] Man Ho Au and Apu Kapadia. Perm: Practical reputation-based blacklist-
ing without ttps. In CCS, pages 929–940. ACM, 2012.

[AKPW13] Joël Alwen, Stephan Krenn, Krzysztof Pietrzak, and Daniel Wichs. Learn-
ing with rounding, revisited. In CRYPTO, pages 57–74. Springer, 2013.

[AKS12] Man Ho Au, Apu Kapadia, and Willy Susilo. Blacr: Ttp-free blacklistable
anonymous credentials with reputation. In NDSS, 2012.

[ASA16] Jacob Alperin-Sheriff and Daniel Apon. Dimension-preserving reductions
from lwe to lwr. IACR Cryptology ePrint Archive, 2016:589, 2016.

[ASM06] Man Ho Au, Willy Susilo, and Yi Mu. Constant-size dynamic k-taa. In
SCN, pages 111–125. Springer, 2006.

[BCC04] Ernie Brickell, Jan Camenisch, and Liqun Chen. Direct anonymous attes-
tation. In CCS, pages 132–145. ACM, 2004.

[BCK+14] Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyuba-
shevsky, and Gregory Neven. Better zero-knowledge proofs for lattice en-
cryption and their application to group signatures. In ASIACRYPT, pages
551–572. Springer, 2014.

[BCKL09] Mira Belenkiy, Melissa Chase, Markulf Kohlweiss, and Anna Lysyanskaya.
Compact e-cash and simulatable vrfs revisited. In International Conference
on Pairing-Based Cryptography, pages 114–131. Springer, 2009.

[BD10] Rikke Bendlin and Ivan Damgård. Threshold decryption and zero-
knowledge proofs for lattice-based cryptosystems. In TCC, pages 201–218.
Springer, 2010.

[BDM93] Josh Benaloh and Michael De Mare. One-way accumulators: A decen-
tralized alternative to digital signatures. In EUROCRYPT, pages 274–285.
Springer, 1993.

[BDOP16] Carsten Baum, Ivan Damgård, Sabine Oechsner, and Chris Peikert. Effi-
cient commitments and zero-knowledge protocols from ring-sis with ap-
plications to lattice-based threshold cryptosystems. Cryptology ePrint
Archive, Report 2016/997, 2016. http://eprint.iacr.org/2016/997.

24

http://eprint.iacr.org/2016/997

[BGM+16] Andrej Bogdanov, Siyao Guo, Daniel Masny, Silas Richelson, and Alon
Rosen. On the hardness of learning with rounding over small modulus. In
TCC, pages 209–224. Springer, 2016.

[BGRV09] Zvika Brakerski, Shafi Goldwasser, Guy N Rothblum, and Vinod Vaikun-
tanathan. Weak verifiable random functions. In TCC, pages 558–576.
Springer, 2009.

[BK10] Zvika Brakerski and Yael Tauman Kalai. A framework for efficient signa-
tures, ring signatures and identity based encryption in the standard model.
IACR Cryptology ePrint Archive, 2010:86, 2010.

[BKLP15] Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof
Pietrzak. Efficient zero-knowledge proofs for commitments from learning
with errors over rings. In ESORICS, pages 305–325. Springer, 2015.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom func-
tions and lattices. In EUROCRYPT, pages 719–737. Springer, 2012.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoenmakers. Proofs of partial
knowledge and simplified design of witness hiding protocols. In CRYPTO,
pages 174–187. Springer, 1994.

[Cha81] David L Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[Cha83] David Chaum. Blind signatures for untraceable payments. In Advances in
cryptology, pages 199–203. Springer, 1983.

[CHK+06] Jan Camenisch, Susan Hohenberger, Markulf Kohlweiss, Anna Lysyan-
skaya, and Mira Meyerovich. How to win the clonewars: efficient periodic
n-times anonymous authentication. In CCS, pages 201–210. ACM, 2006.

[CL01] Jan Camenisch and Anna Lysyanskaya. An efficient system for non-
transferable anonymous credentials with optional anonymity revocation. In
EUROCRYPT, pages 93–118. Springer, 2001.

[CL02] Jan Camenisch and Anna Lysyanskaya. A signature scheme with efficient
protocols. In International Conference on Security in Communication Net-
works, pages 268–289. Springer, 2002.

[CL07] Melissa Chase and Anna Lysyanskaya. Simulatable vrfs with applications
to multi-theorem nizk. In CRYPTO, pages 303–322. Springer, 2007.

[CNR12] Jan Camenisch, Gregory Neven, and Markus Rückert. Fully anonymous
attribute tokens from lattices. In SCN, pages 57–75. Springer, 2012.

[CPS+16a] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Sinis-
calchi, and Ivan Visconti. Improved or-composition of sigma-protocols.
In TCC, pages 112–141. Springer, 2016.

[CPS+16b] Michele Ciampi, Giuseppe Persiano, Alessandra Scafuro, Luisa Sinis-
calchi, and Ivan Visconti. Online/offline or composition of sigma protocols.
In EUROCRYPT, pages 63–92. Springer, 2016.

[CS03] Jan Camenisch and Victor Shoup. Practical verifiable encryption and de-
cryption of discrete logarithms. In CRYPTO, pages 126–144. Springer,
2003.

[CVH91] David Chaum and Eugène Van Heyst. Group signatures. In Workshop on
the Theory and Application of of Cryptographic Techniques, pages 257–
265. Springer, 1991.

[DLA12] Ivan Damgård and Adriana López-Alt. Zero-knowledge proofs with low
amortized communication from lattice assumptions. In SCN, pages 38–56.
Springer, 2012.

25

[DSDCPY94] Alfredo De Santis, Giovanni Di Crescenzo, Giuseppe Persiano, and Moti
Yung. On monotone formula closure of szk. In FOCS, pages 454–465.
IEEE, 1994.

[ELL+15] Martianus Frederic Ezerman, Hyung Tae Lee, San Ling, Khoa Nguyen, and
Huaxiong Wang. A provably secure group signature scheme from code-
based assumptions. In ASIACRYPT, pages 260–285. Springer, 2015.

[FS86] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions
to identification and signature problems. In CRYPTO, pages 186–194.
Springer, 1986.

[FS07] Eiichiro Fujisaki and Koutarou Suzuki. Traceable ring signature. In PKC,
pages 181–200. Springer, 2007.

[Fuj11] Eiichiro Fujisaki. Sub-linear size traceable ring signatures without random
oracles. In CT-RSA, pages 393–415. Springer, 2011.

[GG98] Oded Goldreich and Shafi Goldwasser. On the limits of non-
approximability of lattice problems. In STOC, pages 1–9. ACM, 1998.

[GKV10] S Dov Gordon, Jonathan Katz, and Vinod Vaikuntanathan. A group sig-
nature scheme from lattice assumptions. In ASIACRYPT, pages 395–412.
Springer, 2010.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge
complexity of interactive proof systems. SIAM Journal on computing,
18(1):186–208, 1989.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-
knowledge from secure multiparty computation. In STOC, pages 21–30.
ACM, 2007.

[JKPT12] Abhishek Jain, Stephan Krenn, Krzysztof Pietrzak, and Aris Tentes. Com-
mitments and efficient zero-knowledge proofs from learning parity with
noise. In ASIACRYPT, pages 663–680. Springer, 2012.

[KTX08] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure
identification schemes based on the worst-case hardness of lattice problems.
In ASIACRYPT, pages 372–389. Springer, 2008.

[LLLS13] Fabien Laguillaumie, Adeline Langlois, Benoı̂t Libert, and Damien Stehlé.
Lattice-based group signatures with logarithmic signature size. In ASI-
ACRYPT, pages 41–61. Springer, 2013.

[LLM+16a] Benoı̂t Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong
Wang. Signature schemes with efficient protocols and dynamic group sig-
natures from lattice assumptions. In ASIACRYPT, pages 373–403. Springer,
2016.

[LLM+16b] Benoı̂t Libert, San Ling, Fabrice Mouhartem, Khoa Nguyen, and Huaxiong
Wang. Zero-knowledge arguments for matrix-vector relations and lattice-
based group encryption. In ASIACRYPT, pages 101–131. Springer, 2016.

[LLNW14] Adeline Langlois, San Ling, Khoa Nguyen, and Huaxiong Wang. Lattice-
based group signature scheme with verifier-local revocation. In PKC, pages
345–361. Springer, 2014.

[LLNW16] Benoı̂t Libert, San Ling, Khoa Nguyen, and Huaxiong Wang. Zero-
knowledge arguments for lattice-based accumulators: logarithmic-size ring
signatures and group signatures without trapdoors. In EUROCRYPT, pages
1–31. Springer, 2016.

[LMN16] Benoı̂t Libert, Fabrice Mouhartem, and Khoa Nguyen. A lattice-based
group signature scheme with message-dependent opening. In ACNS, pages
137–155. Springer, 2016.

26

[LNSW13] San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved
zero-knowledge proofs of knowledge for the isis problem, and applications.
In PKC, pages 107–124. Springer, 2013.

[LNW15] San Ling, Khoa Nguyen, and Huaxiong Wang. Group signatures from
lattices: simpler, tighter, shorter, ring-based. In PKC, pages 427–449.
Springer, 2015.

[LNWX17] San Ling, Khoa Nguyen, Huaxiong Wang, and Yanhong Xu. Lattice-based
group signatures: Achieving full dynamicity with ease. Cryptology ePrint
Archive, Report 2017/353, 2017. http://eprint.iacr.org/2017/353.

[LW05] Joseph Liu and Duncan Wong. Linkable ring signatures: Security mod-
els and new schemes. Computational Science and Its Applications–ICCSA
2005, pages 88–89, 2005.

[LWW04] Joseph K Liu, Victor K Wei, and Duncan S Wong. Linkable spontaneous
anonymous group signature for ad hoc groups. In ACISP, pages 325–335.
Springer, 2004.

[Lyu08] Vadim Lyubashevsky. Lattice-based identification schemes secure under
active attacks. In PKC, pages 162–179. Springer, 2008.

[Lyu09] Vadim Lyubashevsky. Fiat-shamir with aborts: Applications to lattice
and factoring-based signatures. In ASIACRYPT, pages 598–616. Springer,
2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In EURO-
CRYPT, pages 738–755. Springer, 2012.

[MB00] Katelyn YA McKenna and John A Bargh. Plan 9 from cyberspace: The im-
plications of the internet for personality and social psychology. Personality
and social psychology review, 4(1):57–75, 2000.

[MRV99] Silvio Micali, Michael Rabin, and Salil Vadhan. Verifiable random func-
tions. In FOCS, pages 120–130. IEEE, 1999.

[MV03] Daniele Micciancio and Salil P Vadhan. Statistical zero-knowledge proofs
with efficient provers: Lattice problems and more. In CRYPTO, pages 282–
298. Springer, 2003.

[NSN05] Lan Nguyen and Rei Safavi-Naini. Dynamic k-times anonymous authenti-
cation. In ACNS, pages 318–333. Springer, 2005.

[NZZ15] Phong Q Nguyen, Jiang Zhang, and Zhenfeng Zhang. Simpler efficient
group signatures from lattices. In PKC, pages 401–426. Springer, 2015.

[P+16] Chris Peikert et al. A decade of lattice cryptography. Foundations and
Trends R⃝ in Theoretical Computer Science, 10(4):283–424, 2016.

[PV08] Chris Peikert and Vinod Vaikuntanathan. Noninteractive statistical zero-
knowledge proofs for lattice problems. In CRYPTO, pages 536–553.
Springer, 2008.

[Reg05] Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. In STOC, pages 84–93. ACM, 2005.

[RST01] Ronald L Rivest, Adi Shamir, and Yael Tauman. How to leak a secret. In
ASIACRYPT, pages 552–565. Springer, 2001.

[Rüc10] Markus Rückert. Lattice-based blind signatures. In ASIACRYPT, pages
413–430. Springer, 2010.

[Ste93] Jacques Stern. A new identification scheme based on syndrome decoding.
In CRYPTO, pages 13–21. Springer, 1993.

[TAKS07] Patrick P Tsang, Man Ho Au, Apu Kapadia, and Sean W Smith. Black-
listable anonymous credentials: blocking misbehaving users without ttps.
In CCS, pages 72–81. ACM, 2007.

27

http://eprint.iacr.org/2017/353

[TAKS08] Patrick P Tsang, Man Ho Au, Apu Kapadia, and Sean W Smith. Perea:
Towards practical ttp-free revocation in anonymous authentication. In CCS,
pages 333–344. ACM, 2008.

[TFS04] Isamu Teranishi, Jun Furukawa, and Kazue Sako. K-times anonymous au-
thentication. In ASIACRYPT, pages 308–322. Springer, 2004.

[TS06] Isamu Teranishi and Kazue Sako. K-times anonymous authentication with
a constant proving cost. In PKC, pages 525–542. Springer, 2006.

[TW05] Patrick P Tsang and Victor K Wei. Short linkable ring signatures for e-
voting, e-cash and attestation. In International Conference on Information
Security Practice and Experience, pages 48–60. Springer, 2005.

[TWC+04] Patrick P Tsang, Victor K Wei, Tony K Chan, Man Ho Au, Joseph K Liu,
and Duncan S Wong. Separable linkable threshold ring signatures. In In-
ternational Conference on Cryptology in India, pages 384–398. Springer,
2004.

[wik] Wikiproject on open proxies/help:blocked. https://meta.wikimedia.
org/wiki/WikiProject_on_open_proxies/Help:blocked. Ac-
cessed: 2017-05-12.

[XXW13] Xiang Xie, Rui Xue, and Minqian Wang. Zero knowledge proofs from
ring-lwe. In International Conference on Cryptology and Network Security,
pages 57–73. Springer, 2013.

[YAY17] Zuoxia Yu, Manho Au, and Rupeng Yang. Manuscript, in preparation.
2017.

[Zim69] Philip G Zimbardo. The human choice: Individuation, reason, and order
versus deindividuation, impulse, and chaos. In Nebraska symposium on
motivation. University of Nebraska press, 1969.

A Useful Tools for Handling Vectors and Defining
Permutations

Here we review a few current tools and techniques used to decompose and extend
vectors, and to define permutations. For the sake of compatibility, we will assign
new symbols for these tools.
First, we recall techniques to decompose an m-dimension vector with infinity norm
not exceeding B into a vector with infinity norm 1 for postive integers m, B. The
simplest way to complete this task is to use the binary representation of each ele-
ment of the vector. Formally, we write this procedure as bin(·) : [−B, B]m → [−1,
1]m⌈log B+1⌉. To reverse the decomposition one can use the matrix Gm,B, which is
defined as Gm,B = Im ⊗ (1, 2, . . . , 2⌈log B+1⌉−1). Obviously, we have Gm,B · bin(v) = v
for any v ∈ [−B, B]m. However, using the binary representation will lead to a gap
between the norm of the witness vector and that of the extracted vector. To re-
moves this gap, one can use the decomposition technique presented in [LNSW13].
Here, we define δB = ⌊log B⌋ + 1 and define a sequence bB = (B1, . . . , BδB)⊺

that B j = ⌊(B + 2 j−1)/2 j⌋ for j ∈ [1, δB]. As stated in [LNSW13], for any num-
ber u ∈ [−B, B], one can efficiently decompose u into a sequence u1, . . . uδB that
u j ∈ {−1, 0, 1} for j ∈ [1, δB] and

∑δB
j=1 B j · u j = u, while for any number u < [−B,

B], it is impossible to decompose u into sequences of {−1, 0, 1} since the sequence
bB satisfies

∑δB
j=1 B j = B. So, to decompose a vector in [−B, B]m, one just needs

28

https://meta.wikimedia.org/wiki/WikiProject_on_open_proxies/Help:blocked
https://meta.wikimedia.org/wiki/WikiProject_on_open_proxies/Help:blocked

to use the above method to decompose each element and combines the resulting
sequences. Formally, we write this procedure as the function Decm,B(·) : [−B,
B]m → [−1, 1]mδB . We remark that if the input vector is non-negative, then the
output of the function Decm,B(·) is a binary vector. To reverse the decomposition,
one can use the matrix Km,B = Im ⊗ b⊺B ∈ Zm×mδB . It is easy to check that for any
vector v ∈ [−B, B]m, we have v = Km,B · Decm,B(v).

Then, we recall techniques to extend a n-dimension vector with infinity norm 1 to
have constant numbers of -1,0,1 for a positive integer n. As shown in [LNSW13],
this can be achieved by appending a vector in {−1, 0, 1}2n with exactly (n − n−1)
elements of value −1, (n − n0) elements of value 0, and (n − n1) elements of value
1 to the input vector, where n−1, n0, n1 are numbers of elements of value −1, 0, 1
in the input vector respectively. Formally, we write this extension procedure as the
function Ext3n(·) : [−1, 1]n → B3

n, where we define B3
n ⊆ {−1, 0, 1}3n as the set of

vectors with exactly n elements of value −1, n elements of value 0, and n elements
of value 1. For simplicity, we also define DecExt3m,B(·) = Ext3mδB (Decm,B(·)) for
the combined decomposition and extension procedures. Also, we define K̂m,B,3 =

(Km,B∥0m×2mδB) ∈ Zm×3mδB , and it is easy to check that v = K̂m,B,3 ·DecExt3m,B(v) for
any vector v ∈ [−B, B]m. Sometimes, we need to extend binary vectors, which may
be generated by decomposing non-negative vectors. In this case, we can extend the
vector without adding additional −1s. Formally, we define this extension procedure
as the function Ext2n(·) : [−1, 1]n → B2

n, where we defineB2
n ⊆ {0, 1}2n as the set of

vectors with exactly n elements of value 0, and n elements of value 1. Likewise, we
define DecExt2m,B(·) = Ext2mδB (Decm,B(·)), with a restricted domain [0, B]m. Also,
we define K̂m,B,2 = (Km,B∥0m×mδB) ∈ Zm×2mδB , and it is easy to check that v = K̂m,B,2 ·
DecExt2m,B(v) for any v ∈ [0, B]m. In [ELL+15], Ezerman et.al. also presented
another approach to extend binary vectors, which can achieve fine-grained control
over bits of the vectors. More precisely, for an n-dimension vector v, the extended
vector v̂ = (1 − v[1], v[1], 1 − v[2], v[2], . . . , 1 − v[n], v[n]). Formally, we define
this extension procedure as the function Enc2n(·) : {0, 1}n → Dn, where we define
Dn = {(0, 1)∪(1, 0)}n. Also, we define DecEnc2m,B(·) = Enc2mδB (Decm,B(·)), whose
domain is [0, B]m. In addition, we define Ĵm,B,2 as an (m×2mδB)-dimension matrix,
whose 2i − 1th column is 0, and 2ith column is the ith column of Km,B, for i ∈ [1,
mδB]. It is easy to check that v = Ĵm,B,2 · DecEnc2m,B(v) for any v ∈ [0, B]m.

Besides, we will also employ the technique proposed in [LLM+16b] for handling
quadratic relations of vectors. More precisely, given integers l1, l2, k1, k2 that l1/k1 =

l2/k2, we define (in a slightly different way from that in [LLM+16b]) Expandl1,l2,k1,k2 (·,
·) as a function that takes as input two vectors x ∈ Dl1 and y ∈ Dl2 , and outputs a
vector z ∈ Z4l1k2 , that for i ∈ [1, 4l1k2], z[i] = x[i1 · 2k1 + i3 · 2 + i7 + 1] · y[i1 · 2k2 +

i5 · 2 + i8 + 1], where i1 = ⌊(i − 1)/(4k1k2)⌋, i2 = (i − 1) % (4k1k2), i3 = ⌊i2/(4k2)⌋,
i4 = i2 % (4k2), i5 = ⌊i4/4⌋, i6 = i4 % 4, i7 = ⌊i6/2⌋, i8 = i6 % 2. This technique is
usually used to help prove that a vector is the product of a hidden matrix and a hid-
den vector. To complete this task, for positive integers m, n, β1, β2, we also define
Q̃m,β1,β2

= Im⊗(bβ1⊗bβ2)⊺ ∈ Zm×mδβ1 δβ2 ; Q̂m,β1,β2
as an (m×4mδβ1δβ2)-dimension ma-

trix, of which the 4ith column is the ith column of Q̃m,β1,β2
for i ∈ [1,mδβ1δβ2] and

the other columns are 0; and Qm,n,β1,β2
= (Q̂m,β1,β2

∥ . . . ∥Q̂m,β1,β2
) ∈ Zm×(4mnδβ1 δβ2),

29

which are compromised of n matrices Q̂m,β1,β2
. It is not hard to check that for

any m × n-dimension matrix A that all elements in A is from [0, β1], and any
n-dimension vector x that all elements in x is from [0, β2], we have A · x =
Qm,n,β1,β2

· z where z = Expandmnδβ1 ,nδβ2 ,mδβ1 ,δβ2 (â, x̂), â = DecEnc2mn,β1 (M2V(A)),
x̂ = DecEnc2n,β2 (x).
Finally, we recall a few useful notions [LNSW13, ELL+15, LLM+16b] to define
valid permutations. First, for any postive integer k, we define Pk as the set of all
permutations of k elements. Then we define the permutation fucntion F·(·), that for
any postive integer k, any binary string b ∈ {0, 1}k, and any 2k-dimension vector x,
Fb(x) = (x[b[1]+1], x[1−b[1]+1], . . . , x[2(i−1)+b[i]+1], x[2(i−1)+1−b[i]+1],
. . . , x[2n−2+b[n]+1], x[2n−2+1−b[n]+1])⊺. Besides, we define the permutation
function P·,·,·,·(·), that for any positive integers l1, l2, k1, k2, any binary strings b ∈ {0,
1}l1 , d ∈ {0, 1}l2 , and any 4l1k2-dimension vector z, Pb,d,k1,k2 (z) = z′, and for i ∈ [1,
4l1k2] z′[i] = z[i1·4k1k2+i3·4k2+i5·4+(i7⊕b[i1·k1+i3+1])·2+(i8⊕d[i1·k2+i5+1])+1]
, where i1 = ⌊(i− 1)/(4k1k2)⌋, i2 = (i− 1) % (4k1k2), i3 = ⌊i2/(4k2)⌋, i4 = i2 % (4k2),
i5 = ⌊i4/4⌋, i6 = i4 % 4, i7 = ⌊i6/2⌋, i8 = i6 % 2. It is not hard to check that, for
any positive integers l1, l2, k1, k2, any binary strings b ∈ {0, 1}l1 , d ∈ {0, 1}l2 , and any
vectors x ∈ Dl1 , y ∈ Dl2 , let z′ = Pb,d,k1,k2 (z), x′ = Fb(x), and y′ = Fd(y), then we
have

z = Expandl1,l2,k1,k2 (x, y)⇐⇒ z′ = Expandl1,l2,k1,k2 (x′, y′)

B Related Works

Privacy-Preserving Authentication with Accountable Anonymity. Linkable ring
signature was presented by Liu et.al. in [LWW04]. A linkable ring signature scheme
allows a user to anonymously sign on behalf of a spontaneous group of users, in-
cluding himself, and allows anyone to link signatures signed by the same user. Thus,
it is suitable for scenarios where “authenticating more than one time” is regarded
as misbehaviors, and is used to construct applications such as E-Voting [Cha81], E-
Cash [Cha83] and Direct Anonymous Attestation [BCC04]. Then, a series of works
[TWC+04,TW05,LW05,ACST06] following this line of research have been done to
improve either the efficiency or the security of the scheme. Moreover, traceable ring
signature, an improved version of linkable ring signature providing traceability, is
presented [FS07] and constructed [FS07,Fuj11]. The K-times anonymous authenti-
cation protocol [TFS04,TS06] is also designed to restrict the number of times users
are permitted to use applications. In particular, it allows the service providers to set
the upper bound of the number of times a user could authenticate, and allows any-
one to trace the identification of misbehaved users, thus provides a greater flexibil-
ity and a better security guarantee. Following works consider introducing new fea-
tures into the protocol. More precisely, in [NSN05, ASM06], K-times anonymous
authentication protocol allowing service providers to independently grant or revoke
users are constructed, and in [CHK+06], protocols that allow users to authenticate
k times in every time period are constructed. Both linkable ring signature and K-
times anonymous authentication protocol can only protect security against misbe-
haviors led by authenticating too many times (e.g. double spending). To overcome

30

this restriction, in [TAKS07, TAKS08], blacklistable anonymous credential system
is defined and constructed. It allows service providers to define misbehaviors via
subjective judging and block users with these misbehaviors, thus can be applied to
more general scenarios. Later, in [AKS12,AK12], blacklistable anonymous creden-
tial systems supporting “reward” for rewarding behaviors and fine-grained policy
are also proposed to provide a better functionality for authentication.
Lattice-Based Privacy-Preserving Authentication. There already exist several
works constructing privacy-preserving protocols in the lattice-based setting. Among
them, the most actively researched one is the group signature scheme [CVH91].
Early lattice-based group signature schemes [GKV10, CNR12] have a signature
size linear in the number of group users. Subsequent works [LLLS13, LLNW14,
LNW15,NZZ15,LLNW16,LMN16,LLM+16a,LNWX17] reduce the signature size
to be only logarithmic in the number of group users by employing more elab-
orate zero-knowledge proof techniques. In addition, the scheme constructed in
[LLNW16] does not employ a lattice trapdoor, and thus admits a simpler con-
struction and a better efficiency in practice. Moreover, dynamic group signature
schemes are also constructed [LLNW14, LLM+16a, LNWX17], which can support
either revocation of users or dynamic user enrollments or both. Compared to the
group signature, there are fewer constructions of the ring signature scheme [RST01]
in the lattice-based setting. Most constructions are based on the framework in
[BK10], which will lead to a signature size linear in the number of ring members. In
[LLNW16], via exploiting the accumulator in their construction, lattice-based ring
signature schemes with signature size logarithmic in the number of ring members
is also given. Besides, there are also some other lattice-based privacy-preserving
authentication schemes constructed, e.g. blind signature [Rüc10], group encryption
[LLM+16b], anonymous credential [LLM+16a], etc.
Most of these applications are built on lattice-based zero-knowledge proof (ar-
gument) of knowledge, which was initialized by Goldreich and Goldwasser in
[GG98]. Early works [GG98, MV03, PV08] consider proofs for worst-case lattice-
based problems, and are hardly applicable in practice. Later, in [LLLS13], zero-
knowledge proof of knowledge for the ISIS problem, which is commonly used in
practical constructions, is constructed by modifying the identification scheme in
[Lyu08, Lyu09, Lyu12]. There are several works following this line of research
[NZZ15, BCK+14, BKLP15, BDOP16]. Especially, the proof system [BKLP15]
constructed in the ideal lattice-based setting is the most efficient zero-knowledge
proofs for lattice-related languages. However, proof systems constructed follow-
ing this paradigm suffer from the problem of extraction gap, namely the extracted
witness may be much larger than the used witness, thus are not suitable for many
application scenarios. To solve this problem, in [LNSW13], zero-knowledge argu-
ments of knowledge without extraction gap are proposed via modifying the Stern’s
identification scheme [Ste93]. Aiming at supporting more advanced relations, ex-
tensive works have been done [XXW13, LLNW14, LNW15, ELL+15, LLNW16,
LLM+16a, LLM+16b]. In particular, in [LLM+16a], a general framework for prov-
ing a large class of relations satisfying some specific structure is presented. Besides,
one can also construct lattice-based zero-knowledge proofs from a proper multi-
party computation protocols [BD10, DLA12] by employing the IKOS transform

31

[IKOS07]. Apart from zero-knowledge proofs, some other underlying primitives
for constructing privacy-preserving authentication protocols are also constructed
in the lattice-based setting recently, e.g. accumulator scheme [LLNW16] and CL
signature [LLM+16a].

C Omitted Protocols in Sec. 3

C.1 An Alternative Protocol Proving x , 0

In this section, we present a new method for proving x , 0, which is more flex-
iable but slightly less efficient compared to that in [LNSW13]. It can be applied
to scenarios where the technique in [LNSW13] is not applicable due to its special
requirement on the extension manner. As an imediate example, we will use the
method presented here in Appendix C.2, where one has to introduce some tricks
and reduce the efficiency of the whole protocol if they want to use the technique in
[LNSW13].
Our method is based on the observation that a binary vector is not equal to 0 iff its
1 norm is not 0. In this way, to prove that a n-dimension vector x , 0, the prover
proves that there exists a non-negative number r less than n that ∥x∥1−r = 1. As the
proof will be conducted over a module q, we also require that q > n. This condition
can be satisfied in most cases in the lattice-based setting, but will not be satisfied
when the modular is small, e.g. when the system builds on the LPN assumption.
Nonetheless, our method is more flexiable than that in [LNSW13] since our method
works well with any type of extension manner.
To demonstrate our method, we apply it on a small example. Let D′, L′, q be positive
integers, let VALID′ ⊆ {0, 1}L′ be a set, and let R′ = {((P, v), x) ∈ ZD′×L′

q × ZD′
q ×

VALID′ : P · x = v mod q} be an abstract Stern’s relation. In fact, for a vector
x′ ∈ VALID′, it is always required to prove that bits of x′ on some particular
positions are not all 0, since x′ is usually generated by extending the target vector
(that needs to be proved non-zero) with additional 0s and 1s. Let S ∈ Zn×L′

q be
the matrix that can select the target vector from x′. Then, given common input
P′ ∈ ZD′×L′

q , and prover’s secret input x′ ∈ VALID′, the prover needs to prove that

 P′ · x′ = 0 mod q

S · x′ , 0 mod q
(11)

By using our method, we define E = (1, 1, . . . , 1) ∈ Z1×n
q , r = ∥x′∥1 − 1 and

transform Equation (11) as follows.

 P′ · x′ = 0 mod q

E · S · x′ − r = 1 mod q
(12)

32

Then, we decompose and extend Equation (12) and define the following matrices
and vectors.

r̂ = DecEnc21,n−1(r), x = (x′⊺∥r̂⊺)⊺

P =
(

P′ 0D′×2δn−1

E · S −Ĵ1,n−1,2

)

v = ((0D′)⊺∥1)⊺

Then, we can transform Equation (12) as follows,

P · x = v mod q

and define VALID= VALID′×Dδn−1 that is a set of vectors of length L = L′+2δn−1.
Obviously, x ∈VALID. It can be easily verified that this statement is equivalent to
the original statement defined by Equation (11).
Then we need to specify the permutation used in the protocol. As the relation R′
can be proved under the abstract Stern’s protocol, there exists S′, T′ that are valid
for R′. Then we define S = S′ × {0, 1}δn−1 . For π = (π1, b2) ∈ S, where π1 ∈ S′,
and b2 ∈ {0, 1}δn−1 , and w = (w⊺1 ∥w

⊺
2)⊺ where w1 is of length L′, and w2 is of length

2δn−1 we define Tπ(w) = (T′π1
(w1)⊺, Fb2 (w2)⊺)⊺. It is not hard to check that S and T

are valid.

C.2 Protocols for The Monotone Span Program Composition of Abstract
Stern’s Relations and Polynomial Equation of Witnesses

In this section, we boost the protocol presented in Sec. 3.3 to a protocol for the
relation combined by abstract Stern’s relations via a monotone span program and a
multivariate polynomial, i.e. the protocol proves that the indices of true statements
in a set of statements, each of which is about an abstract Stern’s relation, satisfy
a monotone span program, and witnesses of these statements satisfy a multivariate
polynomial equation.
Here, we use a vector c ∈ Zm+1 and a matrix E ∈ {0, 1}m×n to denote a multivariate
polynomial with m + 1 terms (including a constant term) on n variables and define
the polynomial Fc,E(x1, . . . , xn) =

∑m
i=1 c[i] · (∏n

j=1 xE[i][j]
j) + c[m + 1]. For the sim-

plicity of description, we restrict the domain of the polynomial to {0, 1}n, and as a
result, we only need to consider exponent of 0, 1. However, this will not harm the
usefulness of our framework since the final witness of an abstract Stern’s protocol
will be a vector of {−1, 0, 1}, and in principle it is not hard to extend the protocol
presented in this section to protocols that can handle polynomials that in additional
allows −1 appearing in its input.
More precisely, let t, q, k be positive integers, q′ be a positive prime and q̃ = lcm(q,
q′); let n be positive integers that n < q̃ and δn + 1 < q̃; let γ = q̃/q and γ′ = q̃/q′;
let M = (Zq′ ,M, ρ) be a monotone span program accepting an access structure
A ⊆ 2{1,...,t}, where M ∈ Zℓ1×ℓ2q′ ; for i ∈ [1, t], let Di, Li be positive integers, let

33

VALIDi ⊆ {−1, 0, 1}Li be a set, and let Ri = {((P, v), x) ∈ ZDi×Li
q × ZDi

q × VALIDi :
P · x = v mod q} be an abstract Stern’s relation; let D̂ =

∑t
i=1 Di, L̂ =

∑t
i=1 Li;

let F = {c1, E1, . . . , ck, Ek} be a set of k polynomials, that ∀i ∈ [k], ci ∈ Zmi+1
q and

Ei ∈ {0, 1}mi×n for positive integers mi; let S ∈ {0, 1}n×L̂ that has exactly one ’1’ in
each row and are used to select suitable input to polynomials in F , i.e. given any
vector x ∈ VALID1 × . . . × VALIDt, S · x ∈ {0, 1}n. Then, given common input
Pi ∈ ZDi×Li

q , vi ∈ ZDi
q , and prover’s secret input xi ∈ VALIDi for i ∈ [1, t], the prover

needs to prove that
T = {i | i ∈ [1, t] ∧ ((Pi, vi), xi) ∈ Ri}
T ∈ A
∀ j ∈ [1, k], Fc j,E j (S · (x⊺1 , . . . , x

⊺
t)⊺) = 0 mod q

(13)

Now, let bi be a bit that indicates whether the ith statement is true for i ∈ [1, t], and
let g = (g1, . . . , gℓ1)⊺ ∈ Zℓ1q′ be a vector that g⊺·M = (1, 0, . . . , 0) mod q′ and gi = 0
if bρ(i) = 0 for i ∈ [1, ℓ1]. Also, for i ∈ [1, k], j ∈ [1,mi], let yi, j =

∏n
ı=1 x′[ı]Ei[j][ı],

where we define x′ = S · (x⊺1 , . . . , x
⊺
t)⊺, and let y = (y1,1, . . . , y1,m1 , . . . , yk,1, . . . ,

yk,mk)
⊺. Then we rewrite Equation (13) as follows.

γ · P̂ −γ · V̂ γ · B
γ′ · M⊺

 ·

b1 · x1
...

bt · xt

b1
...

bt

y
g

=

 0D̂

γ · c
γ′ · e

 mod q̃ (14)

where in this section, we define m̂ =
∑k

i=1 mi, e = (1, 0, . . . , 0)⊺ ∈ {0, 1}ℓ2 , c =
(−c1[m1 + 1], . . . ,−ck[mk + 1])⊺ and define

P̂ =

P1
. . .

Pt

 V̂ =

v1
. . .

vt

 B =

c1[1] . . . c1[m1]

. . .

ck[1] . . . ck[mk]

Next, we need to decompose and extend Equation (14). The main difficulty is to
argue that each yi, j is properly generated, namely equal to the product of some bits
in the witness. One method to prove such non-linear equations is to extend the tech-
nique in [LLM+16b], which can prove that a bit is the product of two bits, to the
higher dgeree cases. However, extending this method straightforwardly will intro-
duce a communication cost that is exponential in the number of factors. Here, we
present a new method to complete this task, which merely introduce a communica-
tion cost that is logarithmic in the number of factors.
To better describe our method, we abstract the task into proving that a bit z is the
product of κ bits, i.e. z = z1 ·. . .·zκ for bits z1, . . . , zκ. This is equal to prove that z = 1

34

iff zi = 1 for i ∈ [1, κ], and we can further transform the statement into proving that
z = 1 iff

∑κ
i=1 zi = κ. Let ι = κ − ∑κ

i=1 zi, then it is sufficient to prove that (1) if
ι = 0 then z = 1 and (2) if ι , 0 then z = 0. To prove the first part, we reduce it
to proving 2ι + z , 0, and use the technique presented in Sec. C.1 to handle this
inequation; and to prove the second part, we prove that there exists positive number
u in [0, κ] that ι − z̄ · u = 0, which can also be proved under Stern’s protocol; we
remark that the proof of neither part will affect the proof of the other part, thus we
can prove both parts simultaneously, i.e. completing the task, by combining these
two arguments.

More formally, to transform Equation (14), we use ni, j to denote the the number of
1s in the jth row of the matrix Ei for i ∈ [1, k], j ∈ [1,mi], define ṅ =

∑k
i=1

∑mi
j=1 δni, j ,

n̈ =
∑k

i=1
∑mi

j=1 δδni, j
, ℓ̇ = 2ℓ1δq′−1, define hκ = (0, 1, 0, 1, . . . , 0, 1)⊺ ∈ {0, 1}2κ and

Îκ = Iκ ⊗ h⊺1 for any positive integer κ, and define matricies and vectors as follows.

35

x́ = (b1 · x⊺1 ∥ . . . ∥bt · x⊺t)⊺, x̀ = (b̄1 · x⊺1 ∥ . . . ∥b̄t · x⊺t)⊺

b́ = (b1, . . . , bt)⊺, b̀ = (b̄1, . . . , b̄t)⊺, ŷ = Enc2m̂(y)

∀i ∈ [1, k], j ∈ [1,mi], di, j = ni, j −
n∑
ı=1

Ei[j][ı] · x′[ı], d̂i, j = DecEnc21,ni, j (di, j)

r′i, j = h⊺δni, j
· d̂i, j, r̂′i, j = DecEnc21,δni, j

(r′i, j)

ri, j = r′i, j + yi, j − 1, r̂i, j = DecEnc21,δni, j
(ri, j)

d̂ = (d̂
⊺
1,1, . . . , d̂

⊺
k,mk

)⊺, r̂ = (r̂⊺1,1, . . . , r̂
⊺
k,mk

)⊺

ŕ′ = (ȳ1,1 · r̂′⊺1,1, . . . , ȳk,mk · r̂′
⊺
k,mk

)⊺, r̀′ = (y1,1 · r̂′⊺1,1, . . . , yk,mk · r̂′
⊺
k,mk

)⊺

∀i ∈ [1, ℓ1], ĝi = DecEnc21,q′−1(g[i])
ǵ = (bρ(1) · ĝ⊺1 ∥ . . . ∥bρ(ℓ1) · ĝ⊺

ℓ1
)⊺, g̀ = (b̄ρ(1) · ĝ⊺1 ∥ . . . ∥b̄ρ(ℓ1) · ĝ⊺

ℓ1
)⊺

x = (x́⊺∥x̀⊺∥b́⊺∥b̀⊺∥ ǵ⊺∥ g̀⊺∥ŷ∥d̂∥r̂∥ŕ′∥r̀′)⊺

E =

E1
...

Ek

 , L′ =

Ĵ1,δn1,1 ,2

. . .

Ĵ1,δnk,mk
,2

H =

hδn1,1

. . .

hδnk,mk

 , L =

Ĵ1,n1,1,2

. . .

Ĵ1,nk,mk ,2

PL =

γ · P̂ 0D̂×L̂ −γ · V̂ 0D̂×t 0D̂×ℓ̇ 0D̂×ℓ̇

0k×L̂ 0k×L̂ 0k×t 0k×t 0k×ℓ̇ 0k×ℓ̇

E · S E · S 0m̂×t 0m̂×t 0m̂×ℓ̇ 0m̂×ℓ̇

0m̂×L̂ 0m̂×L̂ 0m̂×t 0m̂×t 0m̂×ℓ̇ 0m̂×ℓ̇

0m̂×L̂ 0m̂×L̂ 0m̂×t 0m̂×t 0m̂×ℓ̇ 0m̂×ℓ̇

0ℓ2×L̂ 0ℓ2×L̂ 0ℓ2×t 0ℓ2×t γ′ · M⊺ · Ĵℓ1,q′−1,2 0ℓ2×ℓ̇

PR =

0D̂×2m̂ 0D̂×2ṅ 0D̂×2n̈ 0D̂×2n̈ 0D̂×2n̈

γ · B · Îm̂ 0k×2ṅ 0k×2n̈ 0k×2n̈ 0k×2n̈

0m̂×2m̂ L 0m̂×2n̈ 0m̂×2n̈ 0m̂×2n̈

Îm̂ H −L′ 0m̂×2n̈ 0m̂×2n̈

0m̂×2m̂ H 0m̂×2n̈ −L′ 0m̂×2n̈

0ℓ2×2m̂ 0ℓ2×2ṅ 0ℓ2×2n̈ 0ℓ2×2n̈ 0ℓ2×2n̈

P =

(
PL PR

)
n = (n1,1, . . . , nk,mk)

⊺

v = ((0D̂)⊺∥γ · c⊺∥n⊺∥(1m̂)⊺∥(0m̂)⊺∥γ′ · e⊺)⊺

36

Then, we can transform Equation (14) as follows,

P · x = v mod q̃

and define VALID=VALIDL×VALIDR that is a set of vectors of length L = 2L̂ +
2t + 4ℓ1δq′−1 + 2m̂ + 2ṅ + 6n̈, where

VALIDL = {(w⊺1,1∥ . . . ∥w
⊺
1,t∥w

⊺
2,1∥ . . . ∥w

⊺
2,t∥w

⊺
3,1∥ . . . ∥w

⊺
3,t∥

w⊺4,1∥ . . . ∥w
⊺
4,t∥w

⊺
5,1∥ . . . ∥w

⊺
5,ℓ1
∥w⊺6,1∥ . . . ∥w

⊺
6,ℓ1

)⊺ |
∀i ∈ [1, t],∀ j ∈ [1, ℓ1] that ρ(j) = i,

(w1,i ∈ VALIDi ∧ w2,i ∈ 0Li ∧ w3,i = 1 ∧ w4,i = 0∧
w5, j ∈ Dδq′−1 ∧ w6, j ∈ 02δq′−1)∨
(w1,i ∈ 0Li ∧ w2,i ∈ VALIDi ∧ w3,i = 0 ∧ w4,i = 1∧
w5, j ∈ 02δq′−1 ∧ w6, j ∈ Dδq′−1)}

VALIDR = {(w⊺1,1,1∥ . . . ∥w
⊺
1,k,mk
∥w⊺2,1,1∥ . . . ∥w

⊺
2,k,mk
∥w⊺3,1,1∥ . . . ∥

w⊺3,k,mk
∥w⊺4,1,1∥ . . . ∥w

⊺
4,k,mk
∥w⊺5,1,1∥ . . . ∥w

⊺
5,k,mk

)⊺ |
∀i ∈ [1, k],∀ j ∈ [1,mi],w2,i, j ∈ Dδni, j

∧ w3,i, j ∈ Dδδni, j
∧

((w1,i, j = (0, 1)⊺ ∧ w4,i, j = 02δδni, j ∧ w5,i, j ∈ Dδδni, j
)∨

(w1,i, j = (1, 0)⊺ ∧ w4,i, j ∈ Dδδni, j
∧ w5,i, j = 02δδni, j))}

Obviously, x ∈VALID, and it can be easily verified that this statement is equivalent
to the original statement indicated by Equation (13).
Then we need to specify the permutation used in the protocol. As each relation Ri

can be proved under the abstract Stern’s protocol, there exists Si, T
(i) that are valid

for Ri for i ∈ [1, t]. Then we define

S = {0, 1}t × S1 × S2 × . . . × St × ({0, 1}δq′−1)ℓ1 × {0, 1}m̂ × {0, 1}δn1,1 × . . .

× {0, 1}δnk,mk × {0, 1}δδn1,1 × . . . × {0, 1}δδnk,mk × {0, 1}δδn1,1 × . . . × {0, 1}δδnk,mk

For

π = (b0, π1, π2, . . . , πt, b1,1, . . . , b1,ℓ1 , b2,1,1, . . . , b2,k,mk ,

b3,1,1, . . . , b3,k,mk , b4,1,1, . . . , b4,k,mk , b5,1,1, . . . , b5,k,mk) ∈ S
where b0 ∈ {0, 1}t, for i ∈ [1, t], πi ∈ Si, for j ∈ [1, ℓ1], b1, j ∈ {0, 1}δq′−1 , for i ∈ [1,
k], j ∈ [1,mi], b2,i, j ∈ {0, 1}, b3,i, j ∈ {0, 1}δni, j b4,i, j ∈ {0, 1}δδni, j b5,i, j ∈ {0, 1}δδni, j , and
for

w = (w⊺1,1, . . . ,w
⊺
1,t,w

⊺
2,1, . . . ,w

⊺
2,t,w

⊺
3,1, . . . ,w

⊺
3,t,

w⊺4,1, . . . ,w
⊺
4,t,w

⊺
5,1, . . . ,w

⊺
5,ℓ1
,w⊺6,1, . . . ,w

⊺
6,ℓ1
,

w⊺7,1,1, . . . ,w
⊺
7,k,mk
,w⊺8,1,1, . . . ,w

⊺
8,k,mk
,w⊺9,1,1, . . . ,w

⊺
9,k,mk
,

w⊺10,1,1, . . . ,w
⊺
10,k,mk

,w⊺11,1,1, . . . ,w
⊺
11,k,mk

)⊺

37

where for i ∈ [1, t], w1,i,w2,i is of length Li, and w3,i,w4,i is of length 1, for j ∈ [1,
ℓ1], w5, j,w6, j is of length 2δq′−1, and for i ∈ [1, k], j ∈ [1,mi], w7,i, j is of length 2,
w8,i, j is of length 2δni, j , and w9,i, j, w10,i, j, w11,i, j is of length 2δδni, j

, we define

Tπ(w) = (w′⊺1,1, . . . ,w
′⊺
1,t,w

′⊺
2,1, . . . ,w

′⊺
2,t,w

′⊺
3,1, . . . ,w

′⊺
3,t,

w′⊺4,1, . . . ,w
′⊺
4,t,w

′⊺
5,1, . . . ,w

′⊺
5,ℓ1
,w′⊺6,1, . . . ,w

′⊺
6,ℓ1
,

w′⊺7,1,1, . . . ,w
′⊺
7,k,mk
,w′⊺8,1,1, . . . ,w

′⊺
8,k,mk
,w′⊺9,1,1, . . . ,w

′⊺
9,k,mk
,

w′⊺10,1,1, . . . ,w
′⊺
10,k,mk

,w′⊺11,1,1, . . . ,w
′⊺
11,k,mk

)⊺

that for i ∈ [1, t], w′1,i = T(i)
πi (w1+b0[i],i), w′2,i = T(i)

πi (w2−b0[i],i), w′3,i = w3+b0[i],i,
w′4,i = w4−b0[i],i, for j ∈ [1, ℓ1], w′5, j = Fb1, j (w5+b0[ρ(j)], j), w′6, j = Fb1, j (w6−b0[ρ(j)], j),
and for i ∈ [1, k], j ∈ [1,mi], w′7,i, j = Fb2,i, j (w7,i, j), w′8,i, j = Fb3,i, j (w8,i, j), w′9,i, j =
Fb4,i, j (w9,i, j), w′10,i, j = Fb5,i, j (w10+b2,i, j,i, j), w′11,i, j = Fb5,i, j (w11−b2,i, j,i, j). It is not hard to
check that S and T are valid.

D Concrete ZKAoKs for wPRF with Efficient Protocols

In this section, we give constructions of ZKAoKs for y = Fk(x) in different cases,
including the case that k is hidden, the case that k, y are hidden, the case that k, x
are hidden, and the case that k, x, y are hidden. Recall that this is equal to prvoing
in these cases that for a key, input, output tuple (s, A, y) ∈ Zn

q × Zm×n
q × Zm

p , there
exists a vector e ∈ [−β, β]m that A · s + e = γ · y mod q.

1. Proving y = Fk(x) with hidden k. First, we consider the basic case that only
the secret key needs to be hidden. In this case, the common input includes A ∈
Zm×n

q and y ∈ Zm
p , and the prover’s secret input includes s ∈ Zn

q and e ∈ [−β, β]m.
To complete the proof, we employ the general framework shown in [LLM+16a].
First we decompose and extend Equation (7) and define ŝ = DecEnc2n,q−1(s), ê =
DecExt3m,β(e), x = (ŝ⊺∥ê⊺)⊺. We also define P = (A · Ĵn,q−1,2, K̂m,β,3) and v = γ · y.
Then, we can transform Equation (7) to

P · x = v mod q

and define VALID= Dnδq−1 × B3
mδβ

that is a set of vectors of length L = 2nδq−1 +

3mδβ. Obviously, x ∈VALID. It can be easily verified that this statement is equiv-
alent to the original statement in this case, namely y = Fk(x) with hidden k and
public x, y.
Then we need to specify the permutation used in the protocol. First, we define
S = {0, 1}nδq−1 × P3mδβ . Next, for π = (b1, π2) ∈ S where b1 ∈ {0, 1}nδq−1 and
π2 ∈ P3mδβ , and w = (w1

⊺∥w2
⊺)⊺ where w1 is of length 2nδq−1 and w2 is of length

3mδβ, we define Tπ(w) = (Fb1 (w1)⊺, π2(w2)⊺)⊺. It is not hard to check that S and T
are valid.

38

2. Proving y = Fk(x) with hidden k, y. Then we consider a slightly different case
that both the secret key and the output need to be hidden. In this case, the common
input includes A ∈ Zm×n

q and the prover’s secret input includes s ∈ Zn
q, e ∈ [−β,

β]m, and y ∈ Zm
p . We also employ the general framework shown in [LLM+16a]

to handle this proof. First we decompose and extend Equation (7) and define ŝ =
DecEnc2n,q−1(s), ê = DecExt3m,β(e), ŷ = DecEnc2m,p−1(y), x = (ŝ⊺∥ê⊺∥ŷ⊺)⊺. We
also define P = (A · Ĵn,q−1,2, K̂m,β,3, −γ · Ĵm,p−1,2) and v = 0m. Then, we can
transform Equation (7) to

P · x = v mod q

and define VALID= Dnδq−1 × B3
mδβ
× Dmδp−1 that is a set of vectors of length L =

2nδq−1 + 3mδβ + 2mδp−1. Obviously, x ∈VALID. It can be easily verified that this
statement is equivalent to the original statement in this case, namely y = Fk(x) with
hidden k, y and public x.
Then we need to specify the permutation used in the protocol. First, we define
S = {0, 1}nδq−1 × P3mδβ × {0, 1}mδp−1 . Next, for π = (b1, π2, b3) ∈ S, where b1 ∈ {0,
1}nδq−1 , π2 ∈ P3mδβ , and b3 ∈ {0, 1}mδp−1 , and w = (w1

⊺∥w2
⊺∥w3

⊺)⊺, where w1 is of
length 2nδq−1, w2 is of length 3mδβ, and w3 is of length 2mδp−1, we define Tπ(w) =
(Fb1 (w1)⊺, π2(w2)⊺, Fb3 (w3)⊺)⊺. It is not hard to check that S and T are valid.

3. Proving y = Fk(x) with hidden k, x. Next, we consider the case that both the
secret key and the input need to be hidden. In this case, the common input includes
y ∈ Zm

p , and the prover’s secret input includes s ∈ Zn
q, e ∈ [−β, β]m, and A ∈ Zm×n

q .
To conduct the proof with a hidden A, we exploit the technique in [LLM+16b],
which provides a method to prove LWE relation with hidden matrices under the
abstract Stern’s protocol[LLM+16a]. More precisely, we define k̇ = δq−1, and define

â = DecEnc2mn,q−1(M2V(A)), ŝ = DecEnc2n,q−1(s)
ê = DecExt3m,β(e), z = Expandmnk̇,nk̇,mk̇,k̇(â, ŝ)
x = (â⊺∥ŝ⊺∥ê⊺∥z⊺)⊺

P = (0m×(2mnk̇+2nk̇), K̂m,β,3,Qm,n,q−1,q−1)

v = γ · y.

Then, we can transform Equation (7) to

P · x = v mod q

and define

VALID={(w1
⊺∥w2

⊺∥w3
⊺∥w4

⊺)⊺ | w1 ∈ Dmnk̇ ∧ w2 ∈ Dnk̇

∧ w3 ∈ B3
mδβ ∧ w4 = Expandmnk̇,nk̇,mk̇,k̇(w1,w2)}

39

that is a set of vectors of length L = 2mnk̇ + 2nk̇ + 3mδβ + 4mnk̇2. Obviously,
x ∈VALID. It can be easily verified that this statement is equivalent to the original
statement in this case, namely y = Fk(x) with hidden k, x and public y.
Then we need to specify the permutation used in the protocol. First, we define
S = {0, 1}mnk̇ × {0, 1}nk̇ × P3mδβ . Next, for π = (b1, b2, π3) ∈ S, where b1 ∈ {0,
1}mnk̇, b2 ∈ {0, 1}nk̇, and π3 ∈ P3mδβ , and w = (w1

⊺∥w2
⊺∥w3

⊺∥w4
⊺)⊺, where w1 is of

length 2mnk̇, w2 is of length 2nk̇, w3 is of length 3mδβ, and w4 is of length 4mnk̇2,
we define Tπ(w) = (Fb1 (w1)⊺, Fb2 (w2)⊺, π3(w3)⊺, Pb1,b2,mk̇,k̇(w4)⊺)⊺. It is not hard to
check that S and T are valid.

4. Proving y = Fk(x) with hidden k, x, y. Finally, we consider the case that the
secret key, the input and the output all need to be hidden. In this case, there is
no common input, and the prover’s secret input includes s ∈ Zn

q, e ∈ [−β, β]m,
A ∈ Zm×n

q , and y ∈ Zm
p . We employ techniques that has been used in the last two

cases to construct this proof. More precisely, we define k̇ = δq−1, and define

â = DecEnc2mn,q−1(M2V(A)), ŝ = DecEnc2n,q−1(s), ê = DecExt3m,β(e)
z = Expandmnk̇,nk̇,mk̇,k̇(â, ŝ), ŷ = DecEnc2m,p−1(y)
x = (â⊺∥ŝ⊺∥ê⊺∥z⊺∥ŷ⊺)⊺

P = (0m×(2mnk̇+2nk̇), K̂m,β,3, Qm,n,q−1,q−1, −γ · Ĵm,p−1,2)

v = 0m.

Then, we can transform Equation (7) to

P · x = v mod q

and define

VALID={(w1
⊺∥w2

⊺∥w3
⊺∥w4

⊺∥w5
⊺)⊺ | w1 ∈ Dmnk̇ ∧ w2 ∈ Dnk̇

∧ w3 ∈ B3
mδβ ∧ w4 = Expandmnk̇,nk̇,mk̇,k̇(w1,w2) ∧ w5 ∈ Dmδp−1 }.

that is a set of vectors of length L = 2mnk̇+2nk̇+3mδβ+4mnk̇2+2mδp−1. Obviously,
x ∈VALID. It can be easily verified that this statement is equivalent to the original
statement in this case, namely y = Fk(x) with hidden k, x, y.
Then we need to specify the permutation used in the protocol. First, we define
S = {0, 1}mnk̇ × {0, 1}nk̇ × P3mδβ × {0, 1}mδp−1 . Next, for π = (b1, b2, π3, b4) ∈ S,
where b1 ∈ {0, 1}mnk̇, b2 ∈ {0, 1}nk̇, π3 ∈ P3mδβ , and b4 ∈ {0, 1}mδp−1 , and w =
(w1

⊺∥w2
⊺∥w3

⊺∥w4
⊺∥w5

⊺)⊺, where w1 is of length 2mnk̇, w2 is of length 2nk̇, w3
is of length 3mδβ, w4 is of length 4mnk̇2, and w5 is of length 2mδp−1, we define
Tπ(w) = (Fb1 (w1)⊺, Fb2 (w2)⊺, π3(w3)⊺, Pb1,b2,mk̇,k̇(w4)⊺, Fb5 (w5)⊺)⊺. It is not hard to
check that S and T are valid.

40

E Formal Definitions of Applications

E.1 Definition of The Linkable Ring Signature

In this section, we recall the syntax and the security model of linkable ring signa-
ture, which is refined in [ACST06]. Note that there is a few small mistakes in their
security model, and we will correct them here. A linkable ring signature consists of
five algorithms:
• Setup. On input a security parameter 1λ, the setup algorithm outputs the public

parameter param for the scheme, which is also set implicity as the input for
the following four algorithms.

• KeyGen. The key generation algorithm outputs a secret key/public key pair
(sk, pk) ∈ SK ×PK , where we use SK and PK to denote the secret key space
and the public key space respectively.

• Sign. On input a message m, a polynomial-size set R of public keys, and a
secret key sk whose corresponding public key is in R, the signing algorithm
outputs a signature σ.

• Verify. On input a message m, a polynomial-size set R of public keys, and
a signature σ, the verification algorithm outputs a bit indicating whether the
signature is acceptable.

• Link. On input two signatures σ0 and σ1, the linking algorithm outputs a bit
indicating whether the two signature are signed by the same user.

Correctness of the linkable ring signature scheme requires that an honestly signed
signature should pass the verification and that two honestly generated signatures
can be linked iff they are signed by the same user. More formally, we require that:
• Verification Correctness. Let param ← S etup(1λ), (sk, pk) ← KeyGen().

Then for any message m, any polynomial-size set R ∈ 2PK containing pk, we
have Pr[Veri f (m,R, S ign(m,R, sk)) = 1] ≥ 1 − negl(λ).

• Linking Correctness. Let param← S etup(1λ), (sk1, pk1)← KeyGen(), (sk2,
pk2) ← KeyGen(). Then for any message m1,m2, any polynomial-size set R1,
R′1 ∈ 2PK containing pk1, and any polynomial-size set R2 ∈ 2PK containing
pk2, we have Pr[Link(S ign(m1,R1, sk1), S ign(m2,R′1, sk1)) = 1] ≥ 1 − negl(n)
and Pr[Link(S ign(m1,R1, sk1), S ign(m2,R2, sk2)) = 0] ≥ 1 − negl(n).

Security of the linkable ring signature scheme requires that the scheme is unforge-
able, linkable-anonymous w.r.t. adversarially-chosen keys, linkable w.r.t. adversarially-
chosen keys, and non-slanderable w.r.t. adversarially-chosen keys, which is for-
mally defined as follows.
Unforgeability. A linkable ring signature scheme is unforgeable if for any proba-
bilistic polynomial time adversary A and for any polynomial n(·), the probability
thatA succeeds in the following game is negligible in λ.
1. In the beginning, the challenger generates param← S etup(1λ) and (ski, pki)←

KeyGen(param;ωi) for i ∈ [1, n], where ωi is the randomness used in the gen-
eration of the ith key pair. Then it sends the public parameter param and the
set S = {pki}ni=1 toA. It also initilizes two empty sets SO and CO.

2. ThenA is allowed to access the following two oracles:

41

• The Signing Oracle. On input an integer j ∈ [1, n], a message m and a ring
R ⊆ PK containing pk j, the challenger returns σ ← S ign(m,R, sk j) and
puts (m,R, σ) into SO.

• The Corrupt Oracle. On input an integer j ∈ [1, n], the challenger returns
ω j and puts pk j into CO.

3. Finally, A outputs (m∗,R∗, σ∗), and succeeds if Veri f y(m∗,R∗, σ∗) = 1, (m∗,
R∗, σ∗) < SO, R∗ ⊆ S, R∗ ∩ CO = ∅.

Linkable-Anonymity w.r.t. adversarially-chosen keys. A linkable ring signature
scheme is linkable anonymous w.r.t. adversarially-chosen keys if for any proba-
bilistic polynomial time admissible adversary A and for any polynomial n(·), the
probability thatA succeeds in the following game is negligibly close to 1/2.
1. In the beginning, the challenger generates param← S etup(1λ) and (ski, pki)←

KeyGen(param;ωi) for i ∈ [1, n], where ωi is the randomness used in the gen-
eration of the ith key pair. Then it sends the public parameter param and the
set S = {pki}ni=1 toA. It also initilizes an empty set Q.

2. ThenA is allowed to access the following two oracles:
• The Signing Oracle. On input an integer j ∈ [1, n], a message m and a ring
R ⊆ PK containing pk j, the challenger returns σ ← S ign(m,R, sk j) and
puts j into Q.

• The Corrupt Oracle. On input an integer j ∈ [1, n], the challenger returns
ω j and puts j into Q.

3. Next, A submits a message m∗, two distinct integers i∗0, i
∗
1 ∈ [1, n], and a ring

R∗ ⊆ PK that pki∗0 , pki∗1 ∈ R
∗. Then, the challenger choose a random bit b ∈ {0,

1}, and returns a signature σ∗ ← S ign(m∗,R∗, ski∗b).
4. After receiving the challenge signature σ∗, A is further allowed to aceess the

signing oralce and the corrupt oracle as in the second phase.
5. Finally,A outputs a bit b′ and succeeds if b = b′. Here, we say an adversaryA

being admissible if i0 < Q and i1 < Q.
Linkability w.r.t. adversarially-chosen keys. A linkable ring signature scheme is
linkable w.r.t. adversarially-chosen keys if for any probabilistic polynomial time
adversary A and for any polynomial n(·), the probability that A succeeds in the
following game is negligible.
1. In the beginning, the challenger generates param← S etup(1λ) and (ski, pki)←

KeyGen(param;ωi) for i ∈ [1, n], where ωi is the randomness used in the gen-
eration of the ith key pair. Then it sends the public parameter param and the
set S = {pki}ni=1 toA. It also initilizes two empty sets SO and CO.

2. ThenA is allowed to access the following two oracles:
• The Signing Oracle. On input an integer j ∈ [1, n], a message m and a ring
R ⊆ PK containing pk j, the challenger returns σ ← S ign(m,R, sk j) and
puts (m,R, σ) into SO.

• The Corrupt Oracle. On input an integer j ∈ [1, n], the challenger returns
ω j and puts pk j into CO.

3. Finally, A outputs (m∗1,R∗1, σ∗1) and (m∗2,R∗2, σ∗2), and succeeds if Veri f y(m∗1,
R∗1, σ∗1) = 1, Veri f y(m∗2,R∗2, σ∗2) = 1, Link(σ∗1, σ

∗
2) = 0, (m∗1,R∗1, σ∗1) < SO,

(m∗2,R∗2, σ∗2) < SO, and | (R∗1 ∪ R∗2) ∩ CO | + | (R∗1 ∪ R∗2)\S |≤ 1.

42

Non-slanderability w.r.t. adversarially-chosen keys. A linkable ring signature
scheme is non-slanderable w.r.t. adversarially-chosen keys if for any probabilistic
polynomial time adversary A and for any polynomial n(·), the probability that A
succeeds in the following game is negligible.
1. In the beginning, the challenger generates param← S etup(1λ) and (ski, pki)←

KeyGen(param;ωi) for i ∈ [1, n], where ωi is the randomness used in the gen-
eration of the ith key pair. Then it sends the public parameter param and the
set S = {pki}ni=1 toA. It also initilizes two empty sets SO,CO.

2. ThenA is allowed to access the following two oracles:
• The Signing Oracle. On input an integer j ∈ [1, n], a message m and a ring
R ⊆ PK containing pk j, the challenger returns σ ← S ign(m,R, sk j) and
puts (j,m,R, σ) into SO.

• The Corrupt Oracle. On input an integer j ∈ [1, n], the challenger returns
ω j and puts j into CO.

3. Finally, A outputs (ĵ, σ̂,m∗,R∗, σ∗), and succeeds if Veri f y(m∗,R∗, σ∗) = 1,
Link(σ̂, σ∗) = 1, (ĵ, ∗, ∗, σ̂) ∈ SO, (ĵ,m∗,R∗, σ∗) < SO, ĵ < CO.

E.2 Definition of The k-times Anonymous Authentication

In this section, we recall the syntax and the security model of k-times anonymous
authentication, which is defined in [TFS04]. A k-times anonymous authentica-
tion involves three types of entities, namely, the group manager, the application
providers, and the users. It also consists of five protocols (algorithms):
• Setup. In the setup protocol, the group manager generates its group public key

and group secret key, and publish the group public key.
• Join. The join protocol is run between a user and the group manager, and after

the procedure, the user, who is called a group member now, obtains a member
public key and a member secret key.

• Bound Announcement. In the bound announcement protocol, an application
provider AP publish its identity IDAP and the upper bound kAP for each user to
access its service.

• Authentication. The authentication protocol is run between a user and an ap-
plication provider. The application provider accepts the user iff the user is a
legally registered group member and has not accessed its service more than
kAP − 1 times. The transcript of the protocol will be recorded into the authenti-
cation log by the application provider no matter whether the user is accepted.

• Public Tracing. On input an authentication log and an identification list, which
records the map between user identifications and member public keys, the pub-
lic tracing algorithm outputs a subset of U ∪ {GM} to indicate the cheaters,
whereU is the set of all users and GM is the group manager.

Correctness of the k-times anonymous authentication requires that an honest group
member can be accepted in authentication with an honest application provider AP
if he has not accessed the service of AP more than kAP − 1 times.
Security of the k-times anonymous authentication requires that the system is Anony-
mous, detectable, exculpable for users and exculpable for the group manager, which
can be formally defined by the following experiments. In these experiments, the ad-
versary is allowed to corrupt a few parties, and:

43

• If the adversary colludes with the group manager, the adversary can mali-
ciously execute the setup procedure and the join porotocol on behalf of the
group manager.

• If the adversary colludes with a user i, the adversary can maliciously execute
the join protocol and the authentication protocol on behalf of the user i.

• If the adversary colludes with an application provider AP, the adversary can
choose the public information (IDAP, kAP) of AP and can maliciously execute
the authentication protocol on behalf of the application provider AP. Moreover,
the adversary can use different information (IDAP, kAP) for each authentication.

It is also allowed to query some of the following oracles in each experiment:
• The oracle OLIS T [CE]: The list oracle is parameterized with a set CE, which is

a subset of the set U ∪ {GM}. It also matains a list LIST , which is empty in
the beginning. On input a command c ∈ {0, 1, 2} which represents the request
of querying the public key of a user, adding a new public key and deleting a
public key respectively, an identity i of a user, and a user public key mpk, the
oracle proceeds as follows:
1. If c = 0, mpk is empty, and ∃mpk′ s.t. (i,mpk′) ∈ LIST , the oracle

returns mpk′.
2. If c = 1, i ∈ CE, and ∄mpk′ s.t. (i,mpk′) ∈ LIST , the oracle set the list
LIST = LIST ∪ {(i,mpk)} and returns ⊥.

3. If c = 2, GM ∈ CE, mpk is empty, and ∃mpk′ s.t. (i,mpk′) ∈ LIST , the
oracle set the list LIST = LIST\{(i,mpk′)} and returns ⊥.

4. Otherwise, the oracle aborts and returns ⊥.
• The oracle OQuery[b, gpk, (i0, i1), (ID, k)]: The query oracle is parameterized

with a bit b, a group manager public key gpk, two user identities (i0, i1), and
the public information (ID, k) of an application provider. On input a bit d and
a string M, the oracle returns OAuth−U[gpk](ib⊕d, (ID, k),M).

• The oracle OJoin−U[gpk]: On input an identity i, the oracle executes the joining
protocol on behalf of the honest user i with the adversary.

• The oracle OAuth−U[gpk]: On input an identity i, the public information (ID, k)
of an application provider, and a challenge message M, the oracle executes the
authentication protocol on behalf of the honest user i with the adversary, who
represents an application provider with public information (ID, k) and chal-
lenge message M.

• The oracleOJoin−GM[gpk, gsk]: On input an identity i, and a joining message M,
the oracle executes the joining protocol on behalf of the honest group manager,
whose group key pair is (gpk, gsk), with the adversary, who represents a user i
with joining message M.

• The oracle OAuth−AP[gpk]: On input the public information (IDAP, kAP) of an
application provider AP, the oracle executes the authentication protocol on be-
half of the honest application provider AP with the adversary, who represents
a group member.

Besides, the adversary is only allowed to execute many authentication procedures
sequentially, but it is allowed to execute many joining procedures concurrently, i.e.
we require the k-times anonymous authentication to support concurrent enronment.

44

Anonymity. A k-times anonymous authentication is anonymous if for any proba-
bilistic polynomial time adversary A, the probability that A succeeds in the fol-
lowing game is negligibly close to 1/2.
1. In the beginning, the challenger chooses a bit b, two target users i0, i1, and

an application provider AP with public information (ID∗, k∗). Then it publish
(i0, i1) and (ID∗, k∗)

2. Then, the adversary A corrupts the group manager, all application providers
(including AP), and all users except the two target users i0, i1. It also generates
a (malicious) group public key gpk.

3. ThenA is allowed to access the oracle OList[U∪{GM}−{i0, i1}], OJoin−U[gpk],
OAuth−U[gpk], and OQuery[b, gpk, (i0, i1), (ID∗, k∗)] multiple times in any order,
but with the restriction that it can only access the oracle OQuery one time of
the form (d, ∗) for each queried d ∈ {0, 1}, and can only access the oracle
OAuth−U[gpk] k − 1 times of the form (i, (ID∗,M∗)) for each queried i ∈ {i0, i1}.

4. Finally,A outputs a bit b′ and succeeds if b = b′.
Detectability. A k-times anonymous authentication is detectable if for any proba-
bilistic polynomial time adversary A, the probability that A succeeds in the fol-
lowing game is negligible.
1. In the beginning, the challenger generates the group key pair (gpk, gsk) by

running the setup procedure, and sends gpk to the adversaryA.
2. Then, the adversary A, who controls all users in the system, is allowed to ac-

cess the oracle OList[U], OJoin−GM[gpk, gsk], and OAuth−AP[gpk] multiple times
in any order. Here, whenever the adversary queries the oracle OJoin−GM[gpk,
gsk] with an identity i and a user public key mpk, it should also query the
oracle OList[U] with input (1, i,mpk).

3. Finally, the challenger checks authentication logs of applications providers.
The adversary A succeeds in the experiment if there exists an application
provider AP with public information IDAP, kAP and public log LOGAP s.t. the
number of valid items in LOGAP is larger than kAP times the number of items
in LIST and the result of running the public tracing algorithm on input (gpk,
LOGAP,LIST) is the empty set.

Exculpability for users. A k-times anonymous authentication is exculpable for
users if for any probabilistic polynomial time adversary A, the probability that A
succeeds in the following game is negligible.

1. In the beginning, the challenger chooses a target users i∗ and publish it.
2. Then, the adversary A corrupts the group manager, all application providers,

and all users except the target user i∗. It also generates a (malicious) group
public key gpk.

3. Then A is allowed to access the oracle OList[U ∪ {GM} − {i∗}], OJoin−U[gpk],
and OAuth−U[gpk] multiple times in any order.

4. Finally, the challenger checks authentication logs of applications providers.
The adversary A succeeds in the experiment if there exists an application
provider AP with public information IDAP, kAP and public log LOGAP s.t. the
result of running the public tracing algorithm on input (gpk,LOGAP,LIST)
consists i∗.

45

Exculpability for the group manager. A k-times anonymous authentication is
exculpable for the group manager if for any probabilistic polynomial time adversary
A, the probability thatA succeeds in the following game is negligible.
1. In the beginning, the challenger generates the group key pair (gpk, gsk) by

running the setup procedure, and sends gpk to the adversaryA.
2. Then, the adversary A, who controls all application providers and all users, is

allowed to access the oracle OList[U] and OJoin−GM[gpk, gsk] multiple times in
any order. Here, whenever the adversary queries the oracle OJoin−GM[gpk, gsk]
with an identity i and a user public key mpk, it should also query the oracle
OList[U] with input (1, i,mpk).

3. Finally, the challenger checks authentication logs of applications providers.
The adversary A succeeds in the experiment if there exists an application
provider AP with public information IDAP, kAP and public log LOGAP s.t. the
result of running the public tracing algorithm on input (gpk,LOGAP,LIST)
consists GM.

E.3 Definition of The Blacklistable Anonymous Credentials

In this section, we recall the syntax and the security model of blacklistable anony-
mous credential system, which is defined in [TAKS07]. A blacklistable anonymous
credential system involves three types of entities, namely, the group manager, the
service providers, and the users. It also consists of three protocols (algorithms):
• Setup. In the setup protocol, the group manager generates its group public key

and group secret key, and publish the group public key.
• Registration. The registration protocol is run between a user and the group

manager, and after the procedure, the user, who is called a group member now,
obtains a member public key and a member secret key.

• Authentication. The authentication protocol is run between a user and a ser-
vice provider. The service provider uses a blacklist, which consists of tickets of
authentication events, during the protocol. After the protocol, a ticket for this
authentication event will be output8, and the service provider accepts the user
iff the user is a legally registered group member and is not related to an item in
the blacklist.

In the basic version of the blacklistable anonymous credential system, a user is
banned from accessing the services of a service provider once he is put into the
blacklist. However, in practice, more fine-grained access control is needed. One
simple but useful modification is to ban a user iff he has been put into the blacklist
more than a pre-defined upper bound, say d, times, and this is called the “d-strike-
out” policy.
Correctness of the blacklistable anonymous credential system requires that if all
entities in the system are honest, then for any legitimately registered user and any
service provider, the user is able to successfully authenticate herself to the service
provider with overwhelming probability if she is not related to any item in the

8 The ticket will be put in the blacklist in later authentications if the user misbehaves when
accessing the services after being accepted by the service provider.

46

blacklist (or she is not related to more than d items in the blacklist if “d-strike-out”
policy is used) of the service provider during the authentication.
Security of the blacklistable anonymous credential system requires that the system
is blacklistable, Anonymous, and non-frameable, which can be formally defined
by the following experiments.9 In these experiments, the challenger will maintain
an internal state state, three counters I, J,K, and six setsUh,Ug,Uu,Sh,Ss,MA.
Here, the counters I, J,K records the current number of registered users, service
providers and authentication events in an experiment respectively and are initially
set as 0. The sets Uh,Ug,Uu,Sh,Ss,MA contains the current honest users, hon-
est users registered by a malicious group manager, malicious user, honest ser-
vice providers, malicious service providers, and transcripts of authentication event
launched by a malicious user respectively, and are initially set as ∅. Also, The ad-
versary is allowed to query some of the following oracles in each experiment:
• The oracle REG. This oracle allows the adversary to register an honest user

with the honest group manager. Upon invocation, the oracle simulates the reg-
istration protocol between an honest user and the honest group manager (here,
we allow the adversary to view the executation of the protocol, i.e. it can get
the protocol transcript). Then it increments I by 1, sets state = state∥(I, ϖI , ϱI),
and adds I toUh, whereϖI is the protocol transcript and ϱI is the internal state
of the honest user when participating the protocol. The newly registered user is
indexed by I.

• The oracle REGu. This oracle allows the adversary to register a corrupt user
with the honest group manager. Upon invocation, the oracle plays the role of
the group manager and interacts with the adversary in the registration protocol.
Then it increments I by 1, sets state = state∥(I, ϖI ,⊥), and adds I toUu, where
ϖI is the protocol transcript. The newly registered user is indexed by I.

• The oracle REGg. This oracle allows the adversary to register an honest user
with the corrupt group manager. Upon invocation, the oracle plays the role
of a user and interacts with the adversary in the registration protocol. Then it
increments I by 1, sets state = state∥(I, ϖI , ϱI), and adds I to Ug, where ϖI

is the protocol transcript and ϱI is the internal state of the honest user when
participating the protocol. The newly registered user is indexed by I.

• The oracle ADD-SP. This oracle allows the adversary to introduce a service
provider with fresh identity sid into the system. Upon invocation, the oracle
increments J by 1 and adds J to Sh, The service provider is indexed by J.

• The oracle CORRUPT -SP. This oracle allows the adversary to introduce a
corrupt service provider with fresh identity sid into the system. Upon invoca-
tion, the oracle increments J by 1 and adds J to Ss, The service provider is
indexed by J.

• The oracleAUTH . This oracle allows the adversary to eavesdrop an authen-
tication run between an honest user and an honest service provider. On input
(i, j) such that i ∈ Uh ∪Ug and j ∈ Sh, the oracle simulates the authentication

9 For simplicity, we only define the security experiments for the basic case, and security experi-
ments for blacklistable anonymous credential system with advanced policies, e.g. the d-strike-
out policy, can be defined in a similar way.

47

protocol between an honest user i and an honest service provider j (here, we
allow the adversary to view the executation of the protocol, i.e. it can get the
protocol transcript). Then it increments K by 1, sets state = state∥(K, ϖK , ϱK),
where ϖK is the protocol transcript and ϱK is the internal state of the honest
user when participating the protocol.

• The oracle AUTHu. This oracle allows a corrupt user to authenticate to an
honest service provider. On input j ∈ Sh, the oracle plays the role of the service
provider j and interacts with the adversary in the authentication protocol. Then
it increments K by 1, sets state = state∥(K, ϖK ,⊥), and adds K toMA, where
ϖK is the protocol transcript.

• The oracleAUTH s. This oracle allows the adversary to have an honest user to
authenticate to a corrupt service provider. On input i ∈ Uh∪Ug and j ∈ Ss, the
oracle plays the role of the user i to authenticate to the service provider j and
interacts with the adversary in the authentication protocol, Then it increments
K by 1, sets state = state∥(K, ϖK , ϱK), whereϖK is the protocol transcript and
ϱK is the internal state of the honest user when participating the protocol.

• The oracle ADD-BL. This oracle allows the adversary to affect an honest
service provider to judge a user as having misbehaved during an authenticated
session. On input j ∈ Sh and k ∈ [1,K], the oracle adds the ticket τk, which is
extracted from the protocol transcriptϖk of the kth authentication event, to the
blacklist of the service provider j.

• The oracleREMOVE-BL. This oracle allows the adversary to affect an honest
SP to forgive a user for her misbehavior during an authenticated session. On
input j ∈ Sh and a ticket τ in the blacklist of the service provider j, the oracle
removes τ from that blacklist.

• The oracle QUERY. This oracle is the challenge oracle for the anonymity

experiment. On input i∗0, i
∗
1 ∈ Ug and j∗ ∈ [1, J], the oracle samples b

$← {0, 1}.
Then if j ∈ Sh, it runs the oracle AUTH with input i∗b, j∗; and if j ∈ Ss, it
runs the oracleAUTH s with input i∗b, j∗.

Here, the adversary is allowed to execute many registration oracles concurrently,
i.e. we require the blacklistable anonymous credential systems to support concur-
rent enronment; but we assume that each authentication oracle query is atomic.

Blacklistability. A blacklistable anonymous credential system is blacklistable if
for any probabilistic polynomial time adversaryA, the probability thatA succeeds
in the following game is negligible.

1. In the beginning, the challenger generates the group key pair (gpk, gsk) by
running the setup procedure, and sends gpk to the adversaryA.

2. Then A is allowed to query all oracles defined above except the oracle REGg
(i.e.A is not allowed to corrupt the group manager) and the oracle QUERY.

48

3. Finally,A succeeds in the game if there exists a series of ordered oracle queries
(in chronological order):

k1 ← AUTHu(j), ADD-BL(j, k1),
k2 ← AUTHu(j), ADD-BL(j, k2),

...
kn−1 ← AUTHu(j), ADD-BL(j, kn−1),

kn ← AUTHu(j)

that
• j ∈ Sh.
• All n queries are accepted by j.
• n > ∥Uu∥ + QR, where QR is the number of queries made by A to the
REMOVE-BL oracle.

We call this series “bad series” for short.
Anonymity. A blacklistable anonymous credential system is anonymous if for any
probabilistic polynomial time admissible adversary A, the probability that A suc-
ceeds in the following game is negligibly close to 1/2.
1. In the beginning, the challenger generates the group key pair (gpk, gsk) by

running the setup procedure, and sends (gsk, gpk) to the adversaryA.
2. Then A is allowed to query all oracles defined above except the oracle REG,

the oracle REGu (this is because A acts as the group manager and there is no
honest group manager in this experiment), and the oracle QUERY.

3. Then, A enters the challenge phase and queries the oracle QUERY(i∗0, i
∗
1, j∗),

where i∗0, i
∗
1 ∈ Ug and j∗ ∈ [1, J]. Let k∗ be the index for the authentication

oracle queried implicity in the oracle QUERY.
4. After the challenge phase, A is further allowed to query all oracles defined

above except the oracle REG, the oracle REGu, and the oracle QUERY.
5. Finally, A outputs a bit b′ and succeeds if b = b′, where b is the bit used in

the challenge oracle. Here we say an adversaryA is admissible if either of the
following two conditions holds.
• The blacklist of service provider j∗ used in the challenge oracle executation

does not contain ticket extracted from an authentication protocol transcript
that is generated by an authentication oracle query involving i∗0 or i∗1; A
does not query the oracle AUT Hs(i∗d, ∗) with a blacklist contains the ticket
extracted from ϖk∗ ;A does not query the oracleADD-BL(∗, k∗).

• The blacklist of service provider j∗ used in the challenge oracle executa-
tion contains at least one ticket extracted from an authentication protocol
transcript that is generated by an authentication oracle query involving i∗0
and at least one ticket extracted from an authentication protocol transcript
that is generated by an authentication oracle query involving i∗1.

Nonframeability. A blacklistable anonymous credential system is nonframeable if
for any probabilistic polynomial time adversaryA, the probability thatA succeeds
in the following game is negligible.
1. In the beginning, the challenger generates the group key pair (gpk, gsk) by

running the setup procedure, and sends (gsk, gpk) to the adversaryA.

49

2. Then A is allowed to query all oracles defined above except the oracle REG,
the oracle REGu (this is because A acts as the group manager and there is no
honest group manager in this experiment), and the oracle QUERY.

3. Finally, A queries the oracle AUTH with i∗ ∈ Ug and j∗ ∈ Sh, and wins in
the experiment if
• The blacklist used by j∗ in this oracle query does not contain a ticket ex-

tracted from an authentication protocol transcript that is generated by an
authentication oracle query involving i∗.

• The authentication is not accepted by j∗.

F Omitted Security Proofs for Applications

Before stepping in the detailed security proofs for applications constructed in Sec.5,
we first prove that weak pseudorandomness and uniqueness implies one-wayness,
which is used frequently in these security proofs. More precisely, we will prove that

Lemma F.1. For any weak pseudorandom function G = (G.KeyGen,G.Eval) with
uniqueness that has a super-polynomial domain and a super-polynomial range,
let k ← G.KeyGen(1λ), x to be sampled uniformly at random from the domain
of G, and y = Gk(x), then for any probabilistic polynomial time adversary A,
Pr[k′ ← AOk()(x, y) : Gk′ (x) = y] ≤ negl(λ), where Ok samples xi uniformly from
the domain of G and outputs (xi,Gk(xi)) each time being queried.

At first glance, weak pseudorandomness itself is strong enough to imply the oneway-
ness needed here. However, if multiple keys can be used to explain an input/output
pair, it may be extreamly easy to find one. To see this, let F = (F.KeyGen, F.Eval)
be any weak pseudorandom function, then we define F′ = (F′.KeyGen, F′.Eval).

Here F′.KeyGen(1λ) first samples k1
$← {0, 1}λ and k3 uniformly at random from

the range of F, then computes k2 ← F.KeyGen(1λ), and outputs the key k = (k1, k2,
k3); F′.Eval((k1, k2, k3), x) outputs Fk2 (x) if k1 , 0λ, and outputs k3 otherwise. F′ is
also a weak pseudorandom function since for a key k′ = (k1, k2, k3) sampled from
the key space of F′, k1 = 0λ with only a negligible probability, i.e. F′ behves like
F in evaluating values with all but a negligible probability. Nonetheless, it is easy
to check that for any given (x, y), an adversary A could win the game by merely
set k′ = (0λ, ∗, y) where we use ∗ to denote any string in the key space of F. So the
uniqueness makes a difference.

Proof. We prove Lemma F.1 by showing that if there exists an probabilistic poly-
nomial time adversary A that outputs a valid k′ with a non-negligible probability,
then we can construct an adversary B that breaks the weak pseudorandomness of
G as follows.
In the beginnig, B asks for 2 input/output pair from its challenge oracle and gets
{xi, yi}2i=1 back. Then it sneds (x1, y1) to A. Each time A queries to the oracle Ok,
B queries its own challenge oracle and returns what it receives. Finally, B gets k′

back. It then tests if Gk′(xi) = yi for i ∈ [1, 2] and outputs 1 if all equations hold.

50

Note that if the challenge oracle of B is computed by G, then the view ofA is iden-
tical to that in the real experiment, thus it can output a valid k′ with a non-negligible
probability. By the uniqueness G, k′ = k with all but a negligible probability. So B
will outputs 1 with a non-negligible probability in this case. On the other hand, if
the challenge oralce of B is computed by a random function, then the probability
that B outputs 1 is negligible. To see this, note that by the uniquesness, there exists
at most one key k′′ that satisfies Gk′′ (x1) = y1. Also, as the domain of G is super-
polynomial large, x1 and x2 are distinct with all but a negligible probability. So y2
can be viewed as sampled uniformly at random from the range of G, which equals
to Gk′′(x2) with only a negligible probability. That completes the proof. □

F.1 Proof of Theorem 5.1

Proof. Verification correctness comes from the correctness of the underlying build-
ing blocks directly, and the linking correctness comes from the correctness and the
uniqueness of the wPRF with efficient protcol.

Unforgeability. Next, we prove the unforgeability of the linkable ring signature
scheme via defining the following games, where we use Pi to denote the probability
thatA succeeds in Game i.
• Game 0. This is the real unforgeability experiment defined in Appendix E.1.
• Game 1. This is identical to Game 0 except that when answering the signing
oracle, the challenger computes the proof Π in the signature σ by generating a
simulated one. Indistinguishability between Game 0 and Game 1 comes from the
zero-knowledge property of the underlying ZKAoK systems directly. So, we have
| P1 − P0 |≤ negl(λ).
• Game 2. This is identical to Game 1 except that when checking whether A suc-
ceeds, the challenger additionally attempts to extract the witness (s∗, y∗, y′∗,w∗)
from Π∗ in the submitted signature σ∗, and outputs 0 (indicating that A fails) if
it fails to extract a valid witness, where we say a witness is valid if it satisfies the
statement defiend in the signing algorithm in the construction. Note that in our con-
struction, the hash of the messagem (together with some other terms) will be part of
the proofΠ in the signature σ, thus, with all but a negligible probability, differentm
leads to different Π . Also, since (m∗,R∗, σ∗) has not been queried to the signing or-
acle, (R∗, t∗, Π∗), in which (R∗, t∗) is part of the statement for the proof Π∗, has not
appeared with all but a negligible probability. So, by the simulation extractability
of the udnerlying ZKAoK systems, the challenger can succeed in extracting a valid
witness with all but a negligible probability. Thus, we have | P2 − P1 |≤ negl(λ).
• Game 3. This is identical to Game 2 except that when checking whether A suc-
ceeds, the challenger additionally checks whether Fs∗(A) ∈ R∗, and outputs 0 if not.
Indistinguishability between Game 2 and Game 3 comes from the security of the ac-
cumulator scheme and the SIS assumption directly. So, we have | P3−P2 |≤ negl(λ).
• Game 4. This is identical to Game 3 except that the challenger samples an integer

i∗
$← [1, n] in the beginning and outputs 0 if Fs∗(A) , pki∗ . As the integer i∗ is

independent of the view ofA, and the set R∗ ⊆ S, so the probability that Fs∗(A) =

51

pki∗ is 1/n. Note that if the challenger succeeds in guessing i∗ (namely, Fs∗(A) =
pki∗), Game 3 and Game 4 are identical, so we have P4 = P3/n, i.e. | nP4 − P0 |≤
negl(λ).
It remains to show that P4 is negligible, and this comes from Lemma F.1. To argue
this, we show that if P4 is non-negligible, then we can construct an adversary B
that can generates a valid k′ explaining the given input/output pair. More precisely,
the adversary first obtains a challenge pair (Â, ŷ). Then it queries its oracle and

obtains another pair (B̂, t̂) and samples an integer i∗
$← [1, n]. Next, it simulates

the environment for A. On the first phase, B generates the public parameter and
n public keys honestly, except that it sets the matrix A, B in the public parameter
to be Â and B̂ respectively and that it sets pki∗ = ŷ (and set ski∗ as empty). Then
in the second phase, when answering a signing oracle query (i∗, ∗, ∗), B sets the
tag t = t̂ and simulate the proof Π ; and if i∗ is queried to the corrupt oracle, B
aborts the simulation and reutrns a random value to its challenger. Finally, whenA
returns the challenge (m∗,R∗, σ∗), B extracts the witness (s∗, y∗, y′∗,w∗) from Π∗ in
the submitted signature σ∗, and returns s∗ back. Note that B can perfectly simulate
Game 4 unless i∗ is queried to the corrupt oracle, andA will definitely fail in Game
4 if i∗ is queried to the corrupt oracle, so with probability P4, Fs∗(A) = pki∗ = ŷ,
i.e. B returns the valid key for (Â, ŷ). That completes the proof for unforgeability.

Linkable-Anonymity. Next, we prove the linkable-anonymity of the linkable ring
signature scheme via defining the following games, where we use Pi to denote the
probability thatA succeeds in Game i.
• Game 0. This is the real linkable-anonymity experiment defined in Appendix E.1.
• Game 1. This is identical to Game 0 except that when answering the challenge
query in Phase 3, the challenger computes the proof Π∗ in the signature σ∗ by gen-
erating a simulated one. Indistinguishability between Game 0 and Game 1 comes
from the zero-knowledge property of the underlying ZKAoK systems directly. So,
we have | P1−P0 |≤ negl(λ). It is worth noting that in Game 1, σ∗ can be generated
with merely the knowledge of the public parameter, the ring R∗ and the tag t∗.
• Game 2. This is identical to Game 1 except that the challenger samples two inte-

gers j∗0, j∗1
$← [1, n] in the beginning, then in Phase 2, it aborts and outputs a random

bit (indicating whetherA succeed) if j∗0 or j∗1 is queried to the signing oracle or the
corrupt oracle. The challenger also aborts and outputs a random bit if i∗0 , j∗0 or
i∗1 , j∗1 in Phase 3. As the integers j∗0 and j∗1 are independent of the view ofA untill
the challenger abots, we have P2 = 1/n2 ·P1+(1−1/n2) ·1/2 = 1/2+(P1−1/2)/n2.
• Game 3. This is identical to Game 2 except that pk j∗0 is sampled uniformly at
random from the range of F (sk j∗0 is empty) in Phase 1, and t∗ is also sampled
uniformly at random from the range of F if b = 0. Indistinguishability between
Game 2 and Game 3 comes from the weak pseudorandomness of the underlying
wPRF with efficient protocol directly. So, we have | P3 − P2 |≤ negl(λ).
• Game 4. This is identical to Game 3 except that pk j∗1 is sampled uniformly at
random from the range of F (sk j∗1 is empty) in Phase 1, and t∗ is also sampled
uniformly at random from the range of F if b = 1. Indistinguishability between
Game 3 and Game 4 comes from the weak pseudorandomness of the underlying

52

wPRF with efficient protocol directly. So, we have | P4−P3 |≤ negl(λ). Note that in
Game 4, the view ofA is independent of the challenge bit b, so we have P4 = 1/2,
i.e. | P0 − 1/2 |≤ negl(λ). That completes the proof of linkable-anonymity.

Linkability. Next, we prove the linkability of the linkable ring signature scheme
via defining the following games, where we use Pi to denote the probability thatA
succeeds in Game i.
• Game 0. This is the real linkability experiment defined in Appendix E.1.
• Game 1. This is identical to Game 0 except that when answering the signing
oracle, the challenger computes the proof Π in the signature σ by generating a
simulated one. Indistinguishability between Game 0 and Game 1 comes from the
zero-knowledge property of the underlying ZKAoK systems directly. So, we have
| P1 − P0 |≤ negl(λ).
• Game 2. This is identical to Game 1 except that when checking whether A suc-
ceeds, the challenger additionally attempts to extract the witness (s∗1, y

∗
1, y
′∗
1 ,w

∗
1)

from Π∗1 in the submitted signature σ∗1 and the witness (s∗2, y
∗
2, y
′∗
2 ,w

∗
2) from Π∗2 in

the submitted signature σ∗2, and outputs 0 (indicating that A fails) if it fails to ex-
tract either valid witness, where we say a witness is valid if it satisfies the statement
defiend in the signing algorithm in the construction. Note that in our construction,
the hash of the messagem (together with some other terms) will be part of the proof
Π in the signature σ, thus, with all but a negligible probability, different m leads to
different Π . Also, since both (m∗1,R∗1, σ∗1) and (m∗2,R∗2, σ∗2) have not been queried
to the signing oracle, with all but a negligible probability, neither (R∗1, t∗1, Π∗1), in
which (R∗1, t∗1) is part of the statement for the proof Π∗1 , nor (R∗2, t∗2, Π∗2), in which
(R∗2, t∗2) is part of the statement for the proof Π∗2 , has appeared. So, by the simula-
tion extractability of the udnerlying ZKAoK systems, the challenger can succeed
in extracting valid witnesses with all but a negligible probability. Thus, we have
| P2 − P1 |≤ negl(λ).
• Game 3. This is identical to Game 2 except that when checking whether A suc-
ceeds, the challenger additionally checks whether Fs∗1 (A) ∈ R∗1 ∧ Fs∗2 (A) ∈ R∗2, and
outputs 0 if this is not the case. Indistinguishability between Game 2 and Game
3 comes from the security of the accumulator scheme and the SIS assumption di-
rectly. So, we have | P3 − P2 |≤ negl(λ).
• Game 4. This is identical to Game 3 except that when checking whether A suc-
ceeds, the challenger additionally checks whether s∗1 = s∗2, and outputs 0 if this is
the case. Game 3 and Game 4 are identical unless A wins in Game 3 but s∗1 = s∗2.
This cannot occur due to the correctness of the wPRF with efficient protocol. So,
we have | P4−P3 |= 0. Note that ifAwins in Game 4, s∗1 , s∗2, so by the uniqueness
of wPRF with efficient protocol, Fs∗1 (A) , Fs∗2 (A). Also, if A wins, all but at most
one keys in R∗1 ∪ R∗2 are in S\CO, so at least for one d ∈ [1, 2], Fs∗d (A) is in S\CO,
and we denote this s∗d as ŝ∗.
• Game 5. This is identical to Game 4 except that the challenger samples an integer

i∗
$← [1, n] in the beginning and outputs 0 if F ŝ∗(A) , pki∗ . As the integer i∗ is

independent of the view of A, so the probability that F ŝ∗(A) = pki∗ is 1/n. Note
that if the challenger succeeds in guessing i∗ (namely, F ŝ∗(A) = pki∗), Game 4 and
Game 5 are identical, so we have P5 = P4/n, i.e. | nP5 − P0 |≤ negl(λ).

53

Finally, we can prove that P5 is negligible by using Lemma F.1, just as we have done
in proving the unforgeability of the linkable ring signature scheme. That completes
the proof for linkablity.

Non-Slanderability. Next, we prove the non-slanderability of the linkable ring sig-
nature scheme via defining the following games, where we use Pi to denote the
probability thatA succeeds in Game i.
• Game 0. This is the real non-slanderability experiment defined in Appendix E.1.
• Game 1. This is identical to Game 0 except that the challenger samples an integer

i∗
$← [1, n] in the beginning and outputs 0 if i∗ , ĵ. As the integer i∗ is independent

of the view ofA, the probability that i∗ = ĵ is 1/n. Thus, we have P1 = P0/n.
• Game 2. This is identical to Game 1 except that when answering the signing or-
acle with query (i∗, ·, ·), the challenger computes the proof Π in the signature σ
by generating a simulated one. Indistinguishability between Game 1 and Game 2
comes from the zero-knowledge property of the underlying ZKAoK systems di-
rectly. So, we have | P2 − P1 |≤ negl(λ).
• Game 3. This is identical to Game 2 except that when checking whether A suc-
ceeds, the challenger additionally attempts to extract the witness (s∗, y∗, y′∗,w∗)
from Π∗ in the submitted signature σ∗, and outputs 0 (indicating that A fails) if it
fails to extract the valid witness, where we say a witness is valid if it satisfies the
statement defiend in the signing algorithm in the construction. Note that in our con-
struction, the hash of the message m (together with some other terms) will be part
of the proof Π in the signature σ, thus, with all but a negligible probability, differ-
ent m leads to different Π . Also, ifA wins in Game 3, (i∗,m∗,R∗, σ∗) has not been
queried to the signing oracle, so, with all but a negligible probability, (R∗, t∗, Π∗), in
which (R∗, t∗) is part of the statement for the proof Π∗, is not a copy of a simulated
proof made by the challenger. So, by the simulation extractability of the udnerlying
ZKAoK systems, the challenger can succeed in extracting valid witnesses with all
but a negligible probability. Thus, we have | P3 − P2 |≤ negl(λ).
Now, in Game 3, we have Fs∗(B) = t̂ if A wins, where t̂ is the tag for σ̂. So by
Lemma F.1, P3 is negligible. We reamrk that when making the reduction, we will
set the challenge pair of B as (B, t̂), which is slightly different from what has done
when proving the unforgeability and the linkability. That completes the proof for
non-slanderability. □

F.2 Proof of Theorem 5.2

Proof. Correctness comes from the correctness of the underlying building blocks
directly.

Anonymity. Next, we prove the anonymity of the k-times anonymous authentication
protocol via defining the following games, where we use Pi to denote the probabil-
ity thatA succeeds in Game i.
• Game 0. This is the real anonymity experiment defined in Appendix E.2.

54

•Game 1. This is identical to Game 0 except that when the challenger is required to
authenticate on behalf of i0 or i1, it generates a simulated proof Π . Indistinguisha-
bility between Game 0 and Game 1 comes from the zero-knowledge property of the
underlying ZKAoK systems directly. So, we have | P1 − P0 |≤ negl(λ). It is worth
noting that in Game 1, the response (t, ť, Π) in an authentication event involving
i0 or i1 can be generated with merely the knowledge of the public parameter, the
public information and the challenge of the counterpart application provider and
the tag (t, ť).
• Game 2. This is identical to Game 1 except that yi0 , which is part of the public
key of i0, is sampled uniformly from the range of F, and the challenger samples
(t, ť) uniformly from the range of F when it is required to authenticate on behalf of
i0. Since during the whole procedure of Game 1 and Game 2, the challenger is only
required to compute F on random inputs and it will not be required to compute F
on the same input twice, indistinguishability between Game 1 and Game 2 comes
from the weak pseudorandomness of the underlying wPRF with efficient protocol
directly. So, we have | P2 − P1 |≤ negl(λ).
• Game 3. This is identical to Game 2 except that yi1 , which is part of the public
key of i1, is sampled uniformly from the range of F, and the challenger samples
(t, ť) uniformly from the range of F when it is required to authenticate on behalf
of i1. Similarly, indistinguishability between Game 2 and Game 3 comes from the
weak pseudorandomness of the underlying wPRF with efficient protocol directly.
So, we have | P3 − P2 |≤ negl(λ).
Now, in Game 3, as the adversary can only access the oracle OQuery one time of the
form (d, ∗) for each queried d ∈ {0, 1}, and can only access the oracle OAuth−U[gpk]
k − 1 times of the form (i, (ID∗,M∗)) for each queried i ∈ {i0, i1}, the challenger is
only required to authenticate with the application provider with public information
(ID∗, k∗) up to k∗ times on behalf of i0 and i1 respectively. Thus, the query oracle
will work normally for d ∈ {0, 1}. Therefore, the executations of the query oracle
are independent of the bit b, i.e. the view of A is independent of b in Game 3
and P3 = 1/2. So, we have | P0 − 1/2 |≤ negl(λ) and that completes the proof of
anonymity.

Detectability. Next, we prove the detectability of the k-times anonymous authen-
tication protocol via defining the following games, where we use Pi to denote the
probability thatA succeeds in Game i.
• Game 0. This is the real detectability experiment defined in Appendix E.2.
• Game 1. This is identical to Game 0 except that when checking whether A suc-
ceeds, the challenger additionally attempts to extract the witness (s, y, B, B̌, ť′, b′,
w, σ) from each proof Π in the authentication log, and outputs 0 (indicating that
A fails) if it fails to extract a valid witness for some proof Π in the authentication
log, where we say a witness is valid if it satisfies the statement defiend in the au-
thentication protocol in the construction. Indistinguishability between Game 0 and
Game 1 comes from the extractability property of the underlying ZKAoK systems
directly. Thus, we have | P1 − P0 |≤ negl(λ).
• Game 2. This is identical to Game 1 except that when checking whether A suc-
ceeds, the challenger outputs 0 if for an extracted witness (s, y, B, B̌, ť′, b′,w, σ), y

55

has not been queried to the OJoin−GM[gpk, gsk] oracle. Indistinguishability between
Game 1 and Game 2 comes from the unforgeability of the underlying CL signature
scheme directly. Thus, we have | P2 − P1 |≤ negl(λ).
• Game 3. This is identical to Game 2 except that when checking whether A suc-
ceeds, the challenger outputs 0 if for two extracted witness (s1, y1, B1, B̌1, ť′1, b′1,
w1, σ1), and (s2, y2, B2, B̌2, ť′2, b′2,w2, σ2), y1 = y2 but s1 , s2. Indistinguisha-
bility between Game 2 and Game 3 comes from the uniqueness of the underlying
wPRF with efficient protocols directly. Thus, we have | P3 − P2 |≤ negl(λ). Note
that in Game 3, if the adversary succeeds, it only use at most ∥LIST∥ different
secret keys.
• Game 4. This is identical to Game 3 except that when checking whether A suc-
ceeds, the challenger outputs 0 if for an extracted witness (s, y, B, B̌, ť′, b′,w, σ)
from LOGAP, (B, B̌) is not in the tag bases set BAP of the application provider AP.
Indistinguishability between Game 3 and Game 4 comes from the security of the
accumulator scheme and the SIS assumption directly. Thus, we have | P4 − P3 |≤
negl(λ).
Now, in Game 4, if the adversary succeeds, for each LOGAP it can only use at most
kAP different tag bases, and at most ∥LIST∥ different secret keys, thus it can only
generates tags (t, ť) with at most kAP · ∥LIST∥ different t. Therefore, it cannot
succeeds in Game 4, i.e. P4 = 0. That completes the proof for detectability.

Before stepping into the detailed proofs of exculpabilities of the k-times anony-
mous authentication protocol, we first prove a useful lemma.

Lemma F.2. Let F be a secure wPRF with efficient protocols with strong unique-
ness, l be any polynomial, A1, . . . , Al are sampled uniformly at random from the
domain of F. Then the probability that there exists secret keys s1, s2 of F and i,
j ∈ [1, l] that s1 , s2 but Fs1 (Ai) = Fs2 (A j) is negligible. Note that here we donot
require that i , j.

Proof. For each (i, j) ∈ [1, l]×[1, l], if i = j then Pr[∃s1 , s2 : Fs1 (Ai) = Fs2 (A j)] ≤
negl(·) due to the uniqueness of F; otherwise, Pr[∃s1 , s2 : Fs1 (Ai) = Fs2 (A j)] ≤
negl(·) due to the strong uniqueness of F. Thus, by the union bound, Pr[∃i, j, s1 ,
s2 : Fs1 (Ai) = Fs2 (A j)] ≤ negl(·). That completes the proof. □

Exculpability for users. Next, we prove the exculpability for users of the k-times
anonymous authentication protocol via defining the following games, where we use
Pi to denote the probability thatA succeeds in Game i. For simplicity of exposition,
we call a pair of items ((t1, ť1, c1,m1, Π1), (t2, ť2, c2,m2, Π2)) in an authentication
log “bad pairs” if they lead to an accusation of the user i∗, namely t1 = t2, c1 , c2
and (c1 − c2)−1 · (ť1 − ť2) equals to the public key y∗ of i∗. Also, we call an item in
an authentication log “bad item” if it belongs to a “bad pair” and is not generated
by i∗ itself (i.e. the challenger).
• Game 0. This is the real exculpability for users experiment defined in Appendix
E.2.
• Game 1. This is identical to Game 0 except that when the challenger is required
to authenticate on behalf of i∗, it generates a simulated proof Π . Indistinguishabil-
ity between Game 0 and Game 1 comes from the zero-knowledge property of the

56

underlying ZKAoK systems directly. So, we have | P1 − P0 |≤ negl(λ). It is worth
noting that in Game 1, the response (t, ť, Π) in an authentication event involving
i∗ can be generated with merely the knowledge of the public parameter, the public
information and the challenge of the counterpart application provider and the tag
(t, ť).
• Game 2. This is identical to Game 1 except that when checking whether A suc-
ceeds, the challenger additionally attempts to extract the witness (s, y, B, B̌, ť′, b′,
w, σ) from each proof Π in a “bad item”, and outputs 0 (indicating that A fails)
if it fails to extract a valid witness for some proof Π in a “bad item”, where we
say a witness is valid if it satisfies the statement defiend in the authentication pro-
tocol in the construction. Indistinguishability between Game 1 and Game 2 comes
from the simulation extractability property of the underlying ZKAoK systems di-
rectly, since each “bad item” contains a fresh statement/proof pair. Thus, we have
| P2 − P1 |≤ negl(λ).
• Game 3. This is identical to Game 2 except that when checking whether A suc-
ceeds, the challenger outputs 0 if for an extracted witness (s, y, B, B̌, ť′, b′,w, σ)
from LOGAP, (B, B̌) is not in the tag bases set BAP of the application provider AP.
Indistinguishability between Game 2 and Game 3 comes from the security of the
accumulator scheme and the SIS assumption directly. Thus, we have | P3 − P2 |≤
negl(λ).
• Game 4. This is identical to Game 3 except that when checking whether A
succeeds, the challenger outputs 0 if there exist two extracted witness (s1, y1, B1,
B̌1, ť′1, b′1,w1, σ1), and (s2, y2, B2, B̌2, ť′2, b′2,w2, σ2), that are extracted from two
“bad items” formating a “bad pair” and s1 , s2. Indistinguishability between Game
3 and Game 4 comes from Lemma F.2 directly. Thus, we have | P4 − P3 |≤ negl(λ).
Note that in Game 4, if A succeeds, for each “bad pair” consisting of two “bad
items”, the extracted secret keys s1 and s2 are identical, thus, we have ť′1 = ť′2 and
y1 = y2, which implies that y1 = y2 = y∗. 10 As a result, the challenger can extract
the secret key for y∗ in this case.
• Game 5. This is identical to Game 4 except that when checking whether A suc-
ceeds, the challenger outputs 0 if there exists “bad pair” consisting of two “bad
items”. Indistinguishability between Game 4 and Game 5 comes from Lemma F.1
directly. Thus, we have | P5 − P4 |≤ negl(λ).
• Game 6. This is identical to Game 5 except that when checking whether A suc-
ceeds, the challenger outputs 0 if there exist an extracted witness (s, y, B, B̌, ť′, b′,
w, σ) that is extracted from a “bad items” in a “bad pair” consisting of this “bad
item” and an item generated by the challenger and s , s∗, where s∗ is the secret
key for i∗. Indistinguishability between Game 5 and Game 6 comes from Lemma
F.2 directly. Thus, we have | P6 − P5 |≤ negl(λ).
• Game 7. This is identical to Game 6 except that when checking whether A suc-
ceeds, the challenger outputs 0 if there exists “bad pair” consisting of a “bad item”

10 This is because our wPRF with efficient protocol satisfies a stronger version of strong uniques-
ness, i.e. for any secret key not equal to 0, different inputs will be evaluated to different outputs.
So, if s1 , 0, we have B1 and B2 are also identical, which implies that B̌1 and B̌2 are also iden-
tical; if s1 = 0, we have ť′1 = ť′2 = y1 = y2 = 0.

57

and an item generated by the challenger. Indistinguishability between Game 6 and
Game 7 comes from Lemma F.1 directly. Thus, we have | P7 − P6 |≤ negl(λ).
Now in Game 7, if A succeeds, there must exists “bad pair” consisting of two
items generated by the challenger. However, this can occur with only a negligible
probability since 1) the user i∗ is honest and will not attempt to authenticate more
than kAP times for each application provider AP and 2) all tag bases are sampled
uniformly and the probability that repeated tag bases occur is negligible and 3) the
probability that for the same secret key (generated by the key generation algorithm),
different uniform inputs are evaluated to the same output is negligible (otherwise,
the function can be distinguished from random function easily). Note that the “copy
attack”, where the adversary copies an item generated by i∗ in the authentication
log, does not work since the copied item has the same c with the original item and
cannot form a “bad pair”. That completes the proof for exculpability for users.

Exculpability for the group manager. Next, we prove the exculpability for the group
manager of the k-times anonymous authentication protocol via defining the follow-
ing games, where we use Pi to denote the probability that A succeeds in Game
i. For simplicity of exposition, we call a pair of items ((t1, ť1, c1,m1, Π1), (t2, ť2,
c2,m2, Π2)) in an authentication log “bad pairs” if they lead to an accusation of the
group manager, namely t1 = t2, c1 , c2 and (c1−c2)−1 ·(ť1− ť2) has not been queried
to the group manager in a join protocol. Also, we call an item in an authentication
log “bad item” if it belongs to a “bad pair”.
• Game 0. This is the real exculpability for the group manager experiment defined
in Appendix E.2.
• Game 1. This is identical to Game 0 except that when checking whether A suc-
ceeds, the challenger additionally attempts to extract the witness (s, y, B, B̌, ť′, b′,
w, σ) from each proof Π in a “bad item”, and outputs 0 (indicating that A fails) if
it fails to extract a valid witness for some proof Π in a “bad item”, where we say a
witness is valid if it satisfies the statement defiend in the authentication protocol in
the construction. Indistinguishability between Game 0 and Game 1 comes from the
extractability property of the underlying ZKAoK systems directly. Thus, we have
| P1 − P0 |≤ negl(λ).
• Game 2. This is identical to Game 1 except that when checking whether A suc-
ceeds, the challenger outputs 0 if for an extracted witness (s, y, B, B̌, ť′, b′,w, σ)
from LOGAP, (B, B̌) is not in the tag bases set BAP of the application provider AP.
Indistinguishability between Game 1 and Game 2 comes from the security of the
accumulator scheme and the SIS assumption directly. Thus, we have | P2 − P1 |≤
negl(λ).
• Game 3. This is identical to Game 2 except that when checking whether A
succeeds, the challenger outputs 0 if there exist two extracted witness (s1, y1, B1,
B̌1, ť′1, b′1,w1, σ1), and (s2, y2, B2, B̌2, ť′2, b′2,w2, σ2), that are extracted from two
“bad items” formating a “bad pair” and s1 , s2. Indistinguishability between Game
2 and Game 3 comes from Lemma F.2 directly. Thus, we have | P3 − P2 |≤ negl(λ).
Note that in Game 3, if A succeeds, for each “bad pair”, the extracted secret keys
s1 and s2 are identical, thus, we have ť′1 = ť′2 and y1 = y2, which implies that y1 =

58

y2 = y′, where y′ = (c1−c2)−1 ·(ť1− ť2). 11 Recall that y′ has not been queried to the
group manager in a join protocol, thus, by the unforgeability of the underlying CL
signature scheme, A cannot succeeds in Game 3 with a non-negligible probability.
That completes the proof of exculpability for the group manager.

□

F.3 Proof of Theorem 5.3

Proof. Here, we only present security proofs for the basic version of the black-
listable anonymous credential system, and one can adapt the basic proof provided
here to security proofs for blacklistable anonymous credential systems with fine-
grained policies easily.
Correctness comes from the correctness of the underlying building blocks directly.

Blacklistability. Next, we prove the blacklistability of the blacklistable anonymous
credential system via defining the following games, where we use Pi to denote the
probability thatA succeeds in Game i.
• Game 0. This is the real blacklistability experiment defined in Appendix E.3.
•Game 1. This is identical to Game 0 except that when answering an authentication
oracle on behalf of an honest user (i.e. when answering the oracle AUTH or the
oracleAUTH s), the challenger generates a simulated proof Π . Indistinguishabil-
ity between Game 0 and Game 1 comes from the zero-knowledge property of the
underlying ZKAoK systems directly. So, we have | P1 − P0 |≤ negl(λ). It is worth
noting that in Game 1, the response (µ, t, Π) in an authentication event involving an
honest user can be generated with merely the knowledge of the public parameter,
the blacklist of the counterpart service provider and the ticket (µ, t).
•Game 2. This is identical to Game 1 except that when answering an authentication
oracle on behalf of an honest user (i.e. when answering the oracle AUTH or the
oracleAUTH s), the challenger checks whether the user is blocked by the received
blacklist via checking whether there exists a ticket generated by this user in the
blacklist.
Note that in Game 2, the output of an authentication oracle involving an honest user
is determined by the ticket generated this time (if have), the public information, and
the history behaviors of the invloved honest user. Also, the output of a registeration
oracle involving an honest user is determined by the public key of the user. There-
fore, the view ofA in Game 2 is in fact independent of the real value of these secret
keys of honest users, and only depends on the functionalities of these secret keys.
Game 1 and Game 2 are identical unless A can put a “bad ticket” (µ∗, t∗) into
a blacklist (either via a malicious service provider or via the ADD-BL oracle),
where we say a ticket is bad if 1) Fs(H(µ∗)) = t∗ for a secret key s of an honest
user and 2) (µ∗, t∗) is not generated by that honest user. Let p be the probability

11 This is because our wPRF with efficient protocol satisfies a stronger version of strong uniques-
ness, i.e. for any secret key not equal to 0, different inputs will be evaluated to different outputs.
So, if s1 , 0, we have B1 and B2 are also identical, which implies that B̌1 and B̌2 are also iden-
tical; if s1 = 0, we have ť′1 = ť′2 = y1 = y2 = 0.

59

that a bad ticket occurs in Game 2. To argue that p is negligible, we show that if
p is non-negligible, then we can construct an adversary B that can break the weak
pseudorandomness of the underlying wPRF with efficient protocols.
Assuming A makes up to Q random oracle queries, there are Q′ honest users, and
w.l.o.g., assume that A will not query the same input twice to the random oracle
and will query µ to the random oracle each time generating a new ticket (µ, t).
In the beginning, B samples i

$← [1,Q] and j
$← [1,Q′]. Then it simulates the

environment for A identically to that in Game 2 except that it answers all oracle
queries involving the jth honest user by querying its challenge oracle (this works
since the view of A depends on the functionalities rather than the real values of
secret keys of honest users, and B can control the generation of A and the output of
H). When the ith random oracle is queried on a value µ̂,B first queries its challenge
oracle and gets a tuple (B̂, t̂) back. Then it setsH(µ̂) = B̂. B outputs 1 if it finds (µ̂,

t̂) in a blacklist and it is a bad ticket. Otherwise, it outputs a random bit b
$← {0, 1}.

Note that if the challenge oracle of B returns outputs of a pseudorandom function,
then B can perfectly simulate the view ofA, and with a non-negligible probability
p,A will output a bad ticket for an honest user. Then, with probability 1/(QQ′), B
can succeeds in guessing that honest user and locates the bad ticket in the random
oracle, and thus outputs 1. So, with probability (1 − p/(QQ′)) · 1/2 + p/(QQ′) =
1/2+p/(2QQ′),Bwill output 1 when the oracle returns outputs of a pseudorandom
function. In contrast, if the oracle returns outputs of a random function, t̂ is either
used, in which case (µ̂, t̂) cannot be a bad ticket, or is hidden to A. In the latter
case, as t̂ is sampled uniformly in the range of the random function, A can guess
t̂ with only a negligible probability. So, if the oracle returns outputs of a random
function, B outputs 1 with a probability 1/2 + negl(λ). In summary, the advance of
B is p/(2QQ′) − negl(λ), which is non-negligible.
• Game 3. This is identical to Game 2 except that when checking whether A suc-
ceeds, the challenger additionally attempts to extract the witness (s, y, σ) from each
proof Π in an authentication protocol transcript in the “bad series”, and outputs 0
(indicating thatA fails) if it fails to extract a valid witness for some proof Π in the
“bad series”, where we say a witness is valid if it satisfies the statement defiend in
the authentication protocol in the construction. Indistinguishability between Game
2 and Game 3 comes from the simulation extractability property of the underlying
ZKAoK systems directly, since each proof in the “bad series” is generated with
an honest services provider, who will send a uniform challenge message m, which
equals to a previously used challenge message with only a negligible probability.
Thus, we have | P3 − P2 |≤ negl(λ).
• Game 4. This is identical to Game 3 except that when checking whether A suc-
ceeds, the challenger outputs 0 if for an extracted witness (s, y, σ), y has been
queried to neither the REG oracle nor the REGu oracle. Indistinguishability be-
tween Game 3 and Game 4 comes from the unforgeability of the underlying CL
signature scheme directly. Thus, we have | P4 − P3 |≤ negl(λ).
• Game 5. This is identical to Game 4 except that when checking whether A suc-
ceeds, the challenger outputs 0 if for an extracted witness (s, y, σ), y has not been
queried to the REGu oracle. Game 3 and Game 4 are identical unless there ex-

60

ists an extracted witness (s, y, σ) that y is the public key of an honest user. This
can occur with only a negligible probability due to Lemma F.1. Thus, we have
| P5 − P4 |≤ negl(λ).
• Game 6. This is identical to Game 5 except that when checking whether A suc-
ceeds, the challenger outputs 0 if for two extracted witness (s1, y1, σ1) and (s2, y2,
σ2), y1 = y2 but s1 , s2. Indistinguishability between Game 5 and Game 6 comes
from the uniqueness of the underlying wPRF with efficient protocols directly. Thus,
we have | P6 − P5 |≤ negl(λ).
Note that in Game 6, if the adversary succeeds, it only use at most ∥Uu∥ different
secret keys. Also, each of these ∥Uu∥ secret keys can only be used once unless a
REMOVE-BL oracle query is made to remove the ticket of that secret key from
the blacklist of the target service provider. Also, each REMOVE-BL oracle query
can only enable the saved secret key to be used one more time since once it is used,
it will be put into the blacklist again. So in Game 6, the adversary cannot success,
i.e. P6 = 0. That completes the proof of blacklistability.

Anonymity. Next, we prove the anonymity of the blacklistable anonymous cre-
dential system via defining the following games, where we use Pi to denote the
probability thatA succeeds in Game i.
• Game 0. This is the real anonymity experiment defined in Appendix E.3.
•Game 1. This is identical to Game 0 except that when answering an authentication
oracle on behalf of an honest user (i.e. when answering the oracle AUTH or the
oracleAUTH s), the challenger generates a simulated proof Π . Indistinguishabil-
ity between Game 0 and Game 1 comes from the zero-knowledge property of the
underlying ZKAoK systems directly. So, we have | P1 − P0 |≤ negl(λ). It is worth
noting that in Game 1, the response (µ, t, Π) in an authentication event involving an
honest user can be generated with merely the knowledge of the public parameter,
the blacklist of the counterpart service provider and the ticket (µ, t).
• Game 2. This is identical to Game 1 except that when answering an authentica-
tion oracle on behalf of an honest user (i.e. when answering the oracle AUTH
or the oracle AUTH s), the challenger checks whether the user is blocked by the
received blacklist via checking whether there exists a ticket generated by this user
in the blacklist. Indistinguishability between Game 1 and Game 2 comes from the
weak pseudorandomness of the underlying wPRF with efficient protocols, just as
we have done in proving the blacklistability of the blacklistable anonymous cre-
dential system.
Note that in Game 2, the output of an authentication oracle involving an honest user
is determined by the ticket generated this time (if have), the public information, and
the history behaviors of the invloved honest user. Also, the output of a registeration
oracle involving an honest user is determined by the public key of the user. There-
fore, the view ofA in Game 2 is in fact independent of the real value of these secret
keys of honest users, and only depends on the functionalities of these secret keys.
• Game 3. This is identical to Game 2 except that public keys of honest users as
well as each t in a ticket of an authentication event involving an honest user, is
sampled uniformly from the range of F. Since during the whole procedure of Game
2 and Game 3, the challenger is only required to compute F on random inputs

61

and it will not be required to compute F on the same secret key/input pair twice,
indistinguishability between Game 2 and Game 3 comes from the weak pseudo-
randomness of the underlying wPRF with efficient protocol directly. So, we have
| P3 − P2 |≤ negl(λ).
Note that in the query oracle of Game 3, for both b = 0 and b = 1, the check
for whether the involved user is in the blacklist outputs the same result; also, the
response (if have) is also independent of the bit b. Besides, the ticket (µ∗, t∗) for the
challenge oracle is not allowed to be used in any blacklist. Therefore, the view of
A is independent of b, i.e. P3 = 1/2. That completes the proof of the anonymity.

Non-Frameability. Next, we prove the non-frameability of the blacklistable anony-
mous credential system via defining the following games, where we use Pi to denote
the probability thatA succeeds in Game i.
• Game 0. This is the real non-frameability experiment defined in Appendix E.3.
•Game 1. This is identical to Game 0 except that when answering an authentication
oracle on behalf of an honest user (i.e. when answering the oracle AUTH or the
oracleAUTH s), the challenger generates a simulated proof Π . Indistinguishabil-
ity between Game 0 and Game 1 comes from the zero-knowledge property of the
underlying ZKAoK systems directly. So, we have | P1 − P0 |≤ negl(λ). It is worth
noting that in Game 1, the response (µ, t, Π) in an authentication event involving an
honest user can be generated with merely the knowledge of the public parameter,
the blacklist of the counterpart service provider and the ticket (µ, t).
• Game 2. This is identical to Game 1 except that when answering an authentica-
tion oracle on behalf of an honest user (i.e. when answering the oracle AUTH
or the oracle AUTH s), the challenger checks whether the user is blocked by the
received blacklist via checking whether there exists a ticket generated by this user
in the blacklist. Indistinguishability between Game 1 and Game 2 comes from the
weak pseudorandomness of the underlying wPRF with efficient protocols, just as
we have done in proving the blacklistability of the blacklistable anonymous cre-
dential system. Recall that we can in fact prove that the adversary is not able to put
a bad ticket into a blacklist with a non-negligible probability in Game 2, where we
say a ticket is bad if 1) Fs(H(µ∗)) = t∗ for a secret key s of an honest user and
2) (µ∗, t∗) is not generated by that honest user. Therefore, the probability that A
succeeds in Game 2 is negligible. That completes the proof of non-frameability.

□

62

	Introduction
	Our Results
	Overview

	Preliminaries
	Cryptographic Assumptions
	Cryptographic Primitives
	The Abstract Stern's Protocol

	The Extended Abstract Stern's Protocol
	The Overview
	Protocols for The Inequality Variant of An Abstract Stern's Relation
	Protocols for The Monotone Span Program Composition of Abstract Stern's Relations and Linear Equations of Witnesses

	Weak Pseudorandom Function with Efficient Protocols
	The Definition
	The Construction

	Applications
	Linkable Ring Signature
	k-times Anonymous Authentication
	Blacklistable Anonymous Credentials

	Useful Tools for Handling Vectors and Defining Permutations
	Related Works
	Omitted Protocols in Sec. 3
	An Alternative Protocol Proving bold0mu mumu xxxxxx0
	Protocols for The Monotone Span Program Composition of Abstract Stern's Relations and Polynomial Equation of Witnesses

	Concrete ZKAoKs for wPRF with Efficient Protocols
	Formal Definitions of Applications
	Definition of The Linkable Ring Signature
	Definition of The k-times Anonymous Authentication
	Definition of The Blacklistable Anonymous Credentials

	Omitted Security Proofs for Applications
	Proof of Theorem 5.1
	Proof of Theorem 5.2
	Proof of Theorem 5.3

