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Abstract. The intractability of solving the LPN problem serves as
the security source of many lightweight/post-quantum cryptographic
schemes proposed over the past decade. There are several algorithms
available so far to fulfill the solving task. In this paper, we present fur-
ther algorithmic improvements to the existing work. We describe the first
efficient algorithm for the single-list k-sum problem which naturally aris-
es from the various BKW reduction settings, propose the hybrid mode
of BKW reduction and show how to compute the matrix multiplication
in the Gaussian elimination step with flexible and reduced time/memory
complexities. The new algorithms yield the best known tradeoffs on the
complexity curve and clearly compromise the 80-bit security of the LPN
instances suggested in cryptographic schemes. Practical experiments on
reduced LPN instances verified our results.

Keywords: LPN, Single-list k-sum problem, Gaussian elimination,
Tradeoff, BKW.

1 Introduction

The problem of Learning Parity with Noise (LPN) has found many interest-
ing applications in modern cryptography [2, 14, 15, 17, 19–23, 25, 28, 32], whose
search version can be converted into the well-studied NP complete problem of
decoding a binary random linear code in coding theory. Besides, this problem
also lies at the central of learning theory, i.e., an algorithm for solving LPN could
be used to learn several important concept classes, e.g., 2-DNF formulas, juntas
and any function with a sparse Fourier spectrum [13].

The fastest known algorithms for solving LPN runs in sub-exponential time
in the general case and in contrast to most of the number-theoretic problems in
cryptography, there is no available quantum algorithms that could solve LPN in
a significantly faster time than the classical ones. Further, the decisional version
of the LPN problem is polynomial equivalent to the search variant [8, 24] and
there is no faster algorithms for decisional than for search.

The LPN based schemes often enjoy the extreme simplicity and efficien-
cy, making themselves promising candidates for various applications. There are
many cryptographic primitives that could be constructed from LPN. One can
build a one-way function (OWF) from LPN and from a OWF, pseudorandom



generators/functions/permutations can be constructed accordingly [17, 19, 28],
e.g, it is shown how to constructed a linear-stretch pseudorandom generator
from LPN in [2]. In [15], a simple secret-key encryption scheme based on LPN
is proposed, which is provably secure not only in the standard sense, but also in
more interesting circumstances. There are also quite a few LPN based secret-key
identification protocols, e.g., HB, HB+, HB# and AUTH authentication proto-
cols as well as message authentication code (MAC) [14, 21, 23, 25]. What’s more,
efficient zero-knowledge proof of knowledge can be obtained by modifying Stern’s
protocol and string commitment schemes can be built from LPN [22, 32].

Undoubtedly, mounting attacks on generic LPN is a very important line of
work. The seminal algorithm proposed by Blum et al. in [7], known as the BKW
algorithm, employs an iterated collision procedure of the queries to reduce the
dependency on the information bits at the expense of a folded noise level. Later
in [27], it is suggested to exploit the Fast Walsh-Hadamard Transform (FWHT)
in the secret solving phase, with an analysis of different security levels achieved
by different LPN instances, which are referenced by most of the work thereafter.
In [26], Kirchner suggested to transform the problem into a systematic form,
where each secret bit appears as an observed symbol perturbed by noise. In [6],
it is demonstrated by Bernstein and Lange how to utilize the ring structure of
Ring-LPN in matrix inversion to further reduce the attack complexity, which is
applicable to the common LPN instances with a slight modification as well. Then
the first attack compromising the 80-bit security of the (512, 1/8)-LPN instance
came. At Asiacrypt 2014, a new algorithm using covering code was presented
[18], which broke the 80-bit security bound with a complexity of 279.7. At Euro-
crypt 2016, faster algorithms for solving LPN were proposed in [34] based on an
optimal precise embedding of cascaded perfect codes with the parameters found
by integer linear programming to efficiently reduce the dimension of the secret
information. This new technique is claimed to be generic and can be applied to
any given (k, η)-LPN instance, while in [18] the code construction methods for
covering are missing and only several specific parameters for the (512, 1/8)-LPN
instance were given in their conference presentation. However, the results in [34]
are debated by [9] and some inconsistency in the theoretical analysis of [34] are
discovered and reported. Recently, a new algorithm is proposed in [10] by trying
to make the best use of the existing techniques and automatize the generation
of LPN solving algorithms from the considered parameters. Specifically, a LP-
N algorithm is formalized as a path in a graph and the solving algorithm is
searching for the optimal paths in the graph. It is reported that the common
(512, 1/8)-LPN instance can be broken within a complexity of 279.37 following
their analysis in [10].

Our Contributions. In this paper, we present further algorithmic improve-
ments on this problem to address the unsolved issues, clarify the controversial
points and provide the complexity estimates comprehensively. First, when1 k is
a power of 2, an efficient algorithm for solving the single-list k-sum problem is

1 In the paper, the single-list k-sum, LF(k) and the (k, η)-LPN instance share a com-
mon notation k, it is easy to distinguish them from each other in the context.
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described, which gives an answer to the open problem of Minder and Sinclair in
[31]. Without dividing the whole effective list into several sub-lists, we remould
Wagner’s k-tree algorithm in [33] for the multi-list k-sum problem by virtualizing
most of the processing tree. This algorithm is naturally connected to the LF(k)
reduction in [34] and exhibits a tradeoff between the list size and the running
time. It is shown that as long as a solution exists with a reasonable probability,
our algorithm will eventually find it out with a low complexity and significant-
ly smaller list size than Wagner’s algorithm. For completeness, the generalized
version of the algorithm is also developed to cover the non-binary alphabet case,
which may be of independent interest. Second, based on the single list k-sum
algorithm, we suggest some hybrid reduction modes to deal with different at-
tack conditions and requirements flexibly, e.g., LF(4) + LF2, LF(8) + LF2 and
LF(16) + LF2, which are to be utilized in the collision procedure of the LP-
N solving algorithm. Opposite to the previous relevant algorithms which only
adopt one fixed sort of reduction, the new hybrid mode can make good use
of different kinds of reductions without increasing the overall complexity and
achieve better tradeoffs which are impossible for the old strategies. Third, we
show how to accomplish the dominant task of matrix multiplication in the Gaus-
sian elimination step of the LPN solving algorithms with considerably reduced
time/memory complexities, compared to the methods suggested in [5, 9, 34]. The
idea is to replace the large look-up table used by the algorithm in [34] with a
relatively small and lightweight table, and determine the desired value in a de-
liberately order by reading this small table continually. This is illustrated by
both concrete LPN instances and theoretical analysis. Last, we provide a unified
framework for solving LPN by integrating the new methods with the theoretical
predictions of all the involved phases and aspects, and apply it to the three core
LPN instances, (512, 18 ), (532, 18 ), (592, 18 )-LPN instances respectively. There are
explicit improvement factors achieved by the new algorithms, compared with the
previously known best results in [18]2 and [10]3, shown in Table 1. Please see
Table 10 in Section 8.1 for more tradeoff choices and more complexity aspects.
We have implemented the new attacks in practice on reduced LPN instances and
the theoretical results have been verified in experiments.

This paper is organized as follows. We first introduce some preliminaries of
the LPN problem that are relevant to our work in Section 2 with a necessary re-
view of the LPN solving algorithms in [10, 18, 34]. Next in Section 3, we develop
the algorithm to resolve the single-list k-sum problem, which is further gener-
alized in Section 4 to the non-binary alphabet cases, and present some LF(k)

2 We choose 8l ln 2/ε2f as the number of queries needed in the final solving phase to
assure a success probability of almost 1, which is twice as that presented in the
presentation at Asiacrypt 2014 [18]. If we choose the data complexity as theirs for
comparison, our complexity can further be reduced. Besides, the complexity 282.27

on the second column is a corrected result by [10] for the complexity presented at
Aisacrypt 2014, and the time 289.04 is a corrected result for the complexity in the
publication at Aisacrypt 2014.

3 The number of queries we choose can assure a success probability of almost 1, while
the number in [10] is set to be with a probability of failure upper bounded by 33%.

3



Table 1: Comparison of the time complexities of different LPN solving algorithms

(k, η)-LPN
Algorithm

[18] [10] ours ours ours ours

(512, 1/8) 282.27 279.37 274.75 274.30 274.83 273.92

(532, 1/8) 290.43 281.64 276.86 276.42 276.94 275.99

(592, 1/8) 297.87 288.25 283.79 283.60 282.89 -

schemes for k = 4, 8, 16. Based on it, we propose the hybrid reduction modes
with the concrete depictions of LF(4) + LF2, LF(8) + LF2 and LF(16) + LF2
in Section 5. Then in Section 6, we present the crucial improvements on ma-
trix multiplication in the Gaussian elimination procedure of the LPN solving
algorithms. In Section 7, we present the theoretical complexity analysis of our
improved algorithm by integrating the new methods into a new framework. The
applications to the three core LPN instances are given in Section 8 with the
experimental results. Finally, some conclusions are made in Section 9.

2 Preliminaries

In this section, some notations and basic definitions relevant to our work are
presented, together with a detailed review of the previous LPN solving algorithm
in [34] and the necessary coverings of those in [10, 18].

2.1 The Search LPN Problem

For simplicity, we follow the conventional notations and descriptions in this
domain. The vectors and matrices are denoted by small and capital bold letters,
respectively. For a distribution D and a random variable x, x← D denotes that x

is sampled according to D. For a set X , x
$←X denotes that x is assigned a value

sampled uniformly at random from X . The Bernoulli distribution with parameter
η is denoted by Berη, i.e., if e← Berη then Pr[e = 1] = η and Pr[e = 0] = 1− η.
The binary field is denoted by GF(2) and the scalar/inner product of two m-

dimensional vectors a,b ∈ GF(2)m is defined as 〈a, b〉 = a · bT =
⊕m−1

i=0 aibi,
where GF(2)m is the m-dimensional vector space over GF(2) and bT denotes the
transpose of b. The usual bitwise XOR is denoted by +.

Definition 1. For a secret random vector x ∈ GF(2)k, an LPN oracle ΘLPNk,η
with a noise parameter η ∈ (0, 12 ) returns independent samples of the form

(g
$←GF(2)k, e← Berη : 〈x, g〉+ e).

The search LPNk,η problem consists of recovering the vector x according to the
samples output by the oracle ΘLPNk,η . An algorithm S is called (n, t,m, δ)-solver
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if Pr[S = x : x
$←{0, 1}k] ≥ δ, and it runs in time at most t and memory at

most m with at most n oracle queries.

As stated before, the search LPN problem can be converted into the well-studied
problem of decoding a binary random linear code, thus it can be rewritten in
matrix form as z = xG + e, where x is the k-bit secret vector and G is a k× n
matrix formed as G = [gT1 , g

T
2 , ..., g

T
n ] with gTi being the ith column of G.

It seems that the current state of the art of the methods for decoding such
random binary linear codes [3, 4, 29, 30] have a complexity higher than the ded-
icated algorithms tailored for solving LPN directly, e.g., for the (512, 1/8)-LPN
instance, the fastest decoding algorithm in [30] will have a time complexity of 2259

in the full distance decoding, given the codeword of length 211.3828 = 8·512·ln2
1−H(1− 1

8 )

with H(·) being the binary entropy function. Therefore, we focus on such ded-
icated algorithms throughout this paper. Since both e = [e1, e2, ..., en] and
z = [z1, z2, ..., zn] are n-bit vectors, we have zi = 〈x, gi〉 + ei holds for each
i = 1, 2, ..., n. In principle, the search LPN problem asks to recover the secret
vector x, given a number of queries consisting of uniformly and randomly dis-
tributed vectors and the noisy scalar product outputs.

2.2 Review of the Previous LPN Solving Algorithms

In [10, 18, 34], three new LPN solving algorithms are proposed. In fact, these al-
gorithms share many of the common points: the spirit and the general framework
are the same, with only some algorithmic differences in the concrete steps. Since
our refined framework for solving LPN is extracted mainly from the algorithm
in [34], we will put an emphasis on that algorithm with some considerations to
those in [10, 18] whenever necessary. Precisely, given a (k, η)-LPN instance, the
algorithm from [34] performs the following steps in a sequential order.

Step 0. Sample selection. This is a reduction phase which transfers the (k, η)-
LPN problem into a (k − c, η)-LPN problem. It keeps from ΘLPNk,η only those
samples that the last c bits of g equal 0 from the initial queries. Let N be the
number of initial queries, then the complexity of this step is about C0 = N .
Note that there are an expected number of n = N2−c queries remained after
this step, and the parameter k is changed to k − c.
Step 1. Gaussian elimination. Similar to that in [18], this step is to system-
atize G to change the distribution of the secret bits in x without changing the
associated noise level. Let x̂ = xD−1 + [z1 z2 · · · zk], then ẑ = x̂Ĝ + e, where

Ĝ = DG = [I ĝTk+1 ĝTk+2 · · · ĝTn ]. The dominant part is to calculate DG.
In [18], the multiplication of DG is optimized by using look-up tables. For

a fixed a, divide the matrix D into a parts, i.e., D = [D1,D2, ...,Da], where Di

is a sub-matrix with s =
⌈
k
a

⌉
columns (except possibly the last matrix Da). All

the possible values of Dix
T are stored for x ∈ GF(2)s indexed by i = 1, ..., a.

The cost of constructing these a tables is k22s. For each column gT of G, DgT

is written as DgT = D1g
T
1 + D2g

T
2 + ...+ Dag

T
a , then Dig

T
i can be obtained by

reading the table indexed by i for i = 1, ..., a, and further DgT can be got after
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a calculation of the addition of a k-bit vectors. The complexity of this step is
(n− k)(a+ (a− 1)k).

In [34], several improvements on this step are presented. First, the procedure
of constructing each table Dix

T for x ∈ GF(2)s can be improved by computing
the products in a certain order with a reduced time complexity of PC11 =
(2s − s − 1)ka for constructing a tables, which is much lower than k22s. The
memory needed for storing the tables [x,Dix

T ]x∈GF(2)s , i = 1, ..., a is M11 =
2s(s + k)a. Next, the addition of a k-bit vectors can be further optimized as
follows. It is shown that the cost for calculating all the possible additions of
q u-bit vectors is

∑q
i=2 u2u−1

(
2u−2
i−1

)
in [34]. Based on this, the addition of

a k-bit vectors is optimized through a second table look-up. For a properly
chosen integer u and d =

⌈
k
u

⌉
, a table storing all the possible additions of a

u-bit vectors is constructed, thus the adversary could read it d times to obtain
the sum of a k-bit vectors. Thus the complexity of Step 1 can be reduced to
C1 = (n − k)(a + d), which is much lower than the original complexity (n −
k)(a+(a−1)k). The complexity for constructing the table storing all the possible
additions of a u-bit vectors is PC12 =

∑a
i=2 u2u−1

(
2u−2
i−1

)
in time and M12 =∑a

i=2
i+1
i u2u−1

(
2u−2
i−1

)
in memory.

Step 2. Collision procedure. This step exploits the BKW reduction to make
the length of the secret vector shorter. The reduction modes of LF1, LF2 and
LF(4) are adopted in [34]. Denote n[i], i = 1, 2, ..., t, as the expected number
of samples via the i-th BKW step, where n[0] = n − k, n[t] = m and m is the
number of queries required for the final solving phase.

For LF1, suppose b bits are eliminated at each BKW step, then n[i] = n −
k − i2b. For the merging procedure, first sort the n[i − 1] samples to partition
them into 2b parts in term of the last b entries of each column, then choose a
representative in each partition and add it to the rest of the samples in the same
partition. Hence n[i] = n[i−1]−2b solutions are obtained. To compute the sum of

n[i] pairs of (k+1−ib)-bit columns, just divide each pair into
⌈
k+1−ib

f

⌉
parts, and

read the sum of each part directly from a table storing all the possible additions
of two f -bit vectors similarly as that in the Gaussian elimination step. Totally, t

steps of LF1 will have a cost of4 C2 =
∑t
i=1

(⌈
k+1−ib

f

⌉
n[i] + n[i− 1]

)
, and also

a pre-computation of PC2 = f2f−1(2f − 2) in time and M2 = 3
2f2f−1(2f − 2)

in memory, where f is a properly chosen integer.

For LF2, different from the method in LF1, now any pair in each partition is
considered, and thus n[i] =

(
n[i−1]

2

)
2−b. Just do the same merging as LF1, and

t steps of LF2 will have a cost of C2 =
∑t
i=1

(⌈
k+1−ib

f

⌉
n[i] + n[i− 1]

)
, and also

a pre-computation of PC2 = f2f−1(2f − 2) in time and M2 = 3
2f2f−1(2f − 2)

in memory.

4 There is a term representing the sorting process at each BKW step added, which is
n[i− 1] for i = 1, ..., t.
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Finally for LF(4)5, first try to find a number of 4-tuples that add to 0 in the
last b entries. This is the same as the 4-sum problem. According to Wagner’s
k-tree algorithm [33], we have n[i − 1] = (4!)1/4(2bn[i])1/3 and the cost for
finding n[i] solutions is about 6 × (2bn[i])1/3, together with a space complexity
of 3 × (2bn[i])1/3. Still do the same merging as LF1. In total, t steps of LF(4)

will have a cost of C2 =
∑t
i=1

(⌈
k+1−ib

f

⌉
n[i] + 6(2bn[i])1/3

)
, and also a pre-

computation of PC2 =
∑4
i=2 f2f−1

(
2f−2
i−1

)
in time and

∑4
i=2

i+1
i f2f−1

(
2f−2
i−1

)
in memory storing all the possible additions of four f -bit vectors. Totally, the

memory needed is M2 =
∑4
i=2

(
i+1
i f2f−1

(
2f−2
i−1

)
+ 3(2bn[i])1/3

)
.

After this step, the bias of the noise is sharply reduced from the original bias

ε = 1− 2η to εcp
∆
= ε2

t

for LF1 and LF2, and to εcp
∆
= ε4

t

for LF(4).

Step 3. Partial secret guessing. This step further guesses k1 bits of the
secret. More precisely, it tries all the possible values of the k1-bit vectors whose
Hamming weights are smaller than or equal to w1. The complexity of this step
is C3 =

∑w1

i=0

(
k1
i

)
.

Step 4. Covering-coding. A linear covering code is used in this step to further
decrease the dimension of the secret vector. Different from that in [18], the
explicit code constructions of the optimal cascaded perfect codes are provided
in [34], from which the exact bias introduced in this step, denoted by εcc, is
optimally derived from the integer programming. Consequently, this step will
have a cost of C4 = mh, where h is the number of chunks cascaded to construct
the corresponding covering code, and also a pre-computation of PC4 = 11·23·223
in time and M4 = (23 + 12) · 223 in memory6.

Step 5. Subspace hypothesis testing. This step deals with the solving phase,
consisting in applying the FWHT to recover the remaining l secret bits. The
complexity of this step is C5 = l2l

∑w1

i=0

(
k1
i

)
.

Complexity analysis. The final noise bias is εf = εcpεcc, which is εf = ε2
t

εcc
for LF1 and LF2, and εf = ε4

t

εcc for LF(4). As illustrated in [34], it needs
m = 8l ln 2/ε2f queries to distinguish the correct guess from the others in the
final solving phase. Then the number of queries when adopting LF1 at Step 2 is
n = m+ k+ t2b, and this number when adopting LF2 is computed as n[i− 1] ≈
(2!)1/2n[i]1/22b/2, i = t, t−1, ..., 1, where n[t] = m and n[0] = n−k. For adopting
LF(4), the number of queries should be computed as n[i−1] = (4!)1/4(2bn[i])1/3,
i = t, t − 1, ..., 1. Once knowing n, the number of initial queries is computed as
N = n2c. In addition, the online time complexity is

C = C0 +
PC11 + C1 + C2 + C3 + C4 + C5

Pr(w1, k1)
,

5 The calculation of the required number of queries for n[i] solutions to exist and
the complexity results, have been improved according to Wagner’s k-tree algorithm.
Specifically, we derive that n[i− 1] = (4!)1/4(2bn[i])1/3 and the time/space complex-
ities for finding n[i] solutions are 6× (2bn[i])1/3 and 3× (2bn[i])1/3, respectively.

6 This complexity can be further reduced to M4 = 12 · 223, though it has no obvious
effect on the whole complexity.

7



where Pr(w1, k1) =
∑w1

i=0

(
k1
i

)
(1− η)k1−iηi, together with a pre-computation of

Pre = PC12 + PC2 + PC4, and the memory needed is about M = nk +M11 +
M12 +M2 +M4.

3 The Single List k-sum Problem

In this section, we will develop an algorithm for solving the single-list k-sum
problem over GF(2), connect LF(k) with both the single-list and multi-list k-
sum problem, and present some LF(k) schemes for k = 4, 8, 16, aiming to derive
more tradeoffs between the list size and the running time.

3.1 The Single List k-Sum Problem

The previous work in [34] indicates that the LF(k) BKW reduction, in nature, is
to find a number of k-tuples from a single list that add to 0 in the last b entries.
Currently, this problem is solved by Wagner’s k-tree algorithm [33], which is tai-
lored especially to the well known multi-list k-sum problem, i.e., each operand
comes from a different list. Thus, in the single list setting, a large number of
possible sums will be ignored, which has to be compensated by the enlarged size
of each list to get a desirable number of solutions. The single-list k-sum problem,
introduced in [31], is formally described as follows.

Single list k-sum problem. Given one list L of size m with elements drawn uni-
formly at random from GF(2)n, find k distinct vectors x1 ∈ L, · · · , xk ∈ L such
that x1 + · · ·+ xk = 0.

This single-list problem has a number of natural applications, e.g., the above
problem of finding a number of k-tuples from a list that add to 0 on a block of
b bits reduces more naturally to the single-list k-sum problem than to the usual
multi-list k-sum problem. Other applications include finding parity checks in a
(fast) correlation attack, and finding a sparse multiple of a given polynomial also
reduces more naturally to the single-list k-sum problem.

As stated above, though dividing the input list L into k distinct sub-lists is
feasible in some scenarios, this artificially reduces the effective list size by a factor
of k and loses a large number of possible solutions. It is desirable to provide an
algorithm to avoid this restriction.

Let k = 2p be a power of 2. To ensure the existence of at least one solution,
the initial list size m, m0 should satisfy (mk ) ≥ 2n, i.e., m ≥ (k!)1/k2n/k. In
general, if we are expected to have 2s (s ≥ 0) solutions, then the initial list size
should satisfy

m ≥ (k!)1/k2(n+s)/k > 2
k−1
k 2

n+s
k . (1)

In the following, we will always assume p, m, n and s are given and Eq.(1)
holds. Let lowl(x) be the least significant l bits of x, the algorithm will proceed
in p rounds and the general framework is as follows.

In the first round, a new list L1 is created from the original list L composing
of all the sums of x1+x2 with x1 6= x2, xi ∈ L such that x1 and x2 collide on their
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first l1 bits7. Thus, all the vectors in L1 are zero on the first l1 bits8, which are
sum of the form x1+x2 with x1 ∈ L, x2 ∈ L, x2 6= x1. This process can be fulfilled
by a sort-and-merge procedure. The m vectors in the initial list L are first sorted
into 2l1 equivalence classes according to their values on the first l1 bits, thus any
two vectors in the same equivalence class will have the same value on the specified
l1 positions. Next, let us look at each pair of vectors (x1, x2) in each equivalence
class to create the new list L1. Here the integer l1 is an algorithmic parameter
to be determined later for the optimal performance. In short, we say that l1 bits
are eliminated after the first round. It is easy to see that L1 has an expected size
of m1 , E[|L1|] = (m2 ) 2−l1 ≈ m2 · 2−(l1+1). Next, in the second round, a new

Fig. 1: A pictorial representation of our algorithm for the single-list 4-sum prob-
lem

list L2 is created from L1 by further eliminating l2 bits using the same sort-and-
merge procedure as that executed in the first round. Now we make the following
observation. Let y1 and y2 be two different vectors of L1 in the same equivalence
class, then y1 and y2 are zero on the first l1 positions and have the same value
on the next l2 positions, leading to a sum of the form y1 + y2 which is zero on
the first l1 + l2 bits. Write y1 = x1 + x2 (x1 6= x2) and y2 = x3 + x4 (x3 6= x4),
the single-list k-sum problem asks to find k distinct elements, thus we wish to
preserve the sums of y1 + y2 (= x1 + x2 + x3 + x4) such that x1, x2, x3, x4 have
pairwise different values. In other words, the cases that x1 = x3 or x1 = x4 or
x2 = x3 or x2 = x4 will be ruled out of consideration. Note that the case that
x1 = x3 (resp. x1 = x4, x2 = x3, x2 = x4) will lead to y1 + y2 = x2 + x4 (resp.
x2 + x3, x1 + x4, x1 + x3), which is zero on the first l1 + l2 bits. The expected

7 The restriction of 0 is not mandatory, only the last lp-bit value must be 0. This fact
makes LF(k) different from the basic LF2 and the proposed hybrid reduction modes
meaningful.

8 Note that for a given l1, the choice of the least significant bits is not crucial but
is introduced here to simplify the presentation. Actually, these l1 positions can be
chosen randomly, so can the following l2,...,lp positions.
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number of these cases can be estimated as (m2 ) 2−(l1+l2) ≈ m2 ·2−(l1+l2+1), which
is comparatively quite small to the usual cases with non-repeated elements. For
the moment, we will do nothing here for these unexpected cases, but add a final
sieving process in the last round. Similarly, the expected number of elements
in L2 is m2 , E[|L2|] = (m1

2 ) 2−l2 ≈ m2
1 · 2−(l2+1). Note that these repeated

samples will not affect the online decoding phase of the LPN solving algorithm,
for in such cases, the number of operands is smaller than the normal case, thus
the folded noise is also lower than the normal case which is easier to decode in
general.

We iterate the above procedure for p rounds and in the i-th round for i =
1, ..., p, we create a new list Li by further eliminating li bits, forcing the vectors in
Li to be 0 on the first

∑i
j=1 lj bits, which has an expected size of mi , E[|Li|] =

(mi−1

2 ) 2−li . After the p-th round, we obtain a list Lp composing of vectors of
the sum of x1 + · · · + xk′ that are 0 on the first

∑p
j=1 lj bits, where k′ ≤ k is

an even number and x1, ..., xk′ are pairwise different vectors from the initial list
L. At last, we add a sieving procedure to pick out the solutions that have the
repeated indices. We stress here that, in most of the practical applications, the
number of solutions found by the algorithm satisfying k′ < k is quite small, and
it can be ignored compared to the dominant number of the normal cases that
k′ = k. Thus we can make an estimation that the number of solutions found by
our algorithm is mp , E[|Lp|]. Note that in some cases, we may not need such
a sieving process, e.g., when treating with the reduction problem of finding a
number of tuples from a list that add to 0 on a block of b bits, we can transform
it into the single-list problem and solve it by the above algorithm without the
final sieving process. That is, we preserve all the k′-tuples such that k′ ≤ k.

The above process can be visualized as a single-list k-tree algorithm, depicted
in Figure 1, where the complete binary tree is of height p, with each node con-
taining a list of vectors. Figure 1 gives a pictorial illustration of the case k = 4.
The difference between this tree and the famous Wagner’s k-tree in [33] is that
all the slim boxes in dotted line do not really exist, they are just imaginary parts
to illustrate the idea of the algorithm. Besides, the list utilized in our tree has a
much smaller size compared to that in Wagner’s k-tree due to the flexibility in
eliminating the different segments.

For the original list L of size m, we write a0 , logm, and similarly let mi =
2ai be the expected size of the list Li created in the i-th round. Since E[|Li|] =(

E[|Li−1|]
2

)
2−li , then we have 2ai = E[|Li|] =

(
E[|Li−1|]

2

)
2−li = 2ai−1 (2ai−1−1)

2! ·
2−li ≈ 22ai−1−(li+1), and further we have

ai = 2ai−1 − (li + 1), i = 1, ..., p, (2)

where li is the number of bits eliminated in the i-th round. As illustrated before,
the estimated number of solutions is mp = 2ap .

The running time of this algorithm is essentially proportional to the size
of the lists processed in the algorithm, together with a complexity of the final
sieving process, which is usually quite small compared to the whole complexity.
Let 2u be the maximum expected list size that the algorithm has to process, i.e.,
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2u = max
0≤i≤p−1

2ai , or u = max
0≤i≤p−1

ai, The expected running time of our algorithm

is 2u + 2s. Here are two examples.
Example 1. Consider the case that k = 8. Let L be a list of size m = 2

3
4+

n+s
4

(we assume s 6 n
3 + 1 and a0 = 3

4 + n+s
4 is an integer). Following the above

algorithm, the choice of l1 = l2 = n+s−1
4 and l3 = n−s+1

2 will lead to E[|L1|] =

E[|L2|] = 2
3
4+

n+s
4 and E[|L3|] = 2s, so we can find an expected number of 2s

solutions9 in time 3 · 2 3
4+

n+s
4 from a list of size 2

3
4+

n+s
4 . ut

Example 2. Consider another case for k = 8. Let L be a list of size m = 2
5
6+

3n+2s
12

(we assume that s 6 3n
8 + 1, a0 = 5

6 + 3n+2s
12 is an integer and n is divisible by

4). By choosing l1 = n
4 , l2 = n

4 + s−1
3 and l3 = n

2 −
s−1
3 we obtain E[|L1|] =

E[|L2|] = 2
2
3+

3n+4s
12 and E[|L3|] = 2s, so we can find an expected number of 2s

solutions in time 2
5
6+

3n+2s
12 + 2 · 2 2

3+
3n+4s

12 from a list of size 2
5
6+

3n+2s
12 . ut

3.2 How to Choose the Parameters

The performance of our algorithm is dependent on the parameters li that deter-
mine the number of bits eliminated in each round. From the above two examples,
we can see that the choice of the parameters li impact the behavior of the al-
gorithm greatly. For a given instance of the single-list k-sum problem with the
specified parameters p, m, n and s satisfying Eq.(1), our goal is to find the opti-
mal choices of the lis that minimize the running time to find at least 2s solutions
in expectation with a reasonable probability.

Let us start with a discussion about the choice of the lis with a stronger
condition for the list size that

m ≥ 2
log k

1+log k 2
n+s

1+log k = 2
p

1+p 2
n+s
1+p , or logm ≥ p+ s+ n

1 + p
,

where s 6 n
log k + 1. Under this condition, the single-list k-sum problem can be

solved by choosing li = logm − 1 for i = 1, ..., p − 1 and lp = 2 logm − s − 1.
In this case, we have

∑p
i=1 li = (1 + p) logm − (p + s) ≥ n, and E[|Li|] = m

for i = 1, ..., p − 1, E[|Lp|] = 2s, i.e., all the lists except the last one have the
same expected size as the initial list. Thus the running time can be estimated
as p ·m+ 2s. In the following, we will always assume that

m ≤ 2
log k

1+log k 2
n+s

1+log k = 2
p

1+p 2
n+s
1+p . (3)

As already seen, the key point in our algorithm is to specify an optimal strategy
for choosing the number of bits to be eliminated in each round. We will regard
this problem as an optimization problem of a linear integer program, which can
be solved analytically.

The linear program is formulated under the following constraints: first, the
maximum expected list size that the algorithm has to process is 2u, thus we must

9 There might exist some solutions of 2/4/6-tuples, but this number is quite small and
can almost be ignored compared to the total number 2s.
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have ai ≤ u for all i = 0, 1, ..., p−1. Second, the last list consists of almost all the
solutions found by our algorithm, except for some small number of solutions with
repeated indices. Thus, the condition 2ap ≥ s should hold, i.e., ap ≥ s. Finally,
since we want to find sums that are 0 on n bits, we must have

∑p
i=1 li ≥ n. To

sum up, all our needs are translated formally into the following linear integer
program. 

Minimize u
s.t. ai ≤ u, i = 0, 1, ..., p− 1,

ap ≥ s,∑p
i=1 li ≥ n,

li ≥ 0, li are integers, i = 1, ..., p

Example 3. For p = 4, n = 100, m = 217 and s = 2 for an expected number
of four solutions, we obtain an optimal solution of the corresponding integer
program, which is l1 = 9, l2 = 23, l3 = 23 and l4 = 45. In this case, we have
E[|L1|] = E[|L2|] = E[|L3|] = 224,E[|L4|] = 4 and thus the time complexity is
217 + 3 · 224 = 225.6. ut
Now we try to solve the above integer program analytically. It is worthy noting
that comparing with the integer program formulated in [31], here the relationship
of the list size in two rounds are different. The following Theorem 1, proved in
Appendix A, presents an optimal choice of the lis for a specified single-list k-sum
problem.

Theorem 1. Given an instance of the single-list k-sum problem with the pa-
rameter configuration (p,m, n, s) such that a0 = logm is a positive inte-
ger, the conditions in (1) and (3) are satisfied, and s ≤ 2 logm − 1. De-

fine u′ as u′ = n+s+(2r−1)−2ra0
p−r + 1, where r is the least integer such that

n ≤ (p − r + 1)2r(a0 − 1) − s + 1. Let u = du′e, then we have an optimal
solution as follows,

li = 0, ai = 2ia0 − (2i − 1), for 1 ≤ i < r
lr = 2ra0 − u− (2r − 1), ar = u
li = u− 1, ai = u, for r < i < p
lp = 2u− s− 1, ap = s .

If we choose the parameters as guided by Theorem 1, then the time complexity
of the algorithm is yielded in the following Corollary 1.

Corollary 1. For the parameters (p,m, n, s) satisfying (k!)1/k2(n+s)/k ≤ m ≤
2

p
1+p 2

n+s
1+p , the single-list k-tree algorithm has an expected running time of

(2u
∗(p,m,n,s) + 2s), where u∗(p,m, n, s) is the optimal solution of the integer

program formulated and solved in Theorem 1, and the term 2s represents the
complexity of the final sieving procedure for the k distinct elements of x1, ..., xk.

3.3 Reduction Schemes of LF(k) for k = 4, 8, 16

The LF(k) BKW reduction, introduced in [34], aims to find a number of k-tuples
from a single list that add to 0 in the last b entries, where b is a given parameter.

12



With Wagner’s k-tree algorithm [33], the reduction problem of LF(k) for a single
solution can be solved in the expected time and space k2b/(1+blogkc) using lists of
size 2b/(1+blogkc). Moreover, Wagner’s algorithm can find α1+blogkc solutions with
the α times of the work as for a single solution, as long as α ≤ 2b/blogkc(1+blogkc).
That is, nsol solutions can be found with both the time and space complexity(
k(nsol2

b)
1/(1+blogκc)

)
from k lists of size (nsol2

b)
1/(1+blogkc)

, as long as nsol ≤
2b/blogkc.

In [31], the k-tree algorithm is generalized and the extended k-tree algorithm
is proposed to work for any case such that |Li| ≥ 2b/k, especially for the case
that 2b/k ≤ |Li| ≤ 2b/(1+blogkc). The crucial difference between the extended k-
tree and Wanger’s k-tree algorithm lies in the number of bits eliminated in each
round, resulting in the difference on the number of solutions and the time/space
complexities for finding these solutions from a given number of samples, or e-
quivalently, the difference on the number of samples needed and the time/space
complexities for finding a given number of solutions. Specifically, the extended
k-tree algorithm provides more tradeoffs between the number of samples needed
and the running time. Both the extended k-tree and Wanger’s k-tree algorithm
are targeted for the multi-list k-sum problem.

As before, suppose there are m samples of n-bit vectors, we wish to find
some k-tuples from these samples that add to 0. From the point of multi-list
k-sum problem, our first step is to collect these samples into k distinct lists,
each of size m/k, and then solve it either by the Wagner’s or the extended k-
tree algorithm. Take k = 4 as an illustrative example. We can find 2s solutions
from m = 4 · 2(n+s)/3 samples with the time complexity T = 6 · 2(n+s)/3 and
space complexity S = 3 · 2(n+s)/3, if we choose l1 = n+s

3 and l2 = 2n−s
3 , due

to Wagner’s 4-tree algorithm. From the viewpoint of single-list k-sum problem,
however, what we need to do first is to collect the samples in one single list
of size m, and then solve it by our new algorithm. According to Theorem 1,
we can find 2s solutions from m′ = 2(n+s+2)/3 (< m) samples with the time
T ′ = 2 · 2(n+s+2)/3 (< T ) and space complexity S′ = 2 · 2(n+s+2)/3 (< S) if we
choose l1 = n+s−1

3 and l2 = 2n−s+1
3 . That is, m′ < m, T ′ < T and S′ < S will

hold simultaneously. In fact, we have observed that it exhibits better effect on
both the list size and the running time by connecting LF(k) with our single-list
k-sum problem, than that with the multi-list k-sum problem, not just for this
example. Based on this observation, we will present some LF(k) schemes derived
from Theorem 1, for k = 4, k = 8 and k = 16, respectively, aiming to derive
more tradeoffs between the list size and the running time.

(1). Scheme for LF(4).

Now we wish to find some 4-tuples from the m given samples of n-bit vectors
that add to 0. We present one scheme for LF(4) from the aspect of the multi-list
and single-list 4-sum problem, respectively, shown below. The details are listed
in Table 2.

– For the multi-list 4-sum problem, we have an expected number of 2s solutions
from m = 4 ·2n/3+s/4 samples with the time complexity T = (4 ·2n/3+s/4+2 ·
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2n/3+s/2) and space complexity S = (2n/3+s/4 + 2 · 2n/3+s/2) when choosing
l1 = n

3 and l2 = 2n
3 , due to the extended 4-tree algorithm. In this case, we

have E[|L1|] = 2n/3+s/2 and E[|L2|] = 2s.
– For the single-list 4-sum problem, we have an expected number of 2s so-

lutions from m′ = 23/4+n/3+s/4 (< m) samples with the time complexi-
ty T ′ = (23/4+n/3+s/4 + 21/2+n/3+s/2) (< T ) and space complexity S′ =
(23/4+n/3+s/4 + 21/2+n/3+s/2) (< M) if we choose l1 = n

3 and l2 = 2n
3 ,

according to Theorem 1. In this case, we have E[|L1|] = 21/2+n/3+s/2 and
E[|L2|] = 2s.

Example 4. Suppose now there are 229 samples of 60-bit vectors available, we
wish to find 233 4-tuples from these samples that add to 0. It can fit into the
single-list k-tree algorithm with the following parameters k = 4, m = 229, n =
60 and s = 33. Theorem 1 dictates that we should choose l1 = n

3 = 20 and
l2 = 2n

3 = 40, resulting in E[|L1|] = 237 and E[|L2|] = 233. Thus we can find
an expected number of 233 solutions10 in time 229 + 237 = 237.0 from a list of
size m = 229. In contrast, from the viewpoint of multi-list 4-sum problem, we
need to put these samples into 4 distinct lists, each of size 229/4 = 227. Due to
the extended 4-tree algorithm, we should choose l1 = 15 and l2 = 45, leading to
E[|L1|] = 239 and E[|L2|] = 233. Thus we can find an expected number of 233

solutions in time 4 · 227 + 2 · 239 = 240.0 from 4 lists, each of size 227. ut

Table 2: A tradeoff point of LF(4) for finding 2s solutions

Type l1 l2 Number of samples (log2m) Time Space

multi-list n
3

2n
3

2 + n
3

+ s
4

21+n/3+s/2 21+n/3+s/2

single-list n
3

2n
3

3
4

+ n
3

+ s
4

21/2+n/3+s/2 21/2+n/3+s/2

(2). Scheme for LF(8).

Suppose now there are m samples of n-bit vectors available, we wish to find some
8-tuples from these samples that add to 0. Similar to the LF(4) case, we present
a scheme for LF(8), shown below. The details are listed in Table 3.

– For the multi-list 8-sum problem, we have an expected number of 2s solutions
from m = 8 · 2n/4+s/6 samples with the time T = 8 · 2n/4+s/6 + 6 · 2n/4+s/3
and space complexity S = 2n/4+s/6 + 3 · 2n/4+s/3 when choosing l1 = n

4 ,
l2 = n

4 + s
3 and l3 = n

2 −
s
3 , due to the extended 8-tree algorithm. In this

case, we have E[|L1|] = E[|L2|] = 2n/4+s/3 and E[|L3|] = 2s.
– For the single-list 8-sum problem, we have an expected number of 2s solutions

from m′ = 25/6+n/4+s/6 samples with the time T ′ = Õ(25/6+n/4+s/6 + 2 ·
22/3+n/4+s/3) and space complexity S′ = 25/6+n/4+s/6 + 22/3+n/4+s/3 when
choosing l1 = n

4 , l2 = n
4 + s−1

3 and l3 = n
2 −

s−1
3 , according to Theorem 1.

In this case, we have E[|L1|] = E[|L2|] = 22/3+n/4+s/3 and E[|L3|] = 2s.

10 There might exist some solutions of 2-tuples, the number can be computed as
( m

2 ) 2−(l1+l2) ≈ 0.
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Example 5. Suppose now we have 220 samples of 60-bit vectors and wish to
find 225 8-tuples from these samples that add to 0. It can fit into the single-list
k-tree algorithm with the parameters k = 8, m = 220, n = 60 and s = 25.
Theorem 1 suggests that we should choose l1 = n

4 = 15, l2 = n
4 + s−1

3 = 23
and l3 = n

2 −
s−1
3 = 22, resulting in E[|L1|] = E[|L2|] = 224 and E[|L3|] = 225.

Thus we can find an expected number of 225 solutions11 in time 220 + 2 · 224 =
225.0 from a list of size m = 220. In contrast, from the viewpoint of the multi-list
k-sum problem, we need to throw these samples into 8 distinct lists, each of size
220/8 = 217. Due to the extended 8-tree algorithm, we should choose l1 = 8,
l2 = 26 and l3 = 27, leading to E[|L1|] = E[|L2|] = 226 and E[|L3|] = 225. Thus
we can find an expected number of 225 solutions in time 8 · 217 + 4 · 226 + 2 · 225
= 228.3 from 8 lists, each of size 217. ut

Table 3: A tradeoff point of LF(8) for finding 2s solutions

Type l1 l2 l3 Number of samples (log2m) Time Space

multi-list n
4

n
4

+ s
3

n
2
− s

3
3 + n

4
+ s

6
6 · 2

n
4
+ s

3 3 · 2
n
4
+ s

3

single-list n
4

n
4

+ s−1
3

n
2
− s−1

3
5
6

+ n
4

+ s
6

2 · 2
2
3
+n

4
+ s

3 2
2
3
+n

4
+ s

3

(3). Scheme for LF(16).

Suppose now we have m samples of n-bit vectors available, we wish to find some
16-tuples from these samples that add to 0. Similarly, we present one scheme for
LF(16), shown as follows. The details are listed in Table 4.

– For the multi-list 16-sum problem, we have an expected number of 2s

solutions from m = 16 · 23n/16+s/8 samples with the time complexity
T = 16 · 23n/16+s/8 + 14 · 25n/24+s/4 and the space complexity M =
23n/16+s/8 + 4 · 25n/24+s/4. when choosing l1 = n

6 , l2 = l3 = 5n
24 + s

4 and
l4 = 5n

12 −
s
2 , due to the extended 8-tree algorithm. In this case, we have

E[|L1|] = E[|L2|] = E[|L3|] = 25n/24+s/4 and E[|L4|] = 2s.
– For the single-list 16-sum problem, we have an expected number of 2s solu-

tions from m′ = 27/8+3n/16+s/8 samples with the time and space complexity
T ′ = (27/8+3n/16+s/8 + 3 · 23/4+5n/24+s/4) and space complexity Comp′ =
(27/8+3n/16+s/8 + 23/4+5n/24+s/4) when choosing l1 = n

6 , l2 = l3 = 5n
24 + s−1

4
and l4 = 5n

12 −
s−1
2 , according to Theorem 1. In this case, we have E[|L1|] =

E[|L2|] = E[|L3|] = 23/4+5n/24+s/4 and E[|L4|] = 2s.

Example 6. Suppose now there are 215 samples of 60-bit vectors available, we
wish to find 223 16-tuples from these samples that add to 0. It can fit into the
single-list k-tree algorithm with the following parameters k = 16, m = 215, n =
60 and s = 23. From Theorem 1, we choose l1 = n

6 = 10, l2 = l3 = 5n
24 + s−1

4 = 18
and l4 = 5n

12 −
s−1
2 = 14, resulting in E[|L1|] = E[|L2|] = E[|L3|] = 219 and

11 There might exist some solutions of 2/4/6-tuples, though this number is quite small.
We will preserve these solutions since they will generate the bias benefit after the
reduction procedure.
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E[|L4|] = 223. Thus we can find an expected number of 223 solutions12 in time
215 + 3 · 219 = 220.6 from a list of size m = 215. On the other side, from the
viewpoint of the multi-list k-sum problem, we need to put these samples into 16
lists, each of size 215/16 = 211. Due to the extended 4-tree algorithm, we should
choose l1 = 1, l2 = l3 = 21 and l4 = 19, leading to E[|L1|] = E[|L2|] = E[|L3|] =
221 and E[|L4|] = 223. Thus we can find an expected number of 223 solutions in
time 16 · 211 + 8 · 221 + 4 · 221 + 2 · 221 = 224.8 from 16 lists, each of size 211. 2

Table 4: A tradeoff point of LF(16) for finding 2s solutions

Type l1 l2(= l3) l4 Number of samples (log2) Time Space

multi-list n
6

5n
24

+ s
4

5n
12
− s

2
4 + 3n

16
+ s

8
14 · 2

5n
24

+ s
4 4 · 2

5n
24

+ s
4

single-list n
6

5n
24

+ s−1
4

5n
12
− s−1

2
7
8

+ 3n
16

+ s
8

3 · 2
3
4
+ 5n

24
+ s

4 2
3
4
+ 5n

24
+ s

4

4 The Single List k-sum Problem over Large Alphabets

Taking into account the fact that there are more and more cryptographic prim-
itives working on some larger alphabets, we study the single list k-sum problem
over some non-binary alphabets, described as follows.

Let r be a prime and R = rw be a power of r. We are given one list L of size m
with elements drawn randomly from GF(R)n, we wish to find x1 ∈ L, ..., xk ∈ L
and λ1, ..., λk ∈ GF(R)∗ such that λ1x1 + · · ·λkxk = 0.

When solving LWE, the reduction problem of finding a number of k-tuples
from a list that add to 0 on a block of b entries reduces naturally to the single-list
k-sum problem over some finite field. In stream ciphers, it can be used to find
parity checks in a (fast) correlation attack over some extension field.

In the following, we develop an alternative version of the single list k-tree
algorithm tailored to the non-binary case. Let us start with a discussion about
the merging procedure. Our goal is to find a more involved merging procedure
which ensures that only a single scalar multiple of each relevant linear combi-
nation is retained in the list at each round of the algorithm. Given one list L
of size m and an integer l representing the number of positions to eliminate, we
wish to create a merged list L′ from L composing of all the sums of λ1x1 +λ2x2
with x1 ∈ L, x2( 6= x1) ∈ L and λ1, λ2 ∈ GF(R)∗ such that it is zero on the first
l positions. It is required that the merged list L′ should have similar proper-
ties as that in [31], i.e., validity, completeness and minimality. To achieve this,
we proceed as follows. First, each vector in L is transformed into the normal-
ized form of (∗, ..., ∗, 1, 0, ..., 0) by multiplying some suitable constant. Next, m
vectors in L are sorted in equivalence classes according to their values on their

12 There might exist some solutions of 2/4/6/8/10/12/14-tuples, though this number
is quite small. Similarly as before, we will preserve these solutions since they will
generate the bias benefited after the reduction procedure.
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least significant l positions. Let x1, x2 be two different normalized vectors of the
equivalence class in which vectors are zero on the least significant l position-
s, then there are exactly R − 1 distinct valid sums of x1 and x2 of the form
x1 + λx2 for all λ ∈ GF(R)∗, such that it is zero on the least significant l po-
sitions. Let y1, y2 be two different vectors in other equivalence classes, then y1
and y1 have the same value (not zero) on the l positions, and the only possible
valid sum of λ1x1 + λ2x2 such that it is zero on the least significant l positions
must satisfy λ1 + λ2 = 0, λi ∈ GF(R)∗, i.e., we still have R − 1 distinct valid
sums of the form λx1 + λx2 for all λ ∈ GF(R)∗. Finally, the merged list L′ is
created with running time m. By the birthday paradox, L′ has an expected size

of m′ =

(
m
2

)
(R− 1)R−l = m2

2 (R− 1)R−l.

Let k = 2p be a power of 2. Similar to the k-tree algorithm over GF(2) in
Section 3, this algorithm will still process in p rounds. Let li be the number
of positions to be eliminated in each round, we will formalize a linear program
with the goal of finding the optimal choices of the lis for a specified single-list
k-sum problem over GF(R), where R = rw. Define bi = logRmi, where mi is the
expected number of size created in the ith round for i = 1, ..., p and m0 = m.

From the above, we have mi = (mi−1

2 ) (R − 1)R−li =
m2
i−1

2 (R − 1)R−li for
i = 1, ..., p, or equivalently,{

b0 = logRm
bi = 2bi−1 − li + δR, i = 1, ..., p

where δR = logR
R−1
2 is a constant. Suppose now we specify that the expected

number of solutions found by the algorithm should be at least Rs, this will lead
to the following linear integer program:

Minimize u
s.t. bi ≤ u, i = 0, 1, ..., p− 1,

bp ≥ s,∑p
i=1 li ≥ n,

li ≥ 0, li are integers, i = 1, ..., p.

Similar to the range bound of m given in the binary case by conditions (1) and

(3), we have (k!)
1
kR

n+s
k

(R−1)
1
k
≤ m ≤ 2

p
1+pR

n+s
1+p

(R−1)
p

1+p
. The lower bound for m is determined

by the existence of the Rs solutions with a reasonable probability, while the
upper bound corresponds to the size where the following style algorithm can be
implemented. Specifically, let us look at the choice of li with a stronger condition

for the list size m that m ≥ 2
p

1+pR
n+s
1+p

(R−1)
p

1+p
, where s 6 n

logR κ
− δR. Under this

condition, the single-list k-sum problem over GF(R) can be solved by choosing
li = logm + δR for i = 1, ..., p − 1 and lp = 2 logm − s + δR. In this case, we
have

∑p
i=1 li = (1 + p) logm− s+ pδR ≥ n, and E[|Li|] = m for i = 1, ..., p− 1,

E[|Lp|] = Rs, i.e., all the lists except the last one have the same expected size as
the initial list. Thus the running time can be estimated as p ·m+Rs, where the
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term Rs represents the complexity of the final sieving process for the k distinct
elements of x1, ..., xk. In the following, we will always assume

(k!)
1
kR

n+s
k

(R− 1)1−
1
k

≤ m ≤ 2
p

1+pR
n+s
1+p

(R− 1)
p

1+p

. (4)

Correspondingly, we have the following result on the optimal choice of li for
i = 1, ..., p (we still first relax the constraint that the li should be integer). The
proof of the following Theorem 2 is analogous to the proof of Theorem 1, so we
will not go into the details here, and only illustrate it by a simple example.

Theorem 2. Given an instance of the single-list k-sum problem over GF(R)
with the parameters (p,m, n, s) such that the condition (4) holds and s ≤
2 logm + δR. Define u′ as u = n+s−(2r−1)δR−2rb0

p−r − δR, where r is the least

integer such that n ≤ (p− r + 1)2r(b0 + δR)− s− δR, then we have an optimal
solution of the above linear program as follows,

li = 0, bi = 2ib0 + (2i − 1)δR, for 1 ≤ i < r
lr = 2rb0 − u+ (2r − 1)δR, br = u
li = u+ δR, bi = u, for r < i < p
lp = 2u− s+ δR, bp = s

Example 7. Suppose we work over GF(26) with the parameters k = 8 and n =
18, we compute the range of m by inequality (4) as 210.18 ≤ m ≤ 223.27. Now
we set s = 0 and the size of the input list m = 222, according to Theorem 2, we
obtain a maximal list length of Ru ≈ 225. ut

5 Hybrid BKW Reduction Modes

Recall that in the collision procedure of the LPN solving algorithm, the size of
the secret is further reduced by xoring k-tuples of vectors that add to 0 in the
last b entries. In [34], as shown in Sect. 2, the reduction mode of LF1, LF2 and
LF(4) are adopted in this step, respectively.

In this section, we propose more reduction modes to employ different kinds
of reduction mode together, called hybrid reduction modes, i.e., LF(k) + LF2,
aiming to find some better complexity tradeoffs. Especially we present the details
of LF(4) + LF2, LF(8) + LF2 and LF(16) + LF2, which are based on the scheme
of LF(k), k = 4, 8, 16, as illustrated in Sect. 3.

It is worthy noting that with carefully chosen parameters, the overall com-
plexity is not increased; while at the same time, new and better tradeoffs have
been achieved.

For the hybrid BKW reduction mode LF(k)+LF2, we will iteratively process
t steps of the reduction mode LF(k), followed by t′ steps of LF2. Denote n[i],
i = 1, 2, ..., t+t′, as the expected number of samples via the i-th BKW reduction
step, where n[0] = n, n[t+ t′] = m and m is the number of queries required for
the final solving phase.
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For the reduction of LF(k), we first need to find sufficient k-tuples of columns
that add to 0 in some bits, and then calculate the sum of each k-tuple. For
i = 1, ..., t, we need to find n[i] such k-tuples from the n[i−1] samples iteratively.
According to Theorem 1, we can derive various choices for both the relationship
of n[i] and n[i−1] and the running time for finding these solutions, by connecting
LF(k) with the single-list k-sum problem. Let bi be the number of bits eliminated

at the i-th reduction step and Bi =
∑i
j=1 bj . According to the scheme of LF(k),

k = 4, 8, 16, in Sect. 3.3, we have

– For LF(4), we have n[i − 1] = 23/4n[i]1/42bi/3 and the cost of finding n[i]
solutions is (23/4n[i]1/4 + 21/2n[i]1/2)2bi/3 both in time and space.

– For LF(8), we have n[i − 1] = 25/6n[i]1/62bi/4 and the cost of finding n[i]
solutions is (25/6n[i]1/6 + 2 · 22/3n[i]1/3)2bi/4 in time and (25/6n[i]1/6 +
22/3n[i]1/3)2bi/4 in space.

– For LF(16), we have n[i − 1] = 27/8n[i]1/823bi/16 and the cost of find-
ing n[i] solutions is (27/8n[i]1/823bi/16 + 3 · 23/4n[i]1/425bi/24) in time and
(27/8n[i]1/823bi/16 + 23/4n[i]1/425bi/24) in space.

For the merging procedure of LF(k), just as stated in [34], we divide each k-
tuple of (k+ 1−Bi)-bit columns into

⌈
k+1−Bi

e

⌉
parts, and read the sum of each

part directly from the table storing all the possible additions of k e-bit vectors,
where e is a properly chosen integer. Thus the cost of the merging procedure
is
⌈
k+1−Bi

e

⌉
n[i], and the table can be constructed with a time complexity of

PC21 =
∑k
i=2 e2

e−1 ( 2e−2
i−1

)
and a memory complexity of e2ke to store the table.

For k = 4, 8, 16, the time/memory complexities for the t steps of LF(k) are as
follows:

– For LF(4), C21 =
∑t
i=1

(⌈
k+1−Bi

e

⌉
n[i] + (23/4n[i]1/4 + 21/2n[i]1/2)2bi/3

)
and M21 = e24e + (23/4n[i]1/4 + 21/2n[i]1/2)2bi/3.

– For LF(8), C21 =
∑t
i=1

(⌈
k+1−Bi

e

⌉
n[i] + (25/6n[i]1/6 + 2 · 22/3n[i]1/3)2bi/4

)
and M21 = e28e + (25/6n[i]1/6 + 22/3n[i]1/3)2bi/4.

– For LF(16), we have

C21 =
∑t
i=1

(⌈
k+1−Bi

e

⌉
n[i] + (27/8n[i]

1/8
23bi/16 + 3 · 23/4n[i]

1/4
25bi/24)

)
and M21 = e216e + (27/8n[i]

1/8
23bi/16 + 23/4n[i]

1/4
25bi/24).

After t steps of LF(k), we further process t′ steps of LF2. As shown in [34],
n[i] =

(
n[i−1]

2

)
2−bi , i.e., n[i−1] ≈ (2!)1/2n[i]1/22bi/2, i = t+1, ..., t+t′. Similarly,

t′ steps LF2 will take a cost of C22 =
∑t′

i=1

(⌈
k+1−Bt+i

f

⌉
n[t+ i] + n[t+ i− 1]

)
,

and also a pre-computation of PC22 = f2f−1(2f − 2) in time and M22 = f22f

in memory, where f is a properly chosen integer.
To sum up, the time and memory complexity of the LF(k) + LF2 reduction

mode for k = 4, 8, 16 are C2 = C21 +C22 and M2 = M21 +M22, respectively, and
also a pre-computation of PC2 = PC21 + PC22 is needed. Note that the bias of

the noise is sharply reduced from the original bias ε(= 1− η) to εk
t2t
′

after this
kind of collision procedure.
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6 Improving the Gaussian Elimination Step

It is observed in [9] that the previous optimized method in [34] in the Gaussian
elimination step still takes a rather huge complexity due to some very large table
pre-computed and read frequently in the attack. Actually, the dominant part in
the Gaussian elimination step is to compute the matrix multiplication DG in
Section 2.

Now we present some further improvements on this procedure to clarify the
controversial issues, which are described as follows. Note that here we take the
random access machine model [12] which has an unit-cost for read/write access
to all of its memory and is adopted by almost all the cryptanalysis literatures
by default. First, a tables storing [x,Dix

T ]x∈GF(2)s are constructed in [34], and

Fig. 2: Schematic of addition of a = 2w u-bit vectors

are stored with a memory complexity of 2s(s + k)a. Here we can optimize the
required memory slightly by storing only [Dix

T ]x∈GF(2)s in the table indexed
by i = 1, ..., a, where each row is indexed by x ∈ GF(2)s, thus the memory is
reduced from 2s(s+k)a to M11 = 2ska. Second, recall that the addition of a k-bit
vectors via a table look-up is executed as follows in [34]. First construct a table
storing all the possible additions of a u-bit vectors and read it d =

⌈
k
u

⌉
times

to obtain the sum of a k-bit vectors, where u is a properly chosen integer. Let
T+(a, k) (resp. T+(a, u)) be the cost of computing the addition of a k-bit (resp.
u-bit) vectors, then T+(a, k) = d · T+(a, u). Based on this, let us do something
different. Instead of building one large table storing all the possible additions of a
u-bit vectors, we consider to construct a relatively small table. Precisely, we first
choose an integer a such that a is the power of some integer q, i.e., a = qw for
some integer w. Then for a properly chosen integer u, we construct a small table
storing all the possible additions of q u-bit vectors. Thus the addition of a u-bit
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vectors can be obtained by reading this small table 1 + q1 + ... + qw−1 = qw−1
q−1

times, depicted in Figure 2 and in Figure 3 in Appendix B. Denote T+(q, u)
as the cost of calculating the addition of q u-bit vectors, we obviously have
T+(a, u) = qw−1

q−1 · T+(q, u), and further T+(a, k) = qw−1
q−1 d · T+(q, u). That is, the

addition of a k-bit vectors can finally be derived by reading this table qw−1
q−1 · d

times. Thus the time complexity of the Gaussian elimination step is changed from

(n−k)(a+d) to C1 = (n−k)
(
a+ qw−1

q−1 d
)

, and the complexity for constructing

the table storing all the possible additions of q u-bit vectors is changed from∑a
i=2 u2u−1

(
2u−2
i−1

)
to PC12 =

∑q
i=2 u2u−1

(
2u−2
i−1

)
in time and the memory13

needed is changed from
∑a
i=2

i+1
i u2u−1

(
2u−2
i−1

)
to M12 = u2qu.

Note that the memory complexity has been significantly reduced especially
for q = 2 or q = 3 and w > 1. Hence, with carefully chosen parameters a and
u, we have a good chance to derive better tradeoffs between the complexities of
C1, PC11, M11, PC12 and M12. Here is an illustrative example.

Example 8. Consider the case that a = 23 (q = 2, w = 3) and u = 32. To
calculate the addition of 8 32-bit vectors such as u , u1 +u2 +u3 +u4 +u5 +
u6 + u7 + u8, we first construct a table storing all the possible additions of two
32-bit vectors, i.e., [v1 + v2]vi∈GF(2)32 , where each row is indexed by (v1,v2).
Then we read the table in the following order. First, read the rows indexed by
(u1,u2), (u3,u4), (u5,u6) and (u7,u8) to derive u12 , u1 +u2, u34 , u3 +u4,
u56 , u5+u6 and u78 , u7+u8, respectively. Second, read the rows indexed by
(u12,u34), (u56,u78) to derive u1234 , u12+u34, u5678 , u56+u78, respectively.
Finally, read the rows indexed by (u1234,u5678) to derive u1234 + u5678, which
is the final result of u. In conclusion, we obtain the addition of 8 32-bit vectors
by reading the table 4 + 2 + 1 = 7 times. ut

Note that in Fig.2, the table look-ups at each level of the tree could be paralleled
to reduce the time complexity to that of only one table look-up. Thus for the
whole tree, the parallel time complexity is w table look-ups14. We emphasize that
all the above techniques could be further exploited in some other applications
[1, 11] on Gaussian elimination.

7 The Integrated Framework

In this section, we will present the complexity issues of the improved algorith-
m, in which the newly proposed techniques are integrated into the LPN solv-
ing framework. It is natural to derive a refined framework for solving LPN by
integrating the single-list k-sum algorithm, hybrid BKW reduction mode and
the improved Gaussian elimination method into the previous one, i.e., we could

13 In [34], only instances of the sum problem with non-repeating and non-zero terms
are stored in the table, but this has been questioned in [9]. Here we clarify the
controversial issue by storing in the table all the 2qu instances.

14 For the complexity results in the paper, we did not take the parallel technique so
far, though it would result in even better results.
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take the best possible tradeoff in each step (Step 0 to Step 5) to get better
attacks on generic LPN. The complexity issues of the new framework is as fol-

lows. The final bias of the noise is εf = εcpεcc, where εcp = ε4
t2t
′

is for the

Table 5: The optimal cascaded perfect codes chosen for solving the (512, 18 ),
(532, 18 ), (592, 18 )-LPN instances

(k, η)-LPN [k2, l] Cascaded perfect codes Number of chunks log2εcc

(512, 1
8
)

[172,61] 1 · H1 + 6 · R2 + 7 · R3 + 4 · G 18 -15.3801

[174,62] 8 · R2 + 6 · R3 + 4 · G 18 -15.4742

[177,62] 1 · H1 + 7 · R2 + 7 · R3 + 4 · G 19 -16.0050

(532, 1
8
)

[181,63] 8 · R2 + 7 · R3 + 4 · G 19 -16.4374

[182,64] 11 · R2 + 5 · R3 + 4 · G 20 -16.3860

[185,64] 1 · H1 + 10 · R2 + 6 · R3 + 4 · G 21 -16.9168

(592, 1
8
)

[213,70] 1 · H1 + 17 · R2 + 5 · R3 + 4 · G 27 -20.3284

[213,72] 5 · R3 + 7 · R4 + 5 · G 17 -19.8500

[214,71] 11 · R4 + 5 · G 16 -20.2712

hybrid reduction mode of LF(4) + LF2, εcp = ε8
t2t
′

is for LF(8) + LF2, and

εcp = ε16
t2t
′

is for LF(16) + LF2. Note that εcc is the bias introduced in the
covering code procedure, which is optimally derived according to the integer
linear programming proposed in [34] with the explicit code construction of the
optimal cascaded perfect codes. Given η = 1

8 , we could get the optimal cas-
caded perfect codes with the fixed parameters k2 and l by Magma. In Table 5,
the optimal cascaded perfect codes are presented with the parameters chosen
for solving the (512, 18 ), (532, 18 ), (592, 18 )-LPN instances. Here we use the no-
tation Hr for the [2r − 1, 2r − 1 − r]1 Hamming code, r = 1, 2, ..., and Re for
the [2e+ 1, 1]e Repetition code, e = 2, 3, ..., and G for the [23, 12]3 Golay code.
The notation C1 + C2 represents the direct sum of linear codes C1 and C2. It
is shown in [34] that it needs m = 8l ln 2/ε2f queries to distinguish the correct
guess from the others in the final solving phase. For adopting LF(k) + LF2, the
number of queries is computed iteratively as n[i − 1] = (2!)1/2n[i]1/22bi/2 for
i = t+ t′, ..., t+1. And for i = t, t−1, ..., 1, we have n[i−1] = 23/4n[i]1/42bi/3 for
adopting LF(4) + LF2, and n[i− 1] = 25/6n[i]1/62bi/4 for adopting LF(8) + LF2,
and n[i− 1] = 27/8n[i]1/823bi/16 for adopting LF(16) + LF2, where n[t+ t′] = m
and n = k + n[0]. According, the initial number of queries is finally derived as
N = n2c. Besides, the online time complexity of the LPN solving algorithm is

C = C0 +
PC11 + C1 + C21 + C22 + C3 + C4 + C5

Pr(w1, k1)
,

with a pre-computation of Pre = PC12 + PC21 + PC22 + PC4, and a memory
complexity of about M = nk+M11 +M12 +M21 +M22 +M4. We list in Table
6 the corresponding complexities when the hybrid BKW reduction modes are
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adopted.

Remark 1. In the Gaussian elimination step, we suppose a to be the power of
some integer q and write it as a = qw. Consequently, the time complexity at

Step 2 is C1 = (n− k)
(
a+ qw−1

q−1 d
)

, which is quite different from that in [34].

Remark 2. For the merging procedure of LF2, we correct the result in [34] by
adding a term to represent the cost of the sorting process.

Table 6: The complexities of the 5 main steps when adopting LF(4)+LF(2),
LF(8)+LF(2) and LF(16)+LF(2), respectively.

Step Complexities

0 C0 = N

1

C1 = (n− k)
(
a+ qw−1

q−1
d
)

M11 = 2ska, PC11 = (2s − s− 1)ka

M12 = u2qu, PC12 =
∑q

i=2 u2u−1
(
2u−2
i−1

)

2

LF(4) + LF2 :

C21 =
∑t

i=1

(⌈
k+1−Bi

e

⌉
n[i] + (23/4n[i]1/4 + 21/2n[i]1/2)2bi/3

)
,

M21 = e24e + (23/4n[i]1/4 + 21/2n[i]1/2)2bi/3, PC21 =
∑4

i=2 e2
e−1

(
2e−2
i−1

)
LF(8) + LF2 :

C21 =
∑t

i=1

(⌈
k+1−Bi

e

⌉
n[i] + (25/6n[i]1/6 + 2 · 22/3n[i]1/3)2bi/4

)
,

M21 = e28e + (25/6n[i]1/6 + 22/3n[i]1/3)2bi/4, PC21 =
∑8

i=2 e2
e−1

(
2e−2
i−1

)
LF(16) + LF2 :

C21 =
∑t

i=1

(⌈
k+1−Bi

e

⌉
n[i] + (27/8n[i]1/823bi/16 + 3 · 23/4n[i]1/425bi/24)

)
M21 = e216e + (27/8n[i]1/823bi/16 + 23/4n[i]1/425bi/24), PC21 =

8∑
i=2

e2e−1
(
2e−2
i−1

)
Beside, for LF(4) + LF2, LF(8) + LF2 and LF(16) + LF2,

C22 =
∑t′

i=1

(⌈
k+1−Bt+i

f

⌉
n[t+ i] + n[t+ i− 1]

)
PC22 = f2f−1(2f − 2),M22 = f22f

3 C3 =
∑w1

i=1

(
k1
i

)
4 C4 = mh, M4 = 12 · 223, PC4 = 11 · 23 · 223

5 C5 = l2l∑w1
i=0

(
k1
i

)

We have found in the analysis that by adopting the above hybrid BKW
reduction modes, we can get more tradeoff choices, and more significantly, we
have an opportunity to reduce the memory and data complexity simultaneously
for some specific LPN instances, while keeping the time complexity at a low
level. We will illustrate it by solving the three core LPN instances, i.e., (512, 18 ),
(532, 18 ), (592, 18 ), in the following Section.
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8 Applications and Simulations

8.1 Applications and Attacks on Schemes

Note that for all of the three LPN instances, we use a little trick when adopting
the hybrid reduction mode LF(4)/LF(8)/LF(16) + LF2, i.e., we set a to be the
power of 2, thus in the Gaussian elimination step, we will need to construct
a table storing all the possible additions of two u-bit vectors, which will cost
PC12 = u2u−1(2u−2) in time and M12 = u22u in memory. Then in the collision
procedure, another table is constructed storing all the possible additions of two
f -bit vectors, which will cost PC22 = f2f−1(2f − 2) in time and M22 = f22f

in memory. Let f = u, then we can reuse the table constructed in the Gaus-
sian elimination procedure, resulting in PC22 = 0, M22 = 0 and meanwhile no
apparent negative effect on the other complexities. For the three core LPN in-

Table 7: The complexity for solving the (512, 18 )-LPN instance using different
BKW reduction modes

Type
Parameters

Selected data log2nc a = qw u t, b, e t′, b′, f k1 w1 k2 l

LF(4) + LF2 14 32 = 25 30 1, 112, 16 3, 66, 30 11 1 177 62 54.833

LF(8) + LF2
8 16 = 24 28 1, 187, 8 2, 65, 28 15 1 172 61 58.572

4 16 = 24 28 1, 188, 8 2, 65, 28 18 1 172 61 58.822

LF(16) + LF2 12 16 = 24 27 1, 253, 4 1, 65, 27 8 1 174 62 56.559

Type
Data via each BKW step

log2n[1] log2n[2] log2n[3] log2n[4] log2n[5]

LF(4) + LF2 66.9997 66.9995 66.9989 66.9978 -

LF(8) + LF2
65.9311 65.8623 65.7245 - -

65.9311 65.8623 65.7245 - -

LF(16) + LF2 65.9681 65.9362 - - -

Type

Complexities (log2)

Time
log2C

Initial data
log2N

Memory
log2M

Pre-computation
log2Pre

LF(4) + LF2 74.751 68.833 71.492 65.183

LF(8) + LF2
74.304 66.572 69.955 59.826

74.831 62.821 70.175 59.826

LF(16) + LF2 73.919 68.559 70.104 57.755

stances, we list in Tables 7, 8 and 9 the complexity issues when adopting the
hybrid reduction modes, together with the details of the parameters chosen and
the number of queries via each BKW step. We take t = 1 and t′ = 3 in the
collision procedure for LF(4) + LF2, t = 1 and t′ = 2 for LF(8) + LF2 and
t = 1 and t′ = 1 for LF(16) + LF2. For LF(4)/LF(8)/LF(16), the number of bits
eliminated is denoted by b, and for LF2, we take the same value for this number
which is denoted by b′. Besides, each [k2, l]-covering code adopted is explicitly
constructed with the method proposed in [34] and thus the corresponding bias
εcc introduced in this procedure is an accurate value.
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Table 8: The complexity for solving the (532, 18 )-LPN instance using different
BKW reduction modes

Type
Parameters

Selected data log2nc a = qw u t, b, e t′, b′, f k1 w1 k2 l

LF(4) + LF2 17 16 = 24 30 1, 115, 16 3, 68, 30 11 1 185 64 56.329

LF(8) + LF2
9 16 = 24 30 1, 193, 8 2, 67, 30 15 1 181 63 60.412

5 16 = 24 30 1, 194, 8 2, 67, 30 18 1 181 63 60.662

LF(16) + LF2 14 16 = 24 30 1, 262, 4 1, 67, 30 7 1 182 64 58.488

Type
Data via each BKW step

log2n[1] log2n[2] log2n[3] log2n[4] log2n[5]

LF(4) + LF2 68.983 68.967 68.934 68.867 -

LF(8) + LF2
67.971 67.943 67.886 - -

67.971 67.943 67.886 - -

LF(16) + LF2 67.903 67.805 - - -

Type
Complexities (log2)

Time Initial data Memory Pre-computation

LF(4) + LF2 76.861 73.329 73.370 65.183

LF(8) + LF2
76.424 69.412 71.934 63.908

76.935 65.662 72.175 63.908

LF(16) + LF2 75.992 72.488 72.386 63.907

Table 9: The complexity for solving the (592, 18 )-LPN instance using different
BKW reduction modes

Type
Parameters

Selected data log2nc a = qw u t, b, e t′, b′, f k1 w1 k2 l

LF(4) + LF2 15 32 = 25 34 1, 129, 16 3, 75, 34 10 1 213 70 62.744

LF(8) + LF2 5 16 = 24 34 1, 213, 8 2, 75, 34 10 1 214 71 66.739

LF(16) + LF2 12 16 = 24 30 1, 290, 4 1, 74, 30 3 1 213 72 64.619

Type
Data via each BKW step

log2n[1] log2n[2] log2n[3] log2n[4] log2n[5]

LF(4) + LF2 75.978 75.955 75.910 75.820 -

LF(8) + LF2 75.931 75.863 75.726 - -

LF(16) + LF2 74.952 74.904 - - -

Type

Complexities (log2)

Time Initial data Memory Pre-computation

LF(4) + LF2 83.792 77.744 81.531 73.357

LF(8) + LF2 83.599 71.738 79.387 72.088

LF(16) + LF2 82.889 76.619 79.926 63.907

The comparison of our LPN solving algorithms with the previous ones in
[18, 10] are presented in Table 10 on the (512, 18 ), (532, 18 ) and (592, 18 )-LPN
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instances. Note that we have derived more tradeoff choices by adopting the newly
proposed hybrid reduction modes, i.e., LF(4)/LF(8)/LF(16) + LF2, on the basis
of the single-list k-sum problem. With the carefully chosen attack parameters,
our algorithm can have clear advantages over the previous best ones. First, on
one hand, our algorithm of solving the (512, 18 )-LPN instance can get at least 27

times lower than that in [18] with less data and memory. On the other hand, our
algorithm is about 25 times faster than that in [10], while the data and memory
complexity are kept almost at the same level. Second, our results for solving
(532, 18 )-LPN instance are better than that in [10] by a factor of about 25, and
better than that in [18] by a factor of 214, depending on the parameters chosen.
Finally, for solving the (592, 18 )-LPN, we have derived some tradeoff choices with
the time complexity 25 times lower than that in [10] and 214 times lower than
that in [18].

Table 10: Comparison of different LPN solving algorithms with the three core
LPN instances, i.e., (512, 18 ),(532, 18 ),(592, 18 )-LPN instances

(k, η)-LPN
Complexities

(log2)

Algorithm

[18] [10] ours ours ours ours

(512, 1
8
)

Time 82.27 79.37 74.75 74.30 74.83 73.92

Data 63.60 62.20 68.83 66.57 62.82 68.56

Memory 72.60 71.20 71.49 69.96 70.18 70.10

(532, 1
8
)

Time 90.43 81.64 76.86 76.42 76.94 75.99

Data - - 73.33 69.41 65.66 72.49

Memory - - 73.37 71.93 72.18 72.39

(592, 1
8
)

Time 97.87 88.25 83.79 83.60 82.89 -

Data - - 77.74 71.74 76.62 -

Memory - - 81.53 79.39 79.93 -

Note that the (512, 18 )-LPN instance is widely adopted in various LPN-based
cryptosystems, e.g., HB+ [23], HB# [14] and LPN-C [15]. With the same ar-
guments as those in Section 6.3 of [34], we could successfully launch concrete
attacks on these protocols. The (532, 18 )-LPN instance is adopted in Lapin [20]
for 80-bit security; unfortunately, our analysis has shown that this is unreach-
able. We have to change the parameter configuration in the circumstances where
such instances are intended to be used. At last, our attacks have indicated as
well that the (592, 18 )-LPN instance has a very thin security margin for 80-bit
security.

8.2 Experimental Results

To verify the validity of the new algorithms, we have conducted extensive sim-
ulations on the reduced (100, 18 ), (128, 18 )-LPN instances, respectively. The ex-
periments have been fully implemented in C language on one core of a single
PC, running with Windows 7, Intel Core i3-2120 CPU @ 3.30 GHz and 4.00GB
RAM. In general, the experimental results match the theoretical analysis quite
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well.

(100, 18 )-LPN instance. For this instance, we have the following set of param-
eters and the corresponding complexities results. The number of initial queries
is chosen to be N = 222.49.

– In Step 0, set c = 6; accordingly, the number of queries remained is n =
216.49, and the effective size of the secret is changed to k = 100− c = 94.

– In Step 1, set a = 23 and u = 8. After this step, the number of queries
available is n[0] = n− k ≈ 216.49.

– In Step 2, adopt the hybrid BKW reduction mode LF(4)+LF2. Set (t, b, e) =
(1, 33, 5) for LF(4), then the number of queries remained is n[1] = 218.95

and the effective size of the secret is reduced to k = 61 after the LF(4)
reduction. Further set (t′, b′, f) = (1, 18, 8) for LF2, then the number of
queries remained is n[2] = 218.90 and the effective size of the secret is reduced
to k = 43 after the LF2 reduction. After this step, the bias of the noise is
reduced to εcp = ( 3

4 )8.
– In Step 3, set k1 = 5 and w1 = 1. Thus the number of queries remains

unchanged, and the effective size of the secret is reduced to k2 = k−k1 = 38.
– In Step 4, set k2 = 38, l = 16, and construct explicitly the [38, 16]-covering

code by concatenating one G = [23, 12] Golay code, one repetition code R2 =
[5, 1], three Hamming code H2 = [3, 1] and one Hamming code H1 = [1, 0],
i.e., 1 · G + 1 · R2 + 3 · H2 + 1 · H1. The bias introduced in this procedure is
explicitly computed as εcc = 2−2.8902. After this step, the number of queries
remains the same and the effective size of the secret is reduced to l = 16.
Besides, the final bias of the noise is εf = εcpεcc = 2−6.2105.

– In Step 5, the number of queries remained is m = 218.90. Note that we
have chosen m > 8l ln 2/ε2f (= 218.8922), thus the success probability for the
recovery is quite close to 1, as illustrated in [34] and better than that in [10].

For the above set of parameters, the overall complexity is C = 225.32 in time,
N = 222.49 for initial data, M = 226.85 in memory. Currently, our non-optimized
implementation runs for tens of minutes to recover the targeted secret bits.

(128, 18 )-LPN instance. For this instance, we list a set of parameters and the
corresponding complexities results as follows. The number of initial queries is
chosen to be N = 225.61.

– In Step 0, set c = 5. Thus, the number of queries remained is n = 220.61,
and the effective size of the secret is changed to k = 128− c = 123.

– In Step 1, set a = 23 and u = 9. After this step, the number of queries
available is n[0] = n− k ≈ 220.61.

– In Step 2, adopt the hybrid BKW reduction mode LF(8) + LF2, i.e., set
(t, b, e) = (1, 64, 3) for LF(8), then the number of queries remained is n[1] =
222.67 and the effective size of the secret is reduced to k = 59 after the
LF(8) reduction. Further set (t′, b′, f) = (1, 22, 9) for LF2, then the number
of queries remained is n[2] = 222.35 and the effective size of the secret is
reduced to k = 37 after the LF2 reduction. After this step, the bias of the
noise is reduced to εcp = ( 3

4 )16.
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– In Step 3, set k1 = 7 and w1 = 1. Thus the number of queries remains
unchanged, and the effective size of the secret is reduced to k2 = k−k1 = 30.

– In Step 4, set k2 = 30, l = 19, and construct explicitly the [30, 19]-covering
code by concatenating one G = [23, 12] Golay code and one trivial code
Z7

2 = [7, 7]. The bias introduced in this procedure is explicitly computed as
εcc = 2−1.1739. After this step, the number of queries remains the same and
the effective size of the secret is reduced to l = 19. Besides, the final bias of
the noise is εf = εcpεcc = 2−7.8145.

– In Step 5, the number of queries remained is m = 222.35. Note that we have
set m > 8l ln 2/ε2f (= 222.3485), thus the success probability is quite close to
1.

For the above set of parameters, the overall complexity is C = 229.50 in time,
N = 225.61 for the initial data, M = 228.35 in memory. So far, it takes a few
hours for our non-optimized implementation to restore the targeted bits in the
secret vector.

9 Conclusions

In this paper, we have presented new algorithmic improvements to the LPN solv-
ing problem. The first one, efficient algorithms for the single list k-sum problem
over a binary field and an arbitrary finite field, are the first answers to the cor-
responding open problem of Minder and Sinclair and would probably have other
applications in some other areas. Based on this algorithm, the second technique,
the hybrid mode of BKW reduction could make good use of different kinds of
reductions without increasing the overall complexity and achieve better tradeoffs
which are impossible previously. Third, we have improved the dominate matrix
multiplication in the Gaussian elimination step which is the bottleneck of the
previous LPN solving algorithms. Finally, we integrated the above three new
techniques into the refined framework for solving LPN, which is further applied
to the core LPN instances studied in the open literature. The new algorithms
yielded remarkable complexity reductions compared to all the previously known
methods and the experimental results clearly show the gain on efficiency that the
new techniques bring to the LPN solving algorithms. It is safe to say now that
the 80-bit security bound of the instances suggested in cryptographic schemes
like HB+, HB#, LPN-C and Lapin cannot be reached following the current pa-
rameters, it is advised to update the parameter configuration in these schemes
to get the expected security level.
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Lee. D.H. and Wang X., eds, Advances in Cryptology–ASIACRYPT 2011, LNCS
vol. 7073, pages 107–124. Springer Berlin Heidelberg, 2011.

30. May., A. and Ozerov, I. On computing nearest neighbors with applications to
decoding of binary linear codes. In Oswald. E. and Fischlin. M, eds, Advances in
Cryptology–EUROCRYPT 2015, LNCS vol. 9056, pages 203–228. Springer Berlin
Heidelberg, 2015.

31. Minder, L., Sinclair, A. The extended k-tree algorithm. Journal of Cryptology,
vol. 25(2), pages. 349–382 2012.

32. Stern., J. A new identication scheme based on syndrome decoding. In Stinson.
D.R. editor, Advances in Cryptology–CRYPTO 1993, LNCS vol. 773, pages 13–21.
Springer, Heidelberg, 1994.

33. Wagner., D. A generalized birthday problem. In Yung., M. editor, Advances in
Cryptology–CRYPTO 2002, LNCS vol. 2442, pages 288–304. Springer Berlin Hei-
delberg, 2002.

34. Zhang, B., Jiao, L., and Wang, M.S. Faster algorithm for solving LPN. In Fischlin,
M., Coron, J. (eds.) Advances in Cryptology–EUROCRYPT 2016, LNCS vol. 9665,
pages. 168–195. Springer, Heidelberg 2016.

A Proof of Theorem 1

Proof. We first consider the linear program by relaxing the integrality constraint.
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First, to show the feasibility of the linear program, we set l1 = ... = lp−1 = 0
and lp = n, then we have ai = 2ia0 − (2i − 1) for i = 1, ..., p − 1, and ap =
2pa0−n− (2p−1). In this case, we set u = max

0≤i≤p−1
ai = 2p−1a0− (2p−1−1) and

thus the constraint ai ≤ u, i = 0, 1, ..., p − 1 is clearly satisfied. We also have
li ≥ 0 are integers for i = 1, ..., p and

∑p
i=1 li ≥ n. For the constraint condition

ap ≥ s, it translates to 2pa0 ≥ n + s + (2p − 1) and further a0 ≥ n+s
2p + 2p−1

2p ,
which is equivalent to the condition (1). Hence we know that there is indeed a
solution and the linear program is feasible.

Next, let us show that any solution not of the given form can be strictly
improved. Consider first a feasible solution l = (l1, ..., lp) in which there exists
some index i ∈ {1, ..., p− 1} such that li > 0 and ai < u. Let ε > 0 be a suitably
small integer, and define l′ = (l′1, ..., l

′
i−1, l

′
i, l
′
i+1, ..., l

′
p) = (l1, ..., li−1, li−ε, li+1 +

2ε, ..., lp). In this case, ai is changed to a′i = ai + ε. It’s easy to see that l′

is another feasible solution with the same value of u, and we have
∑p
i=1 l

′
i =∑p

i=1 li − ε + 2ε ≥ n + ε > n. Similarly, consider another feasible solution l
which has ap > s and let us define l′ = (l1, ..., lp−1, lp + ε). In this case, ap is
changed to ap − ε. Note that l′ is another feasible solution with the same value
of u and also

∑p
i=1 l

′
i > n. From the above analysis, we know that any solution

l that does not satisfy the conditions li = 0 or ai = u for all i = 1, ..., p − 1
and ap = s, can be transformed into another solution l′ with the same value
of the objective function u which does satisfy these conditions, i.e., l′i = 0 or
a′i = u for all i = 1, ..., p − 1 and a′p = s, and also satisfy

∑p
i=1 l

′
i > n. In the

following, we will show that such a solution l′ can be further transformed into
another solution l′′ with a smaller value of u, i.e., the maximal a′i for the solution
l′ can be reduced. We first emphasize that a′0 6= u. Suppose a′0 = u, then a′i ≤ a′0
for all i = 1, ..., p− 1. From Eq.(2) we have l′i = 2a′i−1 − a′i − 1, then

∑p
i=1 l

′
i =∑p

i=1 (2a′i−1 − a′i − 1) > n, or equivalently, 2a′0+
∑p−1
i=1 a

′
i−a′p−p > n, and hence

(1+p)a′0−s > n+p, which contradicts with condition (3), so we have a′0 6= u. Now
let j be an index such that a′j = u, define l′′ = (l′1, ..., l

′
j−1, l

′
j +ε, l′j+1−2ε, ..., l′p),

then a′′j = a′j − ε and
∑p
i=1 l

′′
i =

∑p
i=1 l

′
i − ε. Now we will show that l′′ is

a feasible solution. To prove this, we only need to check that l′j+1 > 0. Let
us suppose l′j+1 = 0, then a′j+1 = 2a′j − 1 = 2u − 1. If j + 1 < p, we have
a′j+1 = 2u − 1 > u, which conflicts with the condition a′j+1 ≤ u; If j + 1 = p,
we have s = a′p = a′j+1 = 2u− 1 > 2a′0 − 1, which violates our assumption that
s ≤ 2 logm− 1.

All the above shows that any optimal solution must satisfy li = 0 or ai = u for
all i = 1, ..., p−1 and ap = s. Besides, we emphasize that the indices j for which
lj = 0 must form an initial segment. (For if not, suppose aj = u and lj+1 = 0,
then aj+1 = 2u−1 > u which conflicts with the condition aj+1 ≤ u.) We denote
r to be the intermediate index, i.e., we have li = 0 for 1 ≤ i < r and ai = u for
r ≤ i ≤ p − 1. Up to now, we can compute the following using Equation (2) as
follows: Since li = 0 for 1 ≤ i < r, we have ai = 2ia0− (2i− 1); Since ar = u, we
have lr = 2ar−1 − ar − 1 = 2ra0 − u− (2r − 1); Since ai = u for r < i ≤ p− 1,
we have li = u− 1; Since ap = s, we have lp = 2ap−1 − ap − 1 = 2u− s− 1.
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Now it remains to determine the value of r and u. From ar−1 ≤ u and
0 ≤ lr = 2ra0 − u− (2r − 1) we have 2r−1a0 − (2r−1 − 1) ≤ u ≤ 2ra0 − (2r − 1).
Note that the constraint condition

∑p
i=1 li ≥ n must be tight in an optimal

solution, we obtain n =
∑p
i=1 li = (p − r)u + (2ra0 − (2r − 1)) − (p − r) − s.

Further, we have

n ≤ (p− r)(2ra0 − (2r − 1)) + (2ra0 − (2r − 1))− (p− r)− s
= (p− r + 1)2r(a0 − 1)− s+ 1

n ≥ (p− r)(2r−1a0 − (2r−1 − 1)) + (2ra0 − (2r − 1))− (p− r)− s
= (p− (r − 1) + 1)2r−1(a0 − 1)− s+ 1

The intermediate index r is defined as the least integer such that n ≤ (p − r +
1)2r(a0 − 1) − s + 1. Once knowing p, we can compute u from n = (p − r)u +

(2ra0 − (2r − 1)) − (p − r) − s as u = n+s+(2r−1)−2ra0
p−r + 1. Up to now, we

have derived the optimal solution to the linear program. However, this optimal
solution for li may not be integers. Fortunately, the optimal solution l1, ..., lp
of the integer program can be obtained by replacing u by due similarly to the
rounding argument in [31]. This completes the proof. ut

B Schematic of addition of a = 3w u-bit vectors

Fig. 3: Schematic of addition of a = 3w u-bit vectors
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