
Efficient Random Grid Visual Cryptographic
Schemes having Essential Members

Bibhas Chandra Das1, Md Kutubuddin Sardar2, and Avishek Adhikari3

1 Institute for Advancing Intelligence (IAI), TCG CREST, Kolkata, India
2 Department of Pure Mathematics University of Calcutta, India

3 Department of Mathematics, Presidency University, India
{bibhas.iitm, mks.pubm, avishek.adh}@gmail.com

Abstract. In this paper we consider “OR” based monochrome random
grid visual cryptographic schemes (RGVCS) for t-(k, n)∗ access struc-
ture which is a generalization of the threshold (k, n) access structure in
the sense that in all the successful attempts to recover the secret image,
the t essential participants must always be present. Up to the best of
our knowledge, the current proposed work is the first in the literature
of RGVCS which provides efficient direct constructions for the t-(k, n)∗-
RGVCS for “OR” based model. Finding the closed form of light contrast
is a challenging work. However, in this paper we come up with the closed
form of the light contrast for the “OR” based model. In literature, there
are visual cryptographic schemes where the secret reconstruction is done
by binary “XOR” operation instead of “OR” operation to increase the
relative contrast of the decoded image. In this paper, we also propose an
extended grid based t-(k, n)∗-RGVCS in which we replace the traditional
“OR” operation by “XOR” operation. Note that the use of XOR opera-
tion indicates that the decoding must be performed computationally and
not visually. We justified our schemes using both experimental as well as
simulation based data.

Keywords: essential members, Random Grid, light contrast, “OR” and
“XOR” binary operations.

1 Introduction

Visual cryptography is a cryptographic technique which allows visual informa-
tion to be encrypted in such a way that decryption becomes the job of the person
to decrypt via sight reading. Visual cryptography does not really require much
sophisticated techniques that are normally used in other branches of cryptology
like public key cryptosystem or symmetric key cryptosystem or even in other
branches of secret sharing [27, 28, 30–33]. Moreover, here the decryption process
completely stands upon the human visual system. That is why visual cryptog-
raphy attracts attention of many researchers. It was first introduced by Naor
and Shamir in Eurocrypt’94 [26]. They proposed a (k, n)-threshold scheme to
distribute a secret image S among n participants in such a way that if any k (or
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more) of them superimpose their individual shares they get back S with a loss
of contrast, while less than k participants have no information about S. A visual
cryptographic scheme (VCS) with one essential participant was first introduced
by Arungam et. al. [25] as an extension of threshold (k, n)-VCS. Their work was
further generalized by Sabyasachi et. al. [15] to an access structure known as
a t-(k, n)∗-VCS where t(≤ k) is the number of essential participants who must
always be present in all the successful attempts to recover the secret image. A
group of k or more participants can get back the secret if those t essential par-
ticipants are among them.

The works on visual cryptography, at the very initial stage, came with huge
pixel expansion and very small contrast. That is why researchers started to think
to apply different techniques to reduce the pixel expansion or to increase relative
contrast. Probabilistic VCS was proposed to reduce the pixel expansion of a
visual cryptography scheme. Ito et. al. [29] described a size invariant VSS scheme
that encodes a white pixel (respectively black) by a column selected from a white
(respectively black) basis matrix with equal probabilities. It was then Yang [44]
who proposed a bunch of schemes to implement non expandable probabilistic
VCS. But in all these the problem of selecting suitable basis matrices remained
as it was. A detailed work on classical as well as probabilistic VCS may be found
in [1], [2],[3],[4], [5], [16], [6], [7], [8], [9], [10], [11], [14], [18], [20], [21], [22], [23],
[35], [42], [19], [17].

Random Grid Visual Cryptography (RGVCS) is one of the solutions to all
these problems. The main difference between RGVCS and conventional VCS is
that RGVCS has no extra pixel expansion and does not really require to choose
basis matrices. In RGVCS we treat each pixel of share as a random grid and
assign color to it according to the corresponding secret pixel. For the already
proposed schemes in the literature of RGVCS one can refer to [12],[13] [24],
[34],[36], [37], [39], [40], [41].

This paper deals with efficient direct construction of algorithm for “OR”
based t-(k, n)∗ scheme for RGVCS. We come up with the closed form of light
contrast for our proposed scheme. To improve the light contrast for the recon-
structed image we propose an extended grid based t-(k, n)∗-RGVCS in which
we replace the traditional “OR” operation by “XOR” operation. Note that the
use of XOR operation indicates that the decoding must be performed computa-
tionally and not visually. Finally, we justified our schemes using experimental as
well as simulation based data.

The organization of the remaining part of the paper is as follows. In Section
2 we shall discuss some basic concepts of RGVCS and classical VCS that will be
useful throughout the paper. Section 3 deals with our proposed efficient “OR”
based scheme and related theoretical discussions and justifications with example
to illustrate the theory behind the scheme. Section 4 deals with the theoretical
justifications behind our proposed “XOR” based scheme. In Section 5, we will
show by comparison and by various examples why our schemes are significant
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in the study of RGVCS. Finally, the paper ends with conclusion and discussions
on future direction of research.

2 Preliminaries

In this section we will define some important terms related to VCS and RGVCS
that will be required in our subsequent sections. Consider a secret pixel S to
be shared among a set of n participants, say P = {P1, P2, ..., Pn}. Let ΓQual

be the collection of all subsets of P who can get the secret S back by super-
imposing their shares. Further let ΓForb be the collection of all those subsets of
P who are unable to get the secret S back. We call each element of ΓQual as
qualified set while each element of ΓForb is called a forbidden set. The ordered
pair (ΓQual, ΓForb) is called an access structure for P corresponding to S. Given
B ⊆ 2P , B is said to be monotone increasing if for all B ∈B and C ⊆ P with
B ∩C = ∅ we have B ∪C ∈B. Similarly B is said to be monotone decreasing if
for all B ∈B and C ⊆ B we have B \C ∈B. In case where ΓQual is monotone
increasing, ΓForb is monotone decreasing and ΓQual ∪ ΓForb = 2P, we say that
the access structure is strong. Now we note that, for a strong access structure,
a subset of a forbidden set is always forbidden and a super set of qualified set
is always qualified. A participant a ∈ P is said to be essential if there exists
X ⊆ P such that X ∪ {a} ∈ ΓQual but X /∈ ΓQual. Given a strong access struc-
ture we define Minimal Qualified set (Γ0) and Maximal forbidden set (ZM )
as follows:

Γ0 = {A ∈ ΓQual|A′ /∈ ΓQual,∀A′ ⊂ A},
ZM = {B ∈ ΓForb|B ∪ {i} ∈ ΓQual,∀i ∈ P \B}.

For a (k, n) threshold access structure, ΓQual = {Q ⊆ P : |Q| ≥ k} and ΓForb =
{F ⊆ P : |F | < k}, where 2 ≤ k ≤ n. By a t-(k, n)∗ access structure, we mean
that it is a (k, n) scheme where t of the n participants are essential.

We have not as such put any restriction on the parameters t, k and n other
than 0 ≤ t ≤ k ≤ n. It is worth mentioning that we are interested in only those
triplets (t, k, n) of parameters which admit a meaningful visual cryptographic
scheme. For example, if t = k then the only meaningful value that n may assume
is k because if n > k then the rest of the n−k participants are non-essential and
we can ignore them while sharing the secret. Again, if k equals n then t = k = n
or t equals n then all the participants are essential and the resulting scheme is
again an (n, n)-VCS. The case when t = 0 with n ≥ k > 1 is the original (k, n)-
threshold VCS where no participant is essential and any k or more of them can
recover the secret. Henceforth whenever we consider a triplet (t, k, n), it is a
meaningful triplet. Moreover, it should be noted that once (t− 1, k− 1, n− 1)
is a meaningful triplet then so is (t, k, n).

In a t-(k, n)∗ monotone access structure, a maximal forbidden set can be of
the following two types. Type I: Sets of size k−1 sets containing all the essential
participants. Type II: Sets of size n− 1 containing all but one of the t essential
participants. Mathematically:
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ZM =

{
{i1, i2, . . . , ik−1}|ij = Pj for 1 ≤ j ≤ t; ij ∈ {Pt+1, Pt+2, . . . , Pn} for

t+ 1 ≤ j ≤ k − 1

}
∪
{
{P1, P2, . . . , Pn} \ {Pj}|j ∈ {1, 2, . . . , t}

}
.

On the other hand if we assume that the t essential participants are the first
t participants from the set P = {1, 2, . . . , n}, then the minimal qualified sets for
the t-(k, n)∗ access structure are described by the set of k participants where
these t essential participants are always there. Thus the collection of all minimal
qualified sets for the t-(k, n)∗ monotone access structure is described as

Γ0 =

{
{i1, i2, ..., ik} : ij = Pj for 1 ≤ j ≤ t; ij ∈ {Pt+1, Pt+2, ..., Pn} for

t+ 1 ≤ j ≤ k
}
.

Now we are going to define the concept of grid based VCS. As in [39], we
consider a binary transparency Y in which each pixel y is either transparent (0)
or opaque (1). Suppose that the value of each pixel y is determined by a biased
coin-flip procedure with parameter λ such that the probability of y = 0 is λ. We
refer to y as a random pixel with Pr(y = 0) = λ. Due to the fact that y = 0 lets
through light, while y = 1 stops it, we define the light transmission of y, denoted
by t(y), to be Pr(y = 0). Formally, the light transmission of a random pixel is
defined as follows.

Definition 1. [39] A random pixel y is said to have a light transmission t(y) =
λ if Pr(y = 0) = λ, where λ is a constant such that 0 < λ < 1.

Once t(y) = λ for each pixel y ∈ Y , we call Y a random grid, defined as follows.

Definition 2. [39] A random grid Y is said to have a light transmission of
T(Y ) = λ if t(y) = λ for each pixel y ∈ Y .

Property 1. [39] If X is a random grid with T(X) = λ, then X ⊗ X is also a
random grid with T(X ⊗ X) = T(X) = λ, where ⊗ denotes Boolean “OR”
operation.

Property 2. [39] If X and Y are two independent random grids with T(X) = λ1
and T(Y ) = λ2, then T(X ⊗ Y ) = λ1λ2.

Notation: As in [36], let S(0) (S(1)) denote the area of all of the transparent
(opaque) pixels in the secret image S, i,e., (i, j)-th pixel S[i, j] of the secret S
is in S(0) (S(1)) if and only if S[i, j] = 0 (S[i, j] = 1) where S = S(0) ∪ S(1)
and S(0) ∩ S(1) = ∅. Likewise, we denote the area of pixels in random grid R
corresponding to S(0)(S(1)) by R[S(0)] (R[S(1)]), i.e., (i, j)-th pixel R[i, j] of
the random grid R is in R[S(0)] (R[S(1)]) if and only if R[i, j]’s corresponding
pixel S[i, j] is in S(0)(S(1)). Needless to mention, R = R[S(0)] ∪ R[S(1)] and
R[S(0)] ∩R[S(1)] = ∅.
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Definition 3. Given an N ×M binary secret image S and valid parameters t,
k and n for t-(k, n)∗ strong access structure on the set of n participants, the set
of random grids R = {R1, R2, . . . , Rn} forms an “OR” based t-(k, n)∗-RGVCS
for the secret image S if the following conditions are satisfied.

1. T(Rj) = 1
2 for all 1 ≤ j ≤ n.

2. Let F denote the collection of all maximal forbidden sets for the t-(k, n)∗

access structure. Then for each F = {Pi1 , Pi2 , . . . , Pip} ∈ F, T(RF [S(0)]) =
T(RF [S(1)]), where RF = Ri1 ⊗ Ri2 ⊗ · · · ⊗ Rip , i.e., t(RF [i, j] | S[i, j] =
0) = t(RF [i, j] | S[i, j] = 1), ∀ i, j.

3. Let Q ∈ Γ0, where Γ0 denotes the collection of all minimal qualified sets.
Then T(RQ[S(0)]) > T(RQ[S(1)]) where RQ = R1 ⊗ R2 ⊗ · · · ⊗ Rq, i.e.,
t(RQ[i, j] | S[i, j] = 0) > t(RQ[i, j] | S[i, j] = 1), ∀ i, j.

Definition 4. For a given t-(k, n)∗-RGVCS, the light contrast for a given set
H ⊆ P, denoted as αH

OR, is defined as

αH
OR = T(RH [S(0)])−T(RH [S(1)]).

3 Proposed “OR” Based Scheme

In this section we propose an efficient method for constructing a t-(k, n)∗-RGVCS
for strong access structure.

3.1 Construction

In the proposed scheme, based on a secret N ×M binary image S, the trusted
Dealer first constructs the shares depending on the given strong t-(k, n)∗ access
structure and then distributes these constructed shares among the participants.
For that the dealer first selects the essential participants and marks them as P1,
P2, . . . , Pt. The rest of the participants are marked as Pt+1, Pt+2, . . . , Pn−1,
Pn. Let S[i, j] denote the (i, j)-th pixel of the secret image S. Let us explain our
proposed method for one secret pixel S[i, j] from the secret image S. For the
construction of shares, for each secret pixel S[i, j], the dealer selects k − 1 − t
participants randomly from Pt+1, Pt+2,. . ., Pn−1. These participants together
with the essential ones form a set A of size k − 1. Then the dealer assigns them
random grids 0 or 1. Now by applying the function f , defined below, the dealer
generates a new share and assigns it to all of the remaining participants. The
function f is defined as follows:

f(s, x) = s⊕ x, (1)

where ⊕ denotes binary “XOR” operation, s, x ∈ {0, 1}.
Detailed description of the share generation algorithm by the dealer is de-

scribed in Algorithm 1.
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Algorithm 1: An efficient algorithm for constructing a t-(k, n)∗-
RGVCS
Input: A binary secret image S of size N ×M , and a strong access structure

t-(k, n)∗ for meaningful triplet (t, k, n) and set P of n participants.
Output: n shares R1, R2, . . ., Rn each of size N ×M .

1 Select the t essential participants from the set P of n participants and denote
them as P1, P2, . . . , Pt. Denote the rest of the participants as Pt+1, Pt+2, . . . ,
Pn−1, Pn.

2 for (i = 1; i ≤ N ; i+ +) do
3 for (j = 1; j ≤M ; j + +) do
4 Generate (k − 1) random grids r1[i, j], r2[i, j], . . . , rk−1[i, j]
5 Randomly select k − t− 1 participants, say Pl1 , Pl2 , . . . , Plk−t−1 from

{Pt+1, Pt+2, . . . , Pn−1}. Let A = {P1, P2, . . . , Pt, Pl1 , Pl2 , . . . , Plk−t−1}

6

Construct a1[i, j], a2[i, j], . . . , ak[i, j] as
a1[i, j] = r1[i, j]
ap[i, j] = f(rp[i, j], ap−1[i, j]) ∀p = 2, 3, . . . , k − 1
ak[i, j] = f(S[i, j], ak−1[i, j])

7 for (q = 1; q ≤ t; q + +) do
8 Rq[i, j]← rq[i, j]
9 end

10 for (q = 1; q ≤ k − t− 1; q + +) do
11 Rlq [i, j]← rt+q[i, j]
12 end
13 Rs[i, j]← ak[i, j], for all

s ∈ {1, 2, . . . , n} \ {1, 2, . . . , t, l1, l2, . . . , lk−t−1}.
14 end

15 end
16 Participant Pi is given the share Ri, i = 1, 2, . . . , n.
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3.2 Illustration of Algorithm 1 through an example

Let us consider the example of 2-(4, 6)∗-RGVCS for the secret black and white
image S of size N ×M . Consider a set P = {P1, P2, . . . , P6} of 6 participants.
Here, t = 2, k = 4 and n = 6. As discussed in Algorithm 1, the two essential
participants are P1 and P2. The aim of Algorithm 1 is to generate 6 shares R1,
R2, . . . , R6 each of size N ×M .

For each pixel S[i, j] of the secret image, the dealer repeats the following:

1. Generate 4-1 = 3 random grids r1[i, j], r2[i, j], and r3[i, j].
2. Choose randomly 4− 2− 1 = 1 participant among P3, P4 and P5. Suppose
P4 is chosen. Therefore, in this case, we consider A = {P1, P2, P4}. Note that
corresponding to the other pixel, say S[i′, j′] in the secret image, suppose P3

is chosen randomly among P3, P4 and P5. In that case, we need to consider
A = {P1, P2, P3}.

3. Then we construct a1[i, j], a2[i, j], a3[i, j] and a4[i, j] as

a1[i, j] = r1[i, j];

a2[i, j] = f(r2[i, j], a1[i, j]);

a3[i, j] = f(r3[i, j], a2[i, j]) and

a4[i, j] = f(S[i, j], a3[i, j]).

4. Considering A = {P1, P2, P4}, the (i, j)th position of R1, R2 and R4, i.e.,
R1[i, j], R2[i, j] and R4[i, j] are assigned with r1[i, j], r2[i, j] and r3[i, j] re-
spectively and each of R3[i, j], R5[i, j] and R6[i, j] is assigned with a4[i, j].

Successful repetition of the above algorithm for all pixels of the secret image
generates 6 sharesR1, R2, R3, R4, R5 andR6 for the six participants P1, P2, P3, P4,
P5 and P6 respectively.

3.3 Discussion on Light Transmission

In this section we are going to prove the correctness of the Algorithm 1 by
showing that the collection of the random grids as an output of the Algorithm
1 satisfies the conditions of Definition 3. Before that let us fix one notation.
Notation: In Algorithm 1, we have seen that for each secret pixel S[i, j], a set
A is generated. Let A denote the collection of all possible A’s.

Let us now proceed by proving the following three Lemmas for a given strong
access structure.

Lemma 1. The light transmission T(Ri) =
1

2
for 1 ≤ i ≤ n.

Proof. A single share Ri is either a random grid or it is generated by using the
function f as defined in Equation (1). The rest of the proof follows from [36].

As the given access structure is a strong access structure, it is sufficient to
discuss the light transmission only for the maximal forbidden sets and for the
minimal qualified sets.
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Lemma 2. For a given t-(k, n)∗-RGVCS, let {Rl1 , Rl2 , . . . , Rlm} denote the set
of shares, obtained in Algorithm 1, corresponding to a maximal forbidden set of
participants F = {Pl1 , Pl2 , . . . , Plm}. Then

T(RF [S(0)]) = T(RF [S(1)]),

where RF = Rl1 ⊗Rl2 ⊗ · · · ⊗Rlm and ⊗ denotes binary “OR” operation.

Proof. Recall that a maximal forbidden set can be of the following two types.
Type I: Sets of size k−1 containing all the t essential participants. Type II: Sets
of size n− 1 containing all but one of the t essential participants.

For Type I sets, while calculating the light transmission, they behave like a
set of size ≤ k − 1 of a (k, k)-scheme. For different choices of A ∈ A, the light
transmission would be different. Let us start with a forbidden set F of Type I.
Now we will try to explicitly write down how this set F behaves under different
choices of A ∈ A. The main thing is that we have to look at the number of
shares in the intersection of A and F . Let for a particular choice of A, | F ∩A |
= h. Light transmission for these sets is given by:

t(RF [i, j]|S[i, j] = 0) =
1

2h+1
= t(RF [i, j]|S[i, j] = 1).

If Pn ∈ F then h can run from t to k − 2. In that case we can choose A ∈ A in(
k−2−t
h−t

)
×
(
n−k+1
k−1−h

)
many ways such that the cardinality of the intersection can

be h. But if Pn /∈ F the number of choices of A, where this happens, becomes(
k−1−t
h−t

)
×
(

n−k
k−1−h

)
. In this case, | F ∩A | not only runs over t to k − 2 but also

can be k − 1 and the latter case is a unique case.
So we get the the total light transmission of F as:

t(RF [i, j]|S[i, j] = 0)

= t(RF [i, j]|S[i, j] = 0)

= 1n− 1− t
k − 1− t




k−2∑
h=t

k − 2− t
h− t

×

n− k + 1
k − 1− h


2h+1

, if Pn∈F

= 1n− 1− t
k − 1− t




1

2k−1
+

k−2∑
h=t

k − 1− t
h− t

×

 n− k
k − 1− h


2h+1

, if Pn 6∈F.

Again for Type II sets, for all choices of A, they behave like sets of size k− 1 of
a (k, k)-scheme. So for these F ’s light transmission would be

t(RF [i, j]|S[i, j] = 0) =
1

2k−1
= t(RF [i, j]|S[i, j] = 1).

This proves the security of our proposed scheme.
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Lemma 3. For a given t-(k, n)∗-RGVCS, let {Rl1 , Rl2 , . . . , Rlq} denote the set
of shares, obtained in Algorithm 1, corresponding to a minimal qualified set of
participants Q = {Pl1 , Pl2 , . . . , Plq}. Then

T(RQ[S(0)]) > T(RQ[S(1)]).

Proof. The minimal qualified sets in the scheme are those having k participants
of which t are essential. Mathematically

Γ0 =

{
{i1, i2, ..., ik}|ij = Pj for 1 ≤ j ≤ t; ij ∈ {Pt+1, Pt+2, ..., Pn} for t+ 1 ≤

j ≤ k
}
.

Let us start with such a minimal qualified set Q. Again as in Lemma 2, to find
the light transmission of Q, we have to look for | Q∩A |. Now | Q∩A | can run
over t to k − 1. If Pn ∈ Q then we have

(
k−1−t
h−t

)
×
(

n−k
k−1−h

)
choices of A where

| Q ∩ A |= h, h < k − 1 and it becomes k − 1 uniquely. But if Pn /∈ Q then
we have

(
k−t
h−t
)
×
(
n−1−k
k−1−h

)
choices of A where | Q ∩ A |= h, h < k − 1 and for(

k−t
k−1−t

)
, i.e. k − t choices it becomes k − 1. So as a whole light transmission of

stacked share for Q is:

t(RQ[i, j]|S[i, j] = 0)

= 1n− 1− t
k − 1− t



 1

2k−1 +
k−2∑
h=t

k − 1− t
h− t

×

 n− k
k − 1− h


2h+1

, if Pn∈Q

= 1n− 1− t
k − 1− t




k − t
2k−1

+
k−2∑
h=t

k − t
h− t

×

n− 1− k
k − 1− h


2h+1

, if Pn 6∈Q.

And

t(RQ[i, j]|S[i, j] = 1)

= 1n− 1− t
k − 1− t




k−2∑
h=t

k − 1− t
h− t

×

 n− k
k − 1− h


2h+1

, if Pn∈Q

= 1n− 1− t
k − 1− t




k−2∑
h=t

k − t
h− t

×

n− 1− k
k − 1− h


2h+1

, if Pn 6∈Q.



10 B.C. Das, M.K. Sardar & A.A.

So light contrast for Q is :

αQ
OR =


1(

n−1−t
k−1−t

) · 1

2k−1
, Pn ∈ Q,

1(
n−1−t
k−1−t

) · k − t
2k−1

, Pn /∈ Q.

As k > t the contrast is a strictly positive quantity in both the cases. So the
scheme obeys the contrast conditions of RGVCS.

Thus we can now state the following theorem:

Theorem 1. For a given secret binary image S and a given strong t-(k, n)∗

threshold access structure with valid parameters t, k and n, the proposed scheme
as described in Algorithm 1 is a t-(k, n)∗-RGVCS with light contrast for a min-
imal qualified set:

αQ
OR =


1(

n−1−t
k−1−t

) · 1

2k−1
, if Pn ∈ Q,

1(
n−1−t
k−1−t

) · k − t
2k−1

, if Pn /∈ Q.

Proof. The proof of the theorem is very much clear from Lemma 1, Lemma 2
and Lemma 3.

Remark 1. In general we can do the same thing for any qualified set of partici-
pants. The light transmission for any qualified set Q of size q will be :

t(RQ[i, j]|S[i, j] = 0)

= 1n− 1− t
k − 1− t





q − 1− t
k − 1− t


2k−1 +

k−2∑
h=t

q − 1− t
h− t

×

 n− q
k − 1− h


2h+1

,

if Pn∈Q

= 1n− 1− t
k − 1− t





 q − t
k − 1− t


2k−1 +

k−2∑
h=t

q − t
h− t

×

n− 1− q
k − 1− h


2h+1

,

if Pn 6∈Q.
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and

t(RQ[i, j]|S[i, j] = 1)

= 1n− 1− t
k − 1− t




k−2∑
h=t

q − 1− t
h− t

×

 n− q
k − 1− h


2h+1

, if Pn∈Q

= 1n− 1− t
k − 1− t




k−2∑
h=t

q − t
h− t

×

n− 1− q
k − 1− h


2h+1

, if Pn 6∈Q.

So light contrast for Q is :

αQ
OR =



1

(n−1−t
k−1−t)

·

q − 1− t
k − 1− t


2k−1 , if Pn ∈ Q,

1(
n−1−t
k−1−t

) ·
(
q − 1− t
k − 1− t

)
2k−1

, if Pn /∈ Q.

Example 1. Let us now illustrate the whole theoretical computation through an
example of t-(k, n)∗-RGVCS with the parameters as t = 2, k = 4 and n = 6.

As we have discussed in the proofs of Lemma 1, Lemma 2 and Lemma 3,
the light contrast of the set of participants (say H) mainly depends on |H ∩A|,
where A ∈ A. So, to start with, let us first identify A for this specific case. In
the current example,

A = {{P1, P2, P3}, {P1, P2, P4}, {P1, P2, P5}}.

We further identify the maximal forbidden set ZM and the minimal qualified set
Γ0 respectively as:

ZM = {{P1, P2, P3}, {P1, P2, P4}, {P1, P2, P5}, {P1, P2, P6},

{P2, P3, P4, P5, P6}, {P1, P3, P4, P5, P6}},

Γ0 = {{P1, P2, P3, P4}, {P1, P2, P3, P5}, {P1, P2, P3, P6},
{P1, P2, P4, P5}, {P1, P2, P4, P6}, {P1, P2, P5, P6}}.

Clearly, for H ∈ ZM ∪ Γ0, |H ∩A| can be 2 or 3. Note that, the light transmis-
sion of the stacked shares corresponding to the set of participants H depends on
whether P6 is an element of the set or not. Keeping this in mind we have catego-
rized all the set of participants as “In” and “Out”, where “In” means P6 ∈ H and
“Out” means P6 6∈ H. Clearly, the elements {P1, P2, P3}, {P1, P2, P4}, {P1, P2, P5}
of A of type I maximal forbidden sets have same behaviour under different
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choices of A whereas {P1, P2, P6} acts differently. On the other hand, the two
type II maximal forbidden sets for this access structure being in “Out” category
have same behaviour. Again, the elements of maximal qualified sets {P1, P2, P3, P4},
{P1, P2, P3, P5} and {P1, P2, P4, P5} are all in “Out” category and {P1, P2, P3, P6},
{P1, P2, P4, P6}, {P1, P2, P5, P6} are all in “In” category. So, discussion on light
transmission for {P1, P2, P3}, {P1, P2, P6}, {P2, P3, P4, P5, P6}, {P1, P2, P3, P4}
and {P1, P2, P3, P6} will be sufficient.

Let H = {P1, P2, P3}. Then |H ∩A| is 2 for
(
4−1−2
2−2

)
×
(

6−4
4−1−2

)
, i.e., 2 choices

of A and it is 3 for a unique case. Now, if H = {P1, P2, P6}, then |H ∩A| is 2 for(
4−2−2
2−2

)
×
(
6−4+1
4−1−2

)
, i.e., for all the choices ofA. Again, ifH = {P2, P3, P4, P5, P6},

then |H∩A| is always 2. Now, for the qualified ones first let H = {P1, P2, P3, P4},
then |H ∩A| is 2 for

(
4−2
2−2
)
×
(
6−1−4
4−1−2

)
, i.e., for only 1 choice of A and it is 3 for

4− 2, i.e., 2 choices of A. Lastly, take H = {P1, P2, P3, P6}, then |H ∩A| is 2 for(
4−1−2
2−2

)
×
(

6−4
4−1−2

)
, i.e., 2 choices of A and it is 3 for a unique choice of A.

In Table 1, we have verified the corresponding light contrasts of H using
these data.

Set of Participants: H n2(A) n3(A) T(RH [S(0)]) T(RH [S(1)]) αH
OR

{P1, P2, P3} 2 1 0.250 0.250 0.000

{P1, P2, P6} 3 0 0.250 0.250 0.000

{P2, P3, P4, P5, P6} 3 0 0.250 0.250 0.000

{P1, P2, P3, P4} 1 2 0.167 0.083 0.083

{P1, P2, P3, P6} 2 1 0.208 0.167 0.042

Table 1: Verification table of light contrast for the access structure 2-(4, 6)∗-RGVCS,
where n2(A) and n3(A) denote the number of choices of A for which |H ∩A| is 2 and
3 respectively.

Remark 2. If we have a deeper look at the algorithm as described in Algorithm 1,
we see that when constructing the k−1 set A ∈ A, we have never selected Pn as
an element of A. But if we include it in our choice then also we will get a scheme
for t-(k, n)∗-RGVCS. The light contrast for that scheme can also be calculated
exactly in the same manner as we have done in Theorem 1. Notice that in our
Algorithm 1, Pn is treated same as the other non essential participants. So, for
the current case, the light transmission will be same for all the sets of a fixed
length. As a result, instead of

(
n−1−t
k−1−t

)
, we will have

(
n−t

k−1−t
)

choices for selecting
the k − 1 set. So in a nutshell we can have the following theorem.

Theorem 2. Given a secret binary image S and n participants, of which t are
essential, sharing the secret binary image S with a threshold value k, the above
procedure, described in Remark 2, produces a t-(k, n)∗-RGVCS with light contrast

ᾱQ
OR for a minimal qualified set Q ⊆ P and is given by

ᾱQ
OR =

1(
n−t

k−1−t
) · 1

2k−1
.



Efficient RGVCS for (t, k, n)-Access Structure 13

Note: It is clear from the closed forms of ᾱQ
OR and αQ

OR (even in “In” case) that,

αQ
OR gives higher value than ᾱQ

OR and they become same when t = k − 1.

3.4 Comparison with the Schemes Proposed by Wu and Sun [43]
and Shyu [38]

Up to the best of our knowledge, our proposed scheme is the first proposed
scheme for t-(k, n)∗-RGVCS. As a result, it is not possible for us to compare our
scheme with the existing schemes. However, we can construct t-(k, n)∗-RGVCS,
as particular cases, from the random grid based schemes for general access struc-
tures. In this section we are going to compare our proposed Algorithm 1 with the
customized schemes, obtained as a particular case from general access structures
proposed in [43] and [38]. Up to the best of our knowledge, these are the most
efficient schemes for general access structures that exist in the literature.

If we apply the scheme proposed in [43] on the access structure for t-(k, n)∗

we have the following theorem:

Theorem 3. (customized from [43]) For a given secret binary image S and valid
parameters t, k and n for a t-(k, n)∗ access structure, the scheme described in
[43] produces a t-(k, n)∗-RGVCS with light contrast:

αw =
1(

n−t
k−t
) · 1

2k−1
.

If we apply the scheme proposed by Shyu [38] on the access structure for
t-(k, n)∗ we have the following theorem:

Theorem 4. (customized from [38]) For a given secret binary image S and valid
parameters t, k and n for a t-(k, n)∗ access structure, the scheme described in
[38] produces a t-(k, n)∗-RGVCS with light contrast:

αs = 1
2K

, where K = 1 +

k−1∑
h=t

(
k − t
h− t

)(
n− k
k − h

)
h.

Remark 3. It is not difficult to check that the light contrast for our scheme is
better than that of the schemes proposed in [43] and [38]. Numerical evidences
from Table 2 show that our scheme performs much better than the existing
schemes in terms of light contrast.

4 Non Monotone Access Structure: “XOR” Based
Scheme

In the previous section our proposed construction of t-(k, n)∗-RGVCS uses tradi-
tional binary “OR” operation at secret reconstruction phase which requires the
decoding to be implemented by sight reading. However, in literature there are
visual cryptographic schemes where the secret reconstruction is done by binary
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“XOR” operation instead of “OR” operation to increase the relative contrast of
the decoded image. Note that the use of XOR operation indicates that the decod-
ing must be performed computationally and not visually. Keeping that in mind
we will now apply the “XOR” operation to our construction with an intuition
that it will result to a non-monotone access structure for t-(k, n)∗-XOR-based
Random Grid VCS, we call it as t-(k, n)∗-XRVCS. The reason of saying the spe-
cific kind of access structure as non-monotone is that there is no guarantee for
a super set of a minimal qualified set to be a qualified set again. The definitions
for t-(k, n)∗-XRGVCS and the corresponding light contrast are similar to that
of the Definition 3 and Definition 4, except for the fact that instead of applying
“OR” operation we shall use “XOR” operation for superimposition of shares.
We denote the light contrast corresponding to a set of participants H ⊆ P for
a t-(k, n)∗-XRGVCS by αH

XOR.

Remark 4. From the construction of our scheme it is clear that we are doing
nothing but repeated application of (k, k) scheme. So, to start with, we put
t = 0, k = n in our construction as described in Algorithm 1 and apply “XOR”
operation in the secret reconstruction phase to get the following theorem.

Theorem 5. If we put t = 0, k = n in our construction as described in Al-
gorithm 1 and replace the binary “OR” operation by “XOR” operation in the
reconstruction phase, we obtain a (k, k)-XRGVCS with perfect light contrast 1.

Proof. Firstly, for single shares Ri, 1 ≤ i ≤ n, as we have discussed previously,

T(Ri) =
1

2
,∀1 ≤ i ≤ n.

In this specific access structure the maximal forbidden sets are the sets of
participants with cardinality (k− 1). When participants of such a set try to get
back the secret by “XOR”ing their corresponding shares, the following two cases
arise:

Case I: It may happen that all the (k−1) pixels corresponding to chosen secret
pixel are assigned with random grids. Then

t(RF [i, j] | S[i, j] = 0)

= Pr(RF [i, j] = 0 | S[i, j] = 0)

= Pr(r1[i, j]⊕ · · · ⊕ rk−1[i, j] = 0 | S[i, j] = 0)

= Pr(r1[i, j]⊕ · · · ⊕ rk−1[i, j] = 0)

= Pr(r1[i, j]⊕ · · · ⊕ rk−1[i, j] = 0 | S[i, j] = 1)

= Pr(RF [i, j] = 0 | S[i, j] = 1)

= t(RF [i, j] | S[i, j] = 1).



Efficient RGVCS for (t, k, n)-Access Structure 15

Case II: It may also happen that one of the pixels, say rk[i, j] is assigned with
the grid generated by f function as described in Equation 1. Then

t(RF [i, j] | S[i, j] = 0)

= Pr(RF [i, j] = 0 | S[i, j] = 0)

= Pr(r1[i, j]⊕ · · · ⊕ rk−2[i, j]

⊕ ak[i, j] = 0 | S[i, j] = 0)

= Pr(S[i, j]⊕ rk−1[i, j] = 0 | S[i, j] = 0)

= Pr(rk−1[i, j] = 0 | S[i, j] = 0)

= Pr(rk−1[i, j] = 1 | S[i, j] = 1)

= Pr(S[i, j]⊕ rk−1[i, j] = 0 | S[i, j] = 1)

= Pr(RF [i, j] = 0 | S[i, j] = 1)

= t(RF [i, j] | S[i, j] = 1).

Now for the minimal qualified set, that is to say for the set of all k participants:

t(RF [i, j] | S[i, j] = 0)

= Pr(r1[i, j]⊕ · · · ⊕ rk−1[i, j]⊕ ak[i, j] = 0 | S[i, j] = 0)

= Pr(S[i, j] = 0 | S[i, j] = 0)

= 1

and

t(RF [i, j] | S[i, j] = 1) = Pr(S[i, j] = 0 | S[i, j] = 1)

= 0.

Hence we have the theorem.

The following theorem shows what will happen if we apply the same above
technique to Algorithm 3 of [39]. We put (S) in the expression αQ

XOR(S) to
emphasize that the method is originated from the scheme proposed by Shyu in
[39].

Theorem 6. If we replace the “OR” operation by “XOR” operation in the re-
construction phase of Algorithm 3 of [39], then the modified scheme leads to

a non-monotone (k, n)-XRGVCS with light contrast αQ
XOR(S) for the minimal

qualified set Q, which is given by

αQ
XOR(S) =

1(
n
k

) .
Proof. Firstly, for single shares Ri, 1 ≤ i ≤ n, as we have discussed previously,

T(Ri) =
1

2
,∀1 ≤ i ≤ n.
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If we look back at the construction of Algorithm 3 of [39] we note that the
participants get
q1, q2, . . . , qk, g1, g2, . . . , gn−k as shares, where q1, q2, . . . , qk form shares for a
(k, k) scheme.

From Theorem 5, it is clear that only when q1, q2, . . . , qk are stacked together,
there will be difference in light transmission for areas corresponding to black
pixels with that of the areas corresponding to white pixels of the secret. So, for
F ∈ ZM , |F | = k − 1 implies at least one of q1, q2, . . . , qk is not assigned to any
element of F as share. Clearly, F will have equal light transmission corresponding
to the areas of all white as well as black pixels of the secret. If Q ∈ Γ0, i.e.,
|Q| = k, then only in the unique case, where elements of Q are assigned with
q1, q2, . . . , qk, t(RQ[i, j] | S[i, j] = 0) = 1 and t(RQ[i, j] | S[i, j] = 1) = 0. But we
have

(
n
k

)
many choices to select those k participants out of those n participants.

So we have light contrast corresponding to the set Q of participants as

αQ
XOR(S) =

1(
n
k

) .
Hence we have the theorem.

Now we shall discuss the corresponding case for general t, k and n as described
in Algorithm 1.

Theorem 7. “XOR” operation in the reconstruction phase of Algorithm 1 leads
to a Non-Monotone t-(k, n)∗-XRGVCS with light contrast αQ

XOR, where

αQ
XOR =


1

(n−1−t
k−1−t)

, if Pn ∈ Q
k−t

(n−1−t
k−1−t)

, if Pn 6∈ Q,

where Q is a minimal qualified set.

Proof. The proof follows the same line of arguments as in the proofs of Lemma 1,
Lemma 2 and Lemma 3. The only thing that is different here is the values of light
transmission of a set of participants under different choices of A. For single share,
the value of light transmission is independent of black and white secret pixel. Now
let for F ∈ ZM , |F ∩A| = h. So, h runs from t to k−1. As discussed in Theorem
6, here also, F will have same light transmission for all the areas corresponding to
white and black pixels of the secret S. Again, forQ ∈ Γ0 when |Q∩A| = k−1 then
elements of Q are assigned with r1, r2, . . . , rk−1, ak. So, only for those choices of
A ∈ A, Q will have different values of light transmission for area corresponding
to black region of secret with that corresponding to white region. From Lemma
3, it is clear that light contrast for the stacked share corresponding to Q will be:

αQ
XOR =


1(

n−1−t
k−1−t

) , if Pn ∈ Q

k − t(
n−1−t
k−1−t

) , if Pn 6∈ Q.
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Hence the theorem.

Corollary 1. A non monotone t-(k, n)∗-XRGVCS gives optimal light contrast
1 if k = t+ 1 or n = k + 1.

Proof. The result follows by putting the value of n as k+ 1 or k as t+ 1 in the
expression of αQ

XOR in Theorem 7.

Remark 5. The Theorem 7 shows that for a (k, n)-XRGVCS, our scheme works
better than the scheme as described in Theorem 6.

The next theorem shows that our “XOR” based t-(k, n)∗-XRGVCS works
much better than our “OR” based t-(k, n)∗-RGVCS.

Theorem 8. Our proposed t-(k, n)∗-XRGVCS is much more efficient than our
proposed t-(k, n)∗-RGVCS with respect to light contrast.

Proof. For a minimal qualified set Q, the light contrast of t-(k, n)∗-RGVCS
constructed in Algorithm 1 is given by

αQ
OR =


1

(n−1−t
k−1−t)

1

2k−1
, if Pn ∈ Q

k−t
(n−1−t
k−1−t)

1

2k−1
, if Pn 6∈ Q.

So, comparing with αQ
XOR, we have if Pn ∈ Q, then

αQ
XOR =

1(
n−1−t
k−1−t

) > 1(
n−1−t
k−1−t

) 1

2k−1
,

and if Pn 6∈ Q, then

αQ
XOR =

k − t(
n−1−t
k−1−t

) > k − t(
n−1−t
k−1−t

) 1

2k−1
.

Hence we have the theorem.

5 Experiment and Discussions

In this section we shall validate our theoretical results through experimental
simulations. For that let us first fix few notations. Let R be a set of all n
random grids, obtained through our proposed Algorithm 1, corresponding to a
t-(k, n)∗ access structure with valid parameters t, k and n. Let H ⊆ R be such
that 1 ≤ h(=| H |) ≤ n. For experimental verification, we use a Python code
which superimposes all the shares coming from the participants in H. In Tables
6, 7 and 8, we compare the analytic light contrasts αH

OR and αH
XOR obtained in

Section 3.3 and Section 4 respectively against the experimental values as done in
Experiments 1, 2 and 3. To calculate the experimental values of light contrast, we
use the following notations. Recall that RH [S(0)](RH [S(1)]) denotes the area of
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pixels in the stacked share RH corresponding to S(0)(S(1)), where S(0)(S(1))
is the area of all transparent (opaque) pixels in the secret image S. Then we
calculate the experimental light contrast eαH

OR for “OR” based scheme as

eαH
OR =

η0(RH [S(0)])

η0(S)
− η0(RH [S(1)])

η1(S)
,

where η0(X)(η1(X)) denotes the number of transparent (opaque) pixels in X.
Similarly, we calculate the experimental light contrast eαH

XOR, for “XOR” based
RGVCS.

We have also given comparison table of numerical values of light contrast of
our scheme with that of the already proposed general access structures restricted
to customized t-(k, n)∗ scenario. Comparison among different schemes in terms
of numerical values of the light contrast and their corresponding graphical rep-
resentations are shown in Tables 2, 3 and in Figures 4, 5. In this section the
computer programs are coded in Python Builder, run in a PC with operating
system UBUNTU 16.04. The graphs are prepared with TikZ in LATEX. We have
given three experiments. Experiment 1, Experiment 2 and Experiment 3 have
discussion on access structures 1-(2, 4)∗, 1-(3, 5)∗ and 2-(3, 5)∗.

Remark 6. Recently, a new scheme is proposed in [34] . However, as the model
does not match with our model of random grid, we are unable to compare the
scheme with our scheme.

Experiment 1 for RGVCS In this experiment we have prepared four shares
for 1-(2, 4)∗-RGVCS. Here in the superimposition stage we have used the binary
“OR” operation of the shares. In Fig. 1, (a) is the secret binary image and (b)-
(e) are the four shares: R1, R2, R3, and R4. Note that R1 is the share of the
only essential participant. Here (f), (g), (h), (i), (j) are the superimposed images
corresponding to R2⊗R3, R1⊗R2, R1⊗R4, R1⊗R2⊗R3 and R1⊗R2⊗R3⊗R4.
From the images we can note that the superimposed image of R2 ⊗R3 does not
reveal anything about the secret, as R1, the share for P1, is not present in that
superimposition, which verifies {P2, P3} as a Type 1 maximal forbidden set. At
the same time R1 ⊗R2 gives back the image with some loss of light contrast as
expected from Lemma 3. Also from (g) and (h) it is clear that R1⊗R4 gives the
same light contrast as R1 ⊗R2.

The corresponding values of αH
OR, eα

H
OR are summarized in Table 6. One can

easily notice from the table that αH
OR- eαH

OR is less than 0.004 for each of the
cases. So, we realize that the analytic values of light contrast are pretty close to
that of the experimental values. In Table 6, we further compare the values for
αH
XOR and the corresponding experimental values for eαH

XOR. So in a nutshell
we have a verification for our proposed algorithm for a 1-(2, 4)∗-RGVCS.

Experiment 2 for RGVCS In this experiment we have prepared five shares
for an 1-(3, 5)∗-RGVCS. In Fig.2, (a) is the secret and (b) to (f) are the five
shares: R1, R2, R3, R4, and R5. Note that R1 is the share for the only essential
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 1: Implementation results of 1-(2, 4)∗-RGVCS. Here (a) stands for the secret S.
(b) stands for the random grid R1. (c) R2. (d) R3. (e) R4. (f) Stands for the stacked
image R2 ⊗R3. (g) R1 ⊗R2. (h) R1 ⊗R4. (i) R1 ⊗R2 ⊗R3. (j) R1 ⊗R2 ⊗R3 ⊗R4

participant P1. Here (g), (h), (i), (j), (k), (l) are the superimposed images corre-
sponding to R1⊗R2, R1⊗R3⊗R4, R1⊗R2⊗R3, R1⊗R2⊗R5 R1⊗R2⊗R3⊗R4,
and R1⊗R2⊗R3⊗R4⊗R5. From the images it is clear that the superimposed
image of R2 ⊗ R3 ⊗ R4 does not reveal anything about the secret, as R1 is not
present in that superimposition. Which gives the verification of {P2, P3, P4}. At
the same time R1⊗R2⊗R3 gives back the image with some loss of light contrast
as expected. Also from (i) and (j) in Fig.2 it is clear that whenever R5 is in-
cluded in the superimposition (R1⊗R2⊗R5 the light contrast is relatively less,
which verifies the different values of light contrast corresponding to two minimal
qualified sets, one containing Pn, another not containing it.

The corresponding values of αH
OR, eα

H
OR and their differences are summarized

in Table 7. One can easily notice from the table that αH
OR − eαH

OR is less than
0.004 for each of the cases. So, we realize that the analytic values of light contrast
are pretty close to that of the the experimental values. In Table 7, we further
compare the values for αH

XOR and the corresponding experimental values for
eαH

XOR. So in a nutshell we have a verification for our proposed algorithm for
1-(3, 5)∗-RGVCS.

Experiment 3 for XRGVCS In this experiment we have prepared five shares
for a 2-(3, 5)∗-XRVCS, where we perform binary “XOR” operation of the shares
coming from participants in the superimposition stage. In Fig.3, (a) is the secret
S and (b) to (f) are five shares: R1, R2, R3, R4, and R5. Note that R1 and R2 are
the shares for the essential participants P1 and P2 respectively, while (g), (h), (i),
(j) are the superimposed images corresponding to R1 ⊕R2, R1 ⊕R2 ⊕R3 ⊕R4,
R1⊕R2⊕R3⊕R4⊕R5, and R1⊕R2⊕R3. From the figure we can note that the
none of the superimposed images except R1⊕R2⊕R3 and R1⊕R2⊕R3⊕R4⊕R5
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

Fig. 2: Implementation results for 1-(3, 5)∗-RGVCS. Here (a) stands for the secret S.
(b) stands for the random grid R1. (c) R2. (d) R3. (e) R4. (f) R5. (g) Stands for the
stacked image R1 ⊗ R2. (h) R2 ⊗ R3 ⊗ R4. (i) R1 ⊗ R2 ⊗ R3. (j) R1 ⊗ R2 ⊗ R5. (k)
R1 ⊗R2 ⊗R3 ⊗R4. (l) R1 ⊗R2 ⊗R3 ⊗R4 ⊗R5

reveals anything about the secret. The case of R1⊕R2⊕R3 is evident from the
Theorem 7. For the case of R1 ⊕R2 ⊕R3 ⊕R4 ⊕R5, R4, R5 does not make any
difference in the stack share, because they carry the same pixels.

The corresponding values of the theoretical values αH
XOR and the correspond-

ing experimental values eαH
XOR and their differences are summarized in Table

8. One can easily notice from the table that αH
XOR − eαH

XOR is less than 0.004
for each of the cases. This implies that the analytic values of light contrast are
pretty close to that of the the experimental values. In Table 8, we further com-
pare the values for αH

OR and the corresponding experimental values for eαH
OR.

So in a nutshell we have a verification for our proposed algorithm for 2-(3, 5)∗-
XRGVCS.

6 Conclusion

In this paper we propose efficient direct constructions of algorithms for both
“OR” and “XOR” based t-(k, n)∗ schemes for RGVCS and come up with the
closed forms of light contrast. Our theoretical as well as experimental simulated
results show that our algorithms work efficiently. Obtaining closed forms of the
optimal light contrast for both “OR” and “XOR” based VCSs for t-(k, n)∗ access
structure would be a challenging future research work in the field of RGVCS.
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 3: Implementation results for 2-(3, 5)∗-XRGVCS, where “⊕” stands for binary
“OR” operation. Here (a) stands for the secret S. (b) stands for the random grid
R1. (c) R2. (d) R3. (e) R4. (f) R5. (g) Stands for the stacked image R1 ⊕ R2. (h)
R1 ⊕R2 ⊕R3 ⊕R4. (i) R1 ⊕R2 ⊕R3 ⊕R4 ⊕R5. (j) R1 ⊕R2 ⊕R3

Access Structures
Our

Wu Shyu(Q) Shyu(F)
In Out

A0 : 1-(2, 3)∗ 0.500 0.500 0.250 0.250 0.500

A1 : 1-(2, 4)∗ 0.500 0.500 0.167 0.125 0.500

A2 : 1-(3, 4)∗ 0.125 0.250 0.083 0.016 0.125

A3 : 1-(3, 5)∗ 0.083 0.167 0.042 0.000 ∗1 0.063

A4 : 1-(3, 6)∗ 0.063 0.125 0.025 0.000 ∗2 0.031

A5 : 1-(4, 5)∗ 0.042 0.125 0.025 0.000 ∗3 0.016

A6 : 1-(4, 6)∗ 0.021 0.063 0.013 0.000 ∗4 0.001

A7 : 2-(3, 6)∗ 0.250 0.250 0.063 0.004 0.250

A8 : 2-(4, 5)∗ 0.063 0.125 0.042 0.002 0.063

A9 : 2-(4, 6)∗ 0.042 0.083 0.021 0.000 ∗5 0.031

A10 : 2-(5, 6)∗ 0.021 0.062 0.016 0.000 ∗6 0.008

A11 : 2-(5, 7)∗ 0.010 0.031 0.006 0.000 ∗ 7 0.000 ∗1
A12 : 3-(5, 7)∗ 0.042 0.083 0.010 0.000 ∗8 0.016

A13 : 3-(6, 7)∗ 0.010 0.031 0.008 0.000 ∗9 0.004

A14 : 3-(6, 8)∗ 0.005 0.016 0.003 0.000 ∗10 0.000 ∗1
A15 : 3-(7, 8)∗ 0.004 0.016 0.003 0.000 ∗11 0.000 ∗12

Table 2: Comparison of different “OR” based light contrasts for differ-
ent access structures, where ∗1, ∗2, ∗3, ∗4, ∗5, ∗6, ∗7, ∗8, ∗9, ∗10, ∗11, ∗12 correspond
to the 3 digit approximations of the terms 1
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respectively. Here “In” and “Out” stands for the

cases when nth participant Pn ∈ Q and Pn 6∈ Q respectively, where Q is the minimal
qualified set. Further Shyu (Q) and Shyu (F) represent respectively the value of light
contrasts obtained in schemes proposed by Shyu in Theorem 2 and Theorem 3 in [38]
(See Fig.4).
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Fig. 4: (i) and (ii) represent the graphical representation of the values from Table 2.
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Access Structures
OR XOR

In Out In Out

A0 : 1-(2, 3)∗ 0.500 0.500 1.000 1.000

A1 : 1-(2, 4)∗ 0.500 0.500 1.000 1.000

A2 : 1-(2, 5)∗ 0.500 0.500 1.000 1.000

A3 : 1-(3, 4)∗ 0.125 0.250 0.500 1.000

A4 : 1-(3, 5)∗ 0.083 0.167 0.333 0.667

A5 : 1-(3, 6)∗ 0.063 0.125 0.250 0.500

A6 : 1-(4, 5)∗ 0.042 0.125 0.333 1.000

A7 : 1-(4, 6)∗ 0.021 0.063 0.167 0.500

A8 : 2-(3, 4)∗ 0.250 0.250 1.000 1.000

A9 : 2-(3, 5)∗ 0.250 0.250 1.000 1.000

A10 : 2-(3, 6)∗ 0.250 0.250 1.000 1.000

A11 : 2-(4, 5)∗ 0.063 0.125 0.500 1.000

A12 : 2-(4, 6)∗ 0.042 0.083 0.333 0.667

A13 : 3-(4, 5)∗ 0.125 0.125 1.000 1.000

A14 : 3-(5, 6)∗ 0.031 0.063 0.500 1.000

A15 : 3-(6, 7)∗ 0.010 0.031 0.333 1.000

Table 3: Comparison table: our proposed “OR” based RGVCS and our “XOR” based
XRGVCS (See Fig.5).
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Fig. 5: Graphical representation of values for our “OR” and “XOR” based schemes as
shown in Table 3.
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Set of Participants Shyu(Q) Shyu(F) Wu
Our

In Out

S0 : {P1} 0.000 0.000 0.000 0.000 0.000

S1 : {P1, P2} 0.125 0.500 0.167 0.500 1.000

S2 : {P1, P4} 0.125 0.500 0.167 0.500 1.000

S3 : {P1, P2, P3} 0.125 0.500 0.167 0.500 NS

S4 : {P1, P2, P4} 0.125 0.500 0.167 0.500 NA

S5 : {P1, P2, P3, P4} 0.125 0.500 0.125 0.500 NA

Table 4: Comparison of access Structures 1-(2, 4)∗ (See Fig.6).

Set of Participants Shyu(Q) Shyu(F) Wu
Our

In Out

S0 : {P1} 0.000 0.000 0.000 0.000 0.000

S1 : {P1, P2} 0.000 0.000 0.000 0.000 0.000

S2 : {P1, P5} 0.000 0.000 0.000 0.000 0.000

S3 : {P1, P2, P3} 0.000 ∗1 0.063 0.042 0.167 0.667

S4 : {P1, P2, P5} 0.000 ∗1 0.063 0.042 0.083 0.333

S5 : {P1, P2, P3, P4} 0.000 ∗2 0.063 0.063 0.167 NS

S6 : {P1, P2, P3, P5} 0.000 ∗2 0.063 0.063 0.167 NA

S7 : {P1, P2, P3, P4, P5} 0.000 ∗1 0.063 0.042 0.250 NA

Table 5: Access Structure: 1-(3, 5)∗, where ∗1 and ∗2 corresponds to the 3 digit approx-
imations of the terms 1

2048
and 1

4096
respectively (See Fig.7).
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Fig. 6: 1-(2, 4)∗ RGVCS (See Table 4)
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Fig. 7: 1-(3, 5)∗ RGVCS (See Table 5).

Set of Participants: H αH
OR eαH

OR αH
XOR eαH

XOR

{P1, P2} 0.5000 0.5004 1.0000 1.0000

{P1, P4} 0.5000 0.5004 1.0000 1.0000

{P2, P3} 0.000 0.0000 0.0000 0.0000

{P1, P2, P3} 0.5000 0.5000 NA NA

{P1, P2, P4} 0.5000 0.5000 NA NA

{P2, P3, P4} 0.0000 0.0000 NA NA

{P1, P2, P3, P4} 0.5000 0.5004 NA NA

Table 6: 1-(2, 4)∗-RGVCS

Set of Participants: H αH
OR eαH

OR αH
XOR eαH

XOR

{P2, P3} 0.0000 0.0000 0.0000 0.0002

{P1, P2, P3} 0.1669 0.1667 0.6667 0.6658

{P1, P2, P5} 0.0833 0.0831 0.3333 0.3330

{P2, P3, P4} 0.0000 0.0000 0.0000 0.0001

{P1, P2, P3, P4} 0.1666 0.1669 NA NA

{P1, P2, P3, P5} 0.1666 0.1669 NA NA

{P2, P3, P4, P5} 0.0000 0.0000 NA NA

{P1, P2, P3, P4, P5} 0.2500 0.2498 NA NA

Table 7: 1-(3, 5)∗-RGVCS
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Set of Participants: H αH
OR eαH

OR αH
XOR eαH

XOR

{P1, P2} 0.0000 0.0004 0.0000 0.0003

{P1, P2, P3} 0.2500 0.2495 1.0000 1.0000

{P1, P2, P5} 0.2500 0.2495 1.0000 1.0000

{P2, P3, P4} 0.0000 0.0002 0.0000 0.0007

{P1, P2, P3, P4} 0.2500 0.2495 NA NA

{P1, P2, P3, P5} 0.2500 0.2495 NA NA

{P2, P3, P4, P5} 0.0000 0.0002 NA NA

{P1, P2, P3, P4, P5} 0.2500 0.2495 NA NA

Table 8: 2-(3, 5)∗-RGVCS
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