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Abstract—A public key infrastructure (PKI) binds public keys
to the identities of their respective owners. It employs certificate
authorities or a web of trust over social links to transitively
build cryptographic trust across parties in the form of chains
of certificates. In existing PKIs, Alice cannot send a message
to Bob confidentially until a complete chain of trust from Alice
to Bob exists. We observe that this temporal restriction—which
may be severely limiting in some contexts like whistleblowing—
can be eliminated by combining webs of trust with concepts from
hierarchical identity-based encryption.

Specifically, we present a novel protocol that allows Alice
to securely send a message to Bob, binding to any chain of
social links, with the property that Bob can decrypt the message
only after trust has been established on all links in the chain.
This trust may be established either before or after Alice has
sent the message, and it may be established in any order on
the links. We prove the protocol’s security relative to an ideal
functionality, develop a prototypical implementation and evaluate
the implementation’s performance for a realistic environment
obtained by harvesting data from an existing web of trust. We
observe that our protocol is fast enough to be used in practice.

I. INTRODUCTION

Establishing cryptographic trust in electronic communica-
tion is a non-trivial task. When the communicating parties
do not exchange key material offline or when a client does
not verify key material received from a server in an offline
meeting, it is very hard to ascertain that the connection is
authentic, i.e., that no adversary can eavesdrop or manipulate
messages. One approach to this problem is using a Public-Key
Infrastructure (PKI), in which a trusted third party, called a
Certificate Authority (CA) verifies a person’s identity offline to
ensure that the person is actually who they claim to be and then
creates a certificate for that person’s public key. This signature
can afterwards be verified by anyone using the CA’s public key
and trusting the CA. However, the problem with this approach
is the requirement of a trusted third party, which, as a so-called
trust anchor, is a very natural entry point for an attacker who
wants to compromise the system through vulnerabilities [10],
[11] or legal pressure.

Moreover, employing a CA’s service may not always be
financially feasible for end-users. As a result, several large-
scale online services such as Apple iMessage and WhatsApp
now offer end-to-end encrypted communication capabilities to
their users employing a centralized directory of public keys
that the online service maintains. As these public key services
remain vulnerable to attacks [1] similar to those on CAs, some

providers are considering use of systems like CONIKS [23]
that protect confidentiality as long as at least one of several
centralized service providers remains uncompromised.

The email and file encryption tool Pretty Good Privacy
(PGP), instead, relies on a completely distributed trust system
that is not based on centralized CAs or service providers, but
on the fact that people tend to know and reliably authenticate
their friends. This fact is used to obtain the necessary trust in
public keys of people transitively along the is-friend relation,
resulting in a so-called Web of Trust (WoT). In a WoT,
everyone implicitly acts as a CA for their immediate friends,
and signs their keys. A user trusts everyone to properly verify
their friends. Because signatures on keys are published, every
user can try to find a trustworthy path through this web of
trust to the message’s recipient and, if such a path exists,
the sender can be reasonably sure that the communication is
secure. Although WoT has known usability issues, there is
renewed interest in WoT in the community, e.g., in the form
of the recent rebooting-the-web-of-trust effort [2].

In all public key (or certificate) verification systems de-
scribed above as well as in most other peer-to-peer communi-
cation systems [9], [16], [25], [31], a user can send a signed
message to any receiver even before a trusted from the sender
to the receiver exists. (Of course, the receiver can authenticate
the message only after the trusted path exists.) This is, how-
ever, not possible for confidential/encrypted communication: a
trusted path from the sender to the recipient is necessary before
the sender can securely encrypt a message for the recipient.
There is no way for the sender to send the message and for
the recipient to start participating in the system only afterwards
(perhaps, specifically to decrypt the message). While this might
seem like a problem that can be solved by telling the recipient
to participate in the system and waiting for them to do so
before sending the message, often the circumstances of the
sender make it too risky to wait. The problem is particularly
relevant for contexts like whistleblowing, where the adversary
is very strong and the whistleblower may not have a second
opportunity to contact the intended recipient or may be in
constant danger of being persecuted. As result, there is real-
world need for a solution for PKI/WoT where a sender can
encrypt a message before a trusted path to the recipient is
formed.

Contributions. Ours is the first work to address the problem
of allowing confidential communication in a PKI/WoT before
bootstrapping trust (or link verification) between the communi-
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cating parties. In particular, we propose an enhanced PKI cer-
tification process that incorporates, in addition to public keys,
a form of hierarchical identity-based encryption (HIBE) [7],
[17], [19], [20]. In HIBE, a sender can encrypt a message to
an arbitrary, subsequently verifiable identifier of the recipient
(e.g., the recipient’s email address or social security number).
The recipient can decrypt the message by establishing a chain
of trust leading to a private key generator (PKG), possibly
after the message was encrypted. Our scheme employs the
HIBE idea in a WoT/PKI setting. It functions like an ordinary
WoT, but allows a sender to send an encrypted message to a
recipient to whom a verified path may not already exist, and
even in cases when the recipient is not already a part of the
system. The scheme guarantees that the recipient can decrypt
the message only after a verified path from the sender to the
recipient has been established. With our scheme in place, a
sender like a whistleblower can send her message immediately
and exit the system without waiting for the recipient to join
the system. Owing to its dependence on both identity-based
encryption and webs of trust, we call our scheme an Identity
Web of Trust (IWoT).

To send a message in an IWoT, the sender chooses a path to
the recipient. The path is split into subpaths of contiguous links
that have already been verified and contiguous links that have
not already been verified. Roughly speaking, encryption is lay-
ered, using one HIBE encryption for every unverified subpath.
Later, when individuals along the non-verified subpaths verify
each other, they execute a designated authentication protocol
that reveals evidence of the verification publicly. After all links
on the path have been verified, the recipient can combine
the public evidence to generate enough keys to decrypt the
message. The key challenges in designing the scheme lie
in coming up with public evidence of verification of a link
that, when combined along a path, allows for decryption, and
designing the protocol in a way that allows the links along a
path to be verified in any order.

We define the security of our scheme as an ideal func-
tionality, and formally prove the security of the protocol in
the simulation-based security paradigm [21]. We have also
implemented a Java library that provides all necessary IWoT
functions and thoroughly evaluated its performance for a re-
alistic environment built by harvesting an existing WoT graph
from the SKS OpenPGP key server [24]. We also describe
extensions that employ multiple encryption paths for better
confidentiality and availability, offer source authentication, and
provide ciphertext anonymity.

Organization. Section II provides some background about
webs of trust and identity-based cryptography. In Section III,
we present our problem statement and offer an overview of
IWoT. We describe the detailed cryptographic construction in
Section IV, and provide an ideal functionality and show our
scheme secure relative to the functionality assuming standard
security for the underlying HIBE and public-key schemes in
Section V. We implement our scheme and evaluate the over-
heads of its individual operations in Section VI. We discuss
security, privacy, and availability enhancements in Section VII.

II. BACKGROUND

This section provides necessary background on webs of
trust and identity-based encryption, both of which we use as
primitives in our work.

A. Web of Trust

A public key infrastructure (PKI) binds public keys to
the identities of their respective owners through a chain of
certificates. Although, in the industry and the government,
trustworthy binding is typically established through a com-
mercial engagement with a trusted certificate authority (CA),
a web of trust offers an interesting alternative by employing
transitive trust over social links.

A web of trust (WoT) is an overlay on an underlying graph
of trust relationships with the goal of verifying public keys of
the nodes (parties) in the underlying graph. When party B gets
to know party A (through friendship, professional contact, or
through offline document verification), it can sign A’s public
key with its own private key and publish the signature. If a
third-party C knows B’s public key and it trusts B to have
authenticated A correctly, it can now trust A’s public key to
actually be A’s. This trust in A’s public key can be extended
transitively. More importantly, even if a single chain from
a verifier to a verified party is not entirely trusted by the
verifier, the verifier might still have substantial confidence in
the public key of the verified party through several distinct
chains leading from the verifier to the verified party. PGP [3] is
a widely employed implementation of webs of trust. Emerging
research on blockchains and the development community are
also drawing fresh attention to the WoT concept [2].

In our work, we use WoT as the basis for our solution.
However, our solution remains equally applicable to CA-based
as well as service provider-based PKIs.

B. Identity-based Encryption

In public key cryptography (PKC), every individual gen-
erates a private key and a public key. Not only must this
generation of keys be done before any messages are encrypted,
but the encryptor must also know the authenticated public key
of the recipient before performing the encryption. This can be
a strong requirement, which is not always satisfied in practice.
Identity-based encryption (IBE) [8], [12], [28] alleviates this
problem. In IBE, an encryptor uses any verifiable identity
of the recipient (e.g., the recipient’s email address or the
recipient’s social security number) to generate the recipient’s
public key for encryption. The only information it requires is
the identity of the recipient (which may be unauthenticated)
and some public parameters belonging to a trusted third-
party, called a private key generator or PKG. These public
parameters are published upfront. To decrypt, the recipient
contacts the PKG and authenticates with its identity. The PKG
then uses private parameters corresponding to the published
public parameters and the identity to generate the recipient’s
decryption key. Figure 1 shows how IBE works. The primary
advantage of IBE, as opposed to PKC, is that the authentication
of the recipient (to the PKG) can occur either before or after
the encryption is made.
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C. Hierarchical identity-based encryption—HIBE

HIBE [7], [17], [19], [20] is a generalization of IBE that
supports hierarchical namespaces of identities and allows a
party with identity I to act as the PKG for the entire namespace
hierarchy under I . Specifically, a HIBE has a root identity R,
which acts as the PKG for the whole system. Immediately
below R are the identities (R,A), (R,B), . . .. The party with
identity (R,A) can act as the PKG for all identities that extend
(R,A), i.e., for the identities (R,A,A′), (R,A,B′), etc.

Technically, any party with the decryption key for the
identity I can generate the decryption keys for all identities
that extend I . We denote the decryption key of identity I that
decrypts messages encrypted using I’s HIBE master encryp-
tion key pkH with dpkH (I). The system is bootstrapped by R
generating its own decryption key dpkH (R). It then generates
dpkH (R,A) and gives it to the party with identity (R,A), gives
dpkH (R,B) to the party with identity (R,B), etc. Either R or
(R,A) can then generate the key dpkH (R,A,A′) and provide
it to the party with identity (R,A,A′) and so on. Figure 2
illustrates how HIBE works.

Importantly, in a HIBE, a party with identity I is a key
escrow for all identities that extend I , in the sense that it can
generate the keys of all parties that extend I . Hence, I must
be trusted by all parties that extend I .

III. PROBLEM STATEMENT AND SOLUTION

This section presents our problem statement, threat model,
and our solution—identity webs of trust (IWoTs).

A. Problem Statement

We work in the web of trust (WoT) setting, where parties
(principals) develop mutual trust relationships and use them

Fig. 1. A simple example of how IBE works. After everyone has the PKG’s
public parameters, A can encrypt a message for B’s identity string “B”. B can
(at any point in time, before or after) retrieve its private key from the PKG
and afterwards decrypt the message.

Fig. 2. A simple example of how HIBE works. R is the root private key
generator (PKG) identity.

to authenticate their identities with their cryptographic keys
without any central trusted third party. Each party is assumed to
have a named identity. As explained earlier, in the conventional
WoT settings, a party with identity A can create a confidential
message for another party with identity B only after all links
on at least one chain from A to B have been authenticated.
We wish to allow A to create a confidential message for B
even before an authenticated chain between A and B has fully
emerged.

We assume that A is able to pick a chain of identities from
itself to the recipient B, which A expects will become fully
authenticated in due course. We wish to allow A to encrypt
with a binding to this chain such that B can decrypt the
message only after all links of the chosen chain have been
authenticated. Assuming that all links authenticate correctly,
this implies that only the intended B receives the cleartext
message. Moreover, we want B to be able to decrypt the
message independent of the order in which links between A
and B are authenticated.

Threat model. As in a WoT system, an attacker can create fake
(or Sybil) parties in the network, and can try to impersonate
honest parties by proclaiming their identities. It can also force
a party it controls to authenticate any other party as any
identity. Given the incomplete nature of our WoT graphs,
encryptors may unknowingly choose one or more impersonator
parties instead of real identity owners. We guarantee message
confidentiality in this strong adversarial setting. We assume all
parties have access to all material published by all other honest
parties over a publicly accessible, append-only bulletin board.

It is fundamentally impossible to send a confidential
message to a receiver without knowing some symmet-
ric/asymmetric key associated with the receiver. Therefore, we
cannot always address the last mile limitation, where, in a
directed chain of links to the receiver, the last unauthenticated
party can compromise the confidentiality of the message.
Nevertheless, when either the recipient’s public key (even
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unauthenticated) or multiple chains are available at the time
of encryption, we can mitigate this issue.

Non-goals. We are concerned only with the security of mes-
sages; the question of physical transmission and delivery of
messages, as well as the question of denial-of-service attacks,
are orthogonal and not the subject of this paper. Moreover,
we do not address the problem of how a sender picks a path
that will be authenticated in the future. In practice, the sender
will pick a path based on her knowledge of the geographic
location of parties on the path, upcoming rendezvous, and
social contacts. If a strong adversary compromises some honest
parties and obtains their private keys, we cannot always guar-
antee confidentiality of messages sent over trust paths passing
through the compromised parties.

Finally, similar to a WoT, it is not our goal to protect the
privacy of social WoT graphs and other related meta-data,
and we expect the concerned users to employ pseudonyms
instead of their real identities to get some privacy protection.
Nevertheless, in Section VII, we extend our scheme to prevent
an adversary from learning the sender, the recipient and the
chosen verification path from the ciphertext itself.

B. The Solution: Identity Web of Trust (IWoT)

IWoTs solve the problem described above by combining
HIBE with a WoT. To bring out the key design decisions, we
consider a sequence of scenarios of increasing complexity and
show how encryption, decryption and link authentication work
in each scenario. We introduce some notation first.

Notation. Uppercase letters A,B,C, etc. stand for identities
of parties. pkS(N) and skS(N) denote the public (verifi-
cation) and private (signing) keys of N . Similarly, pkE(N)
and skE(N) stand for the public (encryption) and private
(decryption) keys of a party with identity N . In some cases, our
protocol requires an identity to act as a HIBE root; pkH(N)
and skH(N) denote, respectively, the HIBE master public
and secret (decryption) keys of identity N . All public keys
are initially unauthenticated. They are authenticated as the
web of trust develops. dpkH(A)(A, . . . , Z) denotes the HIBE
decryption key generated by the PKG A (i.e., with master
public key pkH(A)) for the hierarchical identity (A, . . . , Z).
Enc(pkE(N),m) denotes the public key encryption of m
with key pkE(N), Enc(k,m) denotes the encryption of m
with the symmetric key k, and Enc(pkH(A), (A, . . . , Z),m)
denotes the HIBE encryption of m for the decryption key
dpkH(A)(A, . . . , Z), with the public HIBE parameters of A.
In some places, we subscript the function Enc with E, S or
H (public-key, symmetric or HIBE, respectively) to visually
emphasize the kind of encryption.

Link authentication. When a message is sent in an IWoT,
some links in the network have already been authenticated,
whereas other links have not been authenticated (yet). We call
the former strong links and the latter weak links. A strong link
from C to D is written C ⇒ D and a weak link from C to D
is written C → D. For simplicity, we assume that if C ⇒ D,
then C trusts D completely for the purpose of our protocol.
When C authenticates D, i.e., when D proves to C that it owns
the identity D, C signs D’s three public keys—verification,

encryption and HIBE—and posts the signatures on a public
bulletin board, which is accessible to all parties. C also
performs some other operations related to HIBE, which we
describe gradually. Conceptually, the authentication changes
C → D to C ⇒ D.

The required bulletin board can be implemented starting
from a reliable broadcast protocol [30] or over a permissioned
or permissionless blockchain [15], [26]. However, for the
purpose of our discussion, we treat it as a standard, ideal
bulletin board FBB [32].

A path or chain is a sequence of identities linked by
weak or strong links. We write ⇒∗ and ⇒+ for the reflexive-
transitive and transitive closures of ⇒ (similarly for →). We
often conflate a strong path X1 ⇒ X2 ⇒ . . . Xn with
the HIBE identity X1, X2, . . . , Xn (similarly for →, and any
composition of→ and⇒). Note that every party can determine
which strong chains X ⇒∗ Y exist by looking at the signatures
on the bulletin board.

To encrypt a message, the sender picks a path from itself
to the recipient, which it expects will eventually become
strong (the path may already be strong). The encryption of the
message binds to that path and our protocol guarantees that
the recipient will be able to decrypt the message only after all
links on the path have been authenticated, i.e., become strong
(in any temporal order). For efficiency, the sender should try to
choose a path with a low number of weak links. Additionally,
the sender should try to minimize the maximum length of
contiguous weak link subchains on the path it chooses, as
this reduces the number of HIBE keys generated during link
authentication.

Scenario 1: Strong chains (public-key encryption). Suppose
A wants to encrypt a message for B along a chain of strong
links only (i.e., a chain of the form A⇒+ B). In this case, our
protocol degenerates to a conventional protocol for encryption
over WoTs: A verifies B’s encryption public key, pkE(B),
using the signatures (along the chain) on the bulletin board
and uses this public key to encrypt the message. Since there
is a complete chain of trust from A to B, B’s public key must
be authentic and, hence, only B can decrypt the message.

Scenario 2: Weak chains (HIBE). Next, we consider the
extreme scenario where A encrypts a message for B along
a chain of weak links only (a chain of the form A →+ B).
In this case, A does not have access to B’s authenticated
public encryption key. So, our protocol uses HIBE instead
of public key encryption: A HIBE-encrypts the message m
for the identity that equals the path. So, the ciphertext is
Enc(pkH(A), (A→+ B),m).

Of course, B should be able to decrypt the ciphertext (i.e.,
obtain the decryption key dpkH(A)(A →+ B)) (only) after
all links in A →+ B have been authenticated. For this, we
require that when any C authenticates any D, for every HIBE
decryption key dpkH(P1)(P1, . . . , Pn, C) that C possesses and
for every D ⇒∗ E that exists (on the bulletin board), C also
generate the key dpkH(P1)(P1, . . . , Pn, C,D →∗ E) and post
it encrypted with pkE(E) on the bulletin board. It is easily
seen that this authentication protocol provides the following
property:
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Property 1. The ciphertext Enc(pkE(Y ), dpkH(X)(X →+

Y )) exists on the bulletin board after X →+ Y has become
strong.

Importantly, this property holds independent of the order in
which the links on X →+ Y become strong. Returning to our
scenario, once the path A→+ B becomes strong, B gets the
key dpkH(A)(A→+ B), allowing it to decrypt the message.

The inherent last-mile limitation. It is impossible to encrypt
a message for a receiver B if the encryptor A does not
have access to some authenticated/unauthenticated key of the
receiver B. IBE and HIBE overcome this impossibility by
introducing a key escrow: all parties on the path A→+ B can
generate the decryption key dpkH(A)(A →+ B) and decrypt
the message. They are, therefore, key escrows—they must be
trusted to not generate this key or not use it.

This key escrow problem can be overcome in one of two
ways. First, if even an unauthenticated public key for B is
available to A at the time of encryption, then A, in the form
of certificateless encryption [4], can protect the ciphertext
with an additional layer of public key encryption to that key.
This eliminates the key escrow problem completely and can
be highly effective in services such as Apple iMessage and
WhatsApp where users generate the public key pairs right
when they register. Second, if B’s public key is not known
to A at the time of encryption, A can resort to more involved
encryption schemes using multiple paths to mitigate the escrow
problem (see Section VII-A). This discussion about mitigation
of the escrow problem applies to all subsequent scenarios,
although we do not mention it explicitly again.

Scenario 3: Weak-strong chains. We generalize scenario 2 to
the case where encryption is bound to a chain of weak links
followed optionally by strong links. This chain has the form
A→+ D ⇒∗ B. In this case, IWoT encryption treats D ⇒∗ B
as weak, and A encrypts for the chain A →∗ D ⇒∗ B. The
ciphertext is Enc(pkH(A), (A →+ D ⇒∗ B),m). Due to
Property 1, B can decrypt (only) after all links on the chain
become strong.

Scenario 4: Weak-strong-weak-strong chains (layering and
finalized keys). Next, consider a scenario where the chain
pattern weak-strong of Scenario 3 repeats once, i.e., where A
wants to encrypt to a chain of the form A→+ C ⇒+ D →+

E ⇒∗ B. An obvious solution in this case is to treat the
whole chain as weak and encrypt using a single HIBE to the
decryption key dpkH(A)(A →+ C ⇒+ D →+ E ⇒∗ B). As
noted at the end of Scenario 2, this would make all identities on
the chain key escrows. We show here that we can do better: We
can remove all identities in the chain A→+ C ⇒+ (this chain
excludes D) from the escrow set, leaving only the identities in
D →+ E ⇒∗ B as escrows. To obtain this stronger property,
we use two layers of encryption. We start with a (incorrect)
strawman solution, which we refine to a correct solution.

In the strawman solution, the plaintext m is first HIBE
encrypted to the key dpkH(A)(A →+ C ⇒+ D) and
the resulting ciphertext is then HIBE encrypted to the key
dpkH(D)(D →+ E ⇒∗ B). The intuition is that identities on
the path A →+ C ⇒+ (excluding D) do not have access

to D’s HIBE secret key, so they cannot generate the key
dpkH(D)(D →+ E ⇒+ B) and, hence, cannot decrypt the
message. However, this layered encryption has a problem: The
decryption key dpkH(A)(A →+ C ⇒+ D) is D’s decryption
key, not the recipient B’s, so B won’t ever have access to
it! Specifically, if we look at Property 1, we see that this key
will be posted on the bulletin board encrypted with D’s public
encryption key, not B’s. In fact, giving B access to the key
dpkH(A)(A →+ C ⇒+ D) would be insecure because there
could be other messages that were intended for D, which B
would be able to decrypt if it had access to the key.

To resolve this dilemma, let us examine what property we
intend to obtain by including a layer of encryption to the
key dpkH(A)(A →+ C ⇒+ D). This layer does not have
to provide confidentiality, which is already provided by the
second layer that encrypts to the recipient B’s decryption
key, dpkH(D)(D →+ E ⇒∗ B). Instead, this layer provides
authentication: We want to ensure that the key to decrypt the
layer will exist only after the chain A→+ C becomes strong.
This observation provides the main insight to our solution: We
introduce additional HIBE decryption keys whose only purpose
is to prove the existence of strong links. Since these keys
do not provide confidentiality, they can be released publicly.
Specifically, we introduce a variant of each identity F , written
F !. Our invariant is the following:

Property 2. dpkH(X)(X,Y, . . . , Z, F !) is publicly available on
the bulletin board after the entire path X → Y . . . Z → F has
become strong.

dpkH(X)(X,Y, . . . , Z, F !) is generated in the same way and
at the same time as dpkH(X)(X,Y, . . . , Z, F ). The differences
are that (a) dpkH(X)(X,Y, . . . , Z, F !) is immediately posted
to the bulletin board in the cleartext (so anyone can use it)
and (b) it is never “extended” by honest parties, e.g., we
never get a key of the form dpkH(X)(X, . . . , F !, G, . . .) if
each of X, ..., F is honest. Since identities like F ! are never
extended, we call them finalized identities and call keys like
dpkH(X)(X, . . . , Z, F !) finalized keys.

We change our layered encryption to use a finalized key:
To encrypt to the path A→+ C ⇒+ D →+ E ⇒∗ B, A uses
two HIBE encryption layers, one to the key dpkH(A)(A →+

C ⇒+ D!) (note the ! after D) and the other to the key
dpkH(D)(D →+ E ⇒∗ B) (note the absence of ! after B).
After both A →+ C and D →+ E have become strong, the
key dpkH(A)(A→+ C ⇒+ D!) is on the bulletin board in the
clear (Property 2) and the key dpkH(D)(D →+ E ⇒∗ B) is on
the bulletin board encrypted with B’s public encryption key
(Property 1), so B can get both keys and decrypt the ciphertext.
It should be clear that identities on the path A →+ C ⇒+

(excluding D) cannot decrypt the message ciphertext because
they cannot generate or obtain the key dpkH(D)(D →+ E ⇒∗
B). Hence, they are not escrows.

We point out two more subtleties. First, in order to create
the first encryption layer to the key dpkH(D)(D →+ E ⇒∗ B),
A must have access to D’s public HIBE key. Since D lies at
the end of a strong chain (C ⇒+ D), its HIBE public key
can be obtained from the bulletin board but since C has not
been authenticated by A (C lies at the end of the weak chain
A →+ C), there is no guarantee that D’s HIBE public key
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on the bulletin board, say pk, is authentic. Consequently, A’s
ciphertext must use pk in a way that if pk turns out to be non-
authentic, message decryption is not possible. One simple way
to do this, which we adopt here, is to add the key pk to the
end of the finalized identity D!. The first layer of encryption
is to the key dpkH(A)(A →+ C ⇒+ D!pk). The decryption
key generated by authentication of the chain A→+ C ⇒+ D
is dpkH(A)(A →+ C ⇒+ D!pkH(D)), so, if pk 6= pkH(D),
no one can decrypt the message ciphertext. Property 2 can be
revised to reflect this change to the protocol.

Property 2’. dpkH(X)(X,Y, . . . , Z, F !pkH(F )) is publicly
available on the bulletin board after the entire path X →
Y . . . Z → F has become strong.

Second, as an implementation detail, our actual protocol
uses hybrid encryption to emulate the two encryption layers
because HIBE cannot be used to encrypt arbitrary messages.
We encrypt the message with a symmetric key derived from
two freshly generated random strings (both drawn from the
domain of HIBE encryption) and encrypt one of the random
strings to the key dpkH(A)(A→+ C ⇒+ D!) and the other to
the key dpkH(D)(D →+ E ⇒∗ B).

Scenario 5: Arbitrary iterations of weak-strong chains. We
generalize Scenario 4 to arbitrary iterations of weak chains
followed by strong chains. Here, A wants to encrypt to a chain
of the form A = C0 →+ C ′0 ⇒+ C1 →+ C ′1 ⇒+ . . . Cn →+

C ′n ⇒∗ B for an arbitrary n ≥ 0. Our solution in this case
generalizes that of Scenario 4, which was the special case n =
1. We use n+ 1 layers of HIBE. The first n layers are to the
finalized keys dpkH(Ci)(Ci →+ C ′i ⇒+ Ci+1!pkH(Ci+1)) for
i ∈ {0, . . . , n − 1}. The last encryption is to the decryption
key dpkH(Cn)(Cn →+ C ′n ⇒∗ B), which is owned by B. B
can obtain all n+1 decryption keys after all links in the chain
have been authenticated.

A conceptually simpler solution is to encrypt with two
layers independent of n: one to the key dpkH(C0)(C0 →+

C ′0 ⇒+ C1 →+ C ′1 ⇒+ . . . Cn!pkH(Cn)) and the other to
the key dpkH(Cn)(Cn →+ C ′n ⇒∗ B). The advantage of our
solution compared to this simpler solution is that it uses HIBE
encryption with fewer levels (we break the long chain from A
to Cn into n subchains). This allows us to limit the cost of
link authentication (see Sections IV and VI).

Scenario 6: Arbitrary chains (most general case). We now
explain the most general case of our encryption, where A wants
to encrypt to an arbitrary chain. Note that every finite chain
from A to B can be written (uniquely) in the form A ⇒∗
C0 →+ C ′0 ⇒+ C1 →+ C ′1 ⇒+ . . . Cn →+ C ′n ⇒∗ B for
some n. This form is nearly identical to that of Scenario 5
except that, here, A is not equal to C0. Instead, there is a
strong chain from A to C0. However, this makes no difference
to the protocol. The protocol in Scenario 5 only requires that
A possess C0’s public HIBE key, pkH(C0), in order to create
the first encryption layer to the key dpkH(C0)(C0 →+ C ′0 ⇒+

C1!pkH(C1)). A can obtain that key from the bulletin board as
there is a strong chain from A to C0. Hence, the encryption that
A performs in the general case is identical to that in Scenario 5.

Key compromise. Key compromise refers to the adversary
obtaining the private keys of an honest party. Even though

key compromise is outside our threat model, we note that
the effect of key compromise in an IWoT is no worse than
its effect in a standard WoT. If the adversary compromises
an identity, it can authenticate fake chains starting from that
identity. Any encryption to a path that includes a node from
any such fake chain provides no provable confidentiality. This
can be mitigated to some extent by encrypting to several paths
simultaneously (see Section VII-A).

IV. CONSTRUCTION DETAILS

We present the cryptographic construction that realizes the
IWoT scheme described above. The construction employs a
NM-CCA-secure [14] symmetric encryption scheme, an IND-
CCA-secure asymmetric (public-key) encryption scheme [29],
an EUF-CMA-secure digital signature scheme [18] and an
IND-HID-CCA-secure HIBE scheme [17]. Additionally, we
assume the existence of a public bulletin board functionality
FBB [32].

A. Initial setup

At the start of an IWoT, it is assumed that no two
parties have authenticated each other and the bulletin board is
empty. Common parameters for the encryption, signature and
HIBE algorithms that can be used by all parties, e.g., curves,
generators and such, are created and posted on the bulletin
board. Prior to participating in the IWoT, a party N generates
its private and public keys for signing (skS(N) and pkS(N))
and encryption (skE(N) and pkE(N)), a HIBE master secret
key (skH(N)) and a corresponding public key (pkH(N)).

B. Link authentication

To authenticate a party N , a party M verifies N ’s identity
offline and then adds the following to the bulletin board:

1) N ’s three public keys pkS(N), pkE(N) and pkH(N),
signed by M ’s signing key skS(M).

2) For every HIBE decryption key dpkH(A)(A, . . . ,M) ac-
cessible to M and for every HIBE identity (N, . . . , Z)
such that dpkH(N)(N, . . . , Z!pkH(Z)) exists on the bul-
letin board:
a) The HIBE decryption key

dpkH(A)(A, . . . ,M,N, . . . , Z) encrypted with
Z’s public key pkE(Z). (This allows Z
and only Z to obtain the decryption key
dpkH(A)(A, . . . ,M,N, . . . , Z).)

b) The HIBE decryption key
dpkH(A)(A, . . . ,M,N, . . . , Z!pkH(Z)) in the clear.
(This establishes publicly that the entire path
A, . . . ,M,N, . . . , Z is now strong.)

It is an invariant that the key dpkH(A)(A, . . . , Z!pkH(Z))
exists on the bulletin board if and only if every party in the
chain A, . . . , Z, except Z, has authenticated the next party on
the chain.

In general, step (2) can be expensive: In rare, bad cases,
M may end up generating O(n!) decryption keys, where
n is the number of parties in the IWoT. To prevent this
blow up, a practical system may limit the lengths of chains
A, . . . ,M,N, . . . , Z considered to small numbers like 2 or
3. This also means that during encryption (see below) the
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maximum length of a weak chain on the chosen path must
be small. While this can, in principle, make communication
between some pairs of parties impossible, in Section VI, we
show through measurements on an actual web of trust that this
restriction is reasonable in practice: It bounds authentication
cost and does not seriously limit the ability to communicate.

C. Encryption

To encrypt a message m for a recipient B, the sender A
picks any sequence of parties starting in A and ending in B
that it expects will become strong eventually. It factors this
sequence (uniquely) to the form A ⇒∗ C0 →+ C ′0 ⇒+

C1 →+ C ′1 ⇒+ . . . Cn →+ C ′n ⇒∗ B. For best performance,
A should pick a sequence that makes each subchain of the
form Ci →+ C ′i ⇒+ Ci+1 as short as possible. A then
generates n + 1 random symmetric keys, k0, . . . , kn and
symmetrically encrypts the message m with a key k0⊕. . .⊕kn
derived from these n + 1 keys. If even an unauthenticated
public encryption key, pkE(B), for B is available, A adds
an extra layer of asymmetric encryption with that key. A
then HIBE encrypts each ki for 0 ≤ i ≤ (n − 1) to the
identity Ci →+ C ′i ⇒+ Ci+1!pkH(Ci+1) (to do this, it needs
pkH(Ci), which is available from the bulletin board, since Ci
lies at the end of a strong chain). A also HIBE encrypts kn to
the identity Cn →+ C ′n ⇒∗ B. It then sends the ciphertext of
m, and the ciphertexts of the n+1 keys k0, . . . , kn to B over
any channel (possibly over the bulletin board).

D. Decryption

The recipient B attempts to decrypt a ciphertext encrypted
to the path A⇒∗ C0 →+ C ′0 ⇒+ C1 →+ C ′1 ⇒+ . . . Cn →+

C ′n ⇒∗ B only after all chains of the form Ci →+ C ′i have
become strong. At this point, it uses the key dpkH(Ci)(Ci →+

C ′i ⇒+ Ci+1!pkH(Ci+1)) from the bulletin board to decrypt
the ciphertext of ki and obtain ki for 0 ≤ i ≤ (n− 1). It uses
the key dpkH(Cn)(Cn →+ C ′n ⇒∗ B), which it can also obtain
from the bulletin board, to decrypt the ciphertext of kn and
get kn. This allows it to compute k0 ⊕ . . . ⊕ kn and decrypt
the ciphertext of the message m.

E. Example

This section presents an example that illustrates our con-
struction. Consider the relationship graph in Figure 3. The only
pre-existing strong path is C ⇒ F , so F ’s public keys, a
signature on those by C, the key dpkH(C)(C ⇒ F !pkH(F ))
and the ciphertext Enc(pkE(F ), dpkH(C)(C ⇒ F )) are the
only things on the bulletin board initially.

A now wants to encrypt a message m for B. For that, A
has to choose a path to B. A could pick one of several paths.
F is on all such paths, so it has to be included. Utilizing the
already strong link between C and F allows A to use two
subchains. The second subchain should be as short as possible
(to minimize the number of key escrows), so using E → G
should be avoided. Other than this, it does not matter whether
F → G → B or F → E → B is chosen as the second
subchain.

Suppose the complete chain chosen by A is A → D →
C ⇒ F → G→ B, and there is no public key known for B. A
now generates two keys k1 and k2 and computes k = k1⊕k2.

Fig. 3. Sample relationship graph for the example of Section IV-E. Dotted
lines represent weak links and full lines represent strong links.

Also, it retrieves pkH(F ) from the bulletin board. A builds
the ciphertext as follows:

c = EncS(k,m),
EncH(pkH(A), (A,D,C, F !pkH(F )), k1),
(A,D,C, F ),
EncH(pkH(F ), (F,G,B), k2),
(F,G,B)

This ciphertext is then sent from A to B on any channel.
For B to be able to decrypt the message, the weak links
on the chain must be authenticated in some order. Suppose
D authenticates to C first, so D → C is the first link to
become strong. For this, D checks C’s identity and then D
creates signatures on C’s public keys with its own private
signature key skS(D) and posts the signatures on the bulletin
board. Additionally, D generates several HIBE keys. Since
C ⇒ F !pkH(F ) is on the bulletin board, the following
additional material is posted to the bulletin board by D:

dpkH(D)(D,C!pkC)
dpkH(D)(D,C, F !pkF )
EncP (pkE(C), dpkH(D)(D,C))
EncP (pkE(F ), dpkH(D)(D,C, F ))

From now on, the link from D to C is strong, written
D ⇒ C. Afterwards, the remaining weak links (A → D,
F → G and G → B) authenticate. Once all links have been
authenticated, the following two materials exist on the bulletin
board (among other things).

dpkH(A)(A,D,C, F !pkH(F ))
EncP (pkE(B), dpkH(F )(F,G,B))

B uses the second component of the ciphertext c with the
first key above to obtain k1. From the second ciphertext above,
B obtains dpkH(F )(F,G,B). Combining this with the fourth
component of the ciphertext c, it obtains k2. From this, it
computes k = k1 ⊕ k2 and, then, from the first component
of the ciphertext, it obtains the original message m.

V. SECURITY ANALYSIS

In this section, we formally define the security of our
scheme as an ideal functionality. We then define a simulator
that intervenes between the functionality and the adversary,
and prove the security of the protocol via a simulation.
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Initialize. Initialize with a set of identities ID and a set of parties P .

Registration. Any party can, at any point in time, decide to register for their identity in ID. Upon receiving a message
(Reg, R) from party Pr, do the following:

1) Hand (Reg,Pr, R) to the adversary S.
2) return the adversary’s response Success or Failure to Pr.

Link Authentication. Upon receiving a message (Auth, R, 〈Pj , S〉) from party Pr, do the following:
1) Hand (Auth, 〈Pr, R〉, 〈Ps, S〉) to the adversary S
2) return the adversary’s response Success or Failure to Pr.

Encryption. Upon receiving a message (Encrypt,m, C), from party Pr, do as follows:
1) Give (Encrypt, |m|, C) to the adversary S.
2) Receive c from the adversary S and store (m, c, C) in dec.
3) Return c to Pr.

Decryption. Upon receiving a message (Decrypt, c), from party Pr, do the following:
1) Check if the following conditions hold:
• There exists entry (m, c, C) ∈ dec for c
• If receiver (or decryptor) party Pe is included in C, then Pr = Pe, else Pr has to be registered for some identity on

the last subchain SCn.
• For all subchains SCi ∈ C (except the last subchain SCn), check if the last party (and identity) in SCi equals the

first party (and identity ) in SCi+1, i.e. Pe,i = Pb,i+1 and Ie,i = Ib,i+1

• For all possible parties fitting the identities and parties given in the C, check per subchain from left to right until
one conditions fail or all of them are fulfilled. In particular, for any edge (I, J) in the C the following hold:
◦ There exists a party Pi such that 〈Pi, I〉 is registered as suggested by S
◦ There exists a party Pj such that 〈Pj , J〉 is registered as suggested by S
◦ A strength query for (〈Pi, I〉, 〈Pj , J〉) to S returns strong.
◦ For any first element of any subchain SCa (for a ∈ {1, . . . , n}), this Pi = Pb,a
◦ For any last element of any subchain SCa (for a ∈ {1, . . . , n}), this Pj = Pe,a

2) If all conditions satisfy, then hand (ValidDecrypt,m, c) to Pr and (ValidDecrypt, c) to S, else hand
(InvalidDecrypt, c) to both.

Fig. 4. An ideal functionality (FIWoT ) for the identity web of trust

A. Security Definition

We formally define the security goals of our design using
the ideal/real world paradigm.

Setup and Assumptions. Our ideal functionality (FIWoT )
expects a set of identities ID = {A,B, . . . Z}, a set parties
P = {P1,P2, . . .Pη} and an adversary S. Let Phon be the set
of honest parties, and Pmal be the set of malicious (imperson-
ators) parties such that these sets partition P . Honest parties
are bound to use “their” actual identity, while malicious parties
may claim any polynomially bounded number of identities.
The number of malicious parties is also assumed to be bounded
polynomially in the security parameter. Malicious parties may
collude with each other.

Let variable C denote an identity chain that consists of
subchains, where each subchain SCi is of the type SC =
(P, ID, ID+,P{0,1}). The last subchain need not necessarily
have a party at its end in case the recipient is not yet registered.
There may be any number of strong links on a subchain. Let
Pb,i and Ib,i denote the beginning party and identity of the
beginning party of the i-th subchain and Pe,i and Ie,i denote
the ending party and identity of the ending party of the i-th

subchain. The last subchain is SCn.

Message Flow. We expect the ideal functionality to access the
bulletin board functionality FBB through the adversary S , who
should transform cryptographic information from FBB to non-
cryptographic information required by the functionality, and
vice-versa. In this regard, FIWoT makes two kind of queries
to the adversary: a RP query to check if a party is registered
with an identity, and a strength query to check if a link from
a party (and her identity) to another is strong or weak.

The FIWoT functionality (Figure 4) allows the fol-
lowing four messages/actions by any party: Registration,
Link Authentication, Encryption and Decryption.

As the adversary may impersonate anyone, the ideal func-
tionality allows parties to register to any identities using the
Registration function. When any party registers an identity,
this pairing is passed on to the adversary S (to maintain it
in FBB) such that FIWoT can check the pairing later. Notice
that the Registration step is completely optional, but allows
any party to register for the identity they committed to in
order to improve security. Honest nodes will only register
for one identity in the whole functionality, while malicious
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(impersonator) parties can register for any number of identities.

A Link authentication message is used by a party to
strengthen links (strong links represent authentication in the
“real world”). It takes two parties, one authenticating and one
authenticated, along with their suggested identities and passes
this information to the adversary. The effect of a successful
authentication is twofold: Subsequent strength queries on the
authenticated link will answer strong in place of weak, and
RP queries for both identity-party pairs return affirmatively
in the future.

For the Encryption message, the functionality requires a
plaintext message and an identity chain from the submitting
party. This chain may include the recipient party Pe if it is
known to the encryptor. The functionality returns a ciphertext
symbol that is provided by the adversary and can later be used
for decryption. To maintain the confidentiality of the messages,
only the message length and the chain C is conveyed to the
adversary S.

For the Decryption message, the functionality requires a
ciphertext c from the submitting party Pr. The submitting party
must be on the last subchain in the corresponding identity chain
(this allows representing HIBE decryption of the message by
anyone on the last HIBE subchain, as in the last mile problem
in the real world). If the chain C contains the recipient party Pe,
the submitting party must be the recipient. The functionality
starts by verifying the sanity of the chain C by checking
if all consecutive subchains are consistent with each other.
Afterwards, it checks if there is one combination of parties
associated with the given identities in the chain, such that all
subsequent identity pairs in the chain have strong connections.
If it does not find such a combination, the functionality returns
InvalidDecrypt. If the functionality finds a combination
such that all the above conditions hold, the original message
is returned to Pr.

Definition 1. An IWoT protocol is simulation secure in the
(FBB)-hybrid model if for all PPT adversaries A in the real
world who actively infiltrate the protocol by posting corrupt
identities and use these to create corrupt links in the protocol,
there exists a simulator S in the ideal world execution with
FIWoT , which corrupts the same parties and produces an
output identically distributed to the output of A in the real
world.

IWoT 

FIWoT

A
S

FBB

bidirectional link

⇡

Fig. 5. Overview of the security analysis set-up

B. Security Proof

Figure 5 shows a graphical sketch of our security analysis
framework. As previously mentioned, the adversary can create
an arbitrary number of corrupt identities (including ones for
the sender and the receiver) and links between those, but we
expect that no honest party in the network would create a
link to them. It is also not allowed to corrupt existing honest
identities (i.e., we do not allow for key compromise).

Theorem 2 (Simulation Security). If EncH is an IND-HID-
CCA secure HIBE scheme, EncE is an IND-CCA secure PKE
scheme and EncS is a NM-CCA-secure symmetric encryption
scheme, SigS is an EUF-CMA signature scheme, and assum-
ing that every user has access to the current social graph,
then the IWoT protocol is simulation secure as formalized in
Definition 1.

Proof Outline: We provide a simulator S (Figure 6)
for the ideal world execution with FIWoT in the hybrid
model with the bulletin board functionality FBB . An informal
description of the simulator is as follows.

S runs on behalf of the good parties, and simulates the
ideal world such that the adversary with its malicious parties
cannot distinguish between the ideal and the real world.

The simulator runs the key generation algorithm on behalf
of the honest parties and, thus, knows all public as well as
private keys for the honest parties. It also knows all (relevant)
public keys for the fake parties from FBB . This makes the
registration as well as the authentication processes very simple
for S as it can perform all necessary authentication operations
on behalf of the honest parties accurately and in a manner
that is indistinguishable from the real world. The simulator
S locally maintains a map between FIWoT parties Pr and
pkr published on FBB for some identity R. This mapping is
efficient.

The simulator’s key challenge comes during the encryption
calls. Although FIWoT tells it the identity chain C used for
the ciphertext as well as the length of the plaintext, it does
not know the plaintext. The simulator S instead encrypts 0|m|

for the same chain. This is sufficient since it is impossible to
distinguish the encryptions of 0|m| and m by comparing ci-
phertexts (we employ IND-secure encryption primitives). Note
that the adversary will be able to decrypt some intermediate
HIBE encryptions with the public finalized keys; however,
we employ those as the key encapsulation mechanism (KEM)
since the decrypted message (symmetric key share) will be
indistinguishable from uniform randomness in the real as well
as the ideal world. The trick also works if an honest sender
ends up choosing some fake parties on its path to an honest
receiver as such chains never get completely strong and the
encrypted messages will never get decrypted. In this case, even
if the fake party belongs to the last mile and can derive the
private keys for the receiver in the last subchain, thanks again
to our use of KEM, the decrypted symmetric key share will
be indistinguishable from uniform randomness.

Although S will not provide similar security for the
completely adversarial identity chain (the adversary can fully
decrypt and distinguish between m and 0|m| for such a chain),
it does not have to—the simulator is only responsible for
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The simulator is provided with the set of identities ID and a set of parties P . Let Phon and Pmal respectively denote honest
and malicious parties, and the simulator knows both of these sets.

During party registration. Upon receiving (Reg, Pr, R) from the functionality:
1) Map Pr to the HIBE, PKE, and signature key set pkr.
2) Check if the (pkr, R) are already registered on FBB .
3) If yes, return Failure
4) Otherwise, run the key generation algorithm for Pr to generate public-private keys for HIBE, PKE and signature, create

a map entry for Pr and pkr locally, post those (i.e. pkr) with identity R on FBB , and return Success.

During authentication request. Upon receiving (Auth, 〈Pr, R〉, 〈Ps, S〉) from the functionality:
1) Generate and register the HIBE, PKE, signature keys for Pr and/or Ps, as above, if they are not yet registered.
2) Authenticate public keys associated with (Ps, S) from the signing key skR for (Pr, R).
3) Extend the HIBE key for all HIBE for which Pr has private keys including its own HIBE. All necessary information

is available from FBB .

During encryption. Upon receiving (Encrypt, |m|, C) from the functionality:
1) Encrypt 0|m| (as an encryption of “garbage”) for the chain C. Notice that the simulator knows (locally or through FBB)

all necessary public keys to encrypt 0|m| correctly.
2) Return the ciphertext c to the functionality.

RP and strength queries. Upon receiving the RP and strength queries from the functionality:
1) Replace the functionality parties with pubic key sets.
2) Run the query correctly with FBB and send the answer back to the functionality.

Fig. 6. The simulator S for the ideal functionality

honest parties, and does not need to simulate an instance
involving no honest parties.

The simulator S does not need to do any operation during
a decryption call as the ideal functionality performs all the
necessary work.

This shows that the output distribution of the simulator S is
identical to the output distribution of the real IWoT protocol’s
distribution. It is also easy to see that S remains as efficient
as all honest parties together.

Therefore, the IWoT protocol is simulation secure as for-
malized in Definition 1.

We can easily extend our analysis to allow the adversary to
act in an honest but curious way, i.e., it can create an identity
for itself, but is then not allowed to verify other dishonest
identities using this identity. However, to keep the exposition
simple, we do not consider such an adversary in the current
model.

VI. IMPLEMENTATION AND PERFORMANCE ANALYSIS

We have built a library that implements all the functionality
of IWoTs, including authentication, encryption and decryption.
This library is not yet optimized, but it suffices to conserva-
tively estimate how IWoTs would perform in practice. Our
library is written in Java 1.7. We use Kalium, a Java binding
for NaCl [6] by Bernstein, Lange and Schwabe for non-pairing-
based cryptography, and jPBC [13], a Java binding for the PBC
library by Lynn [22] for identity-based cryptography. NaCl
uses Ed25519 for EC signing, a combination of Curve25519,
Salsa20, and Poly1305 is used for asymmetric encryption and
for the identity-based encryption, a type-F curve with 384

random bits is used. Our HIBE implementation is based on
a paper by Gentry and Silverberg [17]. Our library contains a
small interactive command line interface for experimentation
and performance evaluation.

All experimental numbers shown here were obtained on
a 2x Intel Xeon CPU E5-2667 v2 with 16 physical and 16
logical cores, 256GB RAM, running Debian 8 “Jessie”. For
storage, we used two 1TB HDDs in a RAID-1 configuration.

Social graph. To conduct experiments, we needed a social
graph. For this, we used the publicly available graph from
the SKS OpenPGP key server [24]. This graph lists nodes
(public keys) and edges (which key verifies which other key),
along with time stamps when each edge came into existence.
This allows us to reconstruct snapshots of the graph over time.
Figure 7 shows some basic statistics on graph snapshots every
3 years from 1999 to 2014 (we removed nodes that had no
adjacent edges; these are not counted in the graph). The graph
also shows the size of the largest connected cluster of nodes
in each year. Depending on the year, this varies from 10% to
23% of the total size of the graph, indicating that in each year,
most of the graph is not densely connected.

For measuring the performance of IWoTs, we treat each
node as a separate party (and separate identity). PGP has no
notion of weak edges. Consequently, for the purpose of our
experimentation, we assume that any edge in the PGP graph
is weak for 6 months prior to its addition to the graph, at which
point it becomes strong.

Authentication. Authentication is an expensive (but infre-
quent) operation in IWoTs because when M authenticates N ,
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Fig. 7. Numbers of nodes and edges in our graph in each year

Fig. 8. Average and maximum time for authentication under maximum
subchain lengths of 2 and 3

for every key dpkH(A)(A, . . . ,M) accessible to M and every
key dpkH(N)(N, . . . , Z!pkH(Z)) on the bulletin board, N must
generate two new keys. In the worst-case, with n nodes, N may
have to generate O(n!) keys, which is intractable. In practice,
however, the length of the sequence A, . . . ,M,N, . . . , Z can
be limited to a small constant k, by limiting the maximum
length of weak subchains chosen during encryption to k.
Figures 8 and 9 show the maximum and average time taken and
the maximum and average number of keys generated during an
authentication operation (the maximum and average are taken
over 1,000 randomly chosen authentication operations in each
year). Numbers are shown for both k = 2 and k = 3. As
can be seen, even with a maximum chain length of k = 3,
the maximum time taken to authenticate is 14.5 seconds in
our experiments, which is reasonable since authentication is
relatively infrequent. The average time does not exceed 1s
in any year. (Note, however, that this measurement is made
on server-grade CPUs. Smaller CPUs may require more time.
Nonetheless, time of the order of seconds or even a few
minutes for each authentication looks reasonable.)

Total key storage. Another potentially significant overhead
is that of key storage, since a node may have to store many
HIBE decryption keys. Specifically, for every strong path of
the form A, . . . , N , N must store the key dpkH(A)(A, . . . , N).

Fig. 9. Average and maximum numbers of created keys under maximum
subchain lengths of 2 and 3

Fig. 10. Cumulative distribution of keys to be stored at each node for a
random sample size of 1000 nodes for 2014 and maximum subchain length
of 3

Figure 10 shows the cumulative distribution of the number of
keys that a node must store (over a sample of 1000 nodes in
the year 2014 for k = 3). Most nodes need to store no more
than 100 keys, which is very manageable, given that each key
is no more than a few kilobytes in size (including metadata).

Feasibility of message encryption under subchain length
limits. If we limit the maximum length of unauthenticated
chains during encryption, an obvious question is how many
pairs of nodes can communicate. To answer this question, we
implemented an algorithm to find paths between any given
pair of nodes, while minimizing the length of the longest
unauthenticated subchain. Figure 11 shows the percentage of
node pairs between which messages can be encrypted with
different upper-bounds on subchain lengths in each year. With
a bound of k = 3, at least 97% of node pairs can communicate
in every year, which suggests that k = 3 is a reasonable limit.

Encryption and decryption times. In our final experiment,
we measure the amount of time it takes to encrypt and decrypt
a message between two randomly chosen nodes, where paths
are selected to minimize the length of the longest unauthen-
ticated subchain. Figure 12 shows the maximum and average
encryption and decryption times over 1000 randomly chosen
node pairs for k = 2, 3, 4, across years. As can be seen, in all
cases, the average times for both encryption and decryption
are under 1s, which is very reasonable. The maximum times
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Fig. 11. Percentage of node pairs that can communicate under different weak
subchain length restrictions

Fig. 12. Average and maximum encryption and decryption time under
different weak subchain maximum lengths

are of the order of tens of seconds, which is also reasonable.

VII. ENHANCEMENTS

This section describes three enhancements to the basic
IWoT scheme.

A. Use of Multiple Paths for Encryption

In the basic IWoT scheme, a sender encrypts a message
binding to a single path from itself to the recipient. The
security of such encryption relies on the assumption that each
identity on the path authenticates the next identity correctly.
To weaken this assumption, the basic IWoT scheme can be
extended by binding the encryption to more than one path
simultaneously. To do this, ciphers corresponding to additional
paths are added as layers to the message’s ciphertext. The
property attained is that the message can be decrypted only
when all paths have become strong and, hence, that only the
intended recipient can decrypt the message if all identities
along any one path perform authentication correctly. This is
similar to the use of multiple paths to authenticate a public
key in a standard web of trust.

The use of multiple paths is also attractive for another
reason: It reduces the exploitability of the last mile problem
(Section III-B)—to exploit the key escrows, the attacker must
compromise a key escrow at the tail of every path to which
the message’s encryption is bound.

B. Source Authentication

The basic IWoT scheme guarantees to the sender that only
the intended recipient can obtain the sent message. However,
it does not provide source authentication, i.e., it does not
guarantee to the recipient that the message was actually sent by
the claimed sender. Source authentication is easily added to the
scheme by having the source sign the message with its signing
key and making link authentication bi-directional, meaning
that when M authenticates to N , N also authenticates to M
(and M signs N ’s public keys). When the recipient decrypts
a message, a strong chain must exist from the sender to the
recipient, and because of the bi-directional authentication at
each link, the recipient can authenticate the sender’s verifica-
tion key. Assuming that the recipient trusts that all identities
on the path authenticate correctly, she can be certain that the
claimed sender actually sent the message.

C. Ciphertext anonymity

In the IWoT protocol presented so far, anybody can de-
termine the receiver as well as the whole identity chain for a
ciphertext by observing the ciphertext. It is, however, possible
to modify the IWoT protocol such that it achieves ciphertext
anonymity, i.e, an adversary cannot identify the recipient and
the complete identity chain from the ciphertext [5].

To attain ciphertext anonymity, we not only need to
modify the ciphertext format for IWoT, but also replace
the employed HIBE scheme; the currently employed Gentry-
Silverberg HIBE scheme [17] leaks information about the
HIBE-depth of the recipient on the last subchain. Instead,
we could employ a newer HIBE scheme [27] that provides
ciphertext anonymity for ciphertexts.

Currently, ciphertexts contain the associated identity chains
in plain text (lines 3 and 5 of the ciphertext c in the example
of Section IV-E). We cannot remove all of these identities
from the ciphertext as otherwise the complexity of decryption
for the receiver will increase significantly. Instead, we could
remove only the last subchain, and expect the receiver to try
decrypting the ciphertext with every new HIBE decryption
key she receives. We can employ another layer of symmetric
encryption with a new key kout to hide the identities in
all but the last subchain and HIBE-encrypt kout with the
last subchain. The other subchains’ HIBE encryptions and
plaintext identities are also re-encrypted with kout as otherwise
any curious observers can determine subchain identities by
continuously trying decryptions of those HIBE encryptions
with the published finalized keys.

As an illustration, the ciphertext c from the example in Sec-
tion IV-E would be transformed to the following anonymous
ciphertext, canon:

canon = EncS(k,m),
EncS(kout, (Enc′H(pkH(A),

(A,D,C, F !pkH(F )), k),
(A,D,C, F )),

Enc′H(pkH(F ), (F,G,B), kout)

Here, Enc′H is a ciphertext-anonymous HIBE scheme [27]. To
obtain the symmetric decryption key k to obtain the message m
the receiver will have to obtain kout using the HIBE decryption
key for the last subchain (F,G,B), then use kout to decrypt the
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outer layer of the layered encryption to obtain the remaining
subchain (A,D,C, F ), and then obtain the HIBE finalized key
for (A,D,C, F !pkH(F )) from the bulletin board.

It is possible to hide the lengths of the identity subchains
except the last one by attaching ‘dummy’ identities to the
chains to pad their representations to a fixed length. Addi-
tionally, the ciphertext-anonymous HIBE construction does not
leak anything about the last subchain to any recipient of the
message. Thus, the intended recipient has to try decrypting
the final part of the message with every non-finalized HIBE
key they receive. This price is conceptually unavoidable for an
anonymous ciphertext.

VIII. SUMMARY

IWoT re-designs WoTs (and other PKIs by extension) to
use hierarchical identity-based encryption (HIBE) in addition
to public key cryptography. This novel construction allows
a sender to encrypt and transmit a message even before a
chain of trust to the recipient has been established. IWoTs are
particularly useful for ad hoc, uncoordinated communication
in presence of powerful adversaries and censors, who can
both compromise key authorities (so conventional HIBE is
ineffective) and harm the sender (so waiting for a chain of
trust to be established, as would be forced in a WoT, is not
always a prudent option). We have shown that our construction
is secure and efficient enough to be used in a practical system.
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