COMPUTATIONAL PROBLEMS IN SUPERSINGULAR ELLIPTIC CURVE ISOGENIES
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ABSTRACT. We present an overview of supersingular isogeny cryptography and how it fits into the broad theme of post-
quantum public key crypto. The paper also gives a brief tutorial of elliptic curve isogenies and the computational problems
relevant for supersingular isogeny crypto.

Supersingular isogeny crypto is attracting attention due to the fact that the best attacks, both classical and quantum,
require exponential time. However, the underlying computational problems have not been sufficiently studied by quantum
algorithm researchers, especially since there are significant mathematical preliminaries needed to fully understand isogeny
crypto. The main goal of the paper is to advertise various related computational problems, and to explain the relationships
between them, in a way that is accessible to experts in quantum algorithms.

This is a post-peer-review, pre-copyedit version of an article to be published as a “perspective paper” in Quantum Infor-
mation Processing.

1. PERSPECTIVE

Public key cryptography is an important component of many real-world security systems. One example is secure
internet browsing and communication (using https). It relies on the Transport Layer Security (TLS) protocol, which
uses public key encryption (or key exchange) during the TLS handshake operation. Another example is automatic
software updates, which are authenticated using public key digital signatures.

All the public key cryptosystems that are widely used today (and supported in TLS) are based on integer factoring
or the discrete logarithm problem in finite fields or elliptic curves. In recent years, elliptic curve cryptosystems became
dominant and the majority of newly created systems (e.g., iPhones, bitcoin, Sony playstation, Google chrome) have
chosen to use elliptic curves. However, all these systems are broken by Shor’s algorithm. Hence large-scale quantum
computing is a major threat to many real-world security systems. In fact, to break most real-world public key crypto
does not even need a very large quantum computer: a few thousand logical qubits would probably suffice (for example,
see [37] for the case of the elliptic curve discrete logarithm problem), i.e. assuming one can perform enough operations
on them.

As a result, there has been increasing interest in computational problems that are not known to be solved efficiently
by quantum computers. The field of “post-quantum cryptography” (sometimes called “quantum-safe cryptography’)
is the study of classical cryptosystems that are secure even if the attacker has a quantum computer.

Further impetus into research on post-quantum crypto came from the announcement by the National Institute of
Standards and Technology (NIST) of a “process to solicit, evaluate, and standardize one or more quantum-resistant
public-key cryptographic algorithms”. The deadline for submission was November 30, 2017 and there was a super-
singular isogeny cryptosystem submitted. For more information see:

http://csrc.nist.gov/groups/ST/post—quantum-crypto/

There are several different areas of computational mathematics that seem to provide potential post-quantum cryp-
tosystems. Lattice based crypto is currently most popular and extremely active. The other main proposals for quantum-
safe computational problems include coding theory, solving systems of multivariate polynomial equations over finite
fields, and solving computational problems in non-Abelian groups. Each of these problems leads to a branch of
post-quantum crypto. Also, standard cryptographic hash functions can serve as the basis for post-quantum signature
schemes using a Merkle tree approach. For a thorough survey of the state of post-quantum crypto up to 2009 we
recommend the book by Bernstein, Buchmann and Dahmen [1].

The most recent suggestion for a post-quantum cryptosystem is supersingular isogeny crypto. The key exchange
protocol that is of most interest' was proposed by Jao and de Feo [24] in 2011 and is called SIDH, where SI refers to
supersingular isogeny and DH to Diffie-Hellman. Even though these schemes are based on elliptic curves, they do not
use discrete logarithms and they are believed to resist attack using Shor’s algorithm.

ISince writing this survey, a new scheme called CSIDH has been proposed by Castryck, Lange, Martindale, Panny and Renes [7]. It also uses
supersingular elliptic curves and isogenies, but expressed as the action of an ideal class group, as briefly mentioned at the end of Section 5.
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Despite it being a late-comer to the post-quantum party, there are several reasons to be interested in supersingular
isogeny crypto. The first is that the pool of potential post-quantum assumptions is very small, and so all avenues need
to be fully explored and tested. The second is that there has been a huge body of knowledge and experience developed
over the last 20 years in support of elliptic curve crypto, and so it is natural to try to continue using elliptic curves
if possible. The third is that some of the underlying computational assumptions have already been considered by
researchers in classical elliptic curve crypto and computational number theory, and so there is some evidence that the
assumptions are reasonable, at least against classical computers. It is also fairly straightforward to choose parameters
(at least in the classical setting) to achieve a given security level.

However, there are also several concerns about supersingular isogeny crypto. One of the most serious concerns is
that the systems have not been sufficiently scrutinised by researchers in quantum algorithms. A contributing factor to
this is that there are significant mathematical preliminaries needed to fully understand isogeny crypto, and so it is not
an easy field for non-experts to work in. Another concern, especially in contrast to lattices, is that isogenies are not
a very “expressive” tool. Lattice based crypto has opened up a rich suite of cryptographic functionalities including
encryption, signatures, ID-based crypto, fully homomorphic crypto, and more. On the other hand, the only practical
isogeny based crypto primitives known are encryption and key exchange.

Now is the right time for quantum algorithms experts to learn more about supersingular isogeny based crypto and
to try and develop new algorithms for the underlying computational problems. The aim of this paper is to provide a
resource to these researchers to help them get into the subject. We provide a short tutorial of some basic facts, and then
survey some of the open problems and recent algorithmic results. Many of these problems can be formulated as path
finding problems in the so called supersingular isogeny graph, i.e. the graph whose nodes correspond to (isomorphism
classes of) supersingular curves and whose edges are given by certain maps (isogenies) between two such (classes of)
curves. Although this graph is exponentially large in the input size of the problem and thus cannot be specified by
its adjacency matrix, it is however very easy to compute all neighbours of a given node, which makes it possible to
perform efficient walks in the graph. The construction and navigation of this graph constitutes a major part of this
paper (see Section 6). Some problems, such as the problem underlying the Jao and de Feo key agreement, expose
more information than simply a starting node and end node, and thus are not pure instances of a path finding problem.
This extra information could potentially make these problems easier.

The remainder of the paper is organized as follows: Sections 3 to 6 give a very gentle introduction to the main
mathematical ideas behind isogeny based crypto. Section 7 presents a number of inter-related computational problems
that are relevant for the security of isogeny based cryptosystems. Progress on quantum algorithms for any of these
problems would be of major significance. In particular, we draw attention to certain computational problems such
as Definition 2 and Definition 3 which provide extra information to an attacker that makes them potentially easier to
solve than the general isogeny problem. Finally, Section 8 surveys the current state-of-the-art of classical and quantum
algorithms for these problems.

2. INTRODUCTION

An isogeny is a map ¢ : F; — FE5 where E; and Es are elliptic curves. Isogenies are maps both in the sense of
geometry (mapping points from one curve to another) and algebra (they are group homomorphisms). One special case
of an isogeny is the multiplication by n map [n] : E — F that is the central object of study in traditional elliptic curve
cryptography. The elliptic curve discrete logarithm problem is to compute n when given two points P, @ = [n]P on
an elliptic curve F. One can view this problem as “determining” an isogeny ¢ : £ — E when given two points P and
Q = ¢(P). As is well known, Shor’s algorithm is a polynomial-time algorithm to solve this problem on a quantum
computer.

Isogeny cryptosystems were first proposed by Couveignes [12], rediscovered” and further developed in [36, 40]
(these ones were based on “ordinary curves”, for some details see later sections). The “supersingular curve” case
was first developed in a hash function construction by Charles, Lauter and Goren [9]. Further cryptosystems in the
supersingular case were proposed by Jao and de Feo [24] and developed in subsequent research [14, 25, 10, 22, 28,
29, 11].

A subexponential-time quantum algorithm for the ordinary curve case was discovered by Childs, Jao and Soukharev [8].
As aresult, the research focus has moved almost entirely to the supersingular case, where only exponential-time algo-
rithms are known. The best quantum algorithm known for the general supersingular isogeny problem is due to Biasse,
Jao and Sankar [2], and it requires exponential time and subexponential space. The best quantum attack on the Jao and

2Couveignes’ paper was written in 1997, but not made public until 2006.
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de Feo cryptosystem is an algorithm due to Tani [43] that solves a general claw problem, and also requires exponential
time; see the end of Section 8.2.

3. ELLIPTIC CURVES OVER FINITE FIELDS

General references for this section are Washington [47], Silverman-Tate [39], Silverman [38], and Sutherland [42].
Let IF, be a finite field. In this paper ¢ = p® will always be a power of a large prime p, so definitely p > 3. An
elliptic curve E over I, (in short Weierstrass form) is determined by two coefficients A, B € F, and is the set of
points
B(F,) = {(a,y) € F2: y? = 2* + Az + B}y U{0z}

where O is the point (z : y : 2) = (0 : 1 : 0) on the projective curve y%2z = 2% + Ax2z? + Bz3. We will just write 0
when the curve E is clear. Sometimes we also consider the set E(F,) of all the points of E over the algebraic closure
F, of FF,.

The set of points on an elliptic curve is an abelian group under the “chord and tangent rule”. The point O is
the identity element of the group. For any point P = (zp,yp) € E(F,) we have (zp, —yp) € E(F,) and P +
(xp,—yp) = 0, so (xp,—yp) is the inverse of the point P. For n € N and P € E(F,) we define [n]P to be
P+ P+ ---+ P (ntimes). For example, [2]P = P + P.

There are “close to ¢” points on an elliptic curve over IF,,. Precisely, if we denote the cardinality of a set X by #.X,
then we can write # F(FF,) = ¢ + 1 — t for an integer ¢ satisfying [¢| < 2,/g. An elliptic curve over I, where ¢ = p®
is called supersingular if p | ¢ and is called ordinary otherwise. It follows that F is supersingular if #E(F,) = 1
(mod p), and in fact for supersingular curves one has #FE(F;») = 1 (mod p) for all n € N. This separation of
elliptic curves into supersingular and ordinary may look arbitrary and unmotivated, but we will later see how different
these two classes of curves are.

For n € N define E[n] = {P € E(F,) : [n]P = 0}. If p { n then #E[n] = n? and, group theoretically, E[n] is
a direct product of two cyclic groups of order n. If E is supersingular then E[p] = {0} while if F is ordinary then
#E[p] = p.

A morphism of elliptic curves f : E — E’ is a function described by ratios of polynomials that maps points on £
to points on E’. An isomorphism of elliptic curves f : E — E’ is a morphism that satisfies f(0g) = Og-, and whose
inverse (over the algebraic closure) is also a morphism. It follows that an isomorphism is a bijection E(F,) — E'(F,).
Since isomorphisms are over [, they are not necessarily maps from E(F,) to E'(F,). If E is an elliptic curve over
F, with #E(F,) = ¢ + 1 — ¢ then there is an elliptic curve E’ over F, called the quadratic twist of E, such that
#E'(F,) = ¢+ 1+t and E’ is isomorphic to E (the isomorphism is however not defined over Fy, but over the
quadratic extension F2).

The j-invariant of an elliptic curve E : y? = 2> + Az + B is

443
4A3 +27B2%’
There is an isomorphism f : E — E’ if and only if j(E) = j(E’).
Given j € Fq with j # 0, 1728, the elliptic curve

J(E) = 1728

3J 2j

E:y? =23
T I L T oT

has j(E) = j.

We end with some final remarks about supersingular elliptic curves. First, any supersingular elliptic curve E
over I, is actually isomorphic to some supersingular curve over )2, implying that all supersingular j-invariants are
contained in IF,,. There are about p/12 isomorphism classes (j-invariants) of supersingular elliptic curves in total,
and O(,/plog(p)) of them have j-invariants in FF,,. This is why p is always very large in supersingular isogeny
cryptography. When p > 3 then all supersingular curves E over F,2 have #E(F,2) = (p+ 1) or (p — 1)?, and their
group structure is C’(Qp +1) (respectively, C’(Qp_l)) where C',, denotes a cyclic group of order n.

4. ISOGENIES

General references for this section are Chapter 12 of Washington [47], Chapters 9 and 25 of Galbraith [19] and De
Feo [15].
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Let E;, E» be two elliptic curves over ;. An isogeny3 is a morphism ¢ : £y — F5 such that ¢(0g, ) = Op,. One
can show that isogenies are group homomorphisms, so they are “morphisms” both in the sense of algebraic geometry
and group theory. Two elliptic curves are called isogenous if there is a non-constant isogeny between them.

The degree of an isogeny is essentially the degree of polynomials describing it (see Section 12.2 of Washing-
ton [47]). The degree of an isogeny is also, in general, the number of points in the kernel (an exception is inseparable
isogenies such as the Frobenius map 7(z,y) = (2P, y”) on elliptic curves over F,,).

A basic example of an isogeny is the multiplication by n map [n] on an elliptic curve F for n € N, which we
already defined by [n]P = P + P + --- + P (n times). This maps O to itself, is a group homomorphism, and is
described by rational functions coming from the group law. The kernel is precisely the set of points F[n] defined
earlier.

Example 1. Let E : y?> = 2 + x. Then the map [2] : E — E is given by the rational function
2l(,y) = ((1‘2 —1)2 7 y(28 + 52t — 52?2 — 1))
4(z3 + z) 8(x3 + x)?
The kernel of 2] is E[2] which consists of O together with the three points (zp,0) such that % + xp = 0. In other
words, the kernel is the set of four points of order dividing 2.

Example 2. Let A, B € F, be such that B # 0 and D = A? — 4B # 0. Consider the elliptic curve E : y* =
z(x? + Az + B) over F,. The point (0,0) has order 2. There is an elliptic curve E' and an isogeny ¢ : E — E' such
that ker(¢) = {0g, (0,0)}. One can verify that

o(x,y) = <y2 M) _ (x2+Ax+B’y3x2)

2 a? x z?
has the desired kernel, and the image curve is E' : Y? = X(X? — 2AX + D).

The dual isogeny to ¢ : E — FE’ is an isogeny ngS : B — F such that the composition gz§ o¢p: E — FE issimply
[deg(¢)]. The dual isogeny exists for every isogeny ¢.

A major result (often called Tate’s isogeny theorem since he generalised it to Abelian varieties) is that any two
elliptic curves F; and E» over I, are isogenous over I, (the “over IF,” means that the isogeny is given by rational
functions of polynomials in F [z, y]) if and only if #E (F,) = #E2(F,). One issue that frequently causes confusion
to beginners is the fact that an isogeny has a kernel and yet the two curves have the same number of points. The
following example will make this clear.

Example 3. We consider the curve E : y?> = x(x? + x + 1) over Fy, which is a special case of Example 2. One
can check that #E(F7) = 8. Indeed E(F;) = {0,(0,0),(2,0),(3,2),(3,5),(4,0),(5,1),(5,6)} and the points
(0,0),(2,0), (4,0) all have order 2 while the points (3,+2), (5, £1) have order 4. The isogeny ¢ given in Example 2
mapsto E' : y* = x(2? — 2z — 3).

One can check that ¢(2,0) = ¢(4,0) = (0,0). This gives the convenient fact that if one repeats the construction
of Example 2 starting from E' then one computes an isogeny to the curve E" : y?> = x(2® + 4Ax + 16B) which
is isomorphic to E. The composition E — E' — E" has kernel generated by {(0,0),(2,0)} and so is E[2], the
group of points of order 2 on E. Hence this composition is just the multiplication by 2 map. This decomposition of
the multiplication by 2 map into two isogenies of degree 2 is a tool used in the proof of the Mordell-Weil theorem (see
Silverman-Tate [39] for details, or any other book on elliptic curves).

One can also check that ¢(5,1) = ¢(3,5) = (2,1) and ¢(5,6) = ¢(3,2) = (2,6). Hence ¢(E(F7)) is a cyclic
group of order 4 inside the group E'(IF7) of order 8. This makes sense, since we have quotiented a group of order 8
by a subgroup of order 2.

What about the other 4 points in E'(F7), such as (3,0)? These are the image of points on E over an extension of
Fy. Consider the point Q = (1,a) € E(F72) where o € Fy2 satisfies o = 3. One can check that Q has order 4,
[2]Q = (0,0), and $(Q) = (3,0). The other “missing points” in E'(IF7) are similarly the image of points on E over
the extension field F2.

The next theorem is extremely important and useful in the subject. Every isogeny ¢ : £ — E’ has a kernel

G = ker(¢) that is a finite subgroup of E(IF,). A natural question is to what extent ¢ is uniquely defined by its kernel

and which finite subgroups of E(IF,) arise as a kernel of an isogeny. The answer (ignoring inseparable isogenies) is

3The word “isogeny” means “same kind” and is also used in biology and medicine.
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that ¢ is uniquely defined up to composition with an isomorphism by its kernel, and that every finite subgroup G of
E(F,) can be the kernel of an isogeny, but the isogeny is defined over I, if and only if G is defined over F,. The

definition of “G defined over F,” is: If P € G and 0 € Gal(F,/F,) then o(P) € G. Note that G C E(F,) is a
sufficient, but not necessary, condition for G to be defined over F,.

Theorem 1. Let E be an elliptic curve defined over F, and G a finite subgroup of E(F,) that is defined over F,.
Then there is an elliptic curve E' defined over F, and a separable isogeny ¢ : E — E' defined over F of degree #G
with ker(¢) = G. Furthermore, if 1) : E — E" is any other separable isogeny of degree #G with ker(¢)) = G then
J(E") = j(E'"). Hence, the image curve E' is well-defined up to isomorphism and we sometimes denote it by E/G.

There is an explicit algorithmic proof of Theorem 1 due to Vélu [45] (for details see Silverman [38] Proposition
I1.4.12, Galbraith [19] Section 25.1). The algorithmic proof of this Theorem gives an explicit formula for the equation
of E’ and for the isogeny ¢ (as rational functions). However, the complexity of the Vélu formulae is O(n) field
operations to compute an isogeny of degree n, which in certain applications would be considered as exponential
complexity.

A key concept that makes isogeny crypto feasible is that isogenies factor into chains. Let F and E’ be elliptic
curves over Fy and let ¢ : E — E’ be a separable isogeny that is defined over Fy. Then ¢) = ¢ o - - - 0 ¢, o [n] where
b1, ..., ¢y are isogenies of prime degree that are defined over IF,, and deg(¢) = n? Hle deg(¢;). What this means in
practice is that an isogeny of large degree can be constructed as a composition of isogenies of small prime degree. For
example, one can form a sequence of ¢ isogenies of degree 2, and the cost to compute the composition is proportional
to ¢, rather than the cost O(2*) of computing the composition in a single step using the Vélu formulae.

For specific crypto applications there has been a lot of nice research to speed up the computation of chains of
isogenies, but we do not discuss it in this paper. See for example De Feo, Jao and Pliit [14] for a taste of this.

There is one further subtlety: The Vélu algorithm outputs a particular elliptic curve in the isomorphism class, and
sometimes one needs to apply a suitable isomorphism to get to the desired curve. In the key exchange protocol (see
Section 7), Alice and Bob use the Vélu algorithm and they are not expected to both generate exactly the same curve;
that’s why the protocol works with j-invariants.

5. ENDOMORPHISMS

The general reference for this section is Section II1.9 of Silverman [38] and Sutherland [42].

The endomorphism ring of E is the set of isogenies from FE to itself, together with the zero map 0 : E — E given
by 0(P) = 0. In other words

End(E) ={¢: F — E}U{0}.
This is a ring where addition of isogenies is defined using elliptic curve addition as (¢1 + ¢2)(P) = ¢1(P) + ¢2(P)
and multiplication is composition. Note that Z C End(E) from the map n — [n]. Also note that this map is injective:
if n # m then we never have [n] = [m], because there is always some P € E(F,) such that [n]P # [m]P, even if
[n]P = [m]P for all P € E(F,).

Hence, the ring End(E) is a Z-module. A non-trivial theorem (related to the fact that # E[n] = n?) is that there
are only three types of ring for End(E): namely Z, an order in an imaginary quadratic field, a maximal order in
a quaternion algebra. Further, the case End(E) = Z does not occur for elliptic curves over finite fields. We give
examples that illustrate what is going on.

Example 4. Let E,, E; over Fi3 be given by By : y?> = 23 + x and Ey : y?> = 23 + Tx + 5. Then #E, (Fi3) =
#E5(F13) = 20. This is the case of ordinary curves, since 20 %= 1 (mod 13). The Frobenius map ©(x,y) =
('3, y13) is an endomorphism on E and is known to satisfy the polynomial T? + 6T + 13, meaning that

n(w(P)) + [6]7(P) + [13]P =0

for all points P € Ey(Fy3) (and same for Ey(F13)). It follows that End(E;) and End(Es) contain Z|[r). Since w
behaves like the complex number —3 + 2i, it follows that the ring Z|r)] is isomorphic to Z[2i] where i* = —1 is the
usual complex number. Hence Z[r] is a subring of Q(4) that contains 1. In other words, it is an order.

It can be shown that End(Ey) = Z[2i]. However, End(E,) is larger. The endomorphism ¢ (x,y) = (—x,iy)
satisfies V2 (x,y) = (z,—y) = [~1](x,y) and so we write 1> = —1 and identify 1) with the complex number i. It
follows that m1 = —3 + 24 (assuming an appropriate choice of sign is taken when i is defined) and so End(E1) = Z[i].

The two rings Z[i] and Z[2i] are orders in the imaginary quadratic field Q(7).
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The general result is that an ordinary elliptic curve over IF, with ¢ 4+ 1 — ¢ points has Frobenius endomorphism 7
that satisfies 7(7(P)) — [t]=(P) + [¢]P = 0 and has an endomorphism ring that is an order in K = Q(+/d) with
d = t> —4q < 0 and Z|r] C End(E) C Og. The conductor ¢ = [O : Z[r]] is the largest integer such that
d/c®> = 0,1 mod 4, so there is only a finite number of possibilities for End(E), namely, all the rings O = Z + ¢/Og
with ¢ a divisor of c. In the above example, d = 6% — 4 - 13 = —16, K = Q(i), Ox = Z][i], the conductor ¢ = 2 and
the order Z[i| = Z + Ok, and the order Z[2i] = Z + 20k.

Example 5. Let p = 11 and consider the curve y*> = x> + x over F,. We have #FE(F11) = 12 and so E is

supersingular. As in the previous example, there are endomorphisms (x,y) = (—x,iy) such that *> = [—1]
and 7w(z,y) = (xP,yP) such that 7® = [—p| (this latter statement is not obvious). However a difference this time
is that p = 3 (mod 4) and so the field element i such that i*> = —1 does not lie in ¥, but in F 2. Hence we have

mop(x,y) = m(—x,iy) = (—aP,PyP) = (—aP, —iy?) whereas pom(x,y) = (—aP,iy?). It follows that mip = —
and so End(E) is a non-commutative ring. In fact End(E) is now an order in the quaternion algebra Q(i, j) where
i = —1and j%2 = —p.

Indeed, when E is a supersingular curve then a theorem of Deuring is that End(FE) is a maximal order in the
quaternion algebra ramified at p and infinity. It is this difference in the endomorphism rings that makes supersingular
curves so different from ordinary curves.

We do not have space to give all the details of orders in imaginary quadratic fields and quaternion algebras. But
suffice to say that the ordinary case has strong connections with algebraic number theory via the theory of complex
multiplication (see Cox [13] and Sutherland [41]). In particular, given an elliptic curve E over F, with End(E) = Ok
(the maximal order) and a an O k-ideal, we can define the a-torsion subgroup as the intersection of the kernels of all
elements in a, i.e. F[a] = Nyeq ker(a) and construct an isogeny ¢, : E — E, ~ E/E[a] with kernel E[a]. The
curve F, will have the same endomorphism ring Ok and when a is principal, £, will be isomorphic to E. For a and
b two O ideals, we have ¢qp = Pq © ¢p. We thus obtain an induced action of the class group cl(O ) on the set of
j-invariants of elliptic curves with endomorphism ring Ok given by (where [a] denotes the class of the ideal a)

[a] xj(E) = j(Ea) -

This construction immediately generalizes to the case where End(E£) = O is not the maximal order.

If E is a supersingular curve with j(E) € IF,,, where p is prime, then the ring Endr, (E) of endomorphisms that are
defined over F,, is an order in the imaginary quadratic field Q(y/—p) (for details see Delfs and Galbraith [16]). The
recent CSIDH scheme [7] uses the action [a]  j(E) where j(E) € I, and a is an ideal in Q(,/—p).

6. MODULAR POLYNOMIALS AND ISOGENY GRAPHS

General references for this section are Section 11 of Cox [13], Chapter 25 of Galbraith [19], Sutherland [41, 42],
and De Feo [15].

We have seen that if G C E(F,) is a group defined over FF,, then there is an isogeny ¢ : E — E’ = E/G and that
this isogeny can be computed using an algorithm due to Vélu. Hence the reader might assume that in order to compute
isogenies it is necessary to compute kernel points. Surprisingly there is another tool for computing isogenies that does
not explicitly deal with kernel subgroups or even points on elliptic curves at all.

Let ¢ be an integer with ¢ > 2. The modular polynomial ®,(z,y) € Z[z,y] has the following remarkable
property: A pair j, j' € F, satisfies ®,(j, ') = 0 if and only if there are elliptic curves E, E’ over F, with j(E) = j
and j(E') = j/ and an isogeny ¢ : E — E’ of degree /. It follows from the dual isogeny that ®,(y, z) = ®(z, y).

Note that modular polynomials have high degree and very large coefficients (see Example 6 below). When ¢ is
prime then deg, (®;(z,y)) = £+ 1 and indeed ®¢(x,y) = 2“1 +y*+1 + 2y’ + lower terms. Tt requires O (£3 log(¢))
bits to represent Py.

Hence, given an elliptic curve E over Iy, to find the j-invariants of the /-isogenous curves one simply computes
the univariate polynomial ®,(j(E),y) € F,[y] and then computes its roots in F,. An algorithm due to Elkies allows
to compute the kernel of the corresponding isogeny (in time exponential in £) when given E and the j-invariant 5’ of
the isogenous curve E’.

For elliptic curves over F,, and ¢ a prime, the ¢-isogeny graph (over F,) is the directed graph (V, G) (in the sense of
graph theory) whose vertices V' is the set of j-invariants of elliptic curves over F, i.e. is simply given by IF;, and whose
edges G are the pairs (j(E1), j(E2)) with multiplicity equal to the multiplicity of j(Es) as aroot of ®,(j(F1),Y) (so
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FIGURE 1. Supersingular ¢-isogeny graph for p = 37 and ¢ = 2.

the graph can be a multi-graph, with two or more distinct edges between the same two vertices).* The dual isogeny
implies that if (j(E1),7(E2)) is an edge, then (j(E2),j(E1)) is also an edge. Furthermore, for j(E1),j(F2) #
0, 1728, the multiplicities of the edges (j(F1),j(F2)) and (§(E2), j(E1)) are the same, which implies that away from
the vertices 0 and 1728 the isogeny graph can be seen as an undirected graph. For a set S = {{1,...,¢;} of primes
¢; > 2, the S-isogeny graph has edge set that is the union of the edge sets of all ¢;-isogeny graphs for ¢; € .S, and the
isogeny graph is the union of all ¢-isogeny graphs for all primes £.

We stress that the isogeny graph has a compact description that allows one to consider an exponentially large graph.
One can efficiently compute walks of polynomial size within this exponentially large graph.

The definition of supersingularity together with Tate’s isogeny theorem implies that an elliptic curve isogenous
to a supersingular curve is itself supersingular, so connected components in the isogeny graph are either ordinary or
supersingular. The structure of both components is well known: an ordinary component in the (-isogeny graph is
a so-called ¢-volcano which is a connected undirected graph whose vertices can be partitioned in levels Vg, ..., Vj.
Vb is called the surface or crater, and is typically a cycle (in general a regular graph of degree < 2), each vertex in
V; for ¢+ > 0 has exactly one neighbour in level V;_; (and all edges not on the surface arise in this manner), and all
vertices have degree £+ 1, except for the vertices in V; that have degree 1. All vertices in the same level V; correspond
to elliptic curves with the same endomorphism ring O;, and the endomorphism ring on level ¢ has index ¢ in the
endomorphism ring on level ¢ — 1, i.e. [O;—1 : O;] = L. Therefore, for the ¢-volcano to have more than one level, it
is required that ¢ | ¢ with ¢ the conductor. In all other cases, the ¢-volcano only consists of its surface. If we restrict
the isogeny graph to the elliptic curves with maximal endomorphism ring End(F) = Ok, then the isogeny graph is a
Cayley graph for the ideal class group. Since Cayley graphs of Abelian groups (with bounded vertex degree) are not
families of expander graphs, it means that the shortest path between any two vertices might be quite long.

A supersingular component has a totally different structure: since every j-invariant of a supersingular curve lies
in IF )2, it follows that ®,(j(£),Y) for E supersingular will have [ + 1 roots in IF=. If we consider the /-isogeny graph
over I, the supersingular components will all be regular graphs of degree £ + 1. In fact, one can show there is only
one supersingular component and this component is an expander graph. This means it has “good mixing properties”
and there is a “short” path between any two vertices in the graph. Indeed it is a Ramanujan graph, which means it
has essentially optimal expansion properties. We refer to Chapter 41 of Voight [46] or Pizer [32, 33] for more details
(though be warned that Pizer expresses his results without mentioning elliptic curves).

Example 6. We have
y(z,y) = 23 + y3 — 2%y? + 1488(xy + xy?) — 162000(z? + 3?)
+ 40773375y + 8748000000(x + y) — 157464000000000.

Let E be the elliptic curve y*> = x3 + x + 5 over F3; with #E(F37) = 38 and j(E) = 8. We now construct
the component that contains E of the 2-isogeny graph over F3y2. First ®o(j(E),y) = (y — 8)(y — a)(y — B)
where o, 3 € Fspe are roots of y*> + 31y + 31 = 0. Now we can consider ®3(a,y) = (y — 8)(y — B)? and
2(B,y) = (y — 8)(y — ).

Hence the isogeny graph of E is the multi-graph with three vertices {8, o, 8} and five undirected edges (see Fig-
ure 1).

“This is the entire isogeny graph of elliptic curves. Some references only define the isogeny graph of a curve E, which is the connected
component of the entire graph containing j(E).



8 STEVEN D. GALBRAITH AND FREDERIK VERCAUTEREN

7. COMPUTATIONAL PROBLEMS AND RELATIONSHIPS

This is now the main part of the paper. We want to mention some computational problems that are relevant to
isogeny crypto. A quantum algorithm for any one of these problems would have major impact on the attractiveness of
supersingular isogenies.

The first problem is the template for the whole subject.

Definition 1. The general isogeny problem: Given j,j' € F to find an isogeny ¢ : E — E', if it exists, such that
J(E) =jand j(E') = j"

A difficulty with this problem is that a solution ¢ may require significant space to describe (in general it would be
exponential in the input size). Certain special cases that arise in applications include finding a path in an isogeny graph
between two elliptic curves, and in certain contexts there is a compact (polynomial-sized) description of the path. We
refer to Section 7.1 for some examples of such problems.

Note that the decisional question of whether an isogeny exists or not is solvable in polynomial time: an isogeny
¢ : E — FE’exists if and only if # E(F,) = #E’(FF,), and computing the number of points can be done in polynomial
time.> If one isogeny exists then there are an infinite number of isogenies ¢ : £ — E’. So it does not make sense
to ask for a specific isogeny, unless one asks for an isogeny of minimal degree (in which case the correctness of the
solution is harder to verify since there is usually no efficient way to determine whether or not there is an isogeny of
smaller degree between two curves).

A variant of this problem is when one is also told the degree of ¢. This reduces the problem space from an infinite
number of isogenies to a finite number (typically one, or zero if no such isogeny exists). In some sense, this could
make the problem harder. On the other hand, knowing the degree of the isogeny could potentially make the problem
easier as it could reduce the search space. An example of this problem arises from the hash function of Charles, Lauter
and Goren [9].

7.1. Supersingular Isogeny Diffie-Hellman (SIDH). For the Jao and De Feo system [24] (also see De Feo, Jao
and PIGt [14]) there is a very special set-up. First choose distinct small primes ¢1, ¢> (typically {1 = 2 and /5 = 3)
and choose e1, ez € N such that £{" = (5> ~ 2* where )\ is some security parameter (typically, A ~ 350 due to
quantum attacks described in Section 8.2). Next choose a random small integer f € N until p = ¢ ¢52 f + 1 is prime.
Choose E to be a supersingular elliptic curve over F,,> (there is an efficient algorithm to do this due to Broker [6])
such that E(F,2) has group structure a product of two cyclic groups of order ¢7'¢5? f. Fix points Ry, S; € E[({']
such that the group (R;,S1) generated by R; and S; is the whole group E[¢{']. Similarly, choose Rs, S> such that
(Ra, So) = E[¢5?]. The SIDH system parameters are (E, Ry, S1, R2,.52).

The SIDH key exchange protocol (an analogue of Diffie-Hellman) works as follows: Alice chooses a secret sub-
group of E[¢]'] by choosing an integer 0 < a < (7' and setting 73 = R; + [a]S;. Alice computes an isogeny
¢a : E — E 4 with kernel generated by 77 and publishes (E4, $(R2), ¢ 4(S2)). Similarly, Bob chooses 0 < b <
052, computes ¢ : E — Ep with kernel generated by 75 = Ry + [b]S2 and publishes (Eg, ¢5(R1), ¢5(S1)). To
compute the shared key, Alice computes

T) = ¢p(R1) + [a]¢p(S1) = ¢p(R1 + [a]S1) = dp(T1)

and then computes an isogeny ¢4 : Ep — E 4p with kernel generated by 7. The composition ¢y o ¢ : E — E4p
has kernel (77, T%). Similarly, Bob computes an isogeny ¢’z : E4 — E’, 5 with kernel (¢ 4(R2) + [b]¢.4(S2)). The
actual elliptic curve equations E 4 g and E’ 5 computed by Alice and Bob are not likely to be the same, but the curves
are isomorphic and so j(E4p) = j(E'5). Hence, the shared key for Alice and Bob is j(Eap).

The protocol can be nicely expressed in terms of quotients. We can think of E4 as E/G 4 for the subgroup
Ga = (Tn) of E[(7'], and of Ep as E/Gg. Then Eap = E/{G 4, Gpg), which explains why the two parties compute
the same key. Note that the protocol cannot be described purely in terms of j-invariants: One can have situations
where E/G4 = E/Gy and E/Gp = E/Gz but E/(Ga,Gg) % E/{(G4,G).

For more discussion of the protocol and its security we refer to [24, 14, 10].

To break this key exchange protocol is to solve a more special problem than the general isogeny problem. In
particular, there is a lot of auxiliary information.

SNote that there are generally only two possible group orders # E(F) for a given j € Fy, so there is no serious problem deciding the problem
in terms of j-invariants.
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Definition 2. SIDH isogeny problem: Let (E, Ry,S1, R2,S2) be SIDH system parameters. Let E4 be such that
there is an isogeny ¢4 : E — Ey of degree (5. Let R, = ¢a(R2),S, = ¢a(S2). The problem is: Given
(E, Ry, Sa2, Ea, Ry, S%) to determine an isogeny ¢4 : E — E of degree 7' such that R, = ¢a(R2) and S} =
P a(S52).

Notes:

(1) This problem contains exponentially much auxiliary information: Let 0 < x,y < ¢5% and set T' = [x]Ra +
[y]S2. Then ¢p4(T) = [z]RS + [y]S% can be computed. Hence an attacker can compute as many pairs
(T, (T')) on the graph of ¢ 4 as they like. A natural approach is to compute ¢ 4 by solving an interpolation
problem. However the difficulty is that ¢ 4 has degree ¢{* and so is described by rational functions of expo-
nential degree. The challenge is to solve this interpolation problem using the decomposed form of ¢ 4 as a
sequence of e; isogenies of degree /1.

(2) The scheme would be totally insecure if Alice also published R} = ¢a(R1),S] = $4(S1). An attacker
would simply compute z,y € Z such that (z,y) & (¢17Z)? but [z] R} + [y]S] = 0 (identity element of elliptic
curve group E4). This is an easy discrete log problem to solve, since the point has smooth order ¢5*. Then
[]Ry + [y]S1 € E(F,2) is in the kernel of ¢4 and we have likely determined the kernel exactly and hence
know ¢ 4. A framework for an attack based on this idea is developed in a paper of Petit [31].

7.2. Decisional variants. The aim of this section is to advertise that the decisional problem is a good target for
quantum algorithm researchers. We do not state all possible decisional problems or give a complete description of the
reductions from solving decisional problems to solving the isogeny problem, but simply define one basic decisional
problem.

Definition 3. Decisional SIDH isogeny problem: Let (E, Ry, S1, Ra, S2) be SIDH system parameters. Let E 4 be an
elliptic curve and let R, S} € E4[(5?]. Let 0 < n < ey. The decisional SIDH problem is: Given (E, Rg, Sa, E4, R}, S5, n)
to determine whether or not there exists an isogeny ¢ : E — E 4 of degree {7 such that R, = ¢(Ryz) and S5 = ¢(S3).

This problem makes sense, since for most supersingular curves E4 there will not be an isogeny ¢ : F — Ey4 of
degree /7 when n < e; in the SIDH situation. If one considered a variant of this problem where n was very large then,
due to the fact that random walks in the isogeny graph converge to the uniform distribution, for every curve E 4 there
would be many isogenies of degree ¢} from E to E 4. Hence the problem does not necessarily make sense for large n.

If this problem can be solved then there is an easy way to solve the SIDH isogeny problem:® Let u € Z be such
that u¢; = 1 (mod ¢5?). Given the instance (E, R, Sa, E 4, RS, S5) one chooses an ¢1-isogeny ¢ : E4 — E’ and
calls the decisional algorithm on (E, Ry, Sa, E', [u](RY), [u](S5), e1 — 1). If the decisional oracle says “yes”, then
we have correctly determined the result of the first e; — 1 steps in the path from E to E'4. Iterating this process
polynomially many times solves the isogeny problem.

A strategy that does not seem to work to solve this decisional problem is to use elliptic curve pairings. The Weil
pairing satisfies the compatibility condition thatif ¢ : F — E’ and P, Q € E[N] then

6N(¢(P)7 ¢(Q)) = GN(P, Q)deg(¢)
where the first pairing is computed on E’ and the second on E (Proposition 8.2 of Silverman). However, taking

N = 032, it will always be the case that ey ([u]y(R5), [u]¥(S5)) = en(Raz, 52)4?71 even when the curve £’ does
not correspond to an intermediate curve along the path of the isogeny .

7.3. Computing the endomorphism ring. Let E be a supersingular curve such that End(E) is known and let E’
be an arbitrary isogenous curve. In general it is believed that the problem of computing End(E’) and the problem
of computing an isogeny ¢ : E — E’ are broadly equivalent (see Kohel [26], Kohel, Lauter, Petit and Tignol [27],
Eisentriger, Hallgren, Lauter, Morrison and Petit [17]). Note that this is not true in the ordinary case; one can usually
determine End(E’) much more easily than computing isogenies (see Kohel [26], Bisson-Sutherland [4]).

In the specific SIDH cryptosystem, the base curve E is often chosen to have a special form, in which case End(E)
is usually known. To break the cryptosystem it suffices to compute End(E4). Hence another problem worthy of
consideration is to compute End(E") for an arbitrary elliptic curve E’.

There are several possible ways one might represent End(E’). One method is by giving explicit isogenies ¢ : B/ —
E’ as rational functions. Since the degree is usually exponential, this is typically not a useful representation. Another

OThis approach has been independently discovered by Thormarker [44].
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way is as an abstract representation as a Z-module in a quaternion algebra. In this setting, the representation as
an explicit Z-basis with respect to the basis {1,1, j, k} of the quaternion algebra can have polynomial size, so this is
usually what we have in mind. A thorough discussion of these issues and proofs that the endomorphism ring has a
polynomial-sized representation are given by Eisentriger et al [17].

Definition 4. Maximal order representation problem: Given a supersingular elliptic curve E/F 2, determine an
abstract representation of the maximal order End(E) in the quaternion algebra ramified at p and co.

If one has an abstract representation of End(F) and End(E’) then one has a practical description of the entire
infinite set of isogenies from F to E’. In this setting, it is shown in Section 4 of [21] that one can easily find the
specific isogeny required for Definition 2 using lattice reduction; because that isogeny is of particularly small degree
and so corresponds to a short vector in the lattice of all isogenies.

Kohel’s algorithm to compute End(E) works by computing paths in the isogeny graph to find several distinct
isogenies ¢ : B’ — E’. Hence the basic sub-task in this area is to compute an “arbitrary” isogeny of a curve to itself.
So we single-out this problem as being worthy of research.

Definition 5. Non-trivial endomorphism problem: Given a supersingular elliptic curve E/F 2, find an endomor-
phism ¢ : E — E that is not in Z[r].

8. WHAT IS KNOWN ABOUT ALGORITHMS

In this section we use the asymptotic notation O(f(n)) which denotes O(f(n)log(f(n))*) for some k > 0. We
also use the subexponential function Ly (a,c) = exp(c(log(N))*(log(log(N)))*~¢) such that Ly (0,c) = log(N)¢
is a polynomial function while L (1, ¢) = N€ is an exponential function. The cases 0 < a < 1 are super-polynomial
but also sub-exponential.

8.1. Ordinary curves. The first algorithm to solve the general isogeny problem for ordinary curves is due to Gal-
braith [18] and proceeds in two steps:

(1): Reduce the problem to the case of elliptic curves whose endomorphism ring is maximal. Given two ordinary
curves Ey and E, with #FE,(F,) = #E»(F,) = ¢ + 1 — t, an algorithm due to Kohel constructs a chain
of isogenies from E; to E where End(E]) = Ok is the maximal order of K = Q(y/t? — 4¢). The time
and space complexity of this step are O(c?) and O(c?) with ¢ the maximum conductor of End(E;), i.e.
max;[Of : End(E;)]. Since ¢ can be as large as ¢'/? in the worst case, step (1) has expected running time
O(q?/?) and space O(q).

(2): Construct an isogeny between E{ and Ef.

Galbraith solves step (2) by constructing isogeny trees using the following procedure: pick a random prime ¢ from a
well-chosen set of primes and for each vertex j in the trees, construct all ¢-isogenous curves by computing the roots of
®(4,Y) in . For each root r, add it to the tree (if not yet present), and add an edge between 7 and j labelled with £.
Repeat this procedure until an edge connects both trees, at which point one has found a path of isogenies connecting £
and E). Each ¢-isogeny in the path can be constructed using the methods of Elkies and Vélu. This is a time-memory
tradeoff algorithm based on the bi-directional search algorithm of Pohl [34]. The time and space complexity of step
(2) both are O(ql/ 4). The algorithm cannot be easily distributed or parallelised. For smooth conductor or when the E;
have maximal endomorphism rings, step (1) becomes negligible and the overall running time and storage are O(ql/ 4.
The algorithm runs in polynomial time when the class number of the endomorphism ring is small. Note that (at least,
when the conductor c is small) this algorithm outputs isogeny paths of minimal length (and so has polynomial-sized
output).

An improvement to step (2) is given by Galbraith, Hess and Smart [20] where instead of isogeny trees, the authors
use a random walk on the isogeny graph restricted to curves whose endomorphism ring is the maximal order O . This
allows the algorithm to be distributed and reduces the storage costs during the first stage of the algorithm. Recall that
in the ordinary case we have an action of the class group cl(Ox ) on the set of j-invariants given by [a]xj(E) = j(FEq).
Here [a] denotes an ideal class. Each step of the random walk will update a pair (4, [a]) where j is a j-invariant and
[a] an element of cl(Ok). The core of the random walk consists of a deterministic (but random looking) function
f : Fy — cl(Ok) that maps a j-invariant to an element [a] € cl(Og). The function f is used to update the pair
(Ji, [a;]) by defining 5,41 = [f(Ji)]*j; and [a;41] = [a;]-[f(ji)]- The overall algorithm then proceeds in the following
way: start a first random walk with initial value ( j(()l), [aél)]) = (j(E}),[1]) and execute T = O(v/hg) steps with
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hi = |cl(O)| resulting in the pair (j(Tl), [agpl)]). Then start a second random walk at (jéZ)7 [agf)}) = (§(E%),[1]) and
walk until a collision occurs, i.e. until j(Tl) = jé?) for some S. The expected number of steps S is also O(v/hx ) and
the space requirement is clearly polynomial. The isogeny connecting E and F’ can then be represented as the class

group element [a] = [a(Tl )] / [a(SZ)]. To construct the actual isogeny, the authors use an index calculus type of algorithm
to find a smooth representation of [a], i.e. to express [a] = [[], %] for small prime ideals [;. The time complexity of

step (2) remains O(ql/ %) but for suitable parameters the space complexity can be subexponential or even polynomial
in log(q). Work of Bisson and Sutherland [5] reduces the storage requirements to find a smooth representation of an
ideal within time O(ql/ 4). The isogenies output by the algorithm are no longer necessarily of minimal length.

Galbraith and Stolbunov [23] improved the complexity of the GHS algorithm by a constant factor by modifying the
random walk function so that lower-degree isogenies are used more frequently.

8.1.1. Subexponential-time methods. Childs, Jao and Soukharev [8] describe an improved index calculus algorithm
to find a relatively compact and smooth representation of an element [a] € cl(Ok) that runs in sub-exponential
time L4(1/2, v/2/2) (assuming the generalised Riemann hypothesis). Biasse, Fieker and Jacobson [3] give improved
results. These algorithms can be used to speed-up the last step of the Galbraith, Hess and Smart (GHS) algorithm
above, but also allow to evaluate the class group action [a] x j(E) for any [a] € cl(Of) in sub-exponential time.

Childs, Jao and Soukharev [8] also describe a quantum algorithm for step (2) of the ordinary isogeny algorithm
above by reducing it to the abelian hidden shift problem. This problem is defined as follows: let A be a finite abelian
group, 7" a finite set and let fi, fo : A — T be black-box functions. The functions fi, fo are said to hide a shift s € A
if f1 is injective and fo(x) = f1(xs) forall z € A. The goal is then to recover s by evaluating the functions f; and fo.
Step (2) can be easily formulated as an abelian hidden shift problem by defining the two functions f([a]) = [a]xj(E})
for b = 1,2. Indeed, let [s] be the ideal class such that [s] x j(E}) = j(F%), then clearly fo(x) = fi(z[s]) for
all z € cl(Ok). The abelian hidden shift problem can be solved using Kuperberg’s algorithm [30] in L 4(1/2)
time, space and number of queries to f;. Since each query takes sub-exponential time itself, the overall time and
space complexity to solve step (2) on a quantum computer is L,(1/2). Remark 4.7 of [8] emphasises that there are
two reasons why the time complexity is subexponential: both Kuperberg’s algorithm itself, and also the classical
smoothness results for computing in class groups. The output is a path in the isogeny graph where the edges are
isogenies of prime degree (corresponding to prime ideals of norm N([;)) where the degree is subexponential in the
discriminant of the ideal class group.

Biasse, Fieker and Jacobson [3] explain how to compute a representation of an ideal class as a product [ [, [2’" where
the prime ideals [; are polynomially sized rather than subexponentially sized (the exponents b; are subexponential
though). Their method still results in a subexponential computation of the class group action, but it is much more
practical for isogeny computation.

Childs et al. also note that a variant of Kuperberg’s algorithm due to Regev [35] allows the space complexity to be
made polynomial.

The exact performance of Kuperberg’s algorithm for isogeny problems is a subject of active research, and there are
several recent preprints on the subject which we will not attempt to survey in this work.

8.2. Supersingular curves. The meet-in-the-middle approach by Galbraith [18] can also be applied to the super-
singular isogeny graph over IF,2 by building isogeny trees from E; and E, (note that step (1) can be skipped). This
method will find the shortest path from E; to Es, but both the time and space complexity are O(pl/ 2) since the number
of vertices in the graph is ~ p/12. A random walk approach as in GHS [20] would result in the same time complexity,
but also the same space complexity since there is no compact representation for the path traversed from the E;.

Delfs and Galbraith [16] study the isogeny graph restricted to supersingular curves over F,,, which has O(pl/ 2)
nodes. The endomorphism ring over I, of such a curve is, just like the ordinary case, an order in the imaginary
quadratic field K = Q(y/—p). The F,-isogeny graph consists of volcanoes with depth maximum 2, hence to construct
an isogeny between two supersingular curves over [F),, one can apply the same algorithms as in the ordinary case.
The resulting algorithm runs in time O(pl/ 1) and 0(1) space when using the low memory version. The general
supersingular isogeny problem can then be solved by first constructing an isogeny from F1, Es to curves E7, Ef over
IF,, using self-avoiding random walks (or a depth first search through all short paths) and then running the F,-algorithm.
Since there are O(p) isomorphism classes of supersingular elliptic curves over F,> of which only O(pl/ 2) are defined
over IF),, and since the isogeny graph is an expander, the expected running time of this phase will be O(pl/ 2). So
unless the curves were already defined over [, the time complexity remains O(pl/ 2), but the space complexity is
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0(1). Note that the resulting isogeny does not consist of a sequence of 2-isogenies, since more primes are needed for
the IF,-isogeny graph to be connected. (If End(E7) is known and simple enough then one can transform this to an
isogeny of order a power of two using the ideas in [27]).

Biasse, Jao and Sankar [2] adapt both stages of the Delfs-Galbraith algorithm to the quantum setting. Firstly, the
algorithm of Childs, Jao and Soukharev [8] is used to construct an isogeny between two supersingular curves over I,
since this case is very similar to the ordinary case. The quantum complexity of this step is sub-exponential L,(1/2).
Secondly, constructing an isogeny to a curve defined over IF,, can be done in quantum complexity O(pl/ 4) using
Grover’s algorithm: since the supersingular /-isogeny graph is a Ramanujan graph, it suffices to search O(pl/ 2) paths
of length O(log(p)) to find a path that passes through IF,,. The overall quantum complexity of this algorithm therefore
is O(p'/4).

The SIDH problem given in Definition 2 is more specific than computing an isogeny between two supersingular
elliptic curves in that it specifies the exact degree £7* of the isogeny and also the action on the ¢3-torsion. This results
in a faster quantum algorithm. The isogeny is composed of e; degree ¢; isogenies and given that /¢ ~ p'/2 is much
smaller than the size of the isogeny graph, we expect to find precisely one isogeny path from E' to E4. This path can
be found by constructing two isogeny trees, starting at F and E 4, consisting of all paths of length e; /2. A curve that
occurs as a leaf in both trees then immediately leads to the sought isogeny. Finding a common leaf of two trees can
be viewed as an instance of the claw problem: given two functions f : A — C and g : B — C, find a pair (a, b)
such that f(a) = g(b). On a classical computer this problem can be solved in time (|A| + | B|) and O(]A|) space by
building a hash table for f(a) for a € A and comparing with g(b) for all b € B. Tani [43] showed that on a quantum
computer this problem can be solved in quantum complexity O((|A| - |B|)'/?), resulting in a O(p'/%) attack (since
|A| = |B| = O(p'/*)). We refer to Section 5.1 of [14] for details. Furthermore, it is known that this complexity is
optimal for a black-box claw attack [48].

Since the CSIDH [7] relies on a class group action on [F),-rational supersingular curves, which is similar to the
ordinary case, the fastest algorithms to break it are the subexponential algorithms in Section 8.1.1.

A natural question is why there is a subexponential quantum algorithm for the ordinary case, but only an exponential
quantum algorithm for the supersingular case. The key difference seems to be the following: In the ordinary case, the
ideal class group acts on the isogeny graph (indeed, the isogeny graph is essentially a Cayley graph). However, in
the supersingular case there is no “global” algebraic object that acts on the graph. Instead, if F is an elliptic curve
then every isogeny ¢ : E — E’ corresponds to an ideal in the maximal order End(FE) in the quaternion algebra, but
isogenies from different elliptic curves correspond to “unrelated” isogenies in an “unrelated” maximal order (in the
same quaternion algebra). We refer to [26, 27, 46] for more details of the ideal-theoretic interpretation. These facts
manifest by the lack of symmetry or visible structure in supersingular isogeny graphs; for example see Figure 2.

9. CONCLUSION

Supersingular isogeny based crypto is a rather recent, but very promising candidate for post-quantum crypto. Its
security is based on one of only a handful of hard mathematical problems that currently resists attacks by quantum
computers. Furthermore, the key sizes and messages exchanged are typically smaller than for other competing post-
quantum proposals, but its performance and suitability for more advanced cryptographic primitives is limited compared
to for instance lattice based crypto.

The most interesting application is the SIDH key agreement protocol by Jao and de Feo [24], for which the best
known classical and quantum attacks are fully exponential. Furthermore, the current best quantum attack on SIDH is
an algorithm to solve the claw problem and its complexity is known to be optimal in a black-box setting. Although
the general underlying hard problems, e.g. the isogeny problem, have been considered in the classical setting by
computational number theorists, there is a major need for experts in quantum algorithms to evaluate the quantum
hardness of these problems. This is exacerbated by the fact that the SIDH protocol divulges a wealth of information
that is currently left unexploited by the claw and graph path finding algorithms. We can only hope that this paper will
serve both as starting point as well as impetus for this much needed research.
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