
A Novel Cryptographic Framework for Cloud
File Systems and CryFS, a Provably-Secure

Construction

Sebastian Messmer1, Jochen Rill2, Dirk Achenbach2, and Jörn Müller-Quade3

1 mail@smessmer.de
2 FZI Forschungszentrum Informatik

{rill,achenbach}@fzi.de
3 Karlsruhe Institute of Technology (KIT)

joern.mueller-quade@kit.edu

Abstract. Using the cloud to store data offers many advantages for
businesses and individuals alike. The cloud storage provider, however, has
to be trusted not to inspect or even modify the data they are entrusted
with. Encrypting the data offers a remedy, but current solutions have
various drawbacks. Providers which offer encrypted storage themselves
cannot necessarily be trusted, since they have no open implementation.
Existing encrypted file systems are not designed for usage in the cloud and
do not hide metadata like file sizes or directory structure, do not provide
integrity, or are prohibitively inefficient. Most have no formal proof of
security. Our contribution is twofold. We first introduce a comprehensive
formal model for the security and integrity of cloud file systems. Second,
we present CryFS, a novel encrypted file system specifically designed for
usage in the cloud. Our file system protects confidentiality and integrity
(including metadata), even in presence of an actively malicious cloud
provider. We give a proof of security for these properties. Our implemen-
tation is easy and transparent to use and offers performance comparable
to other state-of-the-art file systems.

1 Introduction

In recent years, cloud computing has transformed from a trend to a serious
competition for traditional on-premise solutions. Elastic cost models and the
availability of virtually infinite resources present an alternative to offers of a preset
volume. The more bandwidth is available to consumers, the more economically
reasonable it is to replace an on-premise solution with a cloud solution. In the
wake of the PRISM disclosures, it seems näıve to trust in the security of one’s
data in the cloud, however. The scientific challenge for security researchers is to
solve this dilemma by finding solutions without sacrificing the economic benefits
of cloud technology.

Cryptographic research offers methods that guarantee the confidentiality and
integrity of data in the presence of an adversary. The principle of cryptographic
proof eliminates trust requirements by highlighting precisely which guarantees

This work is published in the proceedings of DBSec 2017 [12].

hold under which assumptions. A proof of security makes use of a formal model in
formulating security properties. Cryptographic schemes can then also be expressed
in the terms of the formal model. Formal proofs of security constructively establish
how a scheme achieves a security property (under given assumptions). This is a
significant difference to the “ad-hoc security” method of eliminating vulnerabilities
from a scheme until one can no longer conceive of any more attacks.

Provably-secure schemes are rarely adopted in practice. The abstract compu-
tational models that form the basis of cryptographic frameworks don’t usually
facilitate a straightforward implementation. Also, the concept of efficiency in
these models differs from practical efficiency notions, so that many asymptotically
efficient schemes are rather inefficient in practice. In contrast, there are many
practical solutions to security challenges. They are deployed widely, but seldomly
lend themselves to a formal security analysis and are thus analysed in an “ad-hoc”
fashion.

Returning to the cloud scenario from before, a particular case in this area
of conflict is outsourced file system data. Encrypting snapshots of file systems
(backups) as one single block is certainly a mastered task. To update a single file in
a huge file system, one were to re-encrypt and re-upload the whole snapshot. It is
a different challenge altogether to efficiently deduplicate and compress encrypted
remote backups to conserve bandwidth and storage space. In a similar fashion, it
is not immediately obvious how to allow fine-grained access to single files in a
file system hierarchy while provably protecting metadata and at the same time
conserving efficiency. Indeed, we are not aware of any efficient cryptographic
cloud file system in literature.

1.1 Our Contribution

Our contribution is twofold. We first give a formal security model for encrypted
file systems and cloud file systems in particular. Our model covers both integrity
and confidentiality for chosen ciphertext attacks, as well as chosen plaintext
attack scenarios. Our model is designed to be as generic as possible to be useful
for analysing the security of other cloud file systems beyond the scope of this
paper.

Second, we design and implement CryFS1, a provably secure encrypted file
system for the cloud which is easy to use and acts completely transparent to the
user. In addition to hiding file contents, we also hide file metadata, like sizes and
permission bits, and the directory structure. Our file system is designed to be
used by multiple users. When used only by a single user, CryFS also protects the
integrity of the file system in the sense that no malicious storage provider can
change the file system (for example delete, undelete or roll back files) without
being noticed. We achieve good network performance by keeping ciphertext data
in small same-sized blocks, which are organised in a special tree data structure
and are synchronised individually. Local changes only cause few blocks to be
synchronised. We prove that our file system is secure in our security model. The

1 https://www.cryfs.org

performance of our reference implementation is already comparable to other
state-of-the-art encrypted file systems. It is open source and available on github2.

1.2 Related Work

There are various commercial and free solutions for secure cloud storage. Providers
like SpiderOak3, tresorit4 and boxcryptor5 offer cloud storage space in combina-
tion with a proprietary client application to synchronise data. They claim that
all data is encrypted on the client and stored securely on the servers. However,
these services do not disclose the specification of their protocols. Thus, they
presume a certain level of trust in their service that is not much different from
trusting a popular cloud provider in the first place. Traditional encrypted file
systems like EncFS6, eCryptFs7 and NCryptFS [13] are open and theoretically
usable in a cloud setting, however, they lack important security features: By
encrypting files individually, they protect the content but leave metadata like the
directory structure unencrypted. Using this, an attacker can easily distinguish
a music CD collection (which has about 20 files per directory, 3MB each) from
a folder containing only documents. Other solutions like the now-discontinued
TrueCrypt8, VeraCrypt9, and dm-crypt10, hide the directory structure by en-
crypting the whole file system into one big container. However, these solutions
cannot be used in a cloud setting efficiently, as changing one small file in the file
system causes the whole container to be re-encrypted and thus to be re-uploaded.

What is more, none of the presented solutions have a formal proof of security.
There has been research into how to model the security of file systems, however,
most of this research is directed at disk encryption schemes. Damg̊ard et al. [5]
for example introduce a formalisation of encryption schemes for file systems that
is based on the Universal Composability framework. However, there are many
artefacts in their model which are not relevant in the cloud setting (e. g. they
explicitly model physical and logical sectors). Their model also misses components
on which our security is based (i.e. different states for client and server) and thus
is not well suited for our setting. Kristian Gjøsteen [8] and more recently Khati
et al. [11] both introduce a game-based security model, which, however, is also
only suited for modeling full disk encryption.

Modeling the security of outsourced data in general has been mainly inves-
tigated in the context of searchable encryption and proofs of data possession
(PDP), as well as proofs of retrievability (POR). For searchable encryption, there
are many different security models (e. g. by Chase et. al [4], Goh [9] and others)
which are specifically designed for the corresponding scheme and cannot easily
be applied to other settings and schemes. In addition, keeping the queries private
is an important goal in the context of searchable encryption and is thus almost
always included in the security model. For cloud based file systems, this is not as

2 https://github.com/cryfs/cryfs 3 https://spideroak.com
4 http://tresorit.com 5 http://www.boxcryptor.com
6 http://www.arg0.net/#!encfs/c1awt 7 http://www.ecryptfs.org
8 http://truecrypt.sourceforge.net 9 https://veracrypt.codeplex.com
10 https://gitlab.com/cryptsetup/cryptsetup/wikis/DMCrypt

important. Achenbach et al. [1] introduce a more general security framework for
modeling the security of outsourcing schemes but their model does not consider
integrity. However, our framework is in part inspired by their ideas. There is
a rich body of work regarding outsourcing schemes and corresponding security
models which provide proofs of data possession and retrievability (e. g. Zhang
et al. [14], Erway et al. [7] and Cash et al. [3]). Similar to our goals, all these
schemes provide integrity for outsourced data. However, their requirements are
fundamentally different. The goal of a PDP scheme is for a cloud provider to be
able to prove that he has all of the outsourced data and that he did not modify
it maliciously without requiring the user to hold a copy of the data himself
and without having to download it. This is very useful if the server performs
computations on the outsourced data without interaction of the user and the
user wants to verify if all the data is still correct. In our case however, the server
is only used for storage and users interact with the data only locally. Thus, all
integrity checks can be performed by the user on the data itself. In order to
achieve these particular integrity guarantees, PDP schemes require design and
performance trade offs, which are also reflected in their security models. This
makes the schemes incomparable to our scheme and the security models hard to
adapt to our case.

2 A Security Model for Cryptographic File Systems

In this chapter, we introduce a novel formal security model for cloud file systems
which covers both security and integrity in a non-adaptive as well as in an
adaptive setting. We first give security definitions in the chosen plaintext attack
scenario and then show how to extend them to the chosen ciphertext attack
scenario. Further, we show that chosen ciphertext security for file systems can be
achieved by combining plaintext security and integrity. Note that throughout this
work we use · to denote a free parameter, which can be chosen by the adversary.

2.1 Basic Definitions

In general, encrypted file systems use a symmetric encryption scheme as underly-
ing primitive. We give a formal definition of such an encryption scheme.

Definition 1 (Symmetric Encryption Scheme). A symmetric encryption
scheme E is a tuple E := (Gen,Enc,Dec) with

– Gen : 1k → {0, 1}k is a PPT algorithm which given a security parameter k,
outputs a key K.

– Enc : {0, 1}k × {0, 1}n → {0, 1}m is a probabilistic polynomial time (PPT)
algorithm which given a key K and a plaintext outputs the corresponding
ciphertext.

– Dec : {0, 1}k × {0, 1}m → ({⊥} ∪ {0, 1}n) is a PPT algorithm which given a
key K and a ciphertext outputs the corresponding plaintext. It outputs ⊥ if
K is wrong or the ciphertext was not valid.

Security and integrity of these basic encryption schemes are modeled by the
standard security notions indistinguishability under chosen plaintext (IND-CPA)
and integrity of ciphertexts [2] (INT-CTXT) respectively.

Security Game 1 (IND-CPAA(k))
– The experiment chooses a key K ←

Gen(1k) and a random bit b← {0, 1}.
– The adversary is given oracle access

to LR(K,m0,m1), which outputs an
encryption of mb under K, if |m0| =
|m1|.

– A submits a guess b′ for b.
The result of the experiment is 1, if b′ = b,
and 0 else.

Security Game 2 (INT-CTXTA(k))
– The experiment chooses a key K ←

Gen(1k).
– The adversary is given oracle access to

Enc(K, ·).
– The adversary is given oracle access to

Dec(K, ·).
The result of the experiment is 1, if for any
Dec oracle query: Dec(K, c) 6= ⊥ and c was
never output by the Enc oracle.

Note that there are several equivalent formalisations for IND-CPA security [10].
We use the formalisation with a left-or-right oracle to reduce the complexity of
our proofs. If a classic encryption oracle is needed, we can simulate it easily by
setting both inputs to LR to be equal.

We now give a formal definition of an encrypted file system. In general, a
file system needs four algorithms: one for initialising the file system (like setting
up data structures), one for updating the file system (like adding and removing
files), one for decrypting the file system and one for generating the cryptographic
keys. The file system, and all algorithms which interact with it, are stateful.

Definition 2 (Encrypted File System). Let F be the set of plaintext file
systems, C the set of ciphertext file systems, and S the set of client states. Let K =
{0, 1}k be the set of keys and E = (Gen′,Enc′,Dec′) be a symmetric encryption
scheme. An encrypted file system C is a tuple C := (Gen, Init,Update,Dec, E) with

– Gen : {1}k → K is a PPT algorithm which generates a key K.
– Init : K→ C× S is a PPT algorithm which takes the key K and initialises

an empty ciphertext file system C, and the client state s.
– Update : K×C× F× S→ ({⊥} ∪C)× S is a PPT algorithm used to update

the file system. It is given the key K, an old ciphertext file system C, a new
plaintext file system F and a client state s. It outputs ⊥ if the decryption of
C fails, else a new ciphertext file system C ′, and a new client state s′.

– Dec : K× C× S→ ({⊥} ∪ F)× S is a PPT algorithm which is given a key
K, a ciphertext file system C, and the client state s and outputs ⊥ if the
decryption fails, else the decrypted file system F , and a new client state s.

2.2 Modelling Non-Adaptive Security

Traditionally, security against non-adaptive adversaries requires that an adversary
cannot gain any information from a scheme which they did not observe or interact
with before. In the case of file systems however, we additionally require that
the adversary could have interacted with other encrypted file systems using the
same key. We allow the adversary to create an arbitrary but constant number

of file systems, which are available before and after he chooses the challenge.
Also, we do not require the client state to be kept secret. We allow the challenges
to be restricted by a relation Rd (e. g. both file systems must store the same
amount of data). This means that from looking at a freshly encrypted file system,
an attacker cannot deduce any information even if he observed modifications
on different file systems using the same key. In particular, this requires the file
system to introduce measures to be secure under key reuse (e. g. a user encrypting
two different file systems with the same password). We call this security notion
indistinguishability under non-adaptive chosen file system attacks (IND-naCFA).

Security Game 3 (IND-naCFAA,Rd(k))
– The experiment chooses a key K ← Gen(1k) and a random bit b← {0, 1}.
– The adversary is given oracle access to Init(K). The j-th query returns a new

ciphertext file system (Cj , sj) using the same key, and the following oracle to
interact with it:
• (C ′j , s

′
j)← Updatej(K,Cj , ·, sj). The game sets (Cj , sj) := (C ′j , s

′
j).

The number of Init queries is bounded by an adversary-chosen constant qInit.
– The adversary outputs two file systems F 0 and F 1 with (F 0, F 1) ∈ Rd.
– The experiment generates (C, s)← Init(K).
– The experiment computes (C ′, s′)← Update(K,C, F b, s).
– A is given (C, s) and (C ′, s′).
– A submits a guess b′ for b.

The result of the experiment is 1 if b′ = b, and 0 else.

Definition 3 (Nonadaptive Security). A file system is IND-naCFA secure, if

∀A, c ∈ N∃k0 ∈ N∀k > k0 : |Pr[IND-naCFAA,Rd(k) = 1]| ≤ 1

2
+ k−c

2.3 Modelling Adaptive Security

Intuitively, while IND-naCFA models security of a file system directly after creation,
adaptive security models the security of a file system later in its life. To achieve this,
we allow the adversary to choose a file system as challenge with which he already
interacted. We then require that he cannot distinguish which of two modifications
he chose is performed. Again, we allow to restrict the adversary’s choice of
challenge by a relation Rd. We call this security notion indistinguishability under
adaptive chosen file system attacks and it is a direct extension of IND-naCFA.

Security Game 4 (IND-aCFAA,Rd(k))
– The experiment chooses a key K ← Gen(1k) and a random bit b← {0, 1}.
– The adversary is given oracle access to Init(K), which on the j-th query

initialises Fj = ⊥ (empty file system), returns a new ciphertext file system
(Cj , sj) using the same key and an oracle to interact with it.
• (C ′j , s

′
j) ← Updatej(K,Cj , ·, sj). The game remembers the most recent

input Fj and sets (Cj , sj) := (C ′j , s
′
j).

The number of Init queries is bounded by a constant qInit chosen by the
adversary.

– The adversary outputs j and two file systems F 0, F 1 with (Fj , F
0, F 1) ∈ Rd.

– The experiment computes (C ′j , s
′
j) ← Updatej(K,Cj , F

b, sj) and passes
(C ′j , s

′
j) to the adversary.

– A submits a guess b′ for b.
The result of the experiment is 1 if b′ = b and 0 else.

Definition 4 (Adaptive security). A file system is IND-aCFA secure, if

∀A, c ∈ N∃k0 ∈ N∀k > k0 : |Pr[IND-aCFAA,Rd(k) = 1]| ≤ 1

2
+ k−c

2.4 Modelling Integrity

To provide integrity, a cloud file system must ensure that a malicious server
cannot alter the file system in any way, even though the server can observe every
modification made to this file system and to other file systems using the same
key. In particular, a server must not be able to provide the client with old states
of the file system. This results in the following security model, which we call
integrity of file systems.

Security Game 5 (INT-FSA(k))
– The experiment chooses a key K ← Gen(1k).
– The adversary is given oracle access to Init(K). The j-th query returns a new

ciphertext file system (Cj , sj) using the same key, and the following oracles
to interact with it:
• (C ′j , s

′
j)← Updatej(K,Cj , ·, sj). The game sets (Cj , sj) := (C ′j , s

′
j).

• (F, s′j)← Decj(K, ·, sj). The game sets sj := s′j for the next query.
The number of Init queries is bounded by an adversary-chosen constant qInit.

The result of the experiment is 1 if for any of the decryption oracle queries
Decj(K,C ′, sj) 6= ⊥, Cj 6= C ′.

Definition 5 (Integrity). A file system is INT-FS secure, if

∀A, c ∈ N∃k0 ∈ N∀k > k0 : |Pr[INT-FSA(k) = 1]| ≤ k−c

2.5 Security Against Chosen Ciphertext Attacks

Like IND-CCA security is an extension of IND-CPA security, we extend IND-naCFA
to IND-naCCFA and IND-aCFA to IND-aCCFA. The security games are identical
to their chosen plaintext counterparts, except that Init returns an additional
decryption oracle Decj(K, ·, sj), which is modeled like in the INT-FS game.

For basic encryption schemes, ciphertext security (IND-CCA) can be achieved
by combining plaintext security (IND-CPA) with integrity (INT-CTXT) [2]. We
show that this is also true for file systems within our security framework.

Lemma 1. A file system F = (Gen, Init,Update,Dec) is IND-(n)aCCFA secure,
if it is IND-(n)aCFA and INT-FS secure.

Proof. Assume a modified version of IND-(n)aCCFA, where the Decj oracle only
works for the most recent output of the corresponding Updatej oracle, or (if
Update has not been called yet) for the output of Init. For all other queries, it
returns ⊥. We call this modified game IND-(n)aCCFA′. It is straightforward to
reduce an adversary against IND-(n)aCCFA′ to an adversary against IND-(n)aCFA
by remembering the most recent Updatej queries and answer the decryption
query accordingly. We now show that any adversary with non-negligible success
probability against IND-(n)aCCFA also has a non-negligible success probabil-
ity against IND-(n)aCCFA′. Assume towards a contradiction an adversary A
with a non-negligible different success probability in playing IND-(n)aCCFA and
IND-(n)aCCFA′. We transform this adversary into an adversary A′ against INT-FS.
When A requests access to the Init oracle, A′ forwards the calls to the Init oracle
provided by INT-FS, returning (Cj , sj) and the Updatej oracle. When A requests
access to the Decj oracle, A′ calls the Decj oracle provided by INT-FS, but ignores
the response and implements the behaviour described for the IND-(n)aCCFA′ game
by remembering the most recent Updatej query. For IND-aCCFA′, the challenge
(C ′j , s

′
j) is generated by another call to the Updatej oracle. For IND-naCCFA′,

the challenge (C, s, C ′, s′) is generated by calling Init and then using the freshly
returned Updatej oracle. Since the success probability of A is non-negligibly
different for IND-(n)aCCFA and IND-(n)aCCFA′, and the only difference in the
games is the behaviour of Decj oracle queries that are not the most recent output
of the Updatej oracle but decrypts successfully, we know such a query must
happen with non-negligible probability. This query can be used directly to win
the INT-FS game. �

3 CryFS: An Encrypted File System for the Cloud

CryFS is an overlay file system that can be mounted to a virtual folder. Every-
thing the user stores in this virtual folder is encrypted in the background. The
ciphertexts are stored on the hard disk (through the underlying file system)
and can be picked up by third party synchronisation clients like Dropbox and
uploaded to a cloud storage. This allows for a flexible use on top of any file system
or cloud storage provider. In contrast to many other encrypted file systems, we do
hide file contents as well as metadata like file sizes, file permissions and directory
structure. We achieve this by splitting all file system data into same-size blocks.
These blocks are then individually encrypted using an authenticated cipher. Using
a specifically tailored data structure, we ensure that all file operations are still
fast and we induce little space overhead, even though all files are segmented
into small blocks (see Section 3.1). To prevent malicious storage providers from
violating the integrity of the file system, we introduce additional measures to
prevent rollback, deletion and re-introduction of deleted blocks (see Section 3.3).
We point out that we decided against using hash trees to protect integrity: The
primary reason behind this decision is our goal to support concurrent access
to the file system. Hash trees induce changes from the affected block up to the
root node, thus increasing the chance of edit conflicts. The second reason for

avoiding hash trees are performance considerations. Although hash trees have
only logarithmic overhead in the size of the file system, any non-constant overhead
is prohibitive for file systems with many frequent changes in many small files.
Even though these integrity protections are only fully effective when the file
system is used by a single user, CryFS is designed to work well with multiple
users. See Appendix C for details. As most other encrypted file systems, CryFS
uses two keys: a file system key for encrypting the file system blocks and a master
key for encrypting the filesystem key. This makes it easy to change passwords for
example.

3.1 Data Structures, Blocks and Files

ID:25 12 87 File: cat.jpg

43ID:12 7 1 ID:87 2 5

3 4 7 1 2 5

Fig. 1: The tree for an exemplary file “cat.jpg”. Each tree node is one same-sized
block in CryFS. The actual file data is stored in the leaves, whereas inner nodes
store only pointers. For determining the file size, one only has to descend into the
right-most branch of the tree and examine how much data is stored in the right-
most leaf. Since all leaves are at the same depth and only the right-most elements
are allowed to contain a less-than-maximum amount of data, this descend suffices
to know how many blocks the file contains and thus the total file size.

As already mentioned, CryFS does not encrypt files individually. Rather,
it splits every file into same-sized blocks, which are then encrypted. A tree
data structure then associates blocks to files and files to directories. We base
our construction on Dielissen et al.’s work on left-perfect binary trees [6] and
generalise their definition to left-max-data trees.

The main idea for this data structure is that all nodes in the tree are as
far left as possible. The actual binary file data is always stored in the left-most
leaves of the file system tree and in-order. All leaves in the tree are at the same
depth, and with exception of the right-most one, store exactly the same amount
of data. This allows to represent arbitrary file sizes. Internal nodes contain only
pointers to other blocks. If the block size is chosen appropriately (and thus the
number of available pointers in each block), even large files can be represented
by a tree with little depth. Every block is identified by a unique id, which is
randomly chosen each time a block is created. See Figure 1 for an example
file represented as a left-max-data tree. This structure leads to very efficient

algorithms for file system access. When trying to read a certain position in
a file, one only needs to compute the respective block number from the total
number of blocks in this file and the fixed block data size. Also, small changes
to a file are particularly efficient: only a small block has to be changed (and
synchronised to the cloud) not the whole file. Increasing the file size is described
in Algorithm 1, decreasing is similar. Since only the right-most leaf can contain a
less-than-maximum amount of data, determining the file size can also be achieved
without reading all blocks by determining the amount of data in the right-most
leaf. In our reference implementation with 32kb blocks and 16 byte block ids,
this data structure induces a space overhead of roughly 0.05% for inner nodes
plus an additive overhead of at most one leaf node’s size if the right-most leaf is
not full.

Algorithm 1 Grow an existing tree by one leaf

function GrowTree(treeRoot ,newBlock)
`← LowestNonFullInnerNode(treeRoot)
if ` = ⊥ then /* All nodes are full. We need to add a level. */

`← NewInnerNode() /* Create a new root block */
`.AddChild(treeRoot)
treeRoot ← `

end if
while depth(`) < depth(leaves)− 1 do

n ← NewInnerNode()
`.AddChild(n)
`← n

end while
`.AddChild(NewLeaf(newBlock))
return treeRoot

end function

3.2 Directory Structure

Directories in CryFS are basically files themselves. Directories, however, do not
store binary data but store a list of the directory’s entries—i. e. pointers to the
root block of files and directories. To allow for an efficient listing of all directory
entries without having to descend into all individual file trees, we store the
name of each entry, as well as all file metadata (like permission bits) along with
the corresponding pointer in the directory structure. This layout allows for fast
modifications of the directory structure. Moving a large directory only requires
re-encrypting both the old and the new parent directory. See Figure 2 for an
example of a file system tree with one directory and one file.

3.3 Encryption and Integrity

Encryption is on the block level—i. e. each block is encrypted individually. This
allows for good performance because blocks can be encrypted in parallel. We use
a cipher with an authenticated operation mode (e. g. AES-GCM) to prevent an
adversary from altering the content of the blocks themselves. However, this is
not yet sufficient to protect the integrity of the file system as a whole, since the

ID:13 cat.jpg: 25 Directory: images/

ID:25 12 87 File: cat.jpg

43ID:12 7 1 ID:87 2 5

3 4 7 1 2 5

Fig. 2: The file “cat.jpg” is contained in a directory “images”. To list all files of a
directory efficiently, the name of each file is included with the respective pointer.
As it is the case with files, once the number of entries in a directory exceeds the
size of one block, the directory itself is represented as a tree.

connections between different blocks are not protected. An adversary can still
try to reorder blocks, replace newer blocks with older versions, delete or re-add
already deleted blocks.

We use a number of different mechanisms to prevent these attacks. First, we
store the block ID in the header of the block, where it is integrity-protected by
the authenticated encryption scheme. This ensures that an attacker cannot assign
a different ID to a block (by changing the name of the file storing the block)
and therefore prevents reordering. To prevent an attacker from replacing a block
with a previous version of the same block, a block also stores a version counter
in its header. Clients store a local list of all known blocks with a flag whether
the block still exists, and their corresponding version numbers and check that
it does not decrease. This list is also used to prevent an attacker from deleting
or re-adding already deleted blocks without the client noticing. Additionally,
the clients remember the master-key-encrypted file system key to prevent an
adversary from replacing the whole file system including the key. In Section 4,
we formally prove that this approach achieves the desired security goals. See
Algorithms 1 – 5 for a description of relevant file system algorithms in pseudo-code.

4 Proving the Security of CryFS

In this section, we prove the adaptive and non-adaptive security of CryFS and
show that it also provides integrity. Further, we show that CryFS also achieves
ciphertext indistinguishability. We first give a formal description of CryFS. To
simplify notation, we represent the tree structure of CryFS as a set of node blocks.

Definition 6 (CryFS). Let I be the space of block IDs, I × {0, 1}n the set of
plaintext blocks, and I × {0, 1}m the set of ciphertext blocks. CryFSE1,E2 is an
encrypted file system (Gen, Init,Update,Dec) with E1 = (Gen1,Enc1,Dec1) and

Algorithm 2 Returns a new block with
a unique id and the version number set
to 0

function CreateBlock
i← GenerateUniqueID()
return (i, i||0)

end function

Algorithm 3 Add a file or a folder tree to a directory

function AddToDirectory(directory ,newEntry)
if RightmostLeaf(directory).IsFull() then

GrowTree(directory,CreateBlock())
end if
RightmostLeaf(directory).AddData(newEntry)

end function

Algorithm 4 Creates a tree data struc-
ture from a file and returns the root node

function CreateFile(file)
D := (d0, . . . , dn)← SplitData(file)
t← CreateBlock()
t.AddData(d0)
for all other di ∈ D do

bi ← CreateBlock()
bi.AddData(di)
t← GrowTree(t, bi)

end for
return t

end function

Algorithm 5 Creates the data structure for a complete file
system

function CreateFileSystem(sourceFileSystemRoot)
rootBlock ← CreateBlock()
for all Directories dir in sourceFileSystemRoot do

rootBlock .AddToDirectory(CreateFileSystem(dir))
end for
for all Files file in sourcFileSystemRoot do

rootblock.AddToDirectory(CreateFile(file))
end for
return rootBlock

end function

E2 = (Gen2,Enc2,Dec2). The client state S ⊆ 2I×N×{0,1} × {0, 1}k′
stores a set

of all known blocks with their id i ∈ I, current version v ∈ N and a flag whether
the block still exists (1) or was deleted in the past (0). The state also stores
cfs ∈ {0, 1}k

′
, an encrypted version of the file system key. For the sake of clarity

of the exposition, we first define intermediate functions:

– Repr : F → 2I×{0,1}n : Takes a plaintext file system and generates its repre-
sentation as a set of plaintext blocks.

– EncBlock : K× (I×{0, 1}n)×N→ (I×{0, 1}m): Takes a key Kfs, a plaintext
block (i, b) and a version number v ∈ N. Prepends block ID and version
number to the data and encrypts it. Outputs (i, c) with c := Enc2(Kfs, i||v||b).

– DecBlock : K× (I×{0, 1}m)→ {⊥}∪ [(I×{0, 1}m)×N]: Takes a key Kfs and
a ciphertext block (i, c). Decrypts it to i′||v||b := Dec2(Kfs, c). If decryption
fails or i 6= i′, returns ⊥. Otherwise, returns the plaintext block (i, b) and the
version number v.

Now we define the functions forming an encrypted file system.

– Gen(1k) 7→ (Kmaster) : Uses Gen1 to generate a master key Kmaster.
– Init(Kmaster) 7→ (C, s) : Takes Kmaster and generates Kfs ← Gen2(1k).

Encrypts it with the master key to cfs = Enc1(Kmaster,Kfs). Computes
B := Repr(F) = {(i0, b0), . . . , (in, bn)}, a set of blocks representing an empty
file system F .
Sets C := (cfs,EncBlock(Kfs, (i0, b0), 0), . . . ,EncBlock(Kfs, (in, bn), 0)) and
s := ({(i0, 0, 1), . . . , (in, 0, 1)}, cfs) and outputs (C, s).

– Dec(Kmaster, C, s) 7→ (F, s) : Reads cfs from C and compares it with the
cfs stored in s. If they differ, returns ⊥. Otherwise, decrypts it to Kfs :=
Dec1(Kmaster, cfs). Then, computes

D := {((i′, b), v) | ((i′, b), v) = DecBlock(Kfs, (i, c)), (i, c) ∈ C}. Outputs ⊥ in
the following cases:
• Dec1 fails to decrypt cfs (wrong key or an integrity violation).
• DecBlock fails to decrypt c (wrong key, an integrity violation, or i 6= i′).
• There is an ((i, b), v) ∈ D for which there is no (i, v′, 1) ∈ s
• There is an ((i, b), v) ∈ D for which there is an (i, v′, 1) ∈ s with v < v′

• There is an (i, v, 1) ∈ s for which there is no ((i, b), v′) ∈ D
Otherwise, computes the plaintext file system F := Repr−1({(i0, b0), . . . , (in, bn)})
and outputs (F, s). The client state is not changed.

– Update(Kmaster, C, F
′, s) 7→ (C ′, s′) : Decrypts the old file system state to

F := Dec(Kmaster, C, s). Then, reads cfs from C and decrypts it to Kfs. If
either decryption fails, returns ⊥. Initializes s′ := s. Compares Repr(F) and
Repr(F ′) and does the following:
• For each block (i, b) 6∈ Repr(F), (i, b′) ∈ Repr(F ′):
∗ If (i, v, 0) ∈ s, replace it in s′ with (i, v + 1, 1). Else, add (i, 0, 1) to s′

∗ Note: if (i, v, 1) ∈ s, Dec would have failed above.
• For each block (i, b) ∈ Repr(F), (i, b′) ∈ Repr(F ′), b 6= b′

∗ Replace (i, v, 1) in s′ with (i, v′+1, 1), where v′ is the version number
returned from DecBlock on decryption.
∗ Note: (i, v, 1) ∈ s ∧ v′ ≥ v, otherwise Dec would have failed above.

• For each block (i, b) ∈ Repr(F), (i, b′) 6∈ Repr(F ′)
∗ Replace (i, v, 1) with (i, v, 0) in s′.
∗ Note: (i, v, 1) ∈ s otherwise Dec would have failed above.

Then, encrypts F ′ using EncBlock with updated version numbers and outputs
the new ciphertext file system C ′ (including cfs), and the modified state s′.

We now show that CryFS exhibits non-adaptive security according to Defini-
tion 3. We set Rd to restrict the challenge file systems to be representable using
the same number of blocks. Formally, this means

Rd = {(F 0, F 1) ∈ F× F : |Repr(F 0)| = |Repr(F 1)|}

Theorem 1 (Nonadaptive Security of CryFS).
CryFSE1,E2 = (Gen, Init,Update,Dec) is IND-naCFA secure, if E1 = (Gen1,Enc1,Dec1)
and E2 = (Gen2,Enc2,Dec2) are IND-CPA secure encryption schemes.

Proof. We prove the claim by reduction using two steps. First, we modify
IND-naCFA to IND-naCFA′ such that when the adversary gets the challenge
(C, s), (C ′, s′), it does not contain an encryption of Kfs, but an encryption of 0s
instead. We prove that an adversary which has a different advantage in IND-naCFA
and IND-naCFA′ can be used to break the IND-CPA security of E1. Second, we
give a reduction from IND-naCFA′ to the IND-CPA security of E2.

Consider the following modification to IND-naCFA: When the adversary ex-
pects the challenge (C ′, s′), replace the encrypted file system key Enc1(Kmaster,Kfs)
in state and ciphertext with Enc1(Kmaster, 0). We call this modified game IND-naCFA′.
Now, assume towards a contradiction an adversary A with a probability of success
p against IND-naCFA and p′ against IND-naCFA′, where p = p′ + d for a positive

non-negligible d. This adversary can be used to construct an adversary B with a
non-negligible advantage of d

2 against the IND-CPA security of E1. The reduction
works as follows: The IND-CPA game draws Kmaster ← Gen1(1k) and a random
bit b. When A uses the Init oracle, B generates K ′fs ← Gen2(1k) and (Cj , sj)
using the algorithms described in Definition 6 and uses the encryption oracle
of IND-CPA to generate c′fs as an encryption of K ′fs. Since B knows K ′fs it can
also build the Updatej oracle. When the adversary outputs F 0, F 1, B generates

another independent Kfs ← Gen2(1k), and passes 0 and Kfs as challenge to the
IND-CPA game. The game returns cfs. When b = 0, this is an encryption of
0. When b = 1, this is an encryption of Kfs. B then draws a random bit a,
and knowing Kfs, can build the challenge (C, s) and (C ′, s′) as an encryption
of F a. It replaces the encrypted file system key in C, s, C ′ and s′ with the cfs
and returns the result to A. If A outputs a, A wins and B outputs 1 to the
IND-CPA game. If A loses, B outputs 0. For b = 0, this was a perfect simulation
of the IND-naCFA′ game. B has success probability Pr[a 6← A | b = 0] = 1− p′.
For b = 1, this was a perfect simulation of the IND-naCFA game. B has success
probability Pr[a← A | b = 1] = p = p′ + d. Together, B has success probability
Pr[b ← B] = 1

2 (1 − p′) + 1
2 (p′ + d) = 1

2 + d
2 . Since d is non-negligible, B has a

non-negligible advantage in the IND-CPA game which is a contradiction.

Now, assume towards another contradiction that A′ is a successful attacker on
IND-naCFA′. We transform A′ into a successful attacker B′ on IND-CPA security
of E2: The game draws Kfs and a random bit b. B′ draws Kmaster ← Gen1(1k).
When A′ uses Init, B′ generates a new K ′fs, encrypts it with Kmaster, and creates
an empty ciphertext file system. Knowing Kmaster, the Updatej oracle can be
implemented easily.

Upon receiving challenges F 0 and F 1 from A′, B′ first generates an empty
file system, and encrypts it to (C, s) using the encryption oracle and prepending
c′fs = Enc1(Kmaster, 0). Then, B′ updates it with F 0 and F 1 respectively, and
uses the LR-oracle provided by IND-CPA successively for each pair of blocks in
Repr(F 0) and Repr(F 1). This is possible, since we require (F 0, F 1) ∈ Rd (i. e.
both have the same number of blocks), Repr can be implemented to choose the
same block ids for F 0 and F 1, and all blocks are of the same size. B′ remembers
all encrypted blocks returned by the oracle, prepends c′fs to get C ′, and passes it
to A′ together with a generated file system state s′ in which all block ids in have
version number 1.

This is a correct simulation of the IND-naCFA′ game. When A′ submits a
guess for b, B′ forwards it and thus inherits its success probability. This is a
contradiction to the assumption that E2 is IND-CPA-secure. �

Theorem 2 shows that CryFS is also adaptively secure according to Definition 4.
Since block IDs are public and CryFS only re-encrypts blocks for which the
plaintext changed (for performance reasons), we set Rd to restrict both challenge
file systems add, delete or modify blocks with the same block IDs. Theorem 3
shows that CryFS exhibits integrity according to Definition 5.

Theorem 2 (Adaptive Security of CryFS).
CryFSE1,E2 = (Gen, Init,Update,Dec) is IND-aCFA secure, if E1 = (Gen1,Enc1,Dec1)
and E2 = (Gen2,Enc2,Dec2) are IND-CPA secure encryption schemes.

Theorem 3 (Integrity of CryFS).
CryFSE1,E2 = (Gen, Init,Update,Dec) is INT-FS secure, if E1 is IND-CPA and E2
is INT-CTXT secure.

The proofs for Theorem 2 and 3 can be found in Appendix A and B.
Lastly, we show that CryFS can also be secure against chosen ciphertext

attacks.

Theorem 4 (Chosen Ciphertext Attacks). CryFSE1,E2 = (Gen, Init,Update,Dec)
is IND-naCCFA and IND-aCCFA secure, if E1 = (Gen1,Enc1,Dec1) is an IND-CPA
and E2 = (Gen2,Enc2,Dec2) an IND-CPA and INT-CTXT secure encryption
scheme.

Proof. This follows directly from Theorem 1, Theorem 3 and Lemma 1. �

5 Performance

In this section, we present results of our performance evaluation for our reference
implementation of CryFS. We tested various performance factors in comparison
to other popular file systems. Even though our implementation is preliminary
and still has potential for optimisation, our experiments show that our file system
has performance comparable to existing encrypted file systems and is practical.

CryFS is implemented using C++ and can be compiled with either GCC
or Clang. For cryptography, the Crypto++11 library is used, but the code is
written in a way that allows for easy switching to another library. We tested
CryFS 0.10-m2, EncFS 1.8.1, TrueCrypt 7.1a, and VeraCrypt 1.19. CryFS was
built with GCC 5.3.1 using optimization level Ofast. In all cases, the underlying
file system was Ext4. For comparision we also tested the performance of Ext4
itself without using a cryptographic file system on top. CryFS was configured
to use aes-256-gcm and run with a block size of 32kb. EncFS was also set to
aes-256. For TrueCrypt and VeraCrypt, a container with 50 GB size was created,
also using aes-256. We used a machine with Intel(R) Core(TM) i5-2500K CPU @
3.30GHz QuadCore, 16GB DDR3-RAM on Ubuntu 16.10, Linux 4.8.0-49 x86 64.
As hard-drive, a Samsung HD 204UI was used. The experiments were run using
the benchmarking tool bonnie++ 1.03e12. To minimize the influence of cache
effects, bonnie++ runs the read/write tests with a test file size that is twice the
size of main memory (32GB in our case). For create/stat and delete tests, we used
16 ∗ 1024 files with 10KB each. Each experiment was run three times to ensure a
low standard deviation, and we report the average value. The benchmark script
is available online. 13

11 https://www.cryptopp.com/ 12 http://www.coker.com.au/bonnie++/
13 https://github.com/cryfs/benchmark/tree/0.10-m2

We found that writes by CryFS on HDDs are 15% slower than EncFS, while
random seeks are faster by 45%. Read performance is slower by about a factor of
three. All operations are still fast enough to be used in practice, however. CryFS
uses less CPU time for all operations. Table 1 includes measurements for all
tested file systems and shows the measured performance in detail.

CryFS EncFS TrueCrypt VeraCrypt Plain Ext4

Sequential
Output

bytewise MB/s 40.5(35%) 39.3 (38%) 29.2 (26%) 28.1 (25%) 70.9 (64%)
blockwise MB/s 53.8 (3%) 63.2 (8%) 34.7 (3%) 35.1 (3%) 71.0 (5%)

Sequential
Input

bytewise MB/s 20.9(23%) 65.7 (52%) 66.1 (59%) 67.4 (61%) 64.8 (69%)
blockwise MB/s 23.7 (1%) 67.8 (3%) 68.5 (3%) 69.0 (3%) 66.4 (4%)

Rewrite blockwise MB/s 19.3 (3%) 28.9 (4%) 31.4 (4%) 31.4 (4%) 31.6 (3%)

Random Seeks /s 79.4 (0%) 53.5 (0%) 111.5 (0%) 108.3 (0%) 155.9 (0%)

Random Create /s 2701 (6%) 4208 (12%) 4071(99%) 4036(99%) –

Random Delete /s 4070 (4%) 24250(19%) 9424(99%) 9457(99%) –

Table 1: Experimental results for file system operations using the bonnie++ 1.03e
benchmark. Bonnie++ tests sequential read and write speed, both bytewise and block-
wise, and of a Rewrite run, which iteratively loads a block from the file, modifies it,
and writes it back. It tests the performance of random seeks, creations and deletions.
In parentheses next to each value, the average CPU utilization is reported.

6 Conclusion and Future Work

In this work, we introduced a novel formal model for the security and integrity of
cloud file systems. Our model is generic and designed to be applicable for a wide
range of file systems. We also introduced CryFS, a novel encrypted file system
specifically designed for the cloud. It has low communication and storage overhead.
It ensures the confidentiality of the file system by hiding file contents as well as
metadata like file sizes and directory structure. It ensures the integrity of the
file system even against a malicious storage provider when used by a single user,
but can also be used efficiently by multiple users when integrity is not important.
We proved the security of CryFS in our new framework. Our benchmarks show
that CryFS offers comparable performance to other state-of-the-art file systems
even though our implementation is preliminary and has room for improvements.
Our implementation is available on github.

Regarding our framework, there are a few open questions to be addressed in
the future. First, even though we establish basic relations between our security
notions, it remains open to show other relations or separations to get a better
understanding of the requirements for secure cloud file systems. Second, we show
that if a basic encryption primitive is IND-CPA and INT-CTXT secure, it can be
used to construct a IND-CCFA secure file system. It remains an open question,
if IND-CCA security (which is a weaker notion) would also be sufficient. Last,
extending our formal model to a multi-user setting as well as extending CryFS
itself to provide integrity for multiple users is left for future work.

References

1. Achenbach, D., Huber, M., Müller-Quade, J., Rill, J.: Closing the gap: A universal
privacy framework for outsourced data. In: Cryptography and Information Security
in the Balkans - Second International Conference, BalkanCryptSec 2015, Koper,
Slovenia, September 3-4, 2015, Revised Selected Papers. pp. 134–151 (2015)

2. Bellare, M., Namprempre, C.: Authenticated encryption: Relations among notions
and analysis of the generic composition paradigm. Journal of Cryptology 21(4),
469–491 (2008)

3. Cash, D., Küpçü, A., Wichs, D.: Dynamic proofs of retrievability via oblivious ram.
J. Cryptol. 30(1), 22–57 (Jan 2017)

4. Chase, M., Shen, E.: Substring-searchable symmetric encryption. Cryptology ePrint
Archive, Report 2014/638 (2014), http://eprint.iacr.org/2014/638

5. Damg̊ard, I., Dupont, K.: Universally composable disk encryption schemes. Cryp-
tology ePrint Archive, Report 2005/333 (2005), http://eprint.iacr.org/

6. Dielissen, V.J., Kaldewaij, A.: A simple, efficient, and flexible implementation of
flexible arrays, pp. 232–241. Springer Berlin Heidelberg, Berlin, Heidelberg (1995)

7. Erway, C., Küpçü, A., Papamanthou, C., Tamassia, R.: Dynamic provable data
possession. In: Proceedings of the 16th ACM Conference on Computer and Com-
munications Security. pp. 213–222. CCS ’09, ACM, New York, NY, USA (2009)

8. Gjøsteen, K.: Computer Security – ESORICS 2005: 10th European Symposium on
Research in Computer Security, Milan, Italy, September 12-14, 2005. Proceedings,
chap. Security Notions for Disk Encryption, pp. 455–474. Springer Berlin Heidelberg,
Berlin, Heidelberg (2005)

9. Goh, E.J.: Secure indexes. Cryptology ePrint Archive, Report 2003/216 (2003),
http://eprint.iacr.org/2003/216

10. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and
Hall/CRC cryptography and network security (2008)

11. Khati, L., Mouha, N., Vergnaud, D.: Full Disk Encryption: Bridging Theory and
Practice, pp. 241–257. Springer International Publishing, Cham (2017)

12. Messmer, S., Rill, J., Achenbach, D., Müller-Quade, J.: A Novel Cryptographic
Framework for Cloud File Systems and CryFS, a Provably-Secure Construction,
pp. 409–429. Springer International Publishing, Cham (2017), https://doi.org/
10.1007/978-3-319-61176-1_23

13. Wright, C.P., Martino, M.C., Zadok, E.: NCryptfs: A secure and convenient cryp-
tographic file system. In: Proceedings of the 2003 USENIX Annual Technical
Conference. pp. 197–210. San Antonio, TX (Jun 2003)

14. Zhang, Y., Blanton, M.: Efficient dynamic provable possession of remote data via
update trees. Trans. Storage 12(2), 9:1–9:45 (Feb 2016)

A Adaptive Security of CryFS

Theorem 2 (Adaptive Security of CryFS).
CryFSE1,E2 = (Gen, Init,Update,Dec) is IND-aCFA secure, if E1 = (Gen1,Enc1,Dec1)
and E2 = (Gen2,Enc2,Dec2) are IND-CPA secure encryption schemes.

Proof. Consider the following modification to IND-naCFA: When the adversary
queries Init or the Updatej oracles or expects output (C, s), instead of getting
Enc1(Kmaster,Kfs) they instead get Enc1(Kmaster, 0). Now, assume towards a
contradiction an adversary A with a success probability of p against IND-aCFA
and a success probability of p′ against IND-aCFA′, where p = p′ + d for a positive
non-negligible d. This adversary can be used to construct an adversary B with

a non-negligible advantage of d
2 which breaks the IND-CPA security of E1. The

game draws Kmaster ← Gen1(1k) and a random bit b. When A uses the Init oracle,
B generates a new file system key Kfs ← Gen2(1k) and uses the LR oracle of the
IND-CPA game to get cfs as either an encryption of 0 or of Kfs, depending on
the value of b. Then it generates a new empty file system (Cj , sj) but replaces
the encryption of Kfs with cfs. A expects access to an Updatej oracle which
can be built by using Kfs to decrypt and encrypt blocks. Again, B replaces all
encryptions of Kfs with cfs. When the adversary outputs j, F 0, F 1, B draws a
random bit a. It uses Updatej to build the challenge (C ′, s′) as an encryption of
F a. If A outputs a (A wins), B outputs 1. If A loses, B outputs 0. For b = 0,
this was a perfect simulation of the IND-aCFA′ game. B has success probability
Pr[a 6← A | b = 0] = 1 − p′. For b = 1, this was a perfect simulation of the
IND-aCFA game. B has success probability Pr[a ← A | b = 1] = p = p′ + d.
Together, B has success probability Pr[b← B] = 1

2 (1− p′) + 1
2 (p′ + d) = 1

2 + d
2 .

Since d is non-negligible, B has a non-negligible advantage against IND-CPA.

Now, assume towards another contradiction that A′ is a successful attacker
on IND-aCFA′. We transform A′ into a successful attacker B′ on the IND-CPA
security of E2. Intuitively, B′ selects a random file system created by A′ and uses
A′ to break its security. Since the number of file systems is a fixed constant, this
only reduces the success probability by a constant amount. The reduction works
as follows. The game draws Kfs and a random bit b. B′ draws Kmaster ← Gen1(1k)
and draws a random j∗ ← {1, . . . , qInit}. When A′ uses Init for the j-th time
and j 6= j∗, B′ generates a new K ′fs, encrypts it with Kmaster, and creates an
empty ciphertext file system. Knowing Kmaster, the Updatej oracle can easily be
implemented. In every output, Enc1(Kmaster,Kfs) is replaced with an encryption
of 0. When A′ uses Init for the j∗-th time, B′ generates a new empty file system
by using the encryption oracle of the IND-CPA experiment to encrypt all blocks.
Again, B′ prepends Enc1(Kmaster, 0). B′ also saves the current plaintext file
system Fj (which is empty). If A′ uses their access to the Updatej-oracle, B′

updates the saved plaintext according to the input to the oracle. It uses the
encryption oracle to encrypt added or modified blocks and exchanges them in
the saved ciphertext. B′ updates the saved file system Fj and the state sj . Upon
receiving challenge j, F 0 and F 1 from A′, B′ updates the corresponding plaintext
Fj for both F 0 and F 1 respectively and passes the added and modified blocks
of Repr(F 0) and Repr(F 1) (when compared to Repr(Fj)) to the LR oracle of the
IND-CPA experiment. It now has an encryption of either the modified blocks in
F 0 or in F 1. Since it is required that (Fj , F

0, F 1) ∈ Rd (i. e. they add, remove,
and modify blocks with the same ID), B′ knows which ciphertext blocks it has to
add, remove and replace with their new versions in order to generate the correct
ciphertext file system, even though it does not know which change was selected
by the experiment. B′ prepends Enc1(Kmaster, 0) to the generated ciphertext and
passes it to A′ along with the updated state. This is a correct simulation of the
IND-aCFA′ game. When A′ submits a guess for b, B′ forwards it to the game and
thus inherits its success probability. This is a contradiction to the assumption
that E2 is IND-CPA secure. �

B Integrity of CryFS

Theorem 3 (Integrity of CryFS). CryFSE1,E2 = (Gen, Init,Update,Dec) is
INT-FS secure, if E1 is IND-CPA and E2 is INT-CTXT secure.

Proof. Again, we first change INT-FS to INT-FS′ by replacing Enc1(Kmaster,Kfs)
with Enc1(Kmaster, 0) in the output of all oracles. Assume towards a contradiction
that an adversary A with success probability of p against INT-FS and success
probability of p′ against INT-FS′ exists (where p = p′ + d for a positive non-
negligible d). This adversary can be used to construct an adversary B with
an advantage of d

2 against the IND-CPA security of E1 by using the following
reduction: When A uses Init, B generates Kfs ← Gen2(1k) and uses the LR oracle
of the IND-CPA game to get cfs as either an encryption of 0 or of Kfs. It generates
(Cj , sj) using Kfs but replaces the encrypted file system key with cfs. B builds
the Updatej and Decj oracles using Kfs to decrypt and encrypt blocks. Each
output contains cfs instead of the encrypted file system key. When Decj is used,
B checks whether decryption was successful for C 6= C ′, i. e. whether A was
successful. If A was successful, B outputs 1, otherwise it outputs 0. If b = 0,
this was a perfect simulation of the INT-FS′ game. B has success probability
Pr[0← B | b = 0] = 1− p′. If b = 1, this was a perfect simulation of the INT-FS
game. B has success probability Pr[1 ← B | b = 1] = p = p′ + d Together, B
has success probability Pr[b ← B] = 1

2 (1 − p′) + 1
2 (p′ + d) = 1

2 + d
2 . Since d is

non-negligible, this is a non-negligible advantage for B against IND-CPA.
Now, assume towards another contradiction that A′ is a successful attacker

on INT-FS′. We give a reduction which transforms A′ into a successful attacker
B′ on INT-CTXT. The game draws Kfs ← Gen2(1k) and B′ draws Kmaster ←
Gen1(1k). B′ draws a random j∗ ← {1, . . . , qInit}. When A′ uses Init for the
j-th time with j 6= j∗, B′ generates a new independent K ′fs and creates a new
ciphertext file system with this key. Knowing K ′fs, implementing Updatej and
Decj oracles is straightforward. In every output, Enc1(Kmaster,Kfs) gets replaced
by Enc1(Kmaster, 0). When A′ uses Init for the j∗-th time, B′ creates a new empty
file system but uses the encryption oracle provided by INT-CTXT to encrypt all
blocks. It also builds Updatej and Decj but uses the decryption and encryption
oracles of the INT-CTXT game to decrypt and encrypt. Instead of prepending
Enc1(Kmaster,Kfs), which B′ does not know, it prepends Enc1(Kmaster, 0).

Since A′ is successful, there is an oracle query Decj(K,C ′, sj) which decrypts
successfully with Cj 6= C ′. With non-negligible probability 1

qInit
, this happens

for j = j∗, where B′ implemented Init using the INT-CTXT experiment. Cj

and C ′ have the same set of block IDs, otherwise Decj(Kmaster, C
′, sj) = ⊥.

So there has to be a block in C ′ which is different from the corresponding
block in Cj , i. e. ∃i, ci, c′i : (i, ci) ∈ Cj , (i, c

′
i) ∈ C ′, ci 6= c′i. This block c′i was

input to the decryption oracle of the IND-CTXT game when decrypting C ′.
We argue that c′i wins the INT-CTXT game. First note that INT-FS′ decrypts
with cfs = Enc1(Kmaster,Kfs) from the state, not with the c′fs = Enc1(Kmaster, 0)
passed to the adversary. Therefore c′i decrypts successfully with the key from
the INT-CTXT experiment. We now have to argue that c′i was never output

by the INT-CTXT encryption oracle. Recall that this oracle is only used for
encrypting the output of the j-th query of the Init oracle and for the outputs of
the Updatej oracle. Since C ′ decrypts successfully, we know that the plaintext
((i′, b′i), v

′
i) := DecBlock(K, (i, c′i)) has ID i = i′ and a version number v′i ≥ vsi

where vsi is the version number in the state. All previous Update′j oracle queries
for this block ID encrypted a block with version number vi ≤ vsi , and vi = vsi
only for ci where we know c′i 6= ci. So we know c′i was not output of the Updatej
oracle. If (i, c′i) was in the j-th output of the Init oracle, then v′i = 0. In this
case, either block i was never modified, which is a contradiction to ci 6= c′i, or
block i was modified, which means vsi > 0 and is a contradiction to successful
decryption. Taking everything into account, we know that c′i was never output by
the INT-CTXT encryption oracle and thus wins the game. This is a contradiction
to the assumed security of E2. �

C Achieving Multi-User-Compatibility

CryFS provides confidentiality, integrity and fast file system operations in a
single-user context. However, the design presented so far does not work well when
used by multiple users for multiple reasons. For example, we cannot distinguish
whether an integrity violation was caused by an attacker rolling back a block,
or by a second client synchronising modifications on top of an outdated version.
We resolve these problems by introducing a number of measures, which ensure
that CryFS can be used with multiple users without integrity guarantees while
maintaining integrity in the single-user setting.

First, in addition to having a pointer from the directory block to the root
of a file, we also add a pointer from each file root node back to the directory it
belongs to. That is, the whole directory structure is stored twice, once bottom-up
in these pointers and once top-down through the file system tree. Using this, we
can recover from a race condition where two users both add a different file to the
same directory by periodically scanning for “dangling” pointers and reintegrate
the corresponding files into the directory block.

Second, we extend the header of each block to also contain a unique client ID
of the client who last modified the block along with the version counter. Further,
each client saves the newest version for every block ID and client combination,
and remembers the last updating client. Now, when a client reads a block that
still has the same client ID as in his local state, the version number is checked to
be non-decreasing otherwise it has to be increasing.

Third, instead of explicitly flagging deleted blocks in the local state, we set
their last updating client ID to ⊥. This allows clients to reintroduce deleted
blocks as long as they increase the version number. Last, we allow to disable the
check for missing blocks since there is no mechanism for a client to communicate,
that he deleted a block, which will cause other clients to think that an attacker
has deleted it.

