
Post-quantum security
of the sponge construction

Jan Czajkowski1, Leon Groot Bruinderink2, Andreas Hülsing2,
Christian Schaffner1, Dominique Unruh3

1QuSoft, Univ of Amsterdam,
{j.czajkowski,c.schaffner}@uva.nl

2TU Eindhoven,
l.groot.bruinderink@tue.nl,

andreas@huelsing.net

3University of
Tartu, unruh@ut.ee

August 2, 2017

Abstract
We investigate the post-quantum security of hash functions based on the sponge construction.
A crucial property for hash functions in the post-quantum setting is the collapsing property (a
strengthening of collision-resistance). We show that the sponge construction is collapsing (and
in consequence quantum collision-resistant) under suitable assumptions about the underlying
block function. In particular, if the block function is a random function or a (non-invertible)
random permutation, the sponge construction is collapsing.

Contents

1 Introduction 1

2 Preliminaries 4

3 Collapsing hash functions 6
3.1 Definitions for concrete security 7

4 The sponge construction 9

5 Collision-resistance of the sponge
construction 10
5.1 Random sponges 12

6 Sponges are collapsing 13

6.1 Using random oracles or ran-
dom permutations 17

6.2 Concrete security results 19
6.3 Using random oracles or ran-

dom permutations 25

7 Quantum Attack 26
7.1 Quantum Collision Finding

With Random Oracle 27

Index 29

Symbol index 30

References 30

1 Introduction

Cryptographic hash functions are one of the central primitives in cryptography. They are used
virtually everywhere: As cryptographically secure checksums to verify integrity of software or

This work was supported in part by the Commission of the European Communities through the Horizon
2020 program under project number 645622 PQCRYPTO. CS and JC are supported by a NWO VIDI grant. DU
was supported by institutional research funding IUT2-1 of the Estonian Ministry of Education and Research, and
by the Estonian Centre of Exellence in IT (EXCITE) funded by the ERDF. Permanent ID of this document:
a0bc1a357219db37fa343d9c09ca0613. Date: August 2, 2017

1

data packages, as building block in security protocols, including TLS, SSH, IPSEC, as part of
any efficient variable-input-length signature scheme, to build full-fledged hash-based signature
schemes, in transformations for CCA-secure encryption, and many more.

While all widely deployed public-key cryptography is threatened by the rise of quantum
computers, hash functions are widely believed to only be mildly effected. The reason for this
is twofold. On the one hand, generic quantum attacks achieve at most a square-root speed up
compared to their pre-quantum counterparts and can be proven asymptotically optimal [BHT97;
Zha15; HRS16]. On the other hand, there do not exist any dedicated quantum attacks on any
specific hash function (excluding of course those based on number theory like, e.g., VSH [CLS06])
that perform better than the generic quantum attacks.

One of the most important properties of a hash function H is collision-resistance. That is,
it is infeasible to find x 6= x′ with H(x) = H(x′). Intuitively, collision-resistance guarantees
some kind of computational injectivity – given H(x), the value x is effectively determined. Of
course, information-theoretically, x is not determined, but in many situations, we can treat the
preimage x as unique, because we will never see another value with the same hash. For example,
collision-resistant hashes can be used to extend the message space of signature schemes (by
signing the hash of the message), or to create commitment schemes (e.g., sending H(x‖r) for
random r commits us to x; the sender cannot change his mind about x because he cannot find
another preimage).

In the post-quantum setting,1 however, it was shown by Unruh [Unr16a] that collision-
resistance is weaker than expected: For example, the commitment scheme sketched in the
previous paragraph is not binding: it is possible for an attacker to send a hash h, then to be
given a value x, and then to send a random value r such that h = H(x‖r), thus opening the
commitment to any desired value – even if H is collision-resistant against quantum adversaries.2

This contradicts the intuitive requirement that H(x) determines x.
Fortunately, Unruh [Unr16a] also presented a strengthened security definition for post-

quantum secure hash functions: collapsing hash functions. Roughly speaking, a hash function is
collapsing if, given a superposition of values m, measuring H(m) has the same effect as measuring
m (at least from the point of view of a computationally limited observer). Collapsing hash
functions serve as a drop-in replacement for collision-resistant ones in the post-quantum setting:
Unruh showed that several natural classical commitment schemes (namely the scheme sketched
above, and the statistically-hiding schemes from [HM96]) become post-quantum secure when
using a collapsing hash function instead of a collision-resistant one. The collapsing property also
directly implies collision-resistance.

In light of these results, it is desirable to find hash functions that are collapsing. Unruh
[Unr16a] showed that the random oracle is collapsing. (That is, a hash function H(x) := O(x)
is collapsing when O is a random oracle.) However, this has little relevance for real-world
hash functions: A practical hash function is typically constructed by iteratively applying some
elementary building block (e.g., a “compression function”) in order to hash large messages. So
even if we are willing to model the elementary building block as a random oracle, the overall
hash function construction should arguably not be modeled as a random oracle.3

For hash functions based on the Merkle-Damgård (MD) construction (such as SHA2 [Nat15]),
Unruh [Unr16b] showed: If the compression function is collapsing, so is the hash function resulting

1We mean a situation in which the protocols and primitives that are studied are classical, but the attacker can
perform quantum computations.

2More precisely, [Unr16a] shows that relative to certain oracles, a collision-resistant hash function exists that
allows such attacks. In particular, this means that there cannot be a relativizing proof that the commitment
scheme is binding assuming a collision-resistant hash function.

3For example, hash functions using the Merkle-Damgård construction are not well modeled as a random oracle.
If we use MAC (k,m) := H(k‖m) as a message authentication code (MAC) with key k, we have that MAC is
secure (unforgeable) when H is a random oracle, but easily broken when H is a hash function built using the
Merkle-Damgård construction.

2

from the MD construction. In particular, if we model the compression function as a random oracle
(as is commonly done in the analysis of practical hash functions), we have that hash functions
based on the MD construction are collapsing (and thus suitable for use in a post-quantum
setting).

However, not all hash functions are constructed using MD. Another popular construction is
the sponge construction [Ber+07], underlying for example the current international hash function
standard SHA3 [NIS14], but also other hash functions such as Quark [Aum+10], Photon [GPP11],
Spongent [Bog+13], and Gluon [Ber+12]. The sponge construction builds a hash function H
from a block function4 f . In the classical setting, we know that the sponge construction is
collision-resistant if the block function f is modeled as a random oracle, or a random permutation,
or an invertible random permutation [Ber+08].5 However, their proof does not carry over to the
post-quantum setting: their proof relies on the fact that queries performed by the adversary
to the block function are classical (i.e., not in superposition between different values). As first
argued in [Bon+11], random oracles and related objects should be modeled as functions that
can be queried in superposition of different inputs. (Namely, with a real hash function, an
adversary can use a quantum circuit implementing SHA3 and can thereby query the function in
superposition. The adversary could evaluate the sponge on the uniform superposition over all
messages of a certain length, possibly helping him to, e.g., find a collision.) Thus, we do not
know whether the sponge construction (and thus hash functions like SHA3) is collapsing (or at
least collision-resistant in the post-quantum setting).

Our contributions. In the present paper we tackle the question whether the sponge construc-
tion is collision-resistant and collapsing in the post-quantum setting. We show:
• If the block function f is collision-resistant when restricted to the left and right half of its

output and it is hard to find a zero-preimage of f (restricted to the right half of its output),
then the sponge construction is collision resistant.
• We give a quantum algorithm for finding collisions in any function (given access to a

random oracle), in particular in the sponge construction. The number of quantum queries
to f asymptotically matches our bounds for collision resistance.
• If the block function f is collapsing when restricted to the left and right half of its output,

respectively, and if it is hard to find a zero-preimage of f (restricted to the right half of its
output), then the sponge construction is collapsing.
• If the block function f is a random oracle or a random permutation, then the sponge

construction is collapsing.
It should be stressed that we do not show that the sponge construction is collapsing (or even
collision-resistant) if the block function f is an efficiently invertible random permutation. In this
case, it is trivial to find zero-preimages by applying the inverse permutation to 0. This means
that the present result cannot be directly used to show the security of, say, SHA3, because SHA3
uses an efficiently invertible permutation as block function. Our results apply to hash functions
where the block function is not (efficiently) invertible, e.g., Gluon [Ber+12]. But we believe that
our results are also a first step towards understanding the sponge construction for invertible
block functions, and towards showing the post-quantum security of SHA3.

Open questions / future work. Beyond the results of this paper, there are a few natural
avenues for future research:

• Efficiently invertible permutations. Many hash functions (e.g., SHA3) use the sponge
construction with an invertible permutation. Our results do not apply to those. How can

4It is not called a compression function, since the domain and range of f are identical.
5[Ber+08] shows that the sponge construction is indifferentiable from a random oracle in the classical setting.

Together with the fact that the random oracle is collision-resistant, collision-resistance of the sponge construction
follows.

3

we prove the collapsing property (or at least quantum collision-resistance) in that setting?

• Other hash functions. [Unr16b] has covered hash functions based on the Merkle-Damgård
construction, we have covered hash functions based on the sponge construction. Which
other common constructions of hash functions are collapsing?

• Tightness of the results. Are our concrete security bounds tight? If not, can they be
improved? In particular, it would be interesting to improve our analysis of the squeezing
phase (i.e., the second half of the sponge construction) since our analysis only takes into
account the first output block and thus probably looses a lot in terms of concrete security
in the case of hash functions with long output.

• Other properties of the sponge construction. Classically, we get many properties of the
sponge construction for free from the fact that the sponge construction is indifferentiable
from a random oracle [Ber+08]. For example, it immediately follows that the sponge
construction is a pseudo-random function (PRF). Can we show those properties in the
quantum setting, too? E.g., is the sponge construction a PRF secure against quantum
adversaries? Is it secure even against quantum adversaries that have superposition access
to the PRF (as in [Zha12])?

Organization. In Section 2 (“Preliminaries”) we recall some standard notation and definitions.
In Section 3 (“Collapsing hash functions”), we recall the definition of collapsing hash functions and
some important properties of that definition. In Section 4 (“The sponge construction”) we recall
the sponge construction. In Section 5 (“Collision-resistance of the sponge construction”) we first
show the collision resistance of the sponge construction. Then in Section 7 (“Quantum Attack”)
we provide a quantum attack that finds collisions in the sponge construction. In Section 6
(“Sponges are collapsing”), we present our main result – that the sponge construction is collapsing.
In Section 6.1 (“Using random oracles or random permutations”) we specialize this result to the
case where the block function is a random function or a random permutation. In Section 6.2
(“Concrete security results”), we state and prove the results from Section 6 with concrete security
bounds.

2 Preliminaries

In this section we briefly introduce basic notations and quantum computing as needed for this
work.

Basic notations. x ⊕ y denotes the bitwise XOR of bitstrings x and y. Let range f denote
the range of the function f , and im f its image (i.e., im f contains all values that the function f
actually attains, while range f refers to the set into which f maps according to the declaration
of f).

By {0, 1}n we denote the set of all bitstrings of length n. By ({0, 1}n)+ we denote the
set of non-empty bitstrings that consists of blocks of length n. (I.e., bitstrings of length kn
for some k ≥ 1.) |m| denotes the length of a bitstring, but in abuse of notation, for elements
m ∈ ({0, 1}n)+, |m| denotes the number of n-bit blocks in m. (But for sets M , |M | is the
cardinality of M .)

We call a real-valued function f ≥ 0 negligible iff for any polynomial p > 0, we have f < 1/p
eventually. We call f ≤ 1 overwhelming if 1− f is negligible.

Quantum computing. We assume the reader is familiar with the usual notations in quantum
computation, but we give a very short introduction here. A quantum system A is a complex
Hilbert space H, together with an inner product 〈·|·〉.The state of a quantum system is given by

4

a vector |Ψ〉 of unit norm (〈Ψ|Ψ〉 = 1). A joint system of H1 and H2 is denoted by H = H1⊗H2,
with elements |Ψ〉 = |Ψ1〉|Ψ2〉 for |Ψ1〉 ∈ H1, |Ψ2〉 ∈ H2. Operations on quantum states are
represented by unitary operations U on the quantum states, or by projective measurements. A
unitary transformation U over a d-dimensional Hilbert space H is a d× d matrix U such that
UU† = Id, where U† represents the conjugate transpose. A projective measurement is specified
by a family of projectors {Pi} that are mutually orthogonal and sum up to 1, one projector Pi
for each possibly measurement outcome i. For any quantum state |Ψ〉, let 〈Ψ| denote the adjoint
of |Ψ〉. In particular, |Ψ〉〈Ψ| denotes the orthogonal projector onto |Ψ〉. We assume familiarity
with these concepts throughout the technical parts of this paper. For an introduction, we refer
the reader to a textbook on quantum computation or quantum information such as [NC10].

For algorithms A (classical or quantum), we use the notation (a, b, c)← A(d, e, f) to denote
that A is executed with inputs d, e, f , and the output triple is assigned to the variables a, b, c.
We use capital letters to denote quantum registers, i.e., subsystems of the quantum state of
the whole system. E.g., (y,M ′) ← A(x,M) means the algorithm A has classical input x, and
gets the quantum register M , and it outputs classical output y and a new quantum register
M ′ (the register M is consumed by A). By x $← M we mean that x is chosen uniformly at
random from the set M . If M denotes a projective measurement, we write x ← M(M) to
denote that x is assigned the outcome of measuring the register M withM. Note that in this
case, the register M is not discarded, instead it contains the post-measurement state. We write
AO when an algorithm A has access to the function O as an oracle. That is, AO can evaluate
the unitary UO : |x, y〉 → |x, y ⊕ O(x)〉 in a single step. Any quantum algorithm making q
queries can then be written as a final transformation UqUO . . .U1UOU0 for unitaries Ui applied
between queries and oracle queries UO.In results with asymptotic statements (referring, e.g.,
to quantum-polynomial-time adversaries), we assume a security parameter that is implicitly
provided to all adversaries, and that all parameters and functions may implicitly depend on.

A game is a sequence of steps (such as (y,M ′)← A(x,M) or x $←M or x←M(M)). We
write Pr[C : G] to denote the probability that the condition C holds after executing the steps in
game G. (E.g., Pr[b = 1 : b← A()] denote the probability that the bit b returned by A() is 1.)

Definition 1 (Zero-preimage-resistance) We call a function fO : {0, 1}d → {0, 1}e zero-
preimage-resistant iff for any quantum-polynomial-time adversary AO, we have that Pr[fO(x) =
0e : x← AO()] is negligible.

We will also make use of the following technical lemma:

Lemma 2 Let ρ be a quantum state (density operator of trace 1). Let M be a projective
measurement consisting of projectors P1, . . . , Pn. Assume that applyingM to ρ gives outcome 1
with probability ≥ 1− ε.

Let ρ′ be the result of applyingM to ρ (and discarding the result).
Then the trace distance between ρ and ρ′ is ≤

√
ε. (I.e., no algorithm can distinguish those

states better than with probability
√
ε.)

Proof. Without loss of generality, we can assume that ρ is a pure state ρ = |Ψ〉〈Ψ|. (The general
case of the lemma is then obtained by considering a purification |Ψ〉〈Ψ| of the mixed state ρ.)

Then ρ′ =
∑

i Pi|Ψ〉〈Ψ|Pi. Let F denote the fidelity and let TD denote the trace distance.
By [NC10, (9.60)], we have F (|Ψ〉〈Ψ|, ρ′) =

√
〈Ψ|ρ′|Ψ〉. Thus,

F (ρ, ρ′)2 = 〈Ψ|ρ′|Ψ〉 =
∑
i

〈Ψ|Pi|Ψ〉〈Ψ|Pi|Ψ〉 =
∑
i

∣∣〈Ψ|Pi|Ψ〉∣∣2 ≥ ∣∣〈Ψ|P1|Ψ〉
∣∣2 ≥ 1− ε.

Thus
TD(ρ, ρ′)

(∗)
≤
√

1− F (ρ, ρ′)2 ≤
√

1− (1− ε) =
√
ε.

Here (∗) uses [NC10, (9.101)]. �

5

A M

S

M B

h m

b A M

S

B

h

b

(a) – Game1 (b) – Game2

Figure 1: Games from the definition of collapsing hash functions. M represents a measurement in the
computational basis. (A,B) is assumed to satisfy the property that M always returns m with H(m) = h. A
function is collapsing if the probability of b = 1 is negligibly close in both games.

3 Collapsing hash functions

In this section, we recall the notion of collapsing hash functions H from [Unr16a]. We describe
both the underlying intuition, as well as the formal definitions.

A hash function is a function HO : X → Y for some range X and domain Y . (Typically,
Y consists of fixed length bitstrings, and X consists of fixed length bitstrings or {0, 1}∗.) H
can depend on an oracle O. (Typically, O will be a random function, a random permutation,
or simply be missing if we are in the standard model. Unless specified otherwise, we make no
assumptions about the distribution of O.)

As mentioned in the introduction, intuitively, we wish that H(m) uniquely identifies m in
some sense. In the classical setting, this naturally leads to the requirement that it is hard to
find m 6= m′ with H(m) = H(m′). Then we can treat H(m) as if it had only a single preimage
(even though, of course, a compressing H will have many preimages, we just cannot find them).
In the quantum setting, there is another interpretation of the requirement that H(m) identifies
m. Namely, if we are given a register M that contains a superposition of many values m, then
measuring H(m) on that register should – intuitively – fully determine m. That is, the effect
on the register M should be the same, no matter whether we measure just the hash H(m) or
the whole message m. One can see that for any compressing function H, it is impossible that
measuring H(m) and m has information-theoretically the same effect on the state.6 However,
what we can hope for is that for a computationally limited adversary, the two situations are
indistinguishable. In other words, we require that no quantum-polynomial-time adversary can
distinguish whether we measure H(m) or m. This property is then useful in proofs, because we
can replace H(m)-measurements by m-measurements and vice versa.

We can slightly simplify this condition if we require that the register M already contains
a superposition of values m that all have the same hash H(m). In this case, measuring H(m)
has no effect on the state, so we can state the requirement as: If M contains a superposition
of messages m with the same H(m) = h, then no quantum-polynomial-time adversary can
distinguish whether we measure M in the computational basis, or whether we do not measure it
at all.

Or slightly more formally: We let the adversary A produce a register M and a hash value h
(subject to the promise that measuring M would lead to an m with H(m) = h). The adversary
additionally keeps an internal state in register S. Then we either measureM in the computational
basis (Game1, depicted in Figure 1 (a)), or we do not perform any such measurement (Game2,
depicted in Figure 1 (b)). Finally, we give registers S (the internal state) and M (the potentially
measured message register) to the adversary’s second part B. We call H collapsing if no
quantum-polynomial-time (A,B) can distinguish Game1 and Game2.

This is formalized by the following definition:

6E.g., M could contain
∑

m 2−|m|/2|m〉. Then measuring H(m) will lead to the state∑
m s.t. H(m)=h

1√
|H−1(h)|

|m〉 which is almost orthogonal for large |H−1(h)| to the state |m〉 we get when measuring
m.

6

Definition 3 (Collapsing [Unr16a]) For algorithms A, B, consider the following games:

Game1 : (S,M, h)← AO(), m←M(M), b← BO(S,M)

Game2 : (S,M, h)← AO(), b← BO(S,M)

Here S,M are quantum registers. M(M) is a measurement of M in the computational basis.

For a set m, we call an adversary (A,B) valid onm for HO iff Pr[HO(m) = h ∧ m ∈m] = 1
when we run (S,M, h)← AO() and measure M in the computational basis as m. If we omit “on
m”, we assume m to be the domain of HO.

A function H is collapsing (on m) iff for any quantum-polynomial-time adversary (A,B)
that is valid for HO (on m),

∣∣Pr[b = 1 : Game1]− Pr[b = 1 : Game2]
∣∣ is negligible.

The definition follows [Unr16a], except that we made the oracle O explicit (which was implicit
in [Unr16a]).

Miscellaneous facts. The following properties of collapsing hash functions will be useful
throughout this paper. They are immediate consequences of their concrete-security variants in
Section 3.1.

Lemma 4 If HO is injective, then HO is collapsing.

Theorem 5 If O : {0, 1}e → {0, 1}d is a random function with superlogarithmic d (in the
security parameter), then HO := O is collapsing.

Lemma 6 If GO ◦HO is collapsing, and GO is quantum-polynomial-time computable, then HO

is collapsing.

Lemma 7 If GO and HO are collapsing, and HO is quantum-polynomial-time computable, then
GO ◦HO is collapsing.

3.1 Definitions for concrete security

Definition 3 allows us to state the results of this paper in asymptotic terms (namely, that the
sponge construction is collapsing). However, when stating concrete security results, one can
achieve tighter results by directly analyzing the security of t parallel evaluations of the hash
function (see [Unr16b]). This leads to the following definition:

Definition 8 (Collapsing – concrete security) For algorithms A, B, and an integer t, con-
sider the following games:

Game1 : (S,M1, . . . ,Mt, h1, . . . , ht)← AO(),

m1 ←M(M1), . . . , mt ←M(Mt),

b← BO(S,M1, . . . ,Mt)

Game2 : (S,M1, . . . ,Mt, h1, . . . , ht)← AO(),

b← BO(S,M1, . . . ,Mt)

Here S,M1, . . . ,Mt are quantum registers. M(Mi) is a measurement of Mi in the computational
basis.

For a set m, we call an adversary (A,B) t-valid on m for HO iff Pr[∀i. HO(mi) = hi ∧ mi ∈
m] = 1 when we run (S,M1, . . . ,Mt, h1, . . . , ht)← AO() and measure all Mi in the computational
basis as mi. If we omit “on m”, we assume m to be the domain of HO.

We call
∣∣Pr[b = 1 : Game1]−Pr[b = 1 : Game2]

∣∣ the collapsing-advantage of (A,B) against H.

7

This definition is from [Unr16b], with the only difference that now adversaries and hash
functions may depend on an oracle O, instead of depending on a public parameter.

The two definitions of collapsing hash functions are equivalent in the following sense:

Lemma 9 ([Unr16b]) HO is collapsing (according to Definition 3) on m iff for any quantum-
polynomial-time (AO, BO) that is t-valid on m, the collapsing-advantage (according to Defini-
tion 8) is negligible.

Miscellaneous facts. We restate the facts from Section 3, with concrete security bounds.
Unless specified otherwise, these facts were proven in [Unr16b] (in a setting without oracle O,
but all proofs from [Unr16b] relativize).

All results in this paper hold both if runtime is measured in computation steps, and when
time is measured in the number oracle queries.

Lemma 10 If HO is injective, and (AO, BO) is a t-valid adversary with collapsing-advantage ε
against HO, then ε = 0.

Theorem 11 If O : {0, 1}e → {0, 1}d is a random function, and (AO, BO) is t-valid for O and
has collapsing-advantage ε, then ε ∈ O(tq3/22−d/2).

This was shown for the case t = 1 in [Unr16a]. For general t, this theorem then follows by
using the fact that the collapsing property parallel composes (fully analogous to the parallel
composition of collapse-binding commitments shown in [Unr16a]).

Lemma 12 Fix oracle functions GO and HO. Let (A,B) be a t-valid adversary against some
function HO with runtime τ and collapsing-advantage ε against HO.

Then there is an adversary (A′, B′) that is t-valid for GO ◦HO, has runtime τ + tτG, and
collapsing-advantage ε against GO ◦HO.

Here τG is the time required for computing GO.

Proof. Let A′ perform the following steps: Run (S,M1, . . . ,Mt, h1, . . . , ht)← AO(), and return(
S,M1, . . . ,Mt, G

O(h1), . . . , G
O(ht)

)
.

Let B′ be identical to B.
Since (A,B) is is t-valid for HO, the t-validity of (A′, B′) for GO ◦HO follows directly from

the construction of (A′, B′) and the definition of t-validity.
The runtime of (A′, B′) is τ + tτG, since there are t additional calls to GO compared with

(A,B).
Since (A′, B′) differs from (A,B) only in the classical outputs h1, . . . , ht, and since the games

Game1 and Game2 from Definition 8 do not use these classical outputs, we have that Pr[b = 1 :
Game1 using A,B] = Pr[b = 1 : Game1 using A′, B′] and Pr[b = 1 : Game2 using A,B] = Pr[b =
1 : Game2 using A′, B′]. Thus (A′, B′) has collapsing-advantage∣∣∣Pr[b = 1 : Game1 using A′, B′]− Pr[b = 1 : Game2 using A′, B′]

∣∣∣
=
∣∣∣Pr[b = 1 : Game1 using A,B]− Pr[b = 1 : Game2 using A,B]

∣∣∣ = ε. �

Lemma 13 Fix oracle functions GO and HO. If there is a τ -time adversary (A,B), t-valid for
GO ◦HO, with collapsing-advantage ε against GO ◦HO, then there are:
• a (τ + O(tτH))-time adversary (A′, B′), t-valid for GO on imHO, with some collapsing-
advantage ε′ against GO,

8

0r

0c

m1

f

m2

f

m3

f

m4

f

h1

f

h2

f

h3



Absorbing phase Sin



Squeezing phase Sout

Figure 2: The sponge construction S with a four block input m1‖m2‖m3‖m4 and a three block output h1‖h2‖h3.
The application of the padding function is not depicted (we assume m1‖m2‖m3‖m4 = pad(m)).

• a (τ +O(tτH))-time adversary (A′′, B′′), t-valid for HO, with some collapsing-advantage
ε′′ against HO.

such that ε ≤ ε′ + ε′′.
Here τH is an upper bound on the time for evaluating HO (on the messages that A outputs

on the registers Mj).

In [Unr16b], this lemma had an additional O(t`mid) in the runtime of (A′′, B′′) where `mid

denotes the length of the output of HO. Since this is always dominated by O(tτH), we omit this
term here.

4 The sponge construction

In this section, we review the sponge construction introduced by [Ber+07]. The sponge con-
struction has two internal parameters r and c called the rate and the capacity, respectively. The
internal state has r + c bits. We refer to the first part of the state as the left state, and to
the second part of the state as the right state. Underlying the sponge construction is a block
function f that inputs and outputs r + c bits. To hash a message m, the message is first padded
to a non-zero multiple of the rate r. That is, we use some injective padding function pad to get
k ≥ 1 message blocks m1‖ . . . ‖mk = pad(m).7 Then we XOR m1 to the left state, apply f to the
(whole) state, XOR m2 to the left state, apply f to the state, . . . , apply f to the state, XOR mk

to the left state. The steps performed so far are referred to as the absorbing phase (denoted in
this paper with Sin). Now we start with the squeezing phase Sout : We apply f to the state, read
the left state as h1, apply f to the state, read the left state as h2, We continue to do so until
h1‖h2‖ . . . contains ≥ n bits (where n is a parameter specifying the desired output length), and
return the first n bits of h1‖h2‖ The whole process described here (padding, absorbing phase,
squeezing phase) is the sponge construction, referred to as S in this paper. Note that the use
of the terms absorbing and squeezing phase in this paper slightly differ from the description in
[Ber+07]: In this paper, we end the absorbing phase just before the last application of f , whilst
the original sponge paper includes that application of f in the absorbing phase. The separation
we use helps to simplify the proofs in later sections. The resulting sponge construction is the
same as in [Ber+07], though. The sponge construction is illustrated in Figure 2 for the special
case of k = 4 and n = 3r (four input blocks and three output blocks). The following definition
makes the above explanation precise:

Definition 14 (Sponge construction) Fix integers c > 0 (the capacity) and r > 0 (the
rate), and n > 0 (the output length). Fix f : {0, 1}r+c → {0, 1}r+c (the block function) and
pad : {0, 1}∗ → ({0, 1}r)+.

7The original construction requires that the last block of pad(m) is non-zero, this is important for other
properties than collision-resistance/collapsing. In this work, we do not put any such requirement on pad . We do,
however, assume that pad outputs at least one block.

9

For m1, . . . ,mk ∈ {0, 1}r, let

Sin
c,r,f (m1‖ . . . ‖mk) := f

(
Sin
c,r,f (m1‖ . . . ‖mk−1)

)
⊕ (mk‖0c)

Sin
c,r,f (m1) := m1‖0c

(We call Sin the absorbing phase.)
For s ∈ {0, 1}r+c, let

Sout
c,r,f ,n(s) =

{
s′‖Sout

c,r,f ,n−|s′|(f(s)) (n > 0)

empty word (n = 0)

where s′ consists of the first min{n, r} bits of f(s). (We call Sout the squeezing phase.)
Let Sc,r,f ,pad ,n := Sout

c,r,f ,n ◦ Sin
c,r,f ◦ pad . We call Sc,r,f ,pad ,n the sponge construction.

Usually, c, r, f , pad , n will be clear from the context. Then we omit them and simply write
Sin ,Sout , and S.

Notation: The sponge construction operates on a state of size r + c, and we will often need
to refer to the two halves of that state separately: For any s ∈ {0, 1}r+c, let sleft denote the first
r bits of s, and let sright refer to the last c bits of s. If f is a function with r + c bit output, then
we write f left for the function defined by f left(x) := f(x)left. And f right analogously.

As the output of the sponge function can be smaller than the rate, i.e. n ≤ r, we also
define the function f left/n : {0, 1}r+c → {0, 1}min(n,r), which is the function that outputs the first
min(n, r) bits of f . In particular, f left/n := f left for n ≥ r.

In [Ber+08], it was shown that the sponge construction is indifferentiable from a random
oracle, assuming that f is a random oracle or an (invertible) random permutation. From this
collision-resistance follows. However, the proof from [Ber+08] works only in the classical case. If
the adversary has superposition access to f , their proof breaks down because it needs to track on
which inputs f has been queried. As far as we know, no results concerning the post-quantum
security of the sponge construction are known (besides what we show in this paper).

5 Collision-resistance of the sponge construction

In this section we state our result concerning collision-resistance of the sponge construction. We
motivate our statement with Lemma 16 connecting attacks on some features of the block function
with collision-resistance of the overall construction. Those features are collision-resistance of f right,
collision resistance of f left/n, and zero-preimage-resistance of f right (for details of zero-preimage-
resistance please refer to Definition 1). Let us state the main result of this section.

Theorem 15 Assume that f right and f left/n are collision resistant and f right is zero-preimage
resistant. Then Sc,r,f ,pad ,n is collision-resistant.

Proof sketch. We prove this theorem by a reduction to adversaries attacking the block function.
Namely finding collisions in f right or f left/n, or a zero-preimage under f right. This reduction is
presented in Lemma 16. Knowing that every collision in S results in breach in the security of
f right or f left/n, allows us to state the claim of the theorem. �

Let us present the lemma relating the output of a sponge-collision-finder with collisions and
pre-images under f .

Lemma 16 Assume that pad is injective. There is a deterministic polynomial-time oracle
algorithm A such that for any m 6= m̂ with S(m) = S(m̂), Af (m, m̂) , outputs one of the
following:

10

• (right, (s, ŝ)) where (s, ŝ) is a collision of f right,
• (zero, s) where s is a zero-preimage of f right,
• or (left, (s, ŝ)) where (s, ŝ) is a collision of f left/n.

The runtime of the algorithm is at most 2τpad +O(Tmτf), where Tm denotes the bound on the
number of blocks in the padded input messages, τf is the time required for a single classical
invocation of f and τpad is the time of computing pad .

Proof. A starts by computing the first right-state of the squeezing phase on input of the two
colliding messages, i.e., it evaluates f ◦ Sin ◦ pad . We will denote the states traversed during this
calculation by si and ŝi for m and m̂, respectively. As our analysis starts with the final state of
this computation and revisits the intermediate states in backwards direction, we denote by s0
the final state, whose left part is output (for n < r only the first n bits), by s−1 the state just
before the last application of f and so on. A figure including this notation is presented later in
Figure 3. Using p := pad(m) and p̂ := pad(m̂), the intermediate states s−i for 1 ≤ i ≤ |p| − 1 are
defined by s−i := f(s−i−1) ⊕ p|p|+1−i‖0c, s0 := f(s−1) and s−|p| := p1‖0c. As m and m̂ collide
per assumption, we have sleft/n0 = ŝ

left/n
0 .

1. Algorithm A first checks if s−1 or ŝ−1 are a preimage of 0c, or form a collision under f left/n.
If the right part of s0 (or ŝ0) is 0c, s−1 (ŝ−1) is a pre-image of 0c under f right and A outputs
(zero, s−1) ((zero, ŝ−1), respectively). If s−1 6= ŝ−1, A outputs (left, s−1, ŝ−1). These two
states form a collision under f left/n because they are the inputs to the last f in S and
s
left/n
0 = ŝ

left/n
0 . Otherwise, s−1 = ŝ−1 and there are no preimages of zero.

2. If not done yet, s−1 = ŝ−1 and A checks for a preimage of 0c or a collision in f right. If
sright−1 = 0c, A found a preimage of 0c. This is true as if both messages ended here then
s−1 = ŝ−1 would imply that p = p̂ (and so m = m̂) which contradicts the assumptions of
the lemma. Hence, at least one message must be longer. Assuming the longer message is
m, A outputs (zero, s−2) (or (zero, ŝ−2) if it was m̂).

Next the algorithm checks if p−1 = p̂−1, where we follow a similar notation for message
blocks as for the states. The last block of the input is denoted by p−1. If p−1 6= p̂−1, A
outputs (right, s−2, ŝ−2). This is a collision of f right because p−1 6= p̂−1 but s−1 = ŝ−1.
Thus f(s−2) 6= f(ŝ−2) which in turn implies s−2 6= ŝ−2 while f right(s−2) = f right(ŝ−2). We
can be certain that there are at least two applications of f both in S(m) and S(m̂) because
the right half of s−1 = ŝ−1 is not 0c.

3. If p−1 = p̂−1 we end up in the same situation as before but now for i = 2. Namely we have
that s−2 = ŝ−2 and the algorithm performs the same checks as before but for a bigger i.
Repeat Step 2 for all 2 ≤ i ≤ min{|p|, |p̂|}.

If the iteration ends without success, this especially means that no collision was found but at least
one message was fully processed. In this case A outputs a preimage of 0c under f right. That is
because no collisions means that all compared message blocks are the same but the two messages
are different per assumption. Hence, they must have different lengths. With different length
messages that traverse the same state values at the point of i = min{|p|, |p̂|} the right part of
both states is 0c, so the algorithm will output (zero, ŝ−|p|−1) (assuming |p| < |p̂|).

�

Here we present the concrete upper bound on the probability of success of any quantum
adversary finding a collision in S.

Theorem 17 Assume a quantum τ -time adversary B that finds a collision in Sc,r,f ,pad ,n with
probability ε. Then there exist:

11

• a (τ + 2τpad +O((4Tm + 2dnr e)τf))-time adversary A1 that finds a collision in f right with
probability εc,

• a (τ + 2τpad +O((4Tm + 2dnr e)τf))-time adversary A2 that finds a pre-image of 0c under
f right with probability ε0,

• and a (τ + 2τpad +O((4Tm + 2dnr e)τf))-time adversary A3 that finds a collision in f left/n

with probability εn,

such that ε ≤ εc + ε0 + εn. Tm denotes the bound on the number of blocks in the padding of the
input messages, τf is the time required for a single classical invocation of f and τpad is the time
required for one invocation of pad .

Proof. We reduce the problem of finding collisions in S to attacks on the block function.
Adversaries A1, A2, and A3 run B and then classically compute S on the outputs of the collision
finder. If that in fact is a collision they run algorithm A from Lemma 16 and output the last
register of its output. Otherwise the algorithms output ⊥. Note that the runtime of the described
adversaries agrees with the claim. That allows us to write

Pr[m 6= m̂ ∧ S(m) = S(m̂) : (m, m̂)← B] =

Pr
[(
s 6= ŝ ∧ f right(s) = f right(ŝ) : (s, ŝ)← A1

)
∨
(
s ∈ f right−1(0c) : s← A2

)
∨
(
s 6= ŝ ∧ f left/n(s) = f left/n(ŝ) : (s, ŝ)← A3

)]
≤ εc + ε0 + εn, (1)

where the inequality comes from the union bound. �

Note that the same bounds hold when measuring the time in number of oracle queries. It is
true that for n > r our bound seems to be not optimal but our reductionist approach is not well
suited to deal with consecutive applications of f . For that reason we leave this issue as an open
problem to be tackled later.

5.1 Random sponges

Let us now analyse the case of a random sponge. The success probability of a generic collision-
finding algorithm in h : {0, 1}r+c → {0, 1}c is O

(
q3

2c

)
, as proved by Zhandry [Zha15]. To use

Zhandry’s results we need to make sure the distribution of f right is in fact uniform.

Lemma 18 If f : {0, 1}r+c → {0, 1}r+c is a random function and A that looks for collisions in
f right makes at most q queries to f and has success probability εc, then εc ∈ O(q

3

2c).

Proof. Let h : {0, 1}r+c → {0, 1}c be a random function. Let A′ perform the following steps: It
picks a random function g : {0, 1}r+c → {0, 1}r (we do not care about the runtime of A′, so it
is not a problem that picking g takes exponential time). Then it simulates A where f ′ is the
function defined by f ′(x) := g(x)‖h(x). Note that an oracle query to f ′ can be implemented
using a single oracle query to h. So A′ still performs q oracle queries.

The joint distribution of f ′ and h is the same as that of f and f right. Thus the advantage of
A′ against h is the same as the advantage εc of A against f right.

Thus we can use results proven in [Zha15], εc ∈ O(q
3

2c). �

Similarly for f left/n and f left it holds that the advantage of a q-query collision finder is
εn ∈ O

(
q3

2n

)
and εr ∈ O

(
q3

2r

)
, respectively. Zero-pre-image finding in a random function has

probability of success at most ε0 ∈ O
(
q2

2c

)
as shown next.

12

Lemma 19 Let f : {0, 1}r+c → {0, 1}r+c be a random function. Then a q-query adversary finds
a zero-preimage of f right with probability ≤ (q + 1)22−c+5.

Proof. Assume an algorithm Af that finds a zero-preimage of f right with some probability ε. Let
F : {0, 1}r+c → {0, 1} be a random function where each F (z) is independently chosen, with
Pr[F (z) = 1] = γ := 2−c. Let BF be the following algorithm: It picks functions f1, f0 : {0, 1}r+c →
{0, 1}r+c, where each f0(x) is independently and uniformly chosen from {0, 1}r × ({0, 1}c \ {0c})
and each f1(x) is independently and uniformly chosen from {0, 1}r×{0c}. Define f̂(x) := fF (x)(x).
Then BF runs x← Af̂ and returns x. A query to f̂ can be implemented using 2 queries to F .
Thus BF performs ≤ 2q queries to F . (We do not care about the runtime of BF . Thus the
exponential time required for implementing f0, f1 is not a problem.)

Note that f̂ : {0, 1}r+c → {0, 1}r+c is a uniformly random function (for F distributed as
described above). Thus Af̂ finds a zero-preimage of f right with probability ε, i.e., an x with
f(x)right = 0c. Such an x then satisfies F (x) = 1. Thus BF finds a 1-preimage of F with
probability ε. [HRS16, Theorem 1] shows that a 2q-query adversary can find a 1-preimage in F
with probability at most 8γ(2q + 1)2. Thus ε ≤ 8γ(2q + 1)2 ≤ (q + 1)22−c+5. �

We are now ready to bound the probability to find collisions in a random S.

Corollary 20 For any quantum adversary B finding collisions in a random Sc,r,f ,pad ,n, we have
that

Pr[m 6= m̂ ∧ S(m) = S(m̂) : (m, m̂)← Bf] ≤ O
(
q3 max{2−c, 2−r, 2−n}

)
. (2)

The fact that we have a 2−r term in the above bound is a result of restricting f left/n to f left in
the case of n > r.

6 Sponges are collapsing

In this section, we show that the sponge constrution is collapsing, under certain assumptions
about the block function f . We only state the qualitative results here, more precise statements
with concrete security bounds will be given in Section 6.2.

The results in this section hold for all distributions of the oracle O (including the case that
there is no oracle O). The specific cases of random functions and random permutations are
covered in Section 6.1. Since all adversaries (A,B,A′, B′, . . .) and the block function f have
oracle access to O throughout the section, we omit the oracle O from our notation for increased
readability (i.e., we write A, f instead of AO, fO). Throughout this section, we assume that fO

can be computed in quantum-polynomial-time (given oracle access to O).
We will analyze the sponge construction in three parts. First, we analyze the security of the

absorbing phase Sin , then we analyze the security of the squeezing phase Sout , and finally we
conclude security of the whole sponge S, consisting of padding, absorbing, and squeezing.

First, we analyze the absorbing phase. For the absorbing phase (without padding or squeezing)
to be collapsing, we will need two properties of f right:
• f right is collapsing. This is the main property required from the block function f . If we
would restrict Sin to fixed length messages, then we could show the collapsing property of
Sin based on that property alone.
• f right is zero-preimage-resistant (see Definition 1). To see why we need this property, consider
a block function f where the adversary can find, e.g., x, y ∈ {0, 1}r with f(x‖0c) = y‖0c.
Then we can see that Sin(x‖y) = 0c+r, and thus Sin(x‖y‖z) = z‖0c = Sin(z) for any
z ∈ {0, 1}r. Thus Sin would not be collision-resistant, and in particular not collapsing.

We state the result formally:

13

0r

0c

m−|m|
m1

s right−|m|

s
le
ft

−|
m
|

f

m−(|m|−1)
m2

s right−(|m|−1)

s
le
ft

−(
|m
|−
1)

f

m−(|m|−2)
m3

s right−(|m|−2)

s
le
ft

−(
|m
|−
2)

. . .

. . .

m−(k+1)

m|m|−k

s right−(k+1)

s
le
ft

−(
k+

1)

f

m−k
m|m|−k+1

s right−k

s
le
ft

−k

f

m−(k−1)
m|m|−k+2

s right−(k−1)

s
le
ft

−(
k−

1)

. . .

. . .

m−3
m|m|−2

s right−3

s
le
ft

−3

f

m−2
m|m|−1

s right−2

s
le
ft

−2

f

m−1
m|m|

s right−1

s
le
ft

−1}
h



b: Positions where lower wire is 0c (counting from end)

Figure 3: Values occurring in the computation of h = Sin(m), using the notation from the proof sketch of
Lemma 21.

Lemma 21 (Absorbing phase is collapsing) Assume that f right is collapsing, and that f right

is zero-preimage-resistant. Then Sin is collapsing.

Note that this lemma does not explicitly state anything about the size of r and c. But of course,
f right can only be collapsing and zero-preimage-resistant is the capacity c is superlogarithmic.

We only give a detailed proof sketch for Lemma 21. Since Lemma 21 is an immediate corollary
of its concrete security variant Lemma 29, we give the full proof directly for Lemma 29 in
Section 6.2 below.

Proof sketch. Consider a quantum-polynomial-time adversary (A,B) where A outputs a hash h,
and a superposition of messagesm on the registerM , and B expectsM back and outputs a guess b.
We need to show that the two games in Definition 3 (see also Figure 1) are indistinguishable, i.e.,
the probability of b = 1 is approximately the same in both games. Since the domain of Sin is
({0, 1}r)+, we can assume that (A,B) is valid on ({0, 1}r)+, i.e., M contains a superposition of
messages m ∈ ({0, 1}r)+ with Sin(m) = h.

To show that the two games are indistinguishable, we start with Game2 from Definition 3
(Figure 1 (b)) and transform it step by step into Game1.

Game 1 (M,h)← A(). b← B(M). (Same as Game2 from Definition 3.)

Note that we keep the register S (the state of (A,B)) implicit in this proof sketch, to improve
readability.

Now, in each successive game, we measure more and more information about the message
m contained in M , until in the final game, we measure m completely (like in Game1 from
Definition 3). In order to refer to the different values derived from m that we measure, we will
need to use a lot of notation to refer to various intermediate values occurring in the computation
of Sin(m). To make it easier to follow the proof, all relevant notation has been depicted in
Figure 3, which shows an evaluation of Sin(m).

Since (A,B) is valid, we know that Sin(m) = h where h is the classical output of A. That
is, h = Sin(m) has already been measured.8 In the computation of Sin(m), let s−2 refer to the
state that goes into the last application of f (see Figure 3), and let m−1 refer to the last block
of the input message m (i.e., m−1 = m|m|). Then h = f(s−2)⊕ (m−1‖0c) by definition of Sin ,
and thus hright = f right(s−2). Now since by assumption, f right is collapsing, we can reason: Since

8In this proof sketch, when we use the expression “measure a” where a is some expression depending on the
message m (e.g., a could be Sin(m)), then we mean that we measure the register M , but not with a complete
measurement, but with a measurement that gives outcome a (e.g., Sin(m)) when M contains |m〉. Formally, that
measurement would consist of the projectors Pi defined by Pi :=

∑
m s.t. a=i|m〉〈m|. E.g., if we “measure Sin(m)”,

the projectors are Pi :=
∑

m s.t. Sin (m)=i|m〉〈m|.

14

f right is collapsing, and we have measured the output hright of f right(s−2), it follows that we can
additionally measure s−2, and the adversary B will not be able to notice the difference. That is,
we get the following game with only negligibly different Pr[b = 1]:

Game 2attempt (M,h)← A(). Measure s−2. b← B(M).

This would indeed work, if we knew that |m| ≥ 2. However, it could be that |m| = 1. In this
case, we have s−2 = ⊥ (i.e., s−2 does not occur in the computation). Worse, if M contains a
superposition of messages m, some of length |m| = 1, others of length |m| ≥ 2, then measuring
s−2 will reveal whether |m| ≥ 2 or |m| = 1. We cannot guarantee that this measurement will
not change the quantum state of M in a noticeable way. Then Pr[b = 1 : Game 1] 6≈ Pr[b =
1 : Game 2attempt]. The collapsing property of f right does not help here, because to apply that
property, we need to know that hright is indeed the output of f right (which is not the case when
|m| = 1).

A similar problem also occurs in later games: Let s−k denote the k-th state from the end,
with h being s−1, the input to the last f being s−2, the input to the previous f being s−3, etc.,
see Figure 3. (We count backwards because this will make notation easier, since our games will
start measuring states from the end.) When we have measured some right state sright−k , we want
to argue that we can measure the previous state s−(k+1) because s

right
−k = f right(s−(k+1)). Again,

this will not be possible because we do not know whether s−k is not already the first state of the
computation of Sin(m). (That is, we do not know whether |m| = k.)

To get around this problem, we need a mechanism to decide whether a state s−k is the
initial state, i.e., whether s−k is s−|m|. How do we do that? By construction of Sin , the initial
state s−|m| satisfies s

right
−|m| = 0c. Thus, we might try to decide whether s−k is the initial state

by checking whether sright−k = 0c. For example, if we want to measure s−2, we do so only when
hright = sright−1 6= 0c. This approach is basically sound, but what happens when a state in the
middle has sright−k = 0c? We would be mislead, and the proof would break down.

To avoid this problem, we will first measure at which positions this bad case happens. Let b
be the set of all indices k < |m| such that sright−k = 0c. (That is, the indices of all states in which
we observe a 0c in the right part, but which are not the initial state.) Once we know the set b,
then we can decide whether s−k is the initial state or not. Namely, s−k is the initial state (i.e.,
k = |m|) iff sright−k = 0c and k /∈ b.

So the first step in our sequence of games is to measure the set b:

Game 2 (M,h)← A(). Measure b. b← B(M).

We assumed that f right is zero-preimage-resistant. This implies that with overwhelming probability,
sright−k = f right(s−(k+1)) 6= 0c for all k < |m|. Thus b = ∅ with overwhelming probability. Therefore
measuring b has only negligible effect on the quantum state. Thus

Pr[Game 1] ≈ Pr[Game 2].

(We use the shorthand Pr[Game 1] for Pr[b = 1 : Game 1]. And ≈ denotes a negligible difference.)
Now we can proceed with measuring more and more states from the computation of Sin(m).

First, we measure s−1:

Game 41 (M,h)← A(). Measure b and s−1. b← B(M).

(Note: The numbering of games in this proof sketch has gaps so that the game numbers here
match the game numbers from the full proof of Lemma 29.) Since s−1 = h by definition, and
since h is already measured by A, the additional measurement does not change the quantum
state, and we have:

Pr[Game 2] = Pr[Game 41].

Now we add a measurement whether s−2 is defined:

15

Game 51 (M,h)← A(). Measure b and s−1 and whether s−2 = ⊥.9 b← B(M).

Given b and s−1 we can already tell whether s−2 = ⊥. Namely, s−2 = ⊥ iff sright−1 = 0c and
1 /∈ b. Thus measuring whether s−2 = ⊥ has no effect on the quantum state, and we get

Pr[Game 41] = Pr[Game 51].

Now, finally, we can do what we already intended to do in Game 2attempt: We measure s−2, and
use the collapsing property of f right to show that this measurement does not noticeably disturb
the quantum state:

Game 42 (M,h)← A(). Measure b, and s−1, and whether s−2 = ⊥, and s−2. b← B(M).

In case that we measured that s−2 = ⊥, measuring s−2 in Game 42 has no effect on the
quantum state (since we know that the outcome will be ⊥). And in case that we measured that
s−2 6= ⊥, we know that sright−1 = f right(s−2) (as already discussed above), and thus measuring s−2
can be noticed with at most noticeable probability by a quantum-polynomial-time adversary.
Thus

Pr[Game 51] ≈ Pr[Game 42].

And then we continue by adding a measurement whether s−3 6= ⊥:

Game 52 (M,h) ← A(). Measure b, and s−1, and whether s−2 = ⊥, and s−2, and whether
s−3 = ⊥. b← B(M).

Since s−3 = ⊥ iff s−2 = ⊥ or sright−2 = 0c and 2 /∈ b, measuring whether s−3 = ⊥ holds has no
effect on the quantum state. Thus we get

Pr[Game 42] = Pr[Game 52].

And then we measure s−3:

Game 43 (M,h) ← A(). Measure b, and s−1, and whether s−2 = ⊥, and s−2, and whether
s−3 = ⊥, and s−3. b← B(M).

Using that f right is collapsing, we get

Pr[Game 52] ≈ Pr[Game 43].

We continue in this way, alternatively adding a measurement whether the next state s−k = ⊥,
and then adding a measurement of s−k, each time using the collapsing property of f right. After `
such steps, where ` is a polynomial upper bound on the length of m, we get the following game:

Game 4` (M,h)← A(). Measure b, measure whether s−1, . . . , s−` = ⊥, measure s−1, . . . , s−`.
b← B(M).

Since in each of the steps, we accrue only a negligible distinguishing probability between
consecutive games, we get:

Pr[Game 41] ≈ Pr[Game 4`].

(Formally, this argument is not correct, because the sum of polynomially many possibly different
negligible functions is not necessarily negligible. However, this is easily fixed by bounding
all differences Pr[Game 5k] − Pr[Game 4k+1] simultaneously using a reduction that randomly
chooses k (a standard technique). Details are given in the full proof of Lemma 29.)

9Measuring “whether s−2 = ⊥” means a measurement on M defined by projectors P and 1 − P where
P :=

∑
m s.t. s−2=⊥|m〉〈m|.

16

In Game 4`, we measure s−1, . . . , s−`. From these, we can compute |m| (since s−k = ⊥ for
k > |m|). Furthermore, each message block m−k (the k-th message block from the end) can be
computed as follows: We have s−k = f(s−(k+1))⊕ (m−k‖0c), and thus m−k = sleft−k⊕ f(s−(k+1))

left.
Except for m−|m|, which can be computed as m−|m| = sleft−|m|. (Cf. Figure 3.) Finally, we can
compute m as m = m−|m|‖ . . . ‖m−1.

Since we can compute m from the measurements performed in Game 4`, it follows that those
measurements are equivalent (in their effect on the quantum state) to a measurement of m. Thus

Pr[Game 4`] = Pr[Game 6]

for the following final game:

Game 6 (M,h)← A(). Measure m. b← B(M).

Altogether, we have shown
Pr[Game 1] ≈ Pr[Game 6].

And Game 1 and Game 6 are identical to the games Game2 and Game1 from Definition 3,
respectively. Since (A,B) was an arbitrary quantum-polynomial-time adversary that is valid for
Sin , it follows by Definition 3 that Sin is collapsing. �

Next, we show that the squeezing phase is collapsing. Let f left/n be defined for n > 0, as
the first min(n, r) bits of the output of f (in particular, f left/n = f left for n ≥ r). Then the
collapsing property of the squeezing phase is a relatively trivial consequence of the fact that
f left/n is collapsing.

Lemma 22 (Squeezing phase is collapsing) Let n > 0 be the output length and assume that
f left/n is collapsing. Then Sout is collapsing.

A concrete security variant of this lemma is given in Lemma 30.

Proof. Let Gη(x) return the first η = min(r, n) bits of x. Then Gη(Sout(s)) = f left/n(s). Thus
the lemma follows directly from Lemma 6. �

And finally we get that the sponge construction as a whole is collapsing. This is a simple
corollary from the fact that both the absorbing and the squeezing phase are collapsing.

Theorem 23 (Sponge construction is collapsing) Let n > 0 be the output length and as-
sume that f left/n and f right are collapsing, and that f right is zero-preimage-resistant. Assume that
pad is injective. Then S is collapsing.

A concrete security variant of this theorem is given in Theorem 31.

Proof. By Lemma 21, Sin is collapsing, and by Lemma 22, Sout is collapsing. Then by Lemma 7,
Sout ◦Sin is collapsing. Since pad is injective, by Lemma 4, pad is collapsing. Thus by Lemma 7,
S = (Sout ◦ Sin) ◦ pad is collapsing. �

6.1 Using random oracles or random permutations

In preceding section, we have reduced the security of the sponge construction S to certain
properties of the block function f . In many cases, however, a hash function is designed by
constructing a block function heuristically, and we cannot say what specific security properties
the block function has. Instead, we model the block function as, e.g., a random function or a
random permutation. The present section specifies the security of the sponge construction under
those circumstances. (Concrete security statements are deferred to Section 6.3.)

We start by deriving the required properties of a random block function:

17

Lemma 24 If O : {0, 1}r+c → {0, 1}r+c is a random function, and fO(x) := O(x), and r, c and
n are superlogarithmic, then f left/n (as defined above Lemma 22) and f right are collapsing.

This is an immediate corollary of its concrete security variant Lemma 32, for which we give a
full proof in Section 6.3.

Proof sketch. By Theorem 11, a random function (with superlogarithmic output length) is
collapsing. Since f right = Oright has superlogarithmic output length r, and f right = Oright is a
uniformly random function if O is, it follows that f right is collapsing. (A slight technicality is
that the adversary does not only get access to f right = Oright, but additionally to Oleft, but it is
easy to see that this does not help him since Oright is distributed independently from Oleft.)

Analogously we get that f left/n is collapsing since min(n, r) is superlogarithmic. �

Lemma 25 If O : {0, 1}r+c → {0, 1}r+c is a random function, and fO(x) := O(x), and c is
superlogarithmic, then f right is zero-preimage-resistant.

This is an immediate corollary of its concrete security variant Lemma 25, for which we give
a full proof in Section 6.3. It is a simple consequence of the hardness of quantum searching in
unstructured data [Boy+98].

With these two lemmas, security of the sponge using a random block function follows.
In this section, we show that S is collapsing, when O is a random function or random

permutation and fO(x) := O(x). The collapsing of f right, f left/n follows from [Unr16a], and
the zero-preimage-resistance of f right follows from the optimality of Grover’s algorithm. The
computation of the precise advantage is given in Section 6.2.

Theorem 26 If O : {0, 1}r+c → {0, 1}r+c is a random function, and fO(x) := O(x), and r, c
and output length n are superlogarithmic, then S is collapsing.

A concrete security variant (with security bounds in terms of the number of oracle-queries) is
given in Theorem 33.

Proof. Immediate from Theorem 23, using Lemma 24 and Lemma 25 to show that its preconditions
are satisfied. �

And since random functions and random permutations are known to be indistinguishable, we
readily derive the security of the sponge construction also for block functions that are random
permutations.

Theorem 27 If O : {0, 1}r+c → {0, 1}r+c is a random permutation, and fO(x) := O(x), and
r, c and output length n are superlogarithmic, then S is collapsing.

A concrete security variant (with security bounds in terms of the number of oracle-queries) is
given in Theorem 34.

Proof. Zhandry [Zha15] shows that no adversary making a polynomial number of queries can
distinguish a random permutation from a random function with more than negligible probability
(assuming that the output length is superlogarithmic). Thus the advantage of the adversary
attacking the collapsing property of S when O is a random permutation can only be negligibly
higher than the advantage of the same adversary attacking the collapsing property of S when
O is a random function. The latter advantage is negligible by Theorem 26, thus the former
advantage is negligible, too. Hence S is collapsing when O is a random permutation. �

18

On invertible permutations. Theorem 34 tells us that the sponge construction is collapsing
if the block function f is a random permutation. There is a caveat, though: If f is a permutation
that we can efficiently invert, the theorem does not tell us anything. More specifically, if f is a
random permutation, and the adversary has access to O = (f , f−1),10 then Theorem 34 does not
apply.

In fact, if f is efficiently invertible, we cannot apply our main result Theorem 23 at all: In
that case f right is not zero-preimage-resistant (to find a zero-preimage, we simply invoke f−1(y‖0c)
for an arbitrary y ∈ {0, 1}r).

And f right is also not collapsing: We get a collision of f right by computing x := f−1(y‖z) and
x′ := f−1(y′‖z) for arbitrary y, y′, z with y 6= y′. So f right is not collision-resistant. And since
collapsing functions are collision-resistant [Unr16a], f right is not collapsing.

Similarly, f left/n is not collapsing, either.
So, none of the preconditions of Theorem 23 are satisfied, and we cannot derive that the

sponge construction is collapsing (for efficiently invertible f).
Does that mean that the sponge construction is not collapsing in that setting? No. At least

it is not obvious how one would use f−1 to break the collapsing property. For example, if we
try to find a two-block collision (m1‖m2,m

′
1‖m′2) for S, then we need that f(m1‖0c)⊕m2‖0c =

f(m′1‖0c)⊕m′2‖0c. How can we solve this equation by using f−1? Unclear. For other kinds of
collisions that we could think of, we fail similarly.

In fact, we conjecture that the sponge construction is still collapsing in this setting:

Conjecture 28 If O : {0, 1} × {0, 1}r+c → {0, 1}r+c is an invertible random permutation (see
footnote 10), and fO(x) := O(0, x), and r, c and output length n are superlogarithmic, then S is
collapsing.

Showing this conjecture is quite important because it will give evidence for the post-quantum
security of SHA3. (Only in the idealized invertible random permutation model. But then,
classically, we also have evidence for the collision-resistance of the sponge construction only in
that idealized model [Ber+08].)

6.2 Concrete security results

In this section, we prove the concrete security variants of the results from Section 6. The
proofs follow the lines sketched in Section 6, except that we need to be more explicit about the
adversaries constructed during the reductions.

The reader interested only in the qualitative fact that the sponge construction is secure, but
not in the precise bounds, can safely skip this section.

As in Section 6, we omit O from AO, fO, etc.

Lemma 29 Let (A,B) be a τ -time adversary, t-valid against S on ({0, 1}r)+, with collapsing-
advantage ε. Assume that A outputs messages of length at most `r bits.

Then there are:
• a (τ + t`τf +O(t`c))-time adversary A′ that finds a zero-preimage11 of f right with probability
ε′, and
• a

(
τ +O(`τf)

)
-time adversary (A′′, B′′), t-valid against f right, with collapsing-advantage ε′′

such that ε ≤
√
ε′ + (`− 1)ε′′.

Here τf is the time required a single classical invocation of f . If time is measured in O-queries
(instead of computation steps), the term O(t`c) in the runtime of A′ can be omitted.

10Formally, we mean by O = (f , f−1): O(0, ·) is a random permutation, O(1, ·) is its inverse, and f(x) := O(0, x).
11By zero-preimage we mean any value x with f right(x) = 0c.

19

Proof. We prove this lemma using a sequence of games. The first game is identical to Game2
from Definition 8.

Game 1 (S,M1, . . . ,Mt, h1, . . . , ht)← A(). b← B(S,M1, . . . ,Mt).

To state the second game, we need to introduce some notation. (We recommend the reader
to compare with Figure 3. The notation there is slightly different, e.g., we write there s−1 and
here more precisely s−1(m), but the figure can be helpful to get an overview which parts of the
message the different values defined below refer to.)

For some m ∈ ({0, 1}r)+, we denote by |m| the number of r-bit blocks in m. (That is, if m
has d bits, then |m| = d/r.) By mi we denote the i-th block of m. We denote by m−i the i-th
block of m from the end, i.e., m−i = m|m|−i+1 and m = m−|m|‖ . . . ‖m−1.

For i = 1, . . . , |m|, let s−i(m) := Sin(m1, . . . ,m|m|−i+1). That is, s−i(m) is the i-th state
during the evaluation of Sin(m), counted from the end.

In particular, s−1(m) = Sin(m), and s−|m|(m) = m1‖0c. (Since we consider only |m| ∈
({0, 1}r)+, the border case |m| = 0 does not occur.) We define s−i(m) := ⊥ for i > |m|.

Let b(m) := {i : s−i(m)right = 0c ∧ i < |m|}. Note that we always have sright−|m| = 0c by
definition, but due to the condition i < |m|, we never have |m| ∈ b(m).

Notice that i ∈ b(m) implies that s−(i+1)(m) is a zero-preimage of f right.
The intuitive meaning of b(m) is that it tells us whether (and where) at some point during

the computation of Sin(m), there is a state s with sright = 0c. This is important to know, because
later we will interpret such a state as an indication that we have reached the beginning of the
computation of Sin . b(m) tells us where there are exceptions to this rule.

Finally, in the following, for a function f , letMf (M) denote a measurement of the register
M that measures f(m) when |m〉 is the state of M . More formally, Mf (M) consists of the
projectors {Pi}i∈range f with Pi :=

∑
m s.t. f(m)=i|m〉〈m|. For example, if f is the identity, then

Mf (M) is a complete measurement in the computational basis, and if f is a constant function,
then Mf (M) does not do anything. We write x ← Mf (M) to denote that the outcome of
Mf (M) is stored in x.

Note that all measurementsMf commute, even for different functions f . We will use this
fact implicitly by treating sequences of measurements as equal when they differ only in their
ordering.

Game 2 (S,M1, . . . ,Mt, h1, . . . , ht) ← A(). bj ← Mb(Mj) for j = 1, . . . , t. b ←
B(S,M1, . . . ,Mt).

That is, compared to Game 1, we additionally measure b(m) for each of the messages m
that are in the registers M1, . . . ,Mt. We will need this below in order to decide whether a given
message block is the first message block (when working our way backwards through the message).
Namely, m−i is the beginning of the message m, iff s−i(m)right = 0c and i /∈ b(m).

For any game Game X, let Pr[Game X] denote the probability that b = 1 in Game X. (I.e.,
Pr[Game X] := Pr[b = 1 : Game X].)

We will now bound
∣∣Pr[Game 1]−Pr[Game 2]

∣∣. Let ρ denote the state of S,M1, . . . ,Mt after
executing (S,M1, . . . ,Mt, h1, . . . , ht)← A(). Let ρ′ denote the state after additionally performing
the measurement “bj ←Mb(Mj) for j = 1, . . . , t”.12 By Lemma 2, the trace distance between
ρ and ρ′ is bounded by

√
ε′0, where 1 − ε′0 := Pr[(b1, . . . ,bt) = (∅, . . . ,∅) : Game 2]. And ρ

and ρ′ are the state before executing b← B(S,M1, . . . ,Mt) in Game 1 and Game 2, respectively.
12Strictly speaking, these are t measurements Mb(M1), . . . ,Mb(Mt). However, since the measurements
Mb(Mj) commute, one can see them as a single measurement on M1, . . . ,Mt with outcome b1, . . . ,bt.

20

Thus the probability of b = 1 in these two games can differ at most by the trace distance between
ρ and ρ′, hence ∣∣∣Pr[Game 1]− Pr[Game 2]

∣∣∣ ≤√ε′0. (3)

Since Pr[(b1, . . . ,bt) = (∅, . . . ,∅) : Game 2] = 1− ε′0, we have Pr[∃j : bj 6= ∅] = ε′0 in the
following game:

Game 3 (S,M1, . . . ,Mt, h1, . . . , ht) ← A(). mj ← M(Mj) for j = 1, . . . , t. bj := b(mj) for
j = 1, . . . , t. h′j := Sin(mj) for j = 1, . . . , t.

By definition of b(m), we have that b(m) 6= ∅ implies that s−(i+1)(m) is a zero-preimage of
f right for some i. Thus, if ∃j : bj 6= ∅ in Game 3, then one of the s−i(mj) is a zero-preimage of
f right. Thus with probability ≥ ε′0, one of the computations Sin(mj) in Game 3 performs a call
ŝ := f(s) such that ŝright = 0c.

Consider the following algorithm A′: It computes (S,M1, . . . ,Mt, h1, . . . , ht)← A(), measures
mj ← M(Mj) for j = 1, . . . , t, and then computes Sin(mj) for j = 1, . . . , t. If in one of the
invocations ŝ := f(s) performed by Sin we have ŝright = 0, A′ returns s.

Then A′ outputs a zero-preimage of f right with some probability ε′ ≥ ε′0. A′ has runtime
≤ τ + t`τf +O(t`c). And from (3), we get∣∣∣Pr[Game 1]− Pr[Game 2]

∣∣∣ ≤ √ε′. (4)

For the next game, we introduce one more function, di, defined by: d−i(m) := 1 if s−i(m) 6= ⊥,
and d−i(m) := 0 otherwise. Equivalently, d−i(m) = 1 iff |m| ≥ i.

The next game is a variation of Game 2 and is parametrized by an integer k = 1, . . . , `.

Game 4k (S,M1, . . . ,Mt, h1, . . . , ht)← A(). bj ←Mb(Mj) for j = 1, . . . , t. sij ←Ms−i(Mj)
for i = 1, . . . , k and j = 1, . . . , t. dij ← Md−i

(Mj) for i = 1, . . . , k and j = 1, . . . , t. b ←
B(S,M1, . . . ,Mt).

In this game, we measure additionally s−1(m), . . . , s−k(m) for each of the messages m on
registers M1, . . . ,Mt. That is, we measure a suffix of length k of the list of states occurring
during the calculation of Sin(m). Thus, in each successive game Game 4k (for increasing k),
we measure one more state from the calculation (starting from the end). We also measure
d−1(m), . . . , d−k(m), but this measurement has no effect since d−i(m) is determined by s−i(m)
by definition.

Notice also that s−k(m) = ⊥ if k > |m| (by definition of s−k). Thus, measuring
s−1(m), . . . , s−k(m) implicitly also measures whether |m| ≤ k, and if so, what the value of
|m| is.

We first consider the case k = 1: The only difference between Game 41 and Game 2
are the measurements s1j ← Ms−1(Mj) and d1j ← Md−1(Mj). But as mentioned above,
s−1(m) = Sin(m). Thus s1j ←Ms−1(Mj) is the same as s1j ←MSin (Mj). Since (A,B) is a
t-valid adversary, we have by definition of t-validity that measuringMSin on the registers Mj

returns hj with probability 1 (i.e., s1j = hj). Thus the measurement s1j ←Ms−1(Mj) has no
effect on the state that is measured. Hence we can omit it without changing the distribution of
b. Furthermore, s1j(m) 6= ⊥ for all m ∈ ({0, 1}r)+. Thus we always have d1j(m) = 1, thus the
measurement d1j ←Md−1(Mj) has no effect on b either. Thus

Pr[Game 41] = Pr[Game 2]. (5)

Game 5k (S,M1, . . . ,Mt, h1, . . . , ht)← A(). bj ←Mb(Mj) for j = 1, . . . , t. sij ←Ms−i(Mj)
for i = 1, . . . , k and j = 1, . . . , t. dij ← Md−i

(Mj) for i = 1, . . . , k + 1 and j = 1, . . . , t.
b← B(S,M1, . . . ,Mt).

21

Thus, in comparison with Game 4k, we additionally measure d−(k+1)(m) for the messages m
on the registers Mj . In other words, we measure whether s−k(m) 6= ⊥, which in turn is the same
as measuring whether |m| ≥ k + 1.

Notice further that for any m ∈ ({0, 1}r)+, the following holds: If d−(k+1)(m) = 0, we have
|m| ≤ k. In case |m| < k, we have s−k(m) = ⊥. In case |m| = k, we have s−k(m)right = 0c

(because s−|m|(m) = m1‖0c as mentioned above) and k /∈ b(m) (by definition of b). Thus

∀m ∈ ({0, 1}r)+. d−(k+1)(m) = 0 =⇒ s−k(m) = ⊥ ∨
(
s−k(m)right = 0c ∧ k /∈ b(m)

)
.

Furthermore, the converse holds, too: If s−k(m) = ⊥, then |m| < k, hence d−(k+1)(m) = 0. And
if s−k(m)right = 0c∧k /∈ b(m), by definition of b(m), we have s−k(m)right = 0c∧¬

(
s−k(m)right =

0c ∧ k < |m|
)
, thus k ≥ |m|, thus s−(k+1)(m) = ⊥ thus d−(k+1)(m) = 0. So, altogether we have

∀m ∈ ({0, 1}r)+. d−(k+1)(m) = 0 ⇐⇒ s−k(m) = ⊥ ∨
(
s−k(m)right = 0c ∧ k /∈ b(m)

)
.

Thus, in the context of Game 5k (and using that m ∈ ({0, 1}r)+ since (A,B) is t-valid on
({0, 1}r)+), we have for all j = 1, . . . , t:

dk+1,j = 0 ⇐⇒ skj = ⊥ ∨
(
s−kjright = 0c ∧ k /∈ bj

)
.

Thus, the outcome dk+1,j ∈ {0, 1} of the measurement dk+1,j ← Md−(k+1)
(Mj) is determined

by the prior measurement outcomes skj ,bj . Hence dk+1,j ← Md−(k+1)
(Mj) has no effect on

the state and thus omitting it does not change the distribution of b in Game 5k. Since this
measurement is the only difference between Game 4k and Game 5k, we have

Pr[Game 4k] = Pr[Game 5k]. (6)

Let Game 5$ denote the game in which we pick k $← {1, . . . , `−1}, and then execute Game 5k.
Let Game 4$+1 denote the game in which we pick k

$← {1, . . . , ` − 1}, and then execute
Game 4k+1.

We will now bound
∣∣Pr[Game 4$+1]−Pr[Game 5$]

∣∣. For this, consider the following algorithms
A′′, B′′. Let Usk be the unitary with Usk |m〉|y〉 = |m〉|y⊕ s−(k+1)(m)〉. A′′() performs the steps
described in Algorithm 1.

Algorithm 1 Algorithm A′′

Output: Quantum registers (S′′,M ′′1 , . . . ,M
′′
t , h

′′
1, . . . , h

′′
t)

1: Pick k $← {1, . . . , `− 1}.
2: Run (S,M1, . . . ,Mt, h1, . . . , ht)← A().
3: Measure bj ←Mb(Mj) for j = 1, . . . , t.
4: Measure sij ←Ms−i(Mj) for i = 1, . . . , k and j = 1, . . . , t.
5: Measure dij ←Md−i

(Mj) for i = 1, . . . , k + 1 and j = 1, . . . , t.
6: For j = 1, . . . , t:
7: Initialize M ′′j with |0r+c〉.
8: If dk+1,j = 1:
9: apply Usk to the registers Mj ,M

′′
j .

10: Combine the registers S,M1, . . . ,Mt and classical values k, (dk+1,j)j into a single register S′′.
11: Let h′′j := srightkj if skj 6= ⊥, and h′′i := f(0r+c)right otherwise.
12: Return (S′′,M ′′1 , . . . ,M

′′
t , h

′′
1, . . . , h

′′
t).

And B′′(S′′,M ′′1 , . . . ,M ′′t) performs the steps in Algorithm 2.

22

Algorithm 2 Algorithm B′′

Input: Quantum registers (S′′,M ′′1 , . . . ,M
′′
t , h

′′
1, . . . , h

′′
t)

Output: Bit b
1: Split the register S′′ into registers S,M1, . . . ,Mt and classical values k, (dkj)j .
2: For j = 1, . . . , t:
3: If dk+1,j = 1:
4: Apply Usk to the registers Mj ,M

′′
j .

5: b← B(S,M1, . . . ,Mt).
6: Return b.

First, note that (A′′, B′′) is t-valid for f right: If dk+1,j = 0, then M ′′j contains |0r+c〉 and
we have h′′j = f right(0r+c). If dk+1,j = 1, then Mj contains a superposition of values m with
skj = s−k(m) 6= ⊥. For these m we have s−k(m) = f(s−(k+1)(m))⊕ (m−k‖0c) by definition of
s−k and thus

f right(s−(k+1)(m)) =
(
s−k(m)⊕ (m−k‖0c)

)right
= s−k(m)right = srightkj = h′′j .

Furthermore, since we applied Usk to Mj ,M
′′
j , we have that M ′′j contains s−(k+1)(m) when Mj

contains m. Thus M ′′j contains a superposition of values x with f right(x) = h′′j . So in both cases
dk+1,j = 0 and dk+1,j = 1, M ′′j contains a superposition of values x with f right(x) = h′′j . Thus
(A′′, B′′) is t-valid for f right.

(A′′, B′′) has runtime τ + O(t`τf). Namely, τ is the time for executing A and B. Each
application Usk takes time O(`τf), and there are t of them. Each measurement Mb(Mj),
takes time O(`τf), and there are t of them. Each measurementMs−i(Mj), takes time O(`τf),
and there are kt of them, measuring them individually would take time O(kt`τf). However,
Ms−1(Mj), . . . ,Ms−k

(Mj) can be performed in time O(`τf) when executed together: one per-
forms a single evaluation of Sin on Mj (in superposition) while keeping all intermediate states in
ancilla qubits. Then one measures those intermediate states and uncomputes Sin . The effect is
to measureMs−1(Mj), . . . ,Ms−k

(Mj) in time O(`τf). Since there are t registers Mj , the total
time is O(t`τf). Similarly, the measurementsMd−i

(Mj) can be performed in time O(t`τf). All
other computations can be performed in time O(t`c) which is dominated by O(t`τf). Thus the
total time spent by (A′′, B′′) is τ +O(t`τf).

Let Game′′1 and Game′′2 be the games from Definition 8 for adversary (A′′, B′′). We define ε′′ as
the collapsing-advantage of (A′′, B′′) against f right. In other words, ε′′ :=

∣∣Pr[Game′′1]−Pr[Game′′2]
∣∣.

Then (A′′, B′′) has the properties claimed in the statement of this lemma.
Consider Game′′2. We claim that Pr[Game′′2] = Pr[Game 5$]. This is because A′′, B′′ in Game′′2

perform exactly the steps executed in Game 5$, except for some packaging and subsequent
unpackaging of registers inside S′′, and for the applications of Usk to Mj ,M

′′
j . But the latter has

no effect because the two applications of Usk cancel each other out. So Pr[Game′′2] = Pr[Game 5$].
Consider Game′′1. Here, in comparison with Game′′2, we have an additional measurement

of M ′′j in the computational basis. In the case dk+1,j = 1, this measurement occurs between
two applications of Usk (for a |0〉-initialized M ′′j). The sequence of steps Usk ,M(M ′′j), Usk is
equivalent to the measurement Ms−(k+1)

(Mj). And in the case dk+1,j = 0, this measurement
measures the |0〉-initialized M ′′j and has thus no effect on the state, thus it is equivalent to
measuringMs−(k+1)

(Mj) which also has no effect on the state (because it always returns outcome
⊥ when dk+1,j = 0). Thus, the additional measurement in Game′′1 is equivalent to a an additional
measurement Ms−(k+1)

(Mj). Thus Pr[Game′′1] = Pr[Game 4$+1] (note that Game 4$+1 differs
from Pr[Game 5$] only by this one additional measurement).

It follows that∣∣Pr[Game 4$+1]− Pr[Game 5$]
∣∣ =

∣∣Pr[Game′′1]− Pr[Game′′2]
∣∣ = ε′′. (7)

23

By construction of Game 5$, we have Pr[Game 5$] = 1
`−1

∑`−1
k=1 Pr[Game 5k]. And by

construction of Game 4$+1, we have Pr[Game 4$+1] = 1
`−1

∑`−1
k=1 Pr[Game 4k+1]. Thus

ε′′
(7)
=
∣∣Pr[Game 4$+1]− Pr[Game 5$]

∣∣ =
1

`− 1

∣∣∣`−1∑
k=1

Pr[Game 4k+1]−
`−1∑
k=1

Pr[Game 5k]
∣∣∣

(6)
=

1

`− 1

∣∣∣`−1∑
k=1

Pr[Game 4k+1]−
`−1∑
k=1

Pr[Game 4k]
∣∣∣ =

1

`− 1

∣∣Pr[Game 4`]− Pr[Game 41]
∣∣.

Hence ∣∣Pr[Game 4`]− Pr[Game 41]
∣∣ ≤ (`− 1)ε′′. (8)

We now investigate Game 4`. For any m ∈ ({0, 1}r)+ with |m| ≤ `, we have: |m|
is the largest i such that s−i(m) 6= ⊥. And s−i(m) = f(s−(i+1)(m)) ⊕ (m−i‖0c), hence
m−i = f(s−(i+1)(m))left ⊕ s−i(m)left. Thus there is a function γ (depending on f) such that
γ
(
b(m), s−1(m), . . . , s−`(m), d−1(m), . . . , d−`(m)

)
= m. And trivially, there is a function γ′

(depending on f) such that γ′(m) = (b(m), s−1(m), . . . , s−`(m), d−1(m), . . . , d−`(m)). Thus
measuring b(m), s−1(m), . . . , s−`(m), d−1(m), . . . , d−`(m) is equivalent to measuring m (in its
effects on the measured state), assuming |m| ≤ `. Thus, the measurements bj ← Mb(Mj)
and sij ← Ms−i(Mj) and dij ← Md−i

(Mj) for i = 1, . . . , ` and j = 1, . . . , t performed in
Game 4` have the same effect on the state as just performing the measurements mj ←M(Mj)
for j = 1, . . . , t. Thus

Pr[Game 4`] = Pr[Game 6] (9)

with the following game:

Game 6 (S,M1, . . . ,Mt, h1, . . . , ht) ← A(). mj ← M(Mj) for j = 1, . . . , t. b ←
B(S,M1, . . . ,Mt)

We can now relate the initial and the final game:∣∣Pr[Game 1]− Pr[Game 6]
∣∣ (4),(5),(8),(9)

≤
√
ε′ + (`− 1)ε′′.

Since Game 6 is identical to Game1 from Definition 8, and Game 1 is identical to Game2 from the
same definition, it follows that the collapsing-advantage ε of (A,B) is

∣∣Pr[Game 1]−Pr[Game 6]
∣∣.

Thus ε ≤
√
ε′ + (`− 1)ε′′ and the lemma follows. �

Lemma 30 Let n > 0 be the output length of S.
Let (A,B) be a t-valid adversary against Sout with runtime τ and collapsing-advantage ε.
Then there is an adversary (A′, B′) that is t-valid for f left/n, has runtime τ +O(tmin(n, r)),

and collapsing-advantage ε. If time is measured in O-queries (instead of computation steps), the
runtime of (A′, B′) is τ .

Proof. Let Gη(x) return the first η = min(n, r) bits of x. Then Gη(Sout(s)) = f left/n. Thus the
lemma follows directly from Lemma 12. �

Theorem 31 Let n > 0 be the output length of S. Assume that pad is injective. Assume a
τ -time adversary (A,B), t-valid for S, with collapsing-advantage ε against S. Then there are:
• a (τ + O(tτpad) + O(tτSin))-time adversary A1 that finds a zero-preimage of f right with
probability ε1, and
• a

(
τ +O(tτpad) +O(tτSin)

)
-time adversary (A2, B2), t-valid against f right, with collapsing-

advantage ε2, and

24

• a (τ+O(tτpad)+O(tτSin))-time adversary (A3, B3) that is t-valid for f left/n, with collapsing-
advantage ε3,

such that ε ≤ √ε1 + (`− 1)ε2 + ε3.
Here τpad refers to the maximum runtime of pad . (For values m that A may output on the

Mj.) And τSin refers to the maximum runtime of Sin (on outputs of pad).

Proof. Since S = (Sout ◦ Sin) ◦ pad , we can apply Lemma 13 to get:
• a (τ + O(tτpad))-time adversary (A4, B4), that is t-valid on im pad ⊆ ({0, 1}r)+ and has

collapsing-advantage ε4 against Sout ◦ Sin ,
• a (τ +O(tτpad))-time adversary (A5, B5), that is t-valid and has collapsing-advantage ε5

against pad ,
such that ε ≤ ε4 + ε5. Since pad is injective, we have ε5 = 0 (Lemma 10). Thus ε ≤ ε4. We can
now apply Lemma 13 to Sout ◦ Sin and (A4, B4). This gives us:
• a (τ +O(tτpad) +O(tτSin))-time adversary (A6, B6), t-valid with collapsing-advantage ε6

against Sout ,
• a (τ +O(tτpad) +O(tτSin))-time adversary (A7, B7), t-valid on ({0, 1}r)+ with collapsing-

advantage ε7 against Sin ,
where ε4 ≤ ε6 + ε7. Since ε ≤ ε4, we have ε ≤ ε6 + ε7. We now apply Lemma 29 to (A7, B7).
We get:
• a (τ +O(tτpad) +O(tτSin) + t`τf +O(t`c)) = (τ +O(tτpad) +O(tτSin))-time adversary A1

that finds a zero-preimage of f right with probability ε1, and
• a

(
τ +O(tτpad) +O(tτSin) +O(t`τf)

)
=
(
τ +O(tτpad) +O(tτSin)

)
-time adversary (A2, B2),

t-valid against f right, with collapsing-advantage ε2
such that ε7 ≤

√
ε1 + (`− 1)ε2. And we apply Lemma 30 to (A6, B6). We get:

• a (τ + O(tτpad) + O(tτSin) + O(tmin(n, r))) = (τ + O(tτpad) + O(tτSin))-time adversary
(A3, B3) that is t-valid for f left/n, with collapsing-advantage ε3 = ε6.

We have

ε ≤ ε6 + ε7 ≤ ε3 +
√
ε1 + (`− 1)ε2. �

6.3 Using random oracles or random permutations

Lemma 32 If f : {0, 1}r+c → {0, 1}r+c is a random function, and (Af , Bf) is t-valid
for f left/n (or for f right), makes ≤ q queries to f , and has collapsing-advantage ε, then
ε ∈ O(tq3/22−min(n,r)/2) (or ε ∈ O(tq3/22−c/2)).

Proof. Assume first that Af is t-valid for f left/n.
Let h : {0, 1}r+c → {0, 1}min(n,r) be a random function. Let (Âh, B̂h) perform the following

steps: It picks a random function g : {0, 1}r+c → {0, 1}r+c−min(n,r) (we do not care about the
runtime of Â, B̂, so it is not a problem that picking g takes exponential time). Then it simulates
(Af̂ , B f̂) where f̂ is the function defined by f̂(x) := h(x)‖g(x). Note that an oracle query to f̂
can be implemented using a single oracle query to h. So Â still performs q oracle queries.

The joint distribution of f̂ and h is the same as that of f and f left/n. Thus the advantage
of (Âh, B̂h) against h is the same as the advantage ε of (Af , Bf) against f left. And (Âh, B̂h) is
t-valid for h.

Thus by Theorem 11, ε ∈ O(tq3/22−min(n,r)/2).

When Af is t-valid for f right, an analogous proof gives us ε ∈ O(tq3/22−c/2). �

25

Theorem 33 Let f : {0, 1}r+c → {0, 1}r+c be a random function. Let (A,B) be an adversary
that is t-valid against S with output length n and makes ≤ q queries to f . Then (A,B) has
collapsing-advantage

O
(
`t(q + t`)3/22−c/2 + t(q + t`)3/22−min(n,r)/2

)
.

Proof. Let ε denote the collapsing-advantage of (A,B). By Theorem 31, there are:
• a (q +O(t`))-query adversary A1 that finds a zero-preimage of f right with probability ε1,

and
• a (q +O(t`))-query adversary (A2, B2), t-valid against f right, with collapsing-advantage ε2,

and
• a (q +O(t`))-query adversary (A3, B3) that is t-valid for f left/n, with collapsing-advantage
ε3,

with
ε ≤
√
ε1 + (`− 1)ε2 + ε3. (10)

By Lemma 19, ε1 ∈ O((q + t`)2−c/2). By Lemma 32, ε2 ∈ O(t(q + t`)3/22−c/2) and ε3 ∈
O(t(q + t`)3/22−min(n,r)/2). Thus

ε ∈ O
(

(q + t`)2−c/2 + `t(q + t`)3/22−c/2 + t(q + t`)3/22−min(n,r)/2
)

= O
(
`t(q + t`)3/22−c/2 + t(q + t`)3/22−min(n,r)/2

)
. �

Theorem 34 Let f : {0, 1}r+c → {0, 1}r+c be a random permutation. Let (A,B) be an adversary
that is t-valid against S with output length n and makes ≤ q queries to f . Then (A,B) has
collapsing-advantage

O
(
`t(q + t`)3/22−c/2 + t(q + t`)3/22−min(n,r)/2 + q32−(r+c)

)
.

Proof. It was shown by [Zha15] that a q-query adversary cannot distinguish a random function on
r + c bits from a random permutation on r + c bits with probability greater than O(q32−(r+c)).

Thus the collapsing-advantage of (Af , Bf) changes at most by O(q32−(r+c)) when we replace
the random permutation f by a random function f . Thus the advantage of (Af , Bf) is at most
O(q32−(r+c)) larger than the one given in Theorem 33. �

7 Quantum Attack

In the following we present a quantum collision-finding attack against the Sponge construction.
The attack is based on a quantum collision-finding algorithm for any function (Theorem 36
below) that assumes access to a random oracle (RO).

The general working of our attack is to select a suitable function g, run a collision finding
algorithm by Ambainis [Amb07] to obtain a collision for g, and finally turn this collision into a
collision for the target Sponge. The suitable function in this context refers to the function giving
the optimal result. First, we make a case distinction whether the length of the required collision
n is smaller or bigger than the capacity c of the sponge. In case n < c, we simply search for an
output collision in S. In the other case n ≥ c, it is more efficient to search for a right-collision, as
these are collisions in a function with c bits of output and can be extended to arbitrary-length
output collisions. Second, the function has to be selected or rather constructed in a way that
allows for efficient iteration, in case a first run of the core algorithm does not succeed.

Our attack makes heavy use of the following quantum algorithm by Ambainis [Amb07].

26

Theorem 35 ([Amb07] Theorem 3) Let g : X → Y be a function that has at least one collision.
The size of the set X is M . Then there exists a constant kAmb and a quantum algorithm making
kAmb ·M2/3 quantum queries to g that finds a collision with probability at least 15/16.

We note that [Amb07] also gives guarantees on the actual quantum running time and
memory requirements of the quantum collision-finding algorithm. Concretely, there exist (small)
constants k′Amb, k

′′
Amb such that the running time and quantum memory is at most k′Amb ·M2/3 ·

logk
′′
Amb(M + |Y |). Therefore, all our results of this section which are stated in terms of query

complexity also yield guarantees on the running time and memory, incurring the same blowup by
a poly-logarithmic factor in the number of queries.

7.1 Quantum Collision Finding With Random Oracle

We start by showing how to use Ambainis’ algorithm to generically find a collision in any function
as long as we have access to a random oracle.

Theorem 36 For finite sets A,B with |B| ≥ 3 and |A| ≥ 40|B|, and any function h : A→ B,
there exists a quantum algorithm which requires access to a random oracle H : T → A and outputs
a collision of h with probability at least 1/8 after at most kAmb · |B|1/3 queries to h and at most
2kAmb · |B|1/3 + 2 queries to H where kAmb is the constant from Theorem 35.

As noted after Theorem 35, there exist constants k′Amb, k
′′
Amb such that the running time and

quantum memory of the collision-finding algorithm is at most k′Amb · |B|1/3 · logk
′′
Amb(|B|).

Proof. Let T := {1, 2, . . . ,
⌈√
|B|
⌉

+1} be a finite set of
⌈√
|B|
⌉

+1 elements. In the description of
our generic collision-finding algorithm coll-ro below, we use the random oracle (RO) H : T → A.
When repeating the algorithm in order to improve the success probability, we assume that a
“fresh” random oracle is used in every run, which can be achieved using standard techniques such
as prepending an iteration-counter to the inputs.

Algorithm 3 Algorithm coll-ro

Input: h : A→ B and access to random oracle H : T → A
Output: m 6= m̂ such that h(m) = h(m̂) or “fail”
1: Set g := h ◦ H, X := T with size M =

⌈√
|B|
⌉

+ 1, Y := B

2: Run Ambainis’ algorithm from Theorem 35 on g, making kAmb ·M2/3 queries to g.
3: If it outputs (t, t̂)
4: Set (m, m̂) := (H(t),H(t̂))
5: If m 6= m̂, output (m, m̂)
6: Output “fail”

If Ambainis’ algorithm succeeds in outputting a collision and H does not have any collisions,
then we obtain a collision of h. Hence,

Pr[coll-ro outputs m 6= m̂ such that h(m) = h(m̂)]

≥ Pr[Ambainis outputs a collision ∧H does not have collisions]
≥ Pr[Ambainis outputs a collision]− Pr[H has a collision]. (11)

We can lower bound the first probability as follows:

Pr[Ambainis outputs a collision] = Pr[g has a collision ∧Ambainis outputs a collision]

= Pr[g has a collision]− Pr[g has a collision ∧Ambainis does not output a collision]

≥ Pr[g has a collision]− 1

16
.

27

Note that g maps M messages to B. If these outputs were distributed independently and
uniformly, we could lower bound the collision probability with a birthday bound. In our case, these
outputs are not necessarily uniformly (due to h) but still independently (due to H) distributed.
It is proven in [KB73] that in this case, the same lower bound on the collision probability remains
true. Therefore, it follows (e.g. from [KL14, Lemma A.16]) that

Pr[g has a collision] ≥ M(M − 1)

4 · |B|
≥ (M − 1)2

4 · |B|
≥

(⌈√
|B|
⌉)2

4 · |B|
≥ 1

4
. (12)

In order to upper bound the second term of (11), observe that H maps M messages to
independent and uniform elements in A. From a union bound (see, e.g. [KL14, Lemma A.15],
noting that M ≤

√
2|A|), we get that

Pr[H has a collision] ≤ M2

2|A|
≤

(
√
|B|+ 2)2

2|A|
≤
|B|+ 4

√
|B|+ 4

2|A|
≤ 5|B|

2|A|
≤ 1

16
. (13)

The second-to-last inequality holds because 4
√
|B|+ 4 ≤ 4|B| for |B| ≥ 3, and the last inequality

is due to our assumption 40|B| ≤ |A|.
Combining (12) and (13), coll-ro outputs a collision with probability at least

1

4
− 1

16
− 1

16
=

1

8
.

The quantum circuit for g := h ◦ H makes one query to h and two queries to H. Therefore,
the total number of queries to h is at most kAmb ·M2/3 = kAmb · |B|1/3 and the number of queries
to H is at most 2kAmb · |B|1/3 + 2. �

We use this generic collision-finder to find sponge collisions.

Theorem 37 Let Sc,r,f ,pad ,n(m) be a sponge construction with arbitrary block function f .
There exists a quantum algorithm coll-ro making at most qf quantum queries to f and
qH quantum queries to a random oracle H. coll-ro outputs colliding messages m 6= m̂
such that Sc,r,f ,pad ,n(m) = Sc,r,f ,pad ,n(m̂) with probability at least 1/8, where qf := 2kAmb ·
min{ c+6+2r

r 2c/3, 2n+6+3r
r 2n/3}, and qH := 2kAmb ·min{2c/3, 2n/3}+2, where kAmb is the constant

from Theorem 35 and pad is any padding function which appends at most 2r bits.

Typical padding functions do not append more than r + 1 bits to the message, and are therefore
covered by the theorem. Otherwise, the proof below can be easily modified to take longer
paddings into account, resulting in increased factors in the expression of qf above.

Proof. We make a case distinction whether the length n of the required collision n is smaller or
bigger than the capacity c of the sponge. In case n < c, it is more efficient to directly search
for an output collision in S. In the other case n ≥ c, it is more efficient to search for collisions
in the right internal state, as these are collisions in a function with c bits of output and can be
extended to arbitrary-length output collisions.

28

Algorithm 4 Algorithm sponge-coll-ro
Input: Sponge parameters n, c, r and access to RO H
Output: m 6= m̂ such that Sc,r,f ,pad ,n(m) = Sc,r,f ,pad ,n(m̂) or “fail”
1: If n < c
2: Set h := S, domain A := {0, 1}n+6 and range B := {0, 1}n.
3: If n ≥ c
4: Set h := f right ◦ Sin ◦ pad , domain A := {0, 1}c+6 and range B := {0, 1}c
5: Run coll-ro from Theorem 36 on h, making kAmb · |B|1/3 queries to h
6: If it outputs (m, m̂)
7: If n < c, output (m, m̂)
8: If n ≥ c
9: Set a := (f left ◦ Sin ◦ pad)(m)⊕ (f left ◦ Sin ◦ pad)(m̂)

10: Output (pad(m)‖a, pad(m̂)‖0r)
11: Output “fail”

Let us analyze the case n < c. According to Theorem 36, coll-ro outputs a collision with
probability at least 1

8 using at most kAmb · |B|1/3 = kAmb · 2n/3 quantum queries to h. A single
evaluation of S requires at most 2 · dmax{|pad(m)| : m ∈ {0, 1}n+6}/re ≤ 2 · (n + 6 + 2r)/r
queries to the block function f in the absorbing phase and 2 · dn/re ≤ 2(n+ r)/r queries to f
in the squeezing phase. Hence, one query to h requires at most 2 · (2n + 6 + 3r)/r queries to
the block function f . Therefore, a collision in S can be found with at most 2kAmb · 2n+6+3r

r 2n/3

queries to f .
In the other case n ≥ c, the algorithm coll-ro finds two messages m 6= m̂ such that

(f right ◦ Sin ◦ pad)(m) = (f right ◦ Sin ◦ pad)(m̂) with probability at least 1
8 . Such a right-collision

can then be extended to a full-state collision by appending to the padded colliding messages
pad(m) and pad(m̂) one more suitably chosen message block resulting in y := pad(m)‖a and
ŷ := pad(m̂)‖0r. As both |y| and |ŷ| are (possibly different) multiples of r, the same bits will
be appended by pad according to our assumptions on the padding function. By the choice
of a in Step 9, we have that (f ◦ Sin ◦ pad)(y) = (f ◦ Sin ◦ pad)(ŷ), i.e. the full states collide
and therefore, all n output bits produced from this state will coincide. The algorithm makes
kAmb · |B|1/3 = kAmb · 2c/3 queries to h := f right ◦ Sin ◦ pad . In this case, one query to h requires
at most 2 · (c+ 6 + 2r)/r queries to the block function f . Therefore, a collision in (f ◦ Sin ◦ pad)
can be found with at most 2kAmb · c+6+2r

r 2c/3 queries to f , resulting in the claimed bound. �

Index

absorbing phase, 10
advantage

collapsing-, 7

block function, 9

capacity, 9
collapsing

(hash function), 7
collapsing-advantage, 7

hash function, 6
collapsing, 7

length

output, 9

negligible, 4

output length, 9
overwhelming, 4

phase
absorbing, 10
squeezing, 10

rate, 9

sponge construction, 10
squeezing phase, 10

29

t-valid, 7

valid, 7
t-, 7

zero-preimage, 19
zero-preimage-resistance, 5

Symbol index

⊕ Bitwise XOR 4
|x| Cardinality of x / length of x 4
pad Padding function 9
Sc,r,f ,pad ,n Sponge construction (capacity c, bit rate r, block func-

tion f , output length n)
10

{0, 1}n Bitstrings of length n 4
({0, 1}n)+ Non-empty strings consisting of n bit blocks 4
C Complex numbers
〈Ψ| Conjugate transpose of |Ψ〉 5
|Ψ〉 Vector in a Hilbert space (usually a quantum state)
F (ρ, ρ′) Fidelity between ρ and ρ′ 5
TD(ρ, ρ′) Trace distance between ρ and ρ′ 5
x← A x is assigned the output of algorithm A 5
M A measurement
M Message space 7
x

$← S x chosen uniformly from set S/according to distribu-
tion S

5

Sin
c,r,f Absorbing phase of sponge construction 10
O Some oracle (e.g., random oracle) 6
xright Last c bits of x 10
xleft First r bits of x 10
m−i i-th block of m from the end 20
xleft/n First min(n, r) bits of x 10
imP Image of function/map P 4
f Block function for sponge construction 9
Sout
c,r,f ,n Squeezing phase of sponge construction 10

range f Range of function f 4

References

[Amb07] Andris Ambainis. “Quantum walk algorithm for element distinctness”. In: SIAM
Journal on Computing 37.1 (2007), pp. 210–239.

[Aum+10] Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and María Naya-Plasencia.
“Quark: A Lightweight Hash”. In: CHES 2010. Vol. 6225. LNCS. Springer, 2010,
pp. 1–15. isbn: 978-3-642-15030-2. doi: 10.1007/978-3-642-15031-9_1.

[Ber+12] Thierry P. Berger, Joffrey D’Hayer, Kevin Marquet, Marine Minier, and Gaël
Thomas. “The GLUON Family: A Lightweight Hash Function Family Based on
FCSRs”. In: Africacrypt 2012. Berlin, Heidelberg: Springer, 2012, pp. 306–323. isbn:
978-3-642-31410-0. doi: 10.1007/978-3-642-31410-0_19.

[Ber+07] Guido Bertoni, J. Daemen, Michaël Peeters, and Gilles van Assche. Sponge functions.
Ecrypt Hash Workshop, http://sponge.noekeon.org/SpongeFunctions.pdf.
May 2007.

30

https://doi.org/10.1007/978-3-642-15031-9_1
https://doi.org/10.1007/978-3-642-31410-0_19
http://sponge.noekeon.org/SpongeFunctions.pdf

[Ber+08] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles van Assche. “On the
Indifferentiability of the Sponge Construction”. In: Eurocrypt 2008. Vol. 4965. LNCS.
Berlin, Heidelberg: Springer, 2008, pp. 181–197. isbn: 978-3-540-78966-6. doi: 10.
1007/978-3-540-78967-3_11.

[Bog+13] Andrey Bogdanov, Miroslav Knezevic, Gregor Leander, Deniz Toz, Kerem Varici, and
Ingrid Verbauwhede. “SPONGENT: The Design Space of Lightweight Cryptographic
Hashing”. In: IEEE Transactions on Computers 62.10 (2013), pp. 2041–2053. issn:
0018-9340. doi: 10.1109/TC.2012.196.

[Bon+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. “Random oracles in a quantum world”. In: Asiacrypt 2011. Seoul,
South Korea: Springer, 2011, pp. 41–69. isbn: 978-3-642-25384-3. doi: 10.1007/978-
3-642-25385-0_3.

[Boy+98] Michel Boyer, Gilles Brassard, Peter Høyer, and Alain Tapp. “Tight Bounds
on Quantum Searching”. In: Fortschritte der Physik 46.4-5 (1998). Eprint is
arXiv:quant-ph/9605034, pp. 493–505. issn: 1521-3978. doi: 10.1002/(SICI)1521-
3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P.

[BHT97] Gilles Brassard, Peter Hoyer, and Alain Tapp. “Quantum algorithm for the collision
problem”. In: arXiv preprint quant-ph/9705002 (1997).

[CLS06] Scott Contini, Arjen K. Lenstra, and Ron Steinfeld. “VSH, an Efficient and Provable
Collision-Resistant Hash Function”. In: Eurocrypt 2006. Springer, 2006, pp. 165–182.
isbn: 978-3-540-34547-3. doi: 10.1007/11761679_11.

[GPP11] Jian Guo, Thomas Peyrin, and Axel Poschmann. “The PHOTON Family of
Lightweight Hash Functions”. In: Crypto 2011. Springer, 2011, pp. 222–239. isbn:
978-3-642-22792-9. doi: 10.1007/978-3-642-22792-9_13.

[HM96] Shai Halevi and Silvio Micali. “Practical and Provably-Secure Commitment Schemes
from Collision-Free Hashing”. English. In: Crypto ’96. Vol. 1109. LNCS. Springer,
1996, pp. 201–215. isbn: 978-3-540-61512-5. doi: 10.1007/3-540-68697-5_16.

[HRS16] Andreas Hülsing, Joost Rijneveld, and Fang Song. “Mitigating Multi-target Attacks
in Hash-Based Signatures”. In: PKC 2016. Springer, 2016, pp. 387–416. isbn: 978-3-
662-49384-7. doi: 10.1007/978-3-662-49384-7_15.

[KL14] J. Katz and Y. Lindell. Introduction to Modern Cryptography, Second Edition.
Chapman & Hall/CRC Cryptography and Network Security Series. Taylor & Francis,
2014. isbn: 9781466570269.

[KB73] William Knight and D. M. Bloom. “E2386”. In: The American Mathematical Monthly
80.10 (1973), pp. 1141–1142. issn: 00029890, 19300972. doi: 10.2307/2318556. url:
http://www.jstor.org/stable/2318556.

[Nat15] National Institute of Standards and Technology (NIST). Secure Hash Standard
(SHS). FIPS PUBS 180-4. 2015. doi: 10.6028/NIST.FIPS.180-4.

[NC10] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum
Information. 10th anniversary. Cambridge: Cambridge University Press, 2010. isbn:
978-1107002173.

[NIS14] NIST. SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions.
Draft FIPS 202. Available at http://csrc.nist.gov/publications/drafts/fips-
202/fips_202_draft.pdf. 2014.

[Unr16a] Dominique Unruh. “Computationally binding quantum commitments”. In: Eurocrypt
2016. LNCS. Springer, 2016, pp. 497–527. isbn: 978-3-662-49896-5. doi: 10.1007/
978-3-662-49896-5_18.

31

https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1007/978-3-540-78967-3_11
https://doi.org/10.1109/TC.2012.196
https://doi.org/10.1007/978-3-642-25385-0_3
https://doi.org/10.1007/978-3-642-25385-0_3
http://arxiv.org/abs/quant-ph/9605034
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1002/(SICI)1521-3978(199806)46:4/5<493::AID-PROP493>3.0.CO;2-P
https://doi.org/10.1007/11761679_11
https://doi.org/10.1007/978-3-642-22792-9_13
https://doi.org/10.1007/3-540-68697-5_16
https://doi.org/10.1007/978-3-662-49384-7_15
https://doi.org/10.2307/2318556
http://www.jstor.org/stable/2318556
https://doi.org/10.6028/NIST.FIPS.180-4
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
http://csrc.nist.gov/publications/drafts/fips-202/fips_202_draft.pdf
https://doi.org/10.1007/978-3-662-49896-5_18
https://doi.org/10.1007/978-3-662-49896-5_18

[Unr16b] Dominique Unruh. “Collapse-binding quantum commitments without random or-
acles”. In: AsiaCrypt 2016. Vol. 10032. LNCS. Springer, 2016, pp. 166–195. doi:
10.1007/978-3-662-53890-6_6.

[Zha12] Mark Zhandry. “How to Construct Quantum Random Functions”. In: FOCS 2013.
Online version is IACR ePrint 2012/182. Los Alamitos, CA, USA: IEEE Computer
Society, 2012, pp. 679–687. doi: 10.1109/FOCS.2012.37.

[Zha15] Mark Zhandry. “A note on the quantum collision and set equality problems”. In:
Quantum Information & Computation 15.7&8 (2015), pp. 557–567. url: http:
//www.rintonpress.com/xxqic15/qic-15-78/0557-0567.pdf.

32

https://doi.org/10.1007/978-3-662-53890-6_6
http://eprint.iacr.org/2012/182
https://doi.org/10.1109/FOCS.2012.37
http://www.rintonpress.com/xxqic15/qic-15-78/0557-0567.pdf
http://www.rintonpress.com/xxqic15/qic-15-78/0557-0567.pdf

	Introduction
	Preliminaries
	Collapsing hash functions
	Definitions for concrete security

	The sponge construction
	Collision-resistance of the sponge construction
	Random sponges

	Sponges are collapsing
	Using random oracles or random permutations
	Concrete security results
	Using random oracles or random permutations

	Quantum Attack
	Quantum Collision Finding With Random Oracle

	Appendix
	Index
	Appendix
	Symbol index
	Appendix
	References

