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Abstract. Proxy re-encryption (PRE) is a cryptographic primitive introduced by Blaze, Bleumer and Strauss [4]
to provide delegation of decryption rights. PRE allows re-encryption of a ciphertext intended for Alice (delegator)
to a ciphertext for Bob (delegatee) via a semi-honest proxy, who should not learn anything about the underlying
message. In 2003, Al-Riyami and Patterson introduced the notion of certificateless public key cryptography which
offers the advantage of identity-based cryptography without suffering from the key escrow problem. The existing
certificateless PRE (CLPRE) schemes rely on costly bilinear pairing operations. In ACM ASIA-CCS SCC 2015,
Srinivasan et al. proposed the first construction of a certificateless PRE scheme without resorting to pairing in the
random oracle model. However, in this work, we demonstrate a flaw in the CCA-security proof of their scheme.
Also, we present the first construction of a CLPRE scheme without pairing which meets CCA security under the
computational Diffie-Hellman hardness assumption in the random oracle model.
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1 Introduction

Due to segregation of data ownership and storage, security remains as one of the major concerns in the public cloud
scenario. In order to protect the stored data from illegal access and usage, users encrypt their data with their public
keys before storing it in the cloud. To enable sharing of the stored data, a naive approach would be that a user Alice
shares her secret key with a legitimate user Bob. However, this would compromise the privacy of Alice. As a solution
towards providing delegation of decryption rights, Blaze et al. [4] in 1998 proposed the concept of proxy re-encryption,
which allows a proxy server with special information (re-encryption key) to translate a ciphertext for Alice into an-
other ciphertext (with the same message) for Bob, without learning any information about the underlying plaintext.
Besides, this approach also offloads the costly burden of secure data sharing from Alice to the resource-abundant
proxy. As Alice delegates her decryption rights to Bob via a proxy-server, Alice is termed as the ”delegator” and Bob
as the ”delegatee”. Ever since, PRE has found a lot of applications such as encrypted email forwarding, distributed
file systems, digital rights management(DRM) of Apple’s iTunes, outsourced filtering of encrypted spam and content
distribution [2,3,5,16].
Based on the direction of the delegation, PRE schemes are classified into bidirectional and unidirectional schemes.
In unidirectional schemes, a proxy can re-encrypt ciphertexts from Alice to Bob but not from Bob to Alice, while in
the bidirectional schemes, the proxy is allowed to re-encrypt ciphertexts in both the directions. PRE schemes are also
classified into single-hop and multihop schemes. In a single-hop scheme, a proxy cannot re-encrypt ciphertexts that
have been re-encrypted once. In a multi-hop scheme, the proxy can further re-encrypt the re-encrypted ciphertexts.
In this paper, we focus on single-hop unidirectional PRE schemes.
Several PRE constructions have been proposed in the literature, either in the Public Key Infrastructure (PKI) or iden-
tity based (IBE) setting. The schemes in the PKI setting entrusts a third party called the Certification Authority(CA)
to assure the authenticity of a user’s public key by digitally signing it and issuing Digital Certificates. However, the
overhead involved in the revocation, storage and distribution of certificates has long been a concern, which makes pub-
lic key cryptography inefficient. As a solution to the authenticity problem, Identity-based cryptography was introduced
by Shamir in 1984 [12], which involves a trusted third party called the Private Key Generator (PKG) to generate the
secret keys of all the users. Yet again, due to the unconditional trust placed on the PKG, identity based cryptography
suffers from the key-escrow problem. To avoid both the certificate management problem in the PKI setting and the
key-escrow problem in the ID-based setting, certificateless cryptography was introduced in 2003 by Al-Riyami and
Patterson [1]. Certificateless cryptography splits the task of key-generation of the user between a semi-trusted entity
called the Key Generation Center (KGC) and the user himself. This approach no longer relies on the use of certificates
for the authenticity of keys and hence does not suffer from the certificate management problem. Also, the KGC does



not have access to the secret keys of the users, which addresses the key-escrow problem inherent in IBE setting. Thus,
certificateless cryptography setting enjoys the benefits of both PKI-based and ID-based cryptography.
In this paper, we study proxy re-encryption in the light of certificateless public key cryptography. Consider the fol-
lowing scenario that motivates the need for proxy re-encryption in the certificateless setting. Suppose Alice stores her
encrypted data in the cloud, which provides services to billions of users. We note that the number of cloud users is large
and therefore, management of certificates for public key authenticity is an overhead. This makes proxy re-encryption in
the PKI setting unfit for cloud services. On the other hand, entrusting a third party PKG with the power to generate
the secret keys of the users makes the cloud vulnerable to key-escrow problem. A malicious PKG can decrypt the
confidential data of the users, due to which PRE in IBE setting is highly impractical. Certificateless PRE affirmatively
solves both the certificate management problem and key-escrow problem in the above scenario.
The existing certificateless PRE scheme [9] in the literature is based on bilinear pairing. Note that bilinear pairing
is an expensive computation when compared to modular exponentiation operation in finite fields. In this work, we
propose the first pairing-free unidirectional single-hop CCA-secure CL-PRE scheme in the random oracle model.

1.1 Related Work and Contribution

While several schemes achieving PRE have been proposed in the literature, a majority of these schemes are either in
the Public Key Infrastructure (PKI) setting or Identity-Based (IBE) setting. Certificateless public key cryptography
introduced in [1] offers the advantage of identity-based cryptography without suffering from its inherent key-escrow
problem. In 2010, Sur et al. [14] introduced the notion of certificateless proxy re-encryption (CL-PRE) and proposed a
CCA secure CL-PRE scheme in the random oracle model. However, in 2013, their scheme was shown to be vulnerable
to chosen ciphertext attack by Zheng et al. [17]. In 2013, Guo et al. [9] proposed a CL-PRE scheme in the random
oracle model based on bilinear pairing which satisfies RCCA-security, a weaker notion of security. In 2014, Yang,
Xu and Zhang [15] proposed a CCA-secure CL-PRE scheme without pairing in the random oracle model, which was
later shown to be vulnerable to chain collusion attack in [13]. In 2015, Srinivasan et al. [13] proposed a CCA-secure
unidirectional certificateless PRE scheme without pairing under the computational Diffie-Hellman assumption in the
random oracle model. In this paper, we expose a critical weakness present in the security proof of the scheme and
provide a potential fix to make the scheme provably secure.
Another major contribution of this work is we propose an efficient pairing-free unidirectional single-hop certificateless
proxy re-encryption scheme in the random oracle model. As stated, all the existing CL-PRE schemes are vulnerable
to attacks except for [9]. The CL-PRE scheme due to Guo et al. [9] is based on bilinear pairing which is an expensive
operation as compared to modular exponentiation operations in finite fields. Besides, their scheme [9] satisfies a weaker
notion of security, namely the RCCA-security and is based on q-weak Decisional Bilinear Assumption. Our scheme
satisfies CCA security against both the Type-I and Type-II adversaries and is based on a much standard assumption
called the Computational Diffie Hellman (CDH) assumption.

2 Definition and Security Model

2.1 Definition

We describe the syntactical definition of unidirectional single-hop certificateless proxy re-encryption and its security
notion. We follow the model given in [13] for a certificateless proxy re-encryption scheme. A PRE scheme consists of
the following ten algorithms:

– Setup(1λ): A probabilistic polynomial time (PPT) algorithm run by the Key Generation Center(KGC), which
takes the unary encoding of the security parameter λ as input and outputs the public parameters params and the
master secret key msk.

– PartialKeyExtract(msk, IDi, params): A PPT algorithm run by the KGC which takes the master secret key
msk, user identity IDi and public parameters params as input, and outputs the partial public key and partial
secret key pair (PPKi, PSKi).

– UserKeyGen(IDi, params): A PPT algorithm run by the user, which takes the identity IDi of the user and the
public parameters params as input, and outputs the user generated public key and secret key pair (USKi, UPKi).

– SetPrivateKey(IDi, PSKi, USKi, params): A PPT algorithm run by the user, which takes as input the identity
IDi of the user, partial secret key PSKi, user generated secret key USKi and public parameters params, and
outputs the full secret key SKi of the user.

– SetPublicKey(IDi, PPKi, PSKi, UPKi, USKi, params): A PPT algorithm run by the user, which takes as
input the the identity IDi of the user, partial public key PPKi, partial secret key PSKi, user generated public
key UPKi, user generated secret key USKi and public parameters params, and outputs the full public key PKi

of the user.
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– Re-KeyGen(IDi, IDj , SKi, PKj , params): A PPT algorithm run by the user (delegator) with identity IDi which
takes as input the identity IDi of the delegator, identity IDj of the delegatee, the full secret key SKi of IDi,
full public key PKj of IDj and public parameters params, and outputs a re-encryption key RKi→j or an error
symbol ⊥.

– Encrypt(IDi, PKi,m, params): A PPT algorithm run by the sender which takes as input the identity IDi of
the receiver, full public key PKi of IDi, a message m ∈ M and the public parameters params, and outputs the
ciphertext C or an error symbol ⊥. Note that C is termed as the first level ciphertext.

– Re-Encrypt(IDi, IDj , C,RKi→j , params): A PPT algorithm run by the proxy which takes the identities IDi, IDj ,
a first level ciphertext C encrypted under identity IDi, a re-encryption key RKi→j and public parameters params
as input, and outputs a ciphertext D or an error symbol ⊥. Note that D is termed as the second-level ciphertext.

– Decrypt(IDi, SKi, C, params): A deterministic algorithm run by the receiver (delegator) which takes the identity
IDi, secret key SKi of identity IDi, first-level ciphertext C and public parameters params as input, and outputs
the message m ∈M or an error symbol ⊥.

– Re-Decrypt(IDj , SKj , D, params): A deterministic algorithm run by the receiver (delegatee) which takes the
identity IDj , secret key SKj of identity IDj , a second-level ciphertext D and public parameters params as input,
and outputs the message m ∈M or an error symbol.

The consistency of a CL-PRE scheme for any given public parameters params and full public-private key pairs
{(PKi, SKi), (PKj , SKj)} is defined as follows:

1. Consistency between encryption and decryption; i.e.,

Decrypt(IDi, SKi, C, params) = m, ∀m ∈M,

where C =Encrypt(IDi, PKi,m, params).

2. Consistency between encryption, proxy re-encryption and decryption; i.e.,

Re-Decrypt(IDj , SKj , D, params) = m, ∀m ∈M,

where D =Re-Encrypt(IDi, IDj , C,RKi→j , params) and C =Encrypt(IDi, PKi,m, params).

2.2 Security Model

Due to the existence of two types of ciphertexts in a PRE scheme namely first level and second level ciphertexts, it
is essential to prove the security for both levels [10]. Again, there exists two types of adversaries specific to CL-PRE:
Type-I adversary and Type-II adversary. The Type I adversary models an attacker who can replace the public keys of
the users by fake keys of its choice because of the absence of authenticating information for public keys [1]. However,
the security proof demonstrates that the adversary cannot learn anything useful from this attack as it cannot derive
the partial keys and in turn the full private keys needed for decryption without the cooperation of the KGC (who
possesses the master secret key). The Type-II adversary models the semi-trusted KGC, who possesses the master
secret key and tries to break the security of the system by eavesdropping or making decryption queries. Note that,
the KGC is restrained from replacing the public keys of the users.
The security of a CL-PRE scheme is modelled in the form of a security game between the two entities : the challenger C
and the adversary A. A can adaptively query the oracles as listed below which C answers and simulates an environment
running CL-PRE for A. C maintains a list Pcurrent of the public keys to keep a track of the replaced public keys.
Pcurrent consists of tuples of the form 〈IDi, PKi, ˆPKi〉, where ˆPKi denotes the current value of the public key. To
begin with, ˆPKi is assigned the value of the initial public key ˆPKi = PKi. A can make queries to the following oracles
which are answered by C:

− Public Key Extract(Ope(IDi)): Given an IDi as input, compute the partial public key and secret key pair:
(PPKi, PSKi) = PartialKeyExtract(msk, IDi, params), the user public key and secret key pair: (USKi, UPKi)
= UserKeyGen(IDi, params), the full public key PKi = SetPublicKey(IDi, PPKi, PSKi, UPKi, USKi, params).
Return PKi.

− Partial Key Extract(Oppe(IDi)): Given an IDi as input, compute (PPKi, PSKi) = PartialKeyExtract(msk,
IDi, params) and return (PPKi, PSKi).

− User Key Extract(Oue(IDi)): Given an IDi as input, compute (UPKi, USKi) = UserKeyGen(IDi, params) and
return (USKi, UPKi).

− Re-Key Generation(Ork(IDi, IDj)): Compute RKi→j = Re-KeyGen(IDi, IDj , SKi, PKj , params) and return
RKi→j .
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− Re-Encryption(Ore(IDi, IDj , C)): Given a first-level ciphertext C and two identities IDi, IDj as inputs, com-
pute RKi→j = Re-KeyGen(IDi, IDj , SKi, PKj , params) and compute the second level ciphertext as D = Re-
Encrypt(IDi, IDj , C,RKi→j , params).

− Decryption(Odec(IDi, C)): Given a first level ciphertext C encrypted under the public key of IDi as input, compute
the decryption of the ciphertext to obtain m ∈M. Return m or return ⊥ if the ciphertext is invalid.

− Re-Decryption(Oredec(IDi, C)): Given a second level ciphertext D re-encrypted under the public key IDj as input,
compute the decryption of the ciphertext to obtain m ∈M. Return m or return ⊥ if the ciphertext is invalid.

− Public Key Replacement(Orep(IDi, PKi)): Replace the value of the third component ˆPKi in the PKcurrent list
with the new value PKi, provided PKi is a valid public key.

Security against Type-I adversary AI

The Type-I adversary models an outside attacker without access to the master secret key, trying to learn some
information about the underlying plaintext, given the ciphertext. We consider separate security models for the first
level and second level ciphertexts against AI .

First Level Ciphertext Security: We consider the following security game where AI interacts with the challenger
C in following stages.

• Initialization: C runs the Setup(λ) algorithm to generate the public parameters params and the master secret key
msk. It sends params to AI while keeping msk secret.

• Phase 1: The challenger C sets up the list of corrupt and honest users, initialises ˆPKi to PKi for all the users in the
public key list Pcurrent. AI issues several queries to the above stated oracles simulated by C, with the restriction
that AI cannot make partial key extract queries (Oppe) or user key extract queries (Oue) of the users whose public
keys have been replaced as it is unreasonable to expect C to respond to such queries for the public keys replaced
by AI [1].

• Challenge: Once AI decides that phase 1 is over, it outputs two equal length messages m0 and m1 in M and the
target identity IDch, with the following adversarial constraints:
− IDch should not be a corrupt user.
− AI must not query the partial key extract oracle (Oppe) or user key extract oracle (Oue) of IDch at any point

in time.
− AI must not query Ork(IDch, IDi), where IDi is a corrupt user.
− If AI replaces the public key of IDch, it should not query the partial key extract oracle (Oppe) for IDch.

On receiving {m0,m1}, C picks δ ∈ {0, 1} at random and generates a challenge ciphertext C∗ = Encrypt(IDch, ˆPKch,
mδ, params) and gives to AI .

• Phase 2: AI issues the queries to the oracles similar to Phase 1, with the same adversarial constraint as mentioned
in Phase 1 and the added constraints on the target identity IDch as mentioned in the Challenge phase. Additionally,
there are other constraints as below:
− AI cannot query Odec(IDch, C

∗), for the same public key of IDch that was used to initially encrypt mδ.
− AI cannot query the re-decryption oracle Oredec(IDi, C) if (IDi, C) is a challenge derivative1.
− AI cannot query Ore(IDi, IDj , C), if (IDi, C) is a challenge derivative and IDj is a corrupt user.
− AI cannot query Ork(IDch, IDj), if IDj is a corrupt user.

• Guess: AI outputs its guess δ′ ∈ {0, 1}.

We define the advantage of AI in winning the game as:

AdvIND−CLPRE−CCAAI ,first
= 2|Prdδ′ = δc− 1

2 |

where the probability is over the random coin tosses performed by C and AI . The scheme is said to be (t, ε)IND −
CLPRE − CCA secure for the first level ciphertext against Type-I adversary AI if for all t-time adversary AI that
makes qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to Ore, qrk queries to Ork, qdec queries
to Odec, qredec queries to Oredec and qrep queries to Orep, the advantage of AI is AdvIND−CLPRE−CCAAI ,first

≤ ε.

1 The definition of challenge derivative (IDi, C) is adopted from [6] as stated below:
∗ Reflexitivity: (IDi, C) is a challenge derivative of itself.
∗ Derivative by re-encryption: (IDj , C

′) is a challenge derivative of (IDi, C) if C′ ← Ore(IDi, IDj , C).
∗ Derivative by re-encryption key: (IDj , C

′) is a challenge derivative of (IDi, C) if RKi→j ← Ork(IDi, IDj) and C′ =
Re− Encrypt(IDi, IDj , C,RKi→j , params).
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Second Level Ciphertext Security: We consider the following security game for security of the second level
ciphertext against Type-I adversary AI , where AI interacts with the challenger C in following stages.

• Initialization: C runs the Setup(λ) algorithm to generate the public parameters params and the master secret key
msk. It sends the params to AI while keeping msk secret.
• Phase 1: The challenger C sets up the list of corrupt and honest users, initialises ˆPKi to PKi for all the users and

updates the public key list Pcurrent. AI issues several queries to the above stated oracles simulated by C with the
restriction that it cannot make partial key extract queries (Oppe) or user key extract queries (Oue) of the users
whose public keys have already been replaced.
• Challenge: AI outputs two messages m0 and m1 in M where |m0| = |m1|, the target identity IDch, and the

delegator’s identity IDdel with the adversarial constraints as follows:
− IDch should not be a corrupt user.
− AI must not query the partial key extract oracle (Oppe) or user key extract oracle (Oue) of IDch at any point

in time.
− If AI replaces the public key of IDch, it should not query the partial key extract oracle (Oppe) for IDch.
− AI must not query Ork(IDdel, IDch).
− AI must not query Ork(IDch, IDi), where IDi is a corrupt user.

On receiving {m0,m1}, C picks δ ∈ {0, 1} at random and generates a challenge ciphertextD∗ = Re−Encrypt(IDdel,
IDch, Encrypt(IDch, ˆPKch,mδ, params), RKIDdel→IDch

, params) and gives to AI .
• Phase 2: AI issues the queries to the oracles similar to Phase 1, with the same adversarial constraint as mentioned

in Phase 1 and constraints on the target identity IDch mentioned in the Challenge phase. Additionally, AI cannot
query Oredec(IDch, C

∗), for the same public key of IDch that was used to initially encrypt mδ.
• Guess: AI outputs its guess δ′ ∈ {0, 1}.

We define the advantage of AI in winning the game as:

AdvIND−CLPRE−CCAAI ,second
= 2|Prdδ′ = δc− 1

2 |

where the probability is over the random coin tosses performed by C and AI . The scheme is said to be (t, ε)IND −
CLPRE−CCA secure for the second level ciphertext against Type-I adversary AI if for all t-time adversary AI that
makes qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to Ore, qrk queries to Ork, qdec queries
to Odec, qredec queries to Oredec and qrep queries to Orep, the advantage of AI is AdvIND−CLPRE−CCAAI ,second

≤ ε.

Security against Type-II adversary AII

The Type-II adversary models an honest-but-curious KGC who has access to the master secret key msk, but is not
allowed to replace the public keys of the users. We consider separate security models for the first level and second level
ciphertexts.

First Level Ciphertext Security: We consider the following security game where AII interacts with the challenger
C as follows.

• Initialization: C runs the Setup(λ) algorithm to generate the public parameters params and the master secret key
msk. It sends both params and msk to AII .
• Phase 1: The challenger C maintains the list of honest and corrupt users and initialises ˆPKi to PKi for all the

users in the public key list Pcurrent. AII issues several queries to the above stated oracles simulated by C with the
restriction that it cannot make partial key extract queries (Oppe) or user key extract queries (Oue) of the users
whose public keys have been replaced.
• Challenge: Once AII decides that phase 1 is over, it outputs two equal length messages {m0,m1} in M and the

target identity IDch, with the adversarial constraints as follows:
− IDch should not be a corrupt user.
− AII must not replace the public key of IDch.
− AII must have not queried Ork(IDch, IDi), where IDi is a corrupt user.

On receiving {m0,m1}, C selects δ ∈ {0, 1} at random, generates a challenge ciphertext C∗ = Encrypt(IDch, ˆPKch,
mδ, params) and gives C∗ to AII .
• Phase 2: AII issues the queries to the oracles similar to Phase 1, with the same adversarial constraints as mentioned

in Phase 1 and the constraints on the target identity IDch as mentioned in the Challenge phase. Additionally,
there are other constraints as below:
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− AII cannot query Odec(IDch, C
∗), for the same public key of IDch that was used to initially encrypt mδ.

− AII cannot query the re-decryption oracle Oredec(ID,C) if (ID,C) is a challenge derivative.
− AII cannot query Ore(IDi, IDj , C), if (IDi, C) is a challenge derivative and IDj is a corrupt user.
− AII cannot query Ork(IDch, IDj), if IDj is a corrupt user.

− Guess: AII outputs its guess δ′ ∈ {0, 1}.

We define the advantage of AII in winning the game as:

AdvIND−CLPRE−CCAAII ,first
= 2|Prdδ′ = δc− 1

2 |

where the probability is over the random coin tosses performed by C and AII . The scheme is said to be (t, ε)IND −
CLPRE−CCA secure for the first level ciphertext against Type-II adversary AII if for all t-time adversary AII that
makes qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to Ore, qrk queries to Ork, qdec queries
to Odec, qredec queries to Oredec and qrep queries to Orep, the advantage of AII is AdvIND−CLPRE−CCAAII ,first

≤ ε.

Second Level Ciphertext Security: We consider the following security game where AII interacts with the chal-
lenger C in the following stages.

• Initialization: C runs the Setup(λ) algorithm to generate the public parameters params and the master secret key
msk. It sends both params and msk to AII .
• Phase 1: The challenger C sets up the list of corrupt and honest users, initialises ˆPKi to PKi for all the users and

updates the public key list Pcurrent. AII issues several queries to the above stated oracles simulated by C with the
restriction that it cannot make partial key extract queries (Oppe) or user key extract queries (Oue) of the users
whose public keys have been replaced. Also, AII cannot place queries to Oppe as it already has access to msk and
can generate the partial keys itself.

• Challenge: Once AII decides that phase 1 is over, it outputs two messages m0 and m1 in M where |m0| = |m1|,
the target identity IDch, and the delegator’s identity IDdel with the adversarial constraints as follows:

− IDch should not be a corrupt user.
− AII must not query the user key extract oracle (Oue) of IDch at any point in time.
− AII must not replace the public key of IDch.
− AII must not query Ork(IDdel, IDch).
− AII must have not queried Ork(IDch, IDi), where IDi is a corrupt user.

On receiving {m0,m1}, C picks δ ∈ {0, 1} at random and generates a challenge ciphertextD∗ = Re−Encrypt(IDdel,
IDch, Encrypt(IDch, ˆPKch,mδ, params), RKIDdel→IDch

, params) and gives to AII .
• Phase 2: AII issues the queries to the oracles similar to Phase 1, with the same adversarial constraint as mentioned

in Phase 1 and the added constraint on the target identity IDch as mentioned in the Challenge phase. Additionally,
AII cannot query Oredec(IDch, C

∗), for the same public key of IDch that was used to initially encrypt mδ.
− Guess: AII outputs its guess δ′ ∈ {0, 1}.

We define the advantage of AII in winning the game as:

AdvIND−CLPRE−CCAAII ,second
= 2|Prdδ′ = δc− 1

2 |

where the probability is over the random coin tosses performed by C and AII . The scheme is said to be (t, ε)IND −
CLPRE − CCA secure for the second level ciphertext against Type-II adversary AII if for all t-time adversary AII
that makes qpe queries to Ope, qppe queries to Oppe, que queries to Oue, qre queries to Ore, qrk queries to Ork, qdec
queries to Odec, qredec queries to Oredec and qrep queries to Orep, the advantage of AII is AdvIND−CLPRE−CCAAII ,second

≤ ε.

Hardness Assumption

We state the computational hardness assumption we use to prove the security of our scheme. Let G be a cyclic group
with a prime order q.

Definition 1. Computational Diffie-Hellman (CDH) assumption : The Computational Diffie-Hellman (CDH)
assumption for group G says that, given the elements {P, aP, bP} ∈ G, there exists no probabilistic polynomial-time
adversary which can compute abP ∈ G with a non-negligible advantage, where P is a generator of G and a, b ∈R Z∗q .
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3 Analysis of a Certificateless PRE Scheme by Srinivasan et al.[13]

We review the scheme due to Srinivasan et al. [13] and point out the weakness of the scheme in this section.

3.1 Review of the scheme

• Setup(1λ):
− Choose two large primes p and q such that q|p − 1 and the security parameter λ defines the bit length of q.

Let G be a subgroup of Z∗p of order q and g is a generator of G.
− Pick x ∈R Z∗q and compute y = gx.
− Choose the following cryptographic hash functions:

H : G→ Z∗q ,
H1 : {0, 1}∗ ×G→ Z∗q ,
H2 : {0, 1}∗ ×G3 → Z∗q ,

H3 : G→ {0, 1}l0+l1 ,

H4 : {0, 1}l0 × {0, 1}l1 → Z∗q ,

H5 : G2 × {0, 1}l0+l1 → Z∗q ,
H6 : {0, 1}∗ ×G2 → Z∗q

Here l0 = log q and l1 is determined by the security parameter λ. The message space M is set to {0, 1}l0 .
− Return the public parameters params = (p, q,G, g, y,H,H1, H2, H3, H4, H5, H6) and the master secret key is
msk = x.

• PartialKeyExtract(msk, ID, params):
− Pick s1, s2, s3 ∈R Z∗q and compute Q1 = gs1 , Q2 = gs2 , Q3 = gs3 .
− Compute S1 = s1 + xH1(ID,Q1), S2 = s2 + xH1(ID,Q2) and S3 = s3 + xH2(ID,Q1, Q2, Q3).
− Return the partial public key PPK = (Q1, Q2, Q3, S3) and the partial secret key PSK = (S1, S2).

• UserKeyGen(ID, params):
− Pick z1, z2 ∈R Z∗q and compute (gz1 , gz2).
− Return USK = (U1, U2) = (z1, z2) and UPK = (P1, P2) = (gz1 , gz2).

• SetPublicKey(ID, PPK,PSK,UPK,USK, params):
− Pick t1, t2 ∈R Z∗q . Compute T1 = gt1 and T2 = gt2 .
− Compute µ1 = t1 + S1H6(ID, P1, T1) and µ2 = t2 + S2H6(ID, P2, T2).
− Return the full public key of the user as PK = (P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2).

• Public Verify(ID, PK, params):
− Parse PK as (P1, P2, Q1, Q2, Q3, S3, T1, T2, µ1, µ2).
− Compute R1 = Q1 · yH1(ID,Q1) and R2 = Q2 · yH1(ID,Q2).

− Check if gµ1
?
= (T1)(R1)H6(ID,P1,T1), gµ2

?
= (T2)(R2)H1(ID,P2,T2), gS3

?
= (Q3)(yH2(ID,Q1,Q2,Q3)).

− If all the above checks are satisfied, return success, else return failure.

• SetPrivateKey(ID, PSK,USK, params):
• Output the full secret key of the identity ID as SK = (U1, U2, S1, S2).

• Re-KeyGen(IDi, IDj , SKi, PKj , params):
− Parse SKi as (Ui,1, Ui,2, Si,1, Si,2) and PKj as (Pj,1, Pj,2, Qj,1, Qj,2, Qj,3, Sj,3, Tj,1, Tj,2, µj,1, µj,2) and verify

the validity of the public key of IDj by checking if Public V erify(IDj , PKj , params) = success. If the check
fails, return ⊥.

− Compute Rj,1 = Qj,1(yH1(IDj ,Qj,1)), X1 = Pj,1(R
H(Pj,1)
j,1 ), X = Pj,1(Pj,2)H(Pj,1) and α = H(X).

− Select h ∈R {0, 1}l0 and π ∈R {0, 1}l1 . Compute v = H4(h, π).
− Compute V = (X1)v, W = H3(gv)⊕ (h||π) and rk = h

Ui,1+H(Pi,1)Ui,2+α(Si,1+H(Ri,1)Si,2) .

− Output the re-encryption key RKi→j = (rk, V,W ).
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• Encrypt(IDi, PKi,m, params):
− Parse PKi as (Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, Ti,1, Ti,2, µji,1, µi,2) and verify the validity of the public key PKi

by checking if Public V erify(IDi, PKi, params) = success. If the check fails, output ⊥.
− Compute Ri,1 = Qi,1(yH1(IDi,Qi,1)) and Ri,2 = Qi,2(yH1(IDi,Qi,2)). Compute X = Pi,1(Pi,2)H(Pi,1) and Y =
Ri,1(Ri,2)H(Ri,1). Compute α = H(X) and set Z = (X(Y )α).

− Select u ∈R Z∗q and ω ∈R {0, 1}l1 . Compute r = H4(m,ω).
− Compute D = (Z)u, E = Zr, F = H3(gr)⊕ (m||ω) and s = u+ rH5(D,E, F ).
− Return the ciphertext C = (D,E, F, s) as the first level ciphertext.

• Re-Encrypt(IDi, IDj , C,RKi→j , params):
− Parse RKi→j as (rk, V,W ) and C = (D,E, F, s). Check the validity of the ciphertext by computing Z as

shown in Encrypt(IDi, PKi,m, params) and performing the following checks.

(Z)s
?
= D · EH5(D,E,F ) (1)

If the check fails, return ⊥.
− Else, compute E′ = Rrk.
− Output D = (E′, F, V,W ) as the second level ciphertext.

• Decrypt(IDi, SKi, C, params):
− Obtain the public key PKi corresponding to IDi and parse it as (Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, Ti,1, Ti,2, µi,1, µi,2).

Parse SKi as (Ui,1, Ui,2, Si,1, Si,2) and C as (D,E, F, s). Check the validity of the ciphertext by checking if
equation 1 holds. If the check fails, output ⊥.

− Else, compute Ri,1 = Qi,1(yH1(IDi,Qi,1)) and Ri,2 = Qi,2(yH1(IDi,Qi,2)). Compute X = Pi,1(Pi,2)H(Pi,1) and
Y = Ri,1(Ri,2)H(Ri,1). Compute α = H(X) and set Z = (X(Y )α). Set K = Ui,1 + H(Pi,1)Ui,2 + α(Si,1 +
H(Ri,1)Si,2).

− Compute (m||ω) = F ⊕H3(E
1
K ). Output m if E

?
= (Z)H4(m,ω) holds. Else, return ⊥.

• Re-Decrypt(IDj , SKj , D, params):
− ParseD as (E′, F, V,W ), PKj as (Pj,1, Pj,2, Qj,1, Qj,2, Qj,3, Sj,3, Tj,1, Tj,2, µj,1, µj,2) and SKj as (Uj,1, Uj,2, Sj,1, Sj,2).

− Compute Rj,1 = Qj,1(yH1(IDj ,Qj,1)), X1 = Pj,1(R
H(Pj,1)
j,1 ).

− Compute (h||π) = W ⊕H3(V
1

Uj,1+H(Pj,1)Sj,1 ) and (m||ω) = F ⊕H3(E′1/h).

− Output m if V
?
= (X)

H4(h,π)
1 , E′

?
= gh(H4(m,ω)). Else, return ⊥.

3.2 Our Attack

In this section, we highlight the flaw in the security reduction of the CLPRE scheme due to Srinivasan et al. [13].
We demonstrate that the simulation of the random oracles does not comply with the real system due to which, the
adversary can distinguish the simulation of the challenger from the real system. Note that the flaw is observed in the
proof for both Type− I and Type− II adversary and we refer to both the two types of adversaries as A in general.
Consider that the adversary constructs a first level dummy ciphertext Cd = (D,E, F, s) in the following way under a
public key PKi. Let us denote this technique to construct dummy ciphertexts as Encryptfake.

– Compute Z as given in the Encrypt(IDi, PKi,m, params) algorithm in the scheme.
– Select u ∈R Z∗q and compute D = (Z)u.
– Pick r ∈R Z∗q and compute E = (Z)r.

– Choose F ∈R {0, 1}l0+l1 .
– Compute s = u+ rH5(D,E, F ) mod q.

Note that the computation of F and r in Cd using Encryptfake violates the definition of the Encrypt(IDi, PKi,m, params)
algorithm. But Cd clears the ciphertext validity check of equation (1). In fact,

RHS = D · EH5(D,E,F )

= (Z)u · (Z)r·H5(D,E,F )

= (Z)s

= LHS.

The decryption algorithm Decrypt(IDi, SKi, Cd, params) detects the ciphertext Cd as invalid and returns ⊥. However,
the ReEncrypt(IDi, IDj , Cd, RKi→j , params) algorithm accepts Cd as a valid ciphertext. We use this knowledge to
construct a distinguisher for the simulated environment from the real system described stepwise as follows:
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1. After the Challenge phase, A generates a dummy ciphertext C1 = (D1, E1, F1, s) under the target identity PKch

using Encryptfake as shown:
– Compute Zch as shown in the Encrypt(IDi, PKi,m, params) scheme.
– Select u1 ∈R Z∗q and compute D1 = (Zch)u1 .
– Pick r1 ∈R Z∗q and compute E1 = (Zch)r1 .

– Choose F1 ∈R {0, 1}l0+l1 .
– Compute s1 = u1 + r1H5(D1, E1, F1) mod q.

2. A generates another dummy ciphertext C2 = (D2, E2, F2, s2) in the same way described above considering random
values r2 ∈R Z∗q and F2 ∈R {0, 1}l0+l1 similarly.

3. A queries the re-encryption oracle Orenc(IDch, IDj , C1, RKch→j). As per Orenc, C searches the H4 list for a tuple
of the form (〈m,ω〉, r) such that E1 = (Zrch). If no such tuple exists, Orenc outputs ⊥. Note that, on an output ⊥,
A can distinguish between the simulation and the real system, since C1 is a valid ciphertext as per the definition
of ReEncrypt(IDch, IDj , C,RKch→j , params) algorithm and should produce a valid second level ciphertext D1.
– If Orenc returns ⊥, A aborts.
– Else, Orenc computes D1 = (E′1, F1, V1,W1) as specified in the scheme and output D1.

4. Similarly, A queries the re-encryption oracle Orenc(IDch, IDj , C2, RKch→j). As per Orenc, C searches the H4 list
for a tuple of the form (〈m,ω〉, r) such that E2 = (Zrch). If no such tuple exists, Orenc outputs ⊥. Note that, on
an output ⊥, A can distinguish between the simulation and the real system, since C1 is a valid ciphertext as per
the definition of ReEncrypt(IDch, IDj , C,RKch→j , params) algorithm and should produce a valid second level
ciphertext D2.
– If Orenc returns ⊥, A aborts.
– Else, Orenc computes D2 = (E′2, F2, V2,W2) as specified in the scheme and output D2.

5. On receiving D1 and D2, A computes T1 = E′
1
r1
1 and T2 = E′

1
r2
2 .

6. If T1
?
= T2 does not hold, ReEncrypt(IDch, IDj , C,RKch→j , params) 6= Orenc and A learns that it is not the real

system and aborts. Else, if T1
?
= T2 holds, A cannot distinguish between the simulated environment and the real

system.

Hence, we have pointed out that the adversary (both Type I and Type II) will be able distinguish between the
simulation run by the Challenger C and the real system. This makes the security proof incomplete and makes the
scheme provably insecure.

3.3 A Possible Fix

The flaw in the scheme can be fixed by modifying the encryption algorithm Encrypt(IDi, PKi,m, params) along
with additional ciphertext validity checks in both the Re-Encrypt and the Decrypt algorithm. The modified scheme
is shown below.

• Setup(1λ): The Setup algorithm remains the same as in [13] described in Section 3.1. Add another cryptographic
hash function to the existing public parameters as defined:

H̃ : G4 × {0, 1}l0+l1 → G

Return the public parameters params = (p, q,G, g, y, H̃,H,H1, H2, H3, H4, H5, H6) and the master secret key is
msk = x, which is generated as decribed in Section 3.1.

• The PartialKeyExtract, UserKeyGen, SetPublicKey, Public Verify, SetPrivateKey algorithm remains
the same described in Section 3.1.

• Encrypt(IDi, PKi,m, params):
− Parse PKi as (Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, Ti,1, Ti,2, µji,1, µi,2) and verify the validity of the public key PKi

by checking if Public Verify(IDi, PKi) = success. If the check fails, output ⊥.
− Compute Ri,1 = Qi,1(yH1(IDi,Qi,1)) and Ri,2 = Qi,2(yH1(IDi,Qi,2)). Compute X = Pi,1(Pi,2)H(Pi,1) and Y =
Ri,1(Ri,2)H(Ri,1). Compute α = H(X) and set Z = (X(Y )α).

− Select u ∈R Z∗q and ω ∈R {0, 1}l1 . Compute r = H4(m,ω).
− Compute D = (Z)u, E = Zr.
− Compute D̄ = H̃(X,Y,D,E, F )u, Ē = H̃(X,Y,D,E, F )r.
− Compute F = H3(gr)⊕ (m||ω) and s = u+ rH5(E, Ē, F ).
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− Return the ciphertext C = (E, Ē, F, s) as the first level ciphertext.

• Re-Encrypt(IDi, IDj , C,RKi→j , params):On input a re-encryption key RKi→j = (RK
〈1〉
i→j , V,W ), an original

ciphertext Ci = (E, Ē, F, s) encrypted under public key PKi = (Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, Ti,1, Ti,2, µi,1, µi,2),
re-encrypt C into a ciphertext D under the public key PKj = (Pj,1, Pj,2, Qj,1, Qj,2, Qj,3, Sj,3, Tj,1, Tj,2, µj,1, µj,2)
as follows:
− Compute Ri,1 = Qi,1(yH1(IDi,Qi,1)) and Ri,2 = Qi,2(yH1(IDi,Qi,2)). Compute X = Pi,1(Pi,2)H(Pi,1) and Y =
Ri,1(Ri,2)H(Ri,1). Compute α = H(X) and set Z = (X(Y )α).

− Compute D and D̄ as follows:

D = (Z)s · (EH5(E,Ē,F ))−1

= Zu · Zr·H5(E,Ē,F ) · Z−r·H5(E,Ē,F )

= (Z)u.

D̄ = H̃(X,Y,D,E, F )s · (ĒH5(E,Ē,F ))−1

= H̃(X,Y,D,E, F )u · H̃(X,Y,D,E, F )r·H5(E,Ē,F ) · H̃(X,Y,D,E, F )−r·H5(E,Ē,F )

= H̃(X,Y,D,E, F )u.

− Check the validity of the ciphertext by performing the following checks.

(Z)s
?
= D · EH5(E,Ē,F ) (2)

H̃(X,Y,D,E, F )s
?
= D̄ · ĒH5(E,Ē,F ) (3)

If the check fails, return ⊥.
− Else, parse RKi→j as (rk, V,W ) compute E′ = Rrk.
− Output D = (E′, F, V,W ) as the second level ciphertext.

• Decrypt(IDi, SKi, C, params):
− Obtain the public key PKi corresponding to IDi and parse it as (Pi,1, Pi,2, Qi,1, Qi,2, Qi,3, Si,3, Ti,1, Ti,2, µji,1, µi,2).

Parse SKi as (Ui,1, Ui,2, Si,1, Si,2) and C as (D,E, F, s). Check if the ciphertext is well-formed by computing
the values of D and D̄ and checking if equations 2 and 3 holds. If they do not hold, return ⊥.

− Else, compute Ri,1, Ri,2, X, Y, α, Z,K and retrieve m as described in the Decrypt(IDi, SKi, C, params) algo-
rithm in Section 3.1.

• Re-Decrypt(IDj , SKj , D, params): Same as described in the original scheme.

4 Our Proposed Unidirectional CCA-secure CL-PRE Scheme

4.1 Our Scheme

• Setup(1λ): Given λ as the security parameter, choose a group G of prime order q. Let P be a generator of G.
Pick s ∈R Z∗q and compute Ppub = sP . Choose cryptographic hash functions :

H̃ : {0, 1}lID ×G2 × {0, 1}l0+l1 → G
H1 : {0, 1}lID ×G2 → Z∗q
H2 : Z∗q × Z∗q → Z∗q
H3 : G→ Z∗q
H4 : {0, 1}l0 × {0, 1}l1 → Z∗q
H5 : G2 → {0, 1}l0+l1

H6 : G2 × {0, 1}l0+l1 → Z∗q

where {0, 1}l0 is the size of the message space M, l1 is determined by the security parameter λ and {0, 1}lID
is the size of the identity of a user.
Return the public parameters params = (G, q, P, Ppub, H̃,H1, H2, H3, H4, H5, H6) and master secret key
msk = s.
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• PartialKeyExtract(msk, IDi, params):
• Choose xi, yi ∈R Z∗q .
• Compute Xi = xiP, Yi = yiP .
• Compute qi = H1(IDi, Xi, Yi).
• Compute di = (xi + qis) mod q.
• Return the Partial Public Key PPKi = (Xi, Yi, di) and the Partial Private Key PSKi = yi.

• UserKeyGen(IDi, params):
• Pick zi ∈R Z∗q .
• Compute Zi = ziP .
• Return the user private key-public key pair (USKi, UPKi) = (zi, Zi).

• SetPrivateKey(IDi, PSKi, USKi, params): Set the full secret key as SKi = 〈zi, yi〉.

• SetPublicKey(IDi, PPKi, PSKi, UPKi, USKi, params): Set the full public key as PKi = 〈Xi, Yi, Zi, di〉.

• PublicVerify(IDi, PKi, params): We additionally provide public verifiability of the public keys of each user.
This is done by the following check:

diP
?
= Xi +H1(IDi, Xi, Yi) · Ppub (4)

In fact,

RHS = Xi +H1(IDi, Xi, Yi) · Ppub
= xiP +H1(IDi, Xi, Yi) · sP
= (xi + s ·H1(IDi, Xi, Yi))P

= LHS.

If the check is satisfied, return valid, else return invalid.

Remark 1. Our public key verification algorithm PublicV erify(IDi, PKi, params) ensures the validity of the
public keys, since an adversary can replace the public keys with false keys of its choice.

• Re-KeyGen(IDi, IDj , SKi, PKj , params):

∗ Pick α
(1)
ij , β

(1)
ij ∈R Z∗q .

∗ Compute α
(2)
ij such that α

(1)
ij · α

(2)
ij = yi mod q.

∗ Compute β
(2)
ij such that β

(1)
ij · β

(2)
ij = zi mod q.

∗ Compute vij = H2(α
(2)
ij ||β

(2)
ij ).

∗ Compute Vij = vij · Yj and Wij = H3(vijP )⊕ (α
(2)
ij ||β

(2)
ij ).

∗ Return RKi→j = (α
(1)
ij , β

(1)
ij , Vij ,Wij).

• Encrypt(IDi, PKi,m, params):
∗ Check the validity of the public key of identity IDi by checking if PublicVerify(IDi, PKi, params)=valid.
∗ If invalid, return ⊥.
∗ Else, pick σ ∈R {0, 1}l1 , u ∈R Z∗q .
∗ Compute r = H4(m,σ) ∈ Z∗q .
∗ Compute the ciphertext C = (C1, C2, C3, C4) where:
· Compute C1 = rP ∈ G.
· Compute C1 = uP ∈ G.
· Compute C2 = rH̃(IDi, C1, C1, C3) ∈ G.
· Compute C2 = uH̃(IDi, C1, C1, C3) ∈ G.
· Compute C3 = H5(rYi, rZi)⊕ (m||σ) ∈ {0, 1}l0+l1 .
· Compute C4 = u+ rH6(C1, C2, C3) ∈ Z∗q .
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∗ Return C = (C1, C2, C3, C4).

• Re-Encrypt(IDi, IDj , C,RKi→j , params):To verify that C is well-formed, parse C to obtain (C1, C2, C3, C4)
and compute C1 and C2 as given:

C1 = C4P −H6(C1, C2, C3) · C1

= uP +H6(C1, C2, C3)rP −H6(C1, C2, C3) · C1

= uP.

C2 = C4 · H̃(IDi, C1, C1, C3)−H6(C1, C2, C3) · C2

= uH̃(IDi, C1, C1, C3) + rH6(C1, C2, C3)H̃(IDi, C1, C1, C3)−H6(C1, C2, C3) · C2

= uH̃(IDi, C1, C1, C3).

We verify if the ciphertext is well-formed by performing the following checks:

C4 · P
?
= C1 +H6(C1, C2, C3) · C1 (5)

C4 · H̃(IDi, C1, C1, C3)
?
= C2 +H6(C1, C2, C3) · C2 (6)

If verification is successful, do the following computation:

∗ Parse the re-encryption key RKi→j to obtain (α
(1)
ij , β

(1)
ij , Vij ,Wij).

∗ Compute D1 = α
(1)
ij · C1.

∗ Compute D2 = β
(1)
ij · C1.

∗ Return the re-encrypted ciphertext as D = (D1, D2, D3, D4, D5) = (D1, D2, C3, Vij ,Wij).

• Decrypt(IDi, SKi, C, params): Verify that C is a valid ciphertext by checking if equations 5 and 6 holds. If
satisfied, compute:

(m||σ) = C3 ⊕H5(yi · C1, zi · C1) (7)

• Re-Decrypt(IDj , SKj , D, params):

∗ Compute (α
(2)
ij ||β

(2)
ij ) = Wij ⊕H3( 1

yj
Vij).

∗ Check if Vij
?
= H2(α

(2)
ij ||β

(2)
ij ) · Yj .

∗ If satisfied, output the plaintext as :

(m||σ) = C3 ⊕H5

(
α

(2)
ij ·D1, β

(2)
ij ·D2

)
(8)

4.2 Correctness

• Correctness of Ciphertext Verification from equation 5:

RHS = C1 +H6(C1, C2, C3) · C1

= uP +H6(C1, C2, C3) · rP
= (u+ r ·H6(C1, C2, C3))P

= C4 · P
= LHS.

• Correctness of Ciphertext Verification from equation 6:

RHS = C2 +H6(C1, C2, C3) · C2

= uH̃(IDi, C1, C1, C3) + rH6(C1, C2, C3)H̃(IDi, C1, C1, C3)

= (u+ rH6(C1, C2, C3))H̃(IDi, C1, C1, C3)

= C4 · H̃(IDi, C1, C1, C3)

= LHS.
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• Consistency between Encryption and Decryption from equation 7:

RHS = C3 ⊕H5(yi · C1, zi · C1)

= H5(r · Yi, r · Zi)⊕ (m||σ)⊕H5(yi · rP, zi · rP )

= H5(r · Yi, r · Zi)⊕ (m||σ)⊕H5(r · Yi, r · Zi)
= LHS.

• Consistency between Re-Encryption and Re-Decryption from equation 8:

RHS = C3 ⊕H5(α
(2)
ij ·D1, β

(2)
ij ·D2)

= H5(r · Yi, r · Zi)⊕ (m||σ)⊕H5(α
(2)
ij · α

(2)
ij C1, β

(2)
ij · β

(1)
ij C1)

= H5(r · Yi, r · Zi)⊕ (m||σ)⊕H5(yi · C1, zi · C1)

= H5(r · Yi, r · Zi)⊕ (m||σ)⊕H5(r · Yi, r · Zi)
= LHS.

4.3 Security Proof

First-level Ciphertext Security against Type I adversary :

Theorem 1. Our proposed scheme is CCA-secure against Type-I adversary for the first level ciphertext under the
CDH assumption and the EUF−CMA security of Schnorr signature scheme [11]. If a (t, ε)IND−CLPRE−CCA
Type-I adversary AI with an advantage ε breaks the IND-CLPRE-CCA security of the given scheme, C can solve
the CDH problem with advantage ε′ within time t′ where:

ε′ ≥ 1

qH5

(
(1− ω)1+qrkε

e(qppe + 1)
− qH4

2l0+l1
− qH6

2l0+l1
−

qH̃
2l0+l1

− qdec
( qH5

/q

1− (qH4/(2
l0+l1))

+
qH4

/(2l0+l1)

1− (qH5/q)
+

2

q

))
where ω is the advantage of an attacker against the EUF-CMA security game of the Schnorr signature scheme and
e is the base of the natural logarithm. Time taken by C to solve the CDH problem is:

t′ ≤ t+ (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1 + qH2 + qH3 + qH4 + qH5 + qH6 , TO = 4tpe + 4tppe + 4tue + 2trk + 8tre + 8tdec + 6tredec. We
denote the time taken for exponentiation operation in group G as texp.

Proof. If a Type-I adversaryAI for the first level ciphertext with access to the random oracles H̃,H1, H2, H3, H4, H5,
H6 breaks the IND-CLPRE-CCA security of the given scheme, we can construct an algorithm C which breaks the
CDH problem given the instance (P, aP, bP ).
• Initialisation: C sets Ppub = sP , where sP is the public key of the Schnorr Signature Scheme. C maintains

a list Pcurrent of the public keys to keep a track of the replaced public keys. Pcurrent consists of tuples of the
form 〈IDi, PKi, ˆPKi〉, where ˆPKi denotes the current value of the public key of IDi. C maintains a list of all
the keys in the following lists:
1. Lpub : Maintains a public key list with tuples of the form 〈IDi, PKi, ci〉. Note that ci is used to identify

the corrupt and honest public keys respectively, as explained later.
2. Lpart : Maintains a partial key list with tuples of the form 〈IDi, PPKi, PSKi, ci〉.
3. Luser : Maintains a user key list with tuples of the form 〈IDi, UPKi, USKi, ci〉.
4. Lpriv : Maintains a private key list with tuples of the form 〈IDi, SKi, ci〉.
5. Lrekey: Maintains a list of re-encryption keysRKi→j , consisting of tuples of the form 〈IDi, IDj , α

(1)
ij , α

(2)
ij , β

(1)
ij ,

β
(2)
ij , Vij ,Wij〉.

6. Lschnorr−PK : Maintains a Schnorr public key list with tuples of the form 〈IDi, Xi, Yi,mi, ψi〉.

• Phase 1: C interacts with AI in the following ways:
- Oracle Queries:

-H̃(IDi, C1, C1, C3) Oracle: C responds to the queries of AI by maintaining a list LH̃ with tuples of the
form 〈IDi ∈ {0, 1}lID , C1 ∈ G, C1 ∈ G, C3 ∈ Z∗q , hi ∈ Z∗q , γi ∈ G〉. If the tuple 〈IDi, C1, C1, C3, hi, γi〉
already exists in LH̃ , retrieve and return H̃(IDi, C1, C1, C3) = γi. Else, C retrieves the tuple 〈IDi, PKi, ci〉
from Lpub list and computes H̃(IDi, C1, C1, C3) according to the following cases:
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· If ci = 0, C picks hi ∈R Z∗q and sets γi = hiP .
· If ci = 1, C picks hi ∈R Z∗q and sets γi = hiaP .

-H1(IDi, Xi, Yi) Oracle: C responds to the queries of AI by maintaining a list LH1
with tuples of the form

〈IDi ∈ {0, 1}∗, Xi ∈ G, Yi ∈ G, k ∈ Z∗q〉. If the tuple 〈IDi, Xi, Yi, k〉 already exists in LH1
, retrieve and

return the value k. Else do the following:
· Check for the existence of the tuple 〈IDi, PKi, ˆPKi〉 in the list Pcurrent and the tuple 〈IDi, PKi, ci〉

in Lpub.

· If ˆPKi = PKi in Pcurrent, pick k ∈R Z∗q and return H1(IDi, Xi, Yi) = k.

· Else if ˆPKi 6= PKi in Pcurrent and ci = 1 ∈ Lpub, select mi ∈ Z∗q . Check if there exists a tuple
〈IDi, Xi, Yi,mi, ψi〉 in list Lschnorr−pk. If exists, repeat by considering fresh value of mi.
· Query the Schnorr hash HSchnorr for ψi = HSchnorr(mi, Xi).
· Update list Lschnorr−pk with the tuple 〈IDi, Xi, Yi,mi, ψi〉.
· Return k = ψi as the value of H1(IDi, Xi, Yi) and store tuple 〈IDi, Xi, Yi, k〉 in LH1 .

-H2(α
(2)
ij ||β

(2)
ij ) Oracle: C maintains a list LH2

with tuples of the form 〈α(2)
ij ∈ Z∗q , β

(2)
ij ∈ Z∗q , e ∈ Z∗q〉.

If the tuple 〈α(2)
ij , β

(2)
ij , e〉 already exists in LH2 , retrieve and return the value e. Else, choose e ← Z∗q , set

H2(α
(2)
ij ||β

(2)
ij ) = e, store tuple 〈α(2)

ij , β
(2)
ij , e〉 to LH2

and return e.

-H3(R) Oracle: C maintains a list LH3 with tuples of the form 〈R ∈ G, n ∈ Z∗q〉. If the tuple 〈R,n〉
already exists in LH3

, retrieve and return the value n. Else, choose n← Z∗q , set H3(R) = n, store the tuple
〈R,n〉 to LH3

and return n.

-H4(m,σ) Oracle: C maintains a list LH4
with tuples of the form 〈m ∈ {0, 1}l0 , σ ∈ {0, 1}l1 , r ∈ Z∗q〉.

If the tuple 〈m,σ, r〉 already exists in LH4 , retrieve and return the value r. Else, choose r ← Z∗q , set
H4(m,σ) = r, store the tuple 〈m,σ, r〉 to LH4 and return r.

-H5(S,U) Oracle: C maintains a list LH5
with tuples of the form 〈S ∈ G, U ∈ G, u ∈ Z∗q〉. If the tuple

〈S,U, u〉 already exists in LH5
, retrieve and return the value u. Else, choose u ← Z∗q , set H5(S,U) = u,

store the tuple 〈S,U, u〉 to LH5
and return u.

-H6(C1, C2, C3) Oracle: C maintains a list LH6 with tuples of the form 〈C1 ∈ G, C2 ∈ G, C3 ∈
{0, 1}l0+l1 , t ∈ Z∗q〉. If the tuple 〈C1, C2, C3, t〉 already exists in LH6

, retrieve and return the value t.
Else, choose t← Z∗q , set H6(C1, C2, C3) = t, store the tuple 〈C1, C2, C3, t〉 to LH6

and return t.

∗ Public Key Extract Query (Ope(IDi)): C generates the keys using Coron’s coin-tossing technique [8] by
tossing a biased coin ci which takes the value ci ∈ {0, 1}. The probability that the coin takes the value
0 is Pr[ci = 0] = θ, which is to be determined later. The Coron’s technique is used to implant the hard
problem instance into the partial keys of the honest users.
If ci = 0, C chooses xi, yi, di ∈R Z∗q . It computes Xi = xi ·Ppub+diP , Yi = yiP , and sets H1(IDi, Xi, Yi) =
−xi. It sets the user secret key by picking zi ∈ Z∗q and setting Zi = ziP . Note that the public key generated
by C satisfies the public verifiability in equation 4 as:

RHS = Xi +H1(IDi, Xi, Yi) · PPub
= xi · sP + diP + (−xi) · sP
= diP

= LHS.

If ci = 1, C chooses xi, ȳi, di ∈R Z∗q . It computes Xi = xi · Ppub + diP , Yi = yiP where yi = aȳi and sets
H1(IDi, Xi, Yi) = −xi. It sets the user secret key by picking zi ∈ Z∗q and setting Zi = ziP . It is easy to
follow that, similar to the keys generated for ci = 0, the public key generated by C satisfies the public
verifiability.
Update the above given lists Lpub, Lpart, Luser, Lpriv with the new key values by adding tuple 〈IDi, PKi, ˆPKi =
PKi〉 to list Pcurrent, 〈IDi, PKi = (Xi, Yi, Zi, di), ci〉 to public key list Lpub, tuple 〈IDi, PPKi, PSKi, ci〉
to partial key list Lpart, tuple 〈IDi, UPKi, USKi, ci〉 to user key list Luser and tuple 〈IDi, SKi, ci〉 to
private key list Lpriv.
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∗ Partial Key Extract Query (Oppe(IDi)): When AI queries for the partial key for user IDi whose public
keys have not been replaced, C searches the list Lpart for the existence of a tuple of the form 〈IDi, PPKi, PSKi, ci〉.
If found, C checks the value of the coin ci. If ci = 1, C aborts and reports failure. If ci = 0, return the
partial keys (PPKi, PSKi) to AI . If such a tuple does not exist, C generates the partial keys using the
Coron’s coin tossing technique as described in the Public Key Extract Query Ope.
If ci = 0, C calls the Public Key Extract Query oracle to generate the keys which updates the lists
Lpub, Lpart, Luser and Lpriv. C returns (PPKi, PSKi).
If ci = 1, C aborts and reports failure.

∗ User Key Extract Query (Oue(IDi)): When AI queries for the user key for user IDi whose public keys
have not been replaced, C searches the list Luser to check the existence of a tuple 〈IDi, UPKi, USKi, ci〉
and returns the user keys (USKi, UPKi) to AI . If such a tuple does not exist, C sets the user secret key by
calling the Public Key Extract Query oracle to generate the keys which updates the lists Lpub, Lpart, Luser
and Lpriv. C returns (USKi, UPKi).

∗ Re−Key Generation Query (Ork(IDi, IDj)): When AI sends a re-key generation query from user IDi

to IDj , C computes the re-encryption key according to the following cases:

· Check if the re-encryption keyRKi→j already exists by searching for a tuple 〈IDi, IDj , α
(1)
ij , α

(2)
ij , β

(1)
ij , β

(2)
ij ,

Vij ,Wij〉 in Lrekey. If present, return RKi→j .
· If ci = 0, compute RKi→j by running the Re-KeyGen(IDi, IDj , SKi, PKj , params) algorithm. Add

to list Lrekey the tuple 〈IDi, IDj , α
(1)
ij , α

(2)
ij , β

(1)
ij , β

(2)
ij , Vij ,Wij〉.

· If (ci = 1 ∧ cj = 1), choose α
(1)
ij , α

(2)
ij , β

(1)
ij ∈R Z∗q . Retrieve the user secret key USKi = zi from the list

Luser and compute β
(2)
ij such that β

(1)
ij · β

(2)
ij = zi mod q. Compute vij = H2(α

(2)
ij ||β

(2)
ij ), Vij = vij · Yj ,

Wij = H3(vijP )⊕(α
(2)
ij ||β

(2)
ij ). ReturnRKi→j toAI and add the tuple 〈IDi, IDj , α

(1)
ij , α

(2)
ij , β

(1)
ij , β

(2)
ij , Vij ,

Wij , 〉 in list Lrekey.

Remark 2. Note that querying for a re-encryption key for (ci = 1 ∧ cj = 0) is a violation of our secu-

rity model. This is because, the corrupt user IDj receives α
(1)
ij as a part of the re-encryption key RKi→j

and can also acquire α
(2)
ij from Vij and Wij as demonstrated in the Re −Decrypt(IDj , SKj , D, params)

algorithm. Consequently, with the possession of αi1 and αi2, user IDj can compute the private key of the
honest user IDi as yi = αi1 · αi2, which compromises the privacy of IDi.

∗ Re− Encryption Query (Ore(IDi, IDj , C)): WhenAI queries decryption of a first-level ciphertext C from

IDi to IDj , the Challenger C first computes C1 and C2 and checks if equations 5 and 6 hold to verify the
well-formedness of the ciphertext C. If the validation fails, it outputs ⊥. Else, C performs re-encryption
according to the following cases:
· If ci = 0 or (ci = 1 ∧ cj = 1), C computes the second level ciphertext D by obtaining the

re-encryption keys RKi→j by running the Re − Key Generation oracle Ork and calling the Re-
Encrypt(IDi, IDj , C,RKi→j , params) algorithm.

· If (ci = 1 ∧ cj = 0), C picks α
(1)
ij , β

(1)
ij ∈R Z∗q and sets α

(2)
ij = ȳi · (α(1)

ij )−1. C retrieves the user

secret key USKi = zi from the list Luser and compute β
(2)
ij such that β

(1)
ij · β

(2)
ij = zi mod q. C

computes vij = H2(α
(2)
ij ||β

(2)
ij ), Vij = vij · Yj and Wij = H3(vijP ) ⊕ (α

(2)
ij ||β

(2)
ij ) and updates Lrekey

with 〈IDi, IDj , α
(1)
ij , α

(2)
ij , β

(1)
ij , β

(2)
ij , Vij ,Wij , 〉. C computes D1 = α

(1)
ij h

−1
i C2 = α

(1)
ij raP , D2 = β

(1)
ij C1,

D3 = C3, D4 = Vij , D5 = Wij . C returns the second-level ciphertext D = (D1, D2, D3, D4) to AI .

∗ Decryption Query (Odec(IDi, C)): For decrypting a first level ciphertext C under identity IDi whose
public key has not been replaced (if replaced, A should provide with value of ski = zi of IDi), the Chal-
lenger C first computes C1 and C2 and checks if equations 5 and 6 holds to verify the well-formedness
of the ciphertext C. If it holds and ci = 0, C runs the Decrypt(IDi, SKi, C, params) algorithm to re-
trieve the plaintext m. Else, if ci = 1, C retrieves the value of ski = zi of IDi from Luser. C computes
ȳih
−1
i C2 = ȳih

−1
i rhiaP = rYi to obtain the value of rYi and retrieves the plaintext m by computing

C3 ⊕H5(rYi, ziC1) = (m||σ). It computes r = H4(m,σ), computes the values of C1 and C2 as shown in
Re-Encrypt(IDi, IDj , C,RKi→j , params) algorithm and performs the following checks:

· C1
?
= rP.
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· C2 = rH̃(IDi, C1, C1, C3).

· C3
?
= H5(rYi, rZi)⊕ (m||σ).

If all the checks are satisfied, C returns m.

∗ Re−Decryption Query (Oredec(IDj , C)): For decrypting a second level ciphertext under identity IDj , C
checks if cj = 0 and the public key has not been replaced. If so, it runs theRe−Decrypt(IDj , SKj , D, params)

algorithm to retrieve the plaintext. Else, if cj = 1, C searches lists LH2
and LH3

for tuples 〈α(2)
ij , β

(2)
ij , e〉

and 〈R,n〉 respectively such that: D4
?
= e · Yj , D5

?
= n ⊕ (α

(2)
ij ||β

(2)
ij ) and R

?
= eP . Check the re-key list

Lrk for the existence of a tuple of the form 〈IDi, IDj , α
(1)
ij , α

(2)
ij , β

(1)
ij , β

(2)
ij , V = D4,W = D5〉. Compute

C1 = (α
(1)
ij )−1 ·D1 and check LH4

and LH5
for tuples 〈m,σ, r〉 and 〈rYi, rZi, u〉 respectively such that:

C1
?
= rP

C3
?
= u⊕ (m||σ).

If all the checks are satisfied, C returns m.

∗ Public Key Replacement Query (Orep(IDi, PKi)): When AI wants to replace the public key of identity
IDi, C checks if the public key is valid by verifying equation 4. If the check fails, it outputs ⊥.

• Challenge: Once AI decides that Phase-1 is over, it outputs two messages m0,m1 and the target identity
IDch on which it wishes to be challenged. C checks if cch = 1, else it aborts. It tosses a coin and chooses
δ ∈ {0, 1} uniformly at random. It then simulates the challenge ciphertext for mδ in the following steps:
1. Pick σ∗ ∈R {0, 1}l1 , ū, f ∈R Z∗q and implicitly define H4(mδ, σ) = b.
2. Compute C∗1 = bP = rP.

3. Set u , ū− bf . Compute C
∗
1 = ūP − fbP = uP .

4. C intends to set H̃(IDch, C
∗
1 , C

∗
1, C

∗
3 ) = γch = hchP , where hch ∈R Z∗q and include the tuple 〈IDch, C

∗
1 , C

∗
1, C

∗
3 ,

hch, γch〉 to LH̃ list. C checks if a tuple of the form 〈IDch, C
∗
1 , C

∗
1, C

∗
3 , h
′
ch, γch〉 or 〈IDch, C

∗
1 , C

∗
1, C

∗
3 , hch, γ

′
ch〉

already exists in the LH̃ list. If it exists, including 〈IDch, C
∗
1 , C

∗
1, C

∗
3 , hch, γch〉 to the LH̃ list is incorrect

and hence GOTO step 1 and re-compute with fresh random values. If no such tuple exists in list LH̃ , C
stores the tuple 〈IDch, C

∗
1 , C

∗
1, C

∗
3 , hch, γch〉 in LH̃ list.

5. Compute C∗2 = hchbP = bhchP = r · H̃(IDch, C1, C1, C3).
6. Pick C∗3 ∈R {0, 1}l0,l1 and define H5( ¯ych · abP, zchbP ) = C∗3 ⊕ (mδ||σ∗)
7. Check in LH6

if the tuple 〈C∗1 , C∗2 , C∗3 , t〉 already exists. If so, GOTO step 1 and recompute with fresh
random values.

8. Define H6(C∗1 , C
∗
2 , C

∗
3 ) = f . Set C∗4 = ū. From the definition of u, we have C∗4 = u + bf = u +

rH6(C∗1 , C
∗
2 , C

∗
3 ).

Note that the challenge ciphertext is identically distributed to the real ciphertext generated by the encryption
algorithm. Hence, the challenge ciphertext is a valid ciphertext.

• Phase-2: The adversary AI continues to query the oracles maintained by C with the restrictions stated in the
security model.

• Guess: The adversary AI eventually produces its guess δ′ ∈ {0, 1} to C. C randomly picks a tuple 〈S,U, u〉
from H5 list and outputs ȳchS as the solution to the CDH instance.

• Probability Analysis: Our analysis closely follows the probability analysis of the simulations given in [7].
We first analyse the probability with which the Challenger C aborts during the simulation, which can occur
during the partial key extraction query, re− key generation query or the challenge phase. In the context of
these two occurrences, C does not abort in case of the following two events:
− E1 : In the partial key extract query, ci = 0.
− E2 : In the re− key generation query, the public keys of the users IDi and IDj have not been replaced.
− E3 : In the Challenge phase, cch = 1 and the public keys of the target user IDch has not been replaced.

Note that, a valid public key replacement indicates that the Schnorr signature has been compromised. We
denote the advantage of an attacker in breaking the Schnorr signature as ω. Therefore, the probability that C
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does not abort Pr[¬abort] = θqppe(1 − θ)(1 − ω)1+qrk , which has a maximum value at θOPT =
qppe
qppe+1 . Using

θOPT , we obtain:

Pr[¬abort] = (1−ω)1+qrk

e(qppe+1) .

Next, we analyse the simulation of the random oracles. The simulation of the random oracles takes place
perfectly unless the following events take place:
− EH∗

4
: Event that (mδ, σ

∗) was queried to the H4 hash function.
− EH∗

5
: Event that ( ¯ychabP, zchbP ) was queried to H5.

− EH∗
6
: Event that (C∗1 , C

∗
2 , C

∗
3 ) was queried to H6 before the Challenge phase.

− EH̃∗ : Event that (IDch, C
∗
1 , C

∗
1, C

∗
3 ) was queried to H̃ before the Challenge phase.

We derive the probabilities of the above events. Since C∗3 is chosen at random from {0, 1}l0+l1 , we have
Pr[EH∗

6
] ≤ qH6

{0,1}l0+l1
. Similarly, we have Pr[EH̃∗ ] ≤ qH̃

{0,1}l0+l1
.

We further analyse the simulation of the re-decryption oracle. Note that the simulation of the decryption
oracle runs correctly unless valid ciphertexts are rejected, which occurs when AI queries the re-decryption
oracle without querying H4 and H5. Let Evalid denote the event that the ciphertext is a valid ciphertext. Let
EH4

denote the event that (m,σ) has been queried to H4 and E5 denote the event that (rYi, rZi) has been
queried to H5. We have Pr[Evalid|(¬EH4

∨ ¬EH5
)] ≤ Pr[Evalid|¬EH4

] + Pr[Evalid|¬EH5
].

P r[Evalid|¬EH4 ] = Pr[Evalid ∧ EH5 |¬EH4 ] + Pr[Evalid ∧ ¬EH5 |¬EH4 ]

≤ Pr[Evalid ∧ EH5 |¬EH4 ] + Pr[Evalid|¬EH5 ∧ ¬EH4 ]

=
Pr[Evalid ∧ EH5

∧ EH4
]

Pr[¬EH4
]

+
1

q

≤ Pr[EH5 ]

Pr[¬EH4
]

+
1

q

≤ qH5
/q

1− (qH4/(2
l0+l1))

+
1

q
.

With a similar analysis, we obtain Pr[Evalid|¬EH5
] ≤ qH4

/(2l0+l1 )

1−(qH5
/q) + 1

q .

We obtain:

Pr[Evalid|(¬EH4 ∨ ¬EH5)] ≤ Pr[Evalid|¬EH4 ] + Pr[Evalid|¬EH5 ]

≤ qH5/q

1− (qH4
/(2l0+l1))

+
qH4/(2

l0+l1)

1− (qH5
/q)

+
2

q
.

Let us denote Edec denote that the event Evalid|(¬EH4
∨ ¬EH5

) occurs during the entire simulation, and we
obtain:

Pr[Edec] ≤ qdec
( qH5

/q

1− (qH4
/(2l0+l1))

+
qH4

/(2l0+l1)

1− (qH5
/q)

+
2

q

)
Let Eer denote the event (EH∗

4
∨ EH∗

5
∨ EH∗

6
∨ EH̃∗ ∨ Edec)|¬abort. If Eer does not occur, the adversary AI

does not gain any advantage greater than 1
2 in guessing δ due to the randomness in the output of H5 oracle.

Therefore, Pr[δ′ = δ|¬Eer] = 1
2 . Note that:

Pr[δ′ = δ] = Pr[δ′ = δ|¬Eer]Pr[¬Eer] + Pr[δ′ = δ|Eer]Pr[Eer]
≤ 1/2Pr[¬Eer] + Pr[Eer] = 1/2 + 1/2Pr[Eer].

Also,

Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Eer]Pr[¬Eer] ≥ 1/2− 1/2Pr[Eer].

By the definition of the advantage of IND-CLPRE-CCA adversary, we have the advantage:

ε = |2Pr[δ′ = δ]− 1|
≤ Pr[Eer] = Pr[(EH∗

4
∨ EH∗

5
∨ EH∗

6
∨ EH̃∗ ∨ Edec)|¬abort]

≤
Pr[EH∗

4
] + Pr[EH∗

5
] + Pr[EH∗

6
] + Pr[EH̃∗ ] + Pr[Edec]

Pr[¬abort].
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Therefore, we obtain the following bound on Pr[EH∗
5
] as:

Pr[EH∗
5
] ≥ Pr[¬abort] · ε− Pr[EH∗

4
]− Pr[EH∗

6
]− Pr[EH̃∗ ]− Pr[Edec]

≥ (1− ω)1+qrkε

e(qppe + 1)
− qH4

2l0+l1
− qH6

2l0+l1
−

qH̃
2l0+l1

− qdec
( qH5/q

1− (qH4
/(2l0+l1))

+
qH4/(2

l0+l1)

1− (qH5
/q)

+
2

q

)
Note that, if event EH∗

5
occurs, then the challenger C solves the CDH instance with advantage:

ε′ ≥ 1

qH5

Pr[EH∗
5
]

≥ 1

qH5

(
(1− ω)1+qrkε

e(qppe + 1)
− qH4

2l0+l1
− qH6

2l0+l1
−

qH̃
2l0+l1

− qdec
( qH5

/q

1− (qH4/(2
l0+l1))

+
qH4

/(2l0+l1)

1− (qH5/q)
+

2

q

))

We bound the time taken by C using t′:

t′ ≤ t+ (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1 + qH2 + qH3 + qH4 + qH5 + qH6 , TO = 4tpe + 4tppe + 4tue + 2trk + 8tre + 8tdec + 6tredec
and texp denotes the time taken for exponentiation operation in group G.

ut

Second-level Ciphertext Security against Type I adversary :

Theorem 2. Our proposed scheme is CCA-secure against Type-I adversary for the second level ciphertext under
the CDH assumption and the EUF −CMA security of the Schnorr signature scheme. If a (t, ε)IND−CLPRE−
CCA Type-I adversary AI with an advantage ε breaks the IND-CLPRE-CCA security of the given scheme, C can
solve the CDH problem with advantage ε′ within time t′ where:

ε′ ≥ 1

qH5

(
2(1− ω)2+qrkε

e(qppe + 2)2
− qdec

( qH5
/q

1− (qH4
/(2l0+l1))

+
qH4

/(2l0+l1)

1− (qH5
/q)

+
2

q

))

where ω is the advantage of an attacker against the EUF-CMA security game of the Schnorr signature scheme and
e is the base of the natural logarithm. Time taken by C to solve the CDH problem is:

t′ ≤ t+ (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ qH6

, TO = 4tpe + 4tppe + 4tue + 2trk + 8tre + 8tdec + 6tredec. We
denote the time taken for exponentiation operation in group G as texp.

Proof. If a Type-I adversaryAI for the second level ciphertext with access to the random oracles H̃,H1, H2, H3, H4, H5,
H6 breaks the IND-CLPRE-CCA security of the given scheme, we can construct an algorithm C which breaks the
CDH problem given the instance (P, aP, bP ).
• Initialisation: C sets Ppub = sP , where sP is the public key of the Schnorr Signature. Similar to Theorem

1, C maintains a list of all the keys in the following lists Lpub, Lpart, Luser, Lpriv and Lschnorr−PK .

• Phase 1: C interacts with AI in the following ways:
- Oracle Queries:
C responds to the hash function queries of AI in the same way as it responded in the first level ciphertext
security.

∗ Public Key Extract Query (Ope): C generates the keys using Coron’s coin-tossing technique [8] by toss-
ing a biased coin ci which takes the value ci ∈ {0, 1}. The probability that the coin takes the value 0 is
Pr[ci = 0] = θ, which is to be determined later.
For ci = 0 and ci = 1, C sets the values of the keys in the same manner as shown in the first level ciphertext
security game and initialises the above lists with the key values.
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∗ Partial Key Extract Query (Oppe): When AI queries for a partial key for an IDi whose public keys have
not been replaced, C responds exactly as shown in the first level ciphertext security proof.

∗ User Key Extract Query (Oue): When AI queries for a user key for an IDi whose public keys have not
been replaced, C responds exactly as in the first level ciphertext security game.

∗ Decryption Query (Odec): Given a decryption query for a user with IDi where ci = 0, C runs the
Decrypt(IDi, SKi, C, params) algorithm to retrieve and return the plaintext m. For an IDi such that
ci = 1, C responds exactly as shown in the first level ciphertext security game.

TheRe-Key Generation queryOrk,Re-Encryption queryOre,Re-Decryption queryOredec and the Public Key
Replacement query Orep are handled in the exact manner as demonstrated for the first level ciphertext secu-
rity game.

• Challenge: Once AI decides that Phase-1 is over, it outputs two messages m0,m1, the delegator identity
IDdel (whose public keys have not been replaced) the target identity IDch (whose public keys have not been
replaced) on which it wishes to be challenged. (We note that if the public keys are replaced, the simulation
would have aborted in the public key replacement query Orep and compromised Schnorr Signature Scheme.)
C checks if cch = 1 and cdel = 1 else it aborts. It tosses a coin and chooses δ ∈ {0, 1} uniformly at random. It
retrieves the value of skch = zch of IDch from Luser and generates the re-encryption key RKdel→ch by picking

α
(1)
del−ch, α

(2)
del−ch, β

(1)
del−ch ∈R Z∗q and computing β

(2)
del−ch such that β

(1)
del−ch ·β

(2)
del−ch = zch. C computes the values

vdel→ch = H2(α
(2)
del−ch||β

(2)
del−ch), Vdel→ch = vdel→ch · Ych, Wdel→ch = H3(vdel→chP ) ⊕ (α

(2)
del−ch||β

(2)
del−ch). It

simulates the challenge ciphertext for mδ as shown stepwise:
1. Pick σ∗ ∈R {0, 1}l1 , u ∈R Z∗q and implicitly define H4(mδ, σ) = b.

2. Compute D∗1 = α
(1)
del−chbP = α

(1)
del−ch · C1.

3. Compute D∗2 = β
(1)
del−chbP = β

(1)
del−ch · C1.

4. Pick D∗3 ∈R {0, 1}l0,l1 and define H5( ¯ydel · abP, zdelbP ) = D∗3 ⊕ (mδ||σ).
5. Set D∗4 = Vdel→ch.
6. Set D∗5 = Wdel→ch

Note that the challenge ciphertext D∗ = (D∗1 , D
∗
2 , D

∗
3 , D

∗
4 , D

∗
5) is identically distributed to the real ciphertext

generated by the encryption algorithm. Hence, the challenge ciphertext is a valid ciphertext.

• Phase-2: The adversary AI continues to query the oracles maintained by C with the restrictions stated in the
security model.

• Guess: The adversary AI eventually produces its guess δ′ ∈ {0, 1}. C randomly picks a tuple 〈S,U, u〉 from
H5 list and outputs ȳdelS as the solution to the CDH instance.

• Probability Analysis: We first analyse the probability with which the Challenger C aborts during the
simulation, which can occur during the partial key extraction query, re − key generation query or the
Challenge phase. In the context of these three occurrences, C does not abort in case of the following three
events:
− E1 : In the partial key extract query, ci = 0.
− E2 : In the re− key generation query, the public keys of the users IDi and IDj have not been replaced.
− E3 : In the Challenge phase, cch = 1, cdel = 1 and the public keys of the target user IDch and delegator
IDdel have not been replaced.

The probability that C does not abort Pr[¬abort] = θqppe(1− θ)2(1−ω)2+qrk , which has a maximum value at
θOPT =

qppe
qppe+2 . Using θOPT , we obtain:

Pr[¬abort] = 2(1−ω)2+qrk

e(qppe+2)2 .
We analyse the simulation of the random oracles. The simulation of the random oracles occur perfectly unless
the following event take place:
− EH∗

5
: Event that ( ¯ychabP, zchbP ) was queried to H5.

The analysis of the simulation of the re-decryption oracle remains the same as shown for the first level ciphertext
security. The probability of the decryption oracle rejecting valid ciphertexts throughout the entire simulation
is denoted by Edec and from previous calculations, we obtain:

Pr[Edec] ≤ qdec
( qH5

/q

1− (qH4/(2
l0+l1))

+
qH4

/(2l0+l1)

1− (qH5/q)
+

2

q

)
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Let Eer denote the event (EH∗
5
∨ Edec)|¬abort. If Eer does not occur, the adversary AI does not gain any

advantage greater than 1
2 in guessing δ due to the randomness in the output of H5 oracle. Therefore, Pr[δ′ =

δ|¬Eer] = 1
2 . Note that:

Pr[δ′ = δ] = Pr[δ′ = δ|¬Eer]Pr[¬Eer] + Pr[δ′ = δ|Eer]Pr[Eer]
≤ 1/2Pr[¬Eer] + Pr[Eer] = 1/2 + 1/2Pr[Eer].

Also,

Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Eer]Pr[¬Eer] ≥ 1/2− 1/2Pr[Eer].

By the definition of the advantage of IND-CLPRE-CCA adversary, we have the advantage:

ε = |2Pr[δ′ = δ]− 1|
≤ Pr[Eer] = Pr[EH∗

5
∨ Edec)|¬abort]

≤
Pr[EH∗

5
] + Pr[Edec]

Pr[¬abort].

Therefore, we obtain the following bound on Pr[EH∗
5
] as:

Pr[EH∗
5
] ≥ Pr[¬abort] · ε− Pr[Edec]

≥
(

2(1− ω)2+qrkε

e(qppe + 2)2
− qdec

( qH5
/q

1− (qH4/(2
l0+l1))

+
qH4

/(2l0+l1)

1− (qH5/q)
+

2

q

))
Note that, if event EH∗

5
occurs, then the challenger C solves the CDH instance with advantage:

ε′ ≥ 1

qH5

Pr[EH∗
5
]

≥ 1

qH5

(
2(1− ω)2+qrkε

e(qppe + 2)2
− qdec

( qH5
/q

1− (qH4/(2
l0+l1))

+
qH4

/(2l0+l1)

1− (qH5/q)
+

2

q

))

We bound the time taken by C using t′:

t′ ≤ t+ (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ qH6

, TO = 4tpe + 4tppe + 4tue + 2trk + 8tre + 8tdec + 6tredec
and texp denotes the time taken for exponentiation operation in group G.

ut
First-level Ciphertext Security against Type II adversary :

Theorem 3. Our proposed scheme is CCA-secure against Type-II adversary for the first level ciphertext under the
CDH assumption and the EUF−CMA security of the Schnorr signature scheme. If a (t, ε)IND−CLPRE−CCA
Type-II adversary AII with an advantage ε breaks the IND-CLPRE-CCA security of the given scheme, C can solve
the CDH problem with advantage ε′ within time t′ where:

ε′ ≥ 1

qH2

(
(1− ω)1+qrkε

e(qppe + que + 1)
− qH4

2l0+l1
− qH6

2l0+l1
−

qH̃
2l0+l1

− qdec
( qH5

/q

1− (qH4
/(2l0+l1))

+
qH4

/(2l0+l1)

1− (qH5
/q)

+
2

q

))
where ω is the advantage of an attacker against the EUF-CMA security game of the Schnorr signature scheme and
e is the base of the natural logarithm. Time taken by C to solve the CDH problem is:

t′ ≤ t+ (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ qH6

, TO = 4tpe + 4tppe + 4tue + 2trk + 8tre + 8tdec + 6tredec. We
denote the time taken for exponentiation operation in group G as texp.

Proof. If a Type-II adversaryAII for the first level ciphertext with access to the random oracles H̃,H1, H2, H3, H4, H5,
H6 breaks the IND-CLPRE-CCA security of the given scheme, we can construct an algorithm C which breaks the
CDH problem given the instance (P, aP, bP ).
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• Initialisation: C chooses η ∈ Z∗q and sets Ppub = ηP . C maintains a list of all the keys in the lists
Lpub, Lpart, Luser, Lpriv and Lschnorr−PK exactly the same way as shown for the first level ciphertext se-
curity game against AI .

• Phase 1: C interacts with AII in the following ways:

- OracleQueries:
C responds to the oracle queries of AII in the same manner as shown in the first level ciphertext security
game for Type-I adversary.

∗ Public Key Extract Query (Ope): C generates the keys using Coron’s coin-tossing technique [8] by tossing
a biased coin ci which takes the value ci ∈ {0, 1}. The probability that the coin takes the value 0 is
Pr[ci = 0] = θ, which is to be determined later. The Coron’s technique is used to inject the hard problem
instance into the partial keys and user keys of the honest users.
If ci = 0, C chooses xi, yi, di ∈R Z∗q . It computes Xi = xi ·Ppub+diP , Yi = yiP , and sets H1(IDi, Xi, Yi) =
−xi. It sets the user secret key by picking zi ∈ Z∗q and setting Zi = ziP . Note that the public key generated
by C satisfies the public verifiability in equation 4 as:

RHS = Xi +H1(IDi, Xi, Yi) · PPub
= xi · ηP + diP + (−xi) · ηP
= diP

= LHS.

If ci = 1, C picks xi, ȳi, z̄i, di ∈R Z∗q and computes Xi = xiPpub + diP = xiηP + diP , Zi = ziP = z̄iaP ,
Yi = yiP = ȳiziP = ȳiz̄iaP . C sets H1(IDi, Xi, Yi, Ti) = −xi. Note that, the public keys set by C satisfies
the public verifiability from equation 4.
Update the above given lists Lpub, Lpart, Luser, Lpriv with the new key values by adding tuple 〈IDi, PKi, ˆPKi =
PKi〉 to list Pcurrent, 〈IDi, PKi = (Xi, Yi, Zi, di), ci〉 to public key list Lpub, tuple 〈IDi, PPKi, PSKi, ci〉
to partial key list Lpart, tuple 〈IDi, UPKi, USKi, ci〉 to user key list Luser and tuple 〈IDi, SKi, ci〉 to
private key list Lpriv.

∗ Partial Key Extract Query (Oppe): When AII queries for a partial key for an IDi whose public keys
have not been replaced, C responds exactly the same way as shown in the first level ciphertext security
game.

∗ User Key Extract Query (Oue):When AI queries for the user key for an IDi whose public keys have not
been replaced, C searches the list Luser for the existence of a tuple of the form 〈IDi, UPKi, USKi, ci〉. If
found, C checks the value of the coin ci. If ci = 1, C aborts and reports failure. If ci = 0, return the user
keys (USKi, UPKi) to AII . If such a tuple does not exist, C generates the user keys using the Coron’s
coin tossing technique as described in the Public Key Extract Query.
If ci = 0, C calls the Public Key Extract Query oracle to generate the keys which updates the lists
Lpub, Lpart, Luser and Lpriv. C returns (USKi, UPKi).
If ci = 1, C aborts and reports failure.

∗ Re−Key Generation Query (Ork): When AII sends a re-key generation query to C from user IDi to
IDj , C computes the re-encryption key according to the following cases:
· If ci = 0, compute RKi→j by running the Re-KeyGen algorithm. Add to list Lrekey the tuple

〈IDi, IDj , α
(1)
ij ,

α
(2)
ij , β

(1)
ij , β

(2)
ij , Vij ,Wij〉.

· If (ci = 1 ∧ cj = 1), choose α
(1)
ij , α

(2)
ij , β

(1)
ij , β

(2)
ij ∈R Z∗q . Compute vij = H2(α

(2)
ij ||β

(2)
ij ), Vij = vij · Yj ,

Wij = H3(vijP )⊕(α
(2)
ij ||β

(2)
ij ). ReturnRKi→j toAII and add the tuple 〈IDi, IDj , α

(1)
ij , αi2α

(2)
ij , β

(1)
ij , β

(2)
ij ,

Vij ,Wij〉 in list Lrekey.

∗ Re− Encryption Query (Ore): When AII queries decryption of a first-level ciphertext C from IDi to

IDj , the Challenger C first computes C1 and C2 and checks if equations 5 and 6 hold to verify the well-
formedness of the ciphertext C. If validation fails, it outputs ⊥. Else, C performs re-encryption according
to the following cases:
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· If ci = 0 or (ci = 1 ∧ cj = 1), C computes the second level ciphertext D by obtaining the
re-encryption keys RKi→j by running the Re − Key Generation oracle Ork and calling the Re-
Encrypt(IDi, IDj , C,RKi→j , params) algorithm.

· If (ci = 1 ∧ cj = 0), C picks α
(1)
ij , β

(1)
ij ∈R Z∗q and sets α

(2)
ij = ȳi · (α(1)

ij )−1 and β
(2)
ij = z̄i · (β(1)

ij )−1. C
computes D1 = α

(1)
ij z̄ih

−1
i C2 = α

(1)
ij z̄iraP , D2 = β

(1)
ij h

−1
i C2 = β

(1)
ij raP , D3 = C3, D4 = Vij , D5 = Wij

and returns the second-level ciphertext D = (D1, D2, D3, D4, D5) to AI .

∗ Decryption Query (Odec): For decrypting a first level ciphertext C under identity IDi (its public key has
not been replaced), C first checks for the validity of the ciphertext. If valid and ci = 0, it runs the Decrypt
algorithm to retrieve the plaintext m. Else, if ci = 1, C computes rYi = ȳiz̄ih

−1
i C2 = ȳiz̄ih

−1
i rhiaP

and rZi = z̄ih
−1
i C2 = z̄ih

−1
i rhiaP . It compute the value of (m||σ) = C3 ⊕ H5(rYi, rZi). It computes

r = H4(m,σ), computes the values of C1 and C2 as shown in Re-Encryption algorithm and performs the
following checks:

· C1
?
= rP.

· C2 = rH̃(IDi, C1, C1, C3).

· C3
?
= H5(rYi, rZi)⊕ (m||σ).

If all the checks are satisfied, C returns m.

∗ Re−Decryption Query (Oredec): C responds to the queries in the exact manner as shown in the first level
ciphertext security game against Type I adversary.

∗ Public Key Replacement Query (Orep): C C responds to the queries in the exact manner as shown in the
first level ciphertext security game against Type I adversary.

• Challenge: Once AII decides that Phase-1 is over, it outputs two messages m0,m1 and the target identity
IDch on which it wishes to be challenged. C checks if cch = 1, else it aborts. It tosses a coin and chooses
δ ∈ {0, 1} uniformly at random. It then simulates the challenge ciphertext for mδ in the following steps:
1. Pick σ∗ ∈R {0, 1}l1 , ū, f ∈R Z∗q and implicitly define H4(mδ, σ) = b.
2. Compute C∗1 = bP = rP.

3. Set u , ū− bf . Compute C
∗
1 = ūP − fbP = uP .

4. C intends to set H̃(IDch, C
∗
1 , C

∗
1, C

∗
3 ) = γch = hchP , where hch ∈R Z∗q and include the tuple 〈IDch, C

∗
1 , C

∗
1, C

∗
3 ,

hch, γch〉 to LH̃ list. C checks if a tuple of the form 〈IDch, C
∗
1 , C

∗
1, C

∗
3 , h
′
ch, γch〉 or 〈IDch, C

∗
1 , C

∗
1, C

∗
3 , hch, γ

′
ch〉

already exists in the LH̃ list. If it exists, including 〈IDch, C
∗
1 , C

∗
1, C

∗
3 , hch, γch〉 to the LH̃ list is incorrect

and hence GOTO step 1 and re-compute with fresh random values. If no such tuple exists in list LH̃ , C
sets H̃(IDch, C

∗
1 , C

∗
1, C

∗
3 ) = γch = hchP and include 〈IDch, C

∗
1 , C

∗
1, C

∗
3 , hch, γch〉 in LH̃ list.

5. Compute C∗2 = hchbP = r · H̃(IDch, C1, C1, C3).
6. Pick C∗3 ∈R {0, 1}l0,l1 and define H5(z̄chȳch · abP, ȳch · abP ) = C∗3 ⊕ (mδ||σ∗)
7. Check in LH6

if the tuple 〈C∗1 , C∗2 , C∗3 , t〉 already exists. If so, GOTO step 1 and recompute with fresh
random values.

8. Define H6(C∗1 , C
∗
2 , C

∗
3 ) = f . Set C∗4 = ū. From the definition of u, we have C∗4 = u+ rH6(C∗1 , C

∗
2 , C

∗
3 ).

Note that the challenge ciphertext is identically distributed to the real ciphertext generated by the encryption
algorithm. Hence, the challenge ciphertext is a valid ciphertext.

• Phase-2: The adversary AII continues to query the oracles maintained by C with the restrictions stated in
the security model.

• Guess: The adversary AII eventually produces its guess δ′ ∈ {0, 1} to C. C randomly picks a tuple 〈S,U, u〉
from H5 list and outputs z̄chȳchS as the solution to the CDH instance.

• Probability Analysis: We first analyse the probability with which the Challenger C aborts during the
simulation, which can occur during the partial key extraction query, the user key extract query, the re −
key generation query or the challenge phase. In the context of these four occurrences, C does not abort in
case of the following four events:
− E1 : In the partial key extract query, ci = 0.
− E2 : In the user key extract query, ci = 0.
− E3 : In the re− key generation query, the public keys of the users IDi and IDj have not been replaced.
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− E4 : In the Challenge phase, ci = 1 and the public keys of the target user IDch has not been replaced.

The probability that C does not abort Pr[¬abort] = θqppeθque(1− θ)(1−ω)1+qrk , which has a maximum value
at θOPT =

qppe+que

qppe+que+1 . Using θOPT , we obtain:

Pr[¬abort] ≥ (1−ω)1+qrk

e(qppe+que+1) .

The analysis of the simulation of the random oracles is exactly the same as shown for the first level ciphertext
security. The simulation of the random oracles occur perfectly unless the events EH∗

4
, EH∗

5
, EH∗

6
or EH̃∗ take

place as described for the first level ciphertext security analysis. exactly as shown for the first level ciphertext
security against AI : From previous calculations, we have Pr[EH∗

6
] ≤ qH6

{0,1}l0+l1
and Pr[EH̃∗ ] ≤ qH̃

{0,1}l0+l1
.

The analysis of the simulation of the re-decryption oracle is the same as shown for the first level ciphertext
security against AI . The probability that valid ciphertexts are rejected atleast once in the entire simulation is
derived previously as shown:

Pr[Edec] ≤ qdec
( qH5

/q

1− (qH4/(2
l0+l1))

+
qH4

/(2l0+l1)

1− (qH5/q)
+

2

q

)
Let Eer denote the event (EH∗

4
∨ EH∗

5
∨ EH∗

6
∨ EH̃∗ ∨ Edec)|¬abort. If Eer does not occur, the adversary AII

does not gain any advantage greater than 1
2 in guessing δ due to the randomness in the output of H5 oracle.

Therefore, Pr[δ′ = δ|¬Eer] = 1
2 . Note that:

Pr[δ′ = δ] = Pr[δ′ = δ|¬Eer]Pr[¬Eer] + Pr[δ′ = δ|Eer]Pr[Eer]
≤ 1/2Pr[¬Eer] + Pr[Eer] = 1/2 + 1/2Pr[Eer].

Also,

Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Eer]Pr[¬Eer] ≥ 1/2− 1/2Pr[Eer].

By the definition of the advantage of IND-CLPRE-CCA adversary, we have the advantage:

ε = |2Pr[δ′ = δ]− 1|
≤ Pr[Eer] = Pr[EH∗

4
∨ EH∗

5
∨ EH∗

6
∨ EH̃∗ ∨ Edec)|¬abort]

≤
Pr[EH∗

4
] + Pr[EH∗

5
] + Pr[EH∗

6
] + Pr[EH̃∗ ] + Pr[Edec]

Pr[¬abort].

Therefore, we obtain the following bound on Pr[EH∗
5
] as:

Pr[EH∗
5
] ≥ Pr[¬abort] · ε− Pr[EH∗

4
] + Pr[EH∗

6
] + Pr[EH̃∗ ] + Pr[Edec]

≥ (1− ω)1+qrkε

e(qppe + que + 1)
− qH4

2l0+l1
− qH6

2l0+l1
−

qH̃
2l0+l1

− qdec
( qH5/q

1− (qH4
/(2l0+l1))

+
qH4/(2

l0+l1)

1− (qH5
/q)

+
2

q

)
Note that, if event EH∗

5
occurs, then the challenger C solves the CDH instance with advantage:

ε′ ≥ 1

qH5

Pr[EH∗
5
]

≥ 1

qH5

(
(1− ω)1+qrkε

e(qppe + que + 1)
− qH4

2l0+l1
− qH6

2l0+l1
−

qH̃
2l0+l1

− qdec
( qH5

/q

1− (qH4
/(2l0+l1))

+
qH4

/(2l0+l1)

1− (qH5
/q)

+
2

q

))

We bound the time taken by C using t′:

t′ ≤ t+ (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ qH6

, TO = 4tpe + 4tppe + 4tue + 2trk + 8tre + 8tdec + 6tredec
and texp denotes the time taken for exponentiation operation in group G. ut

Second-level Ciphertext Security against Type II adversary :
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Theorem 4. Our proposed scheme is CCA-secure against Type-II adversary for the second level ciphertext under
the DDH assumption and the EUF −CMA security of the Schnorr signature scheme. If a (t, ε)IND−CLPRE−
CCA Type-II adversary AII with an advantage ε breaks the IND-CLPRE-CCA security of the given scheme, C
can solve the CDH problem with advantage ε′ within time t′ where:

Pr[EH∗
5
] ≥ 2(1− ω)2+qrk

e(qppe + que + 2)2
− qdec

( qH5/q

1− (qH4
/(2l0+l1))

+
qH4/(2

l0+l1)

1− (qH5
/q)

+
2

q

)
where ω is the advantage of an attacker against the EUF-CMA security game of the Schnorr signature scheme and
e is the base of the natural logarithm. Time taken by C to solve the CDH problem is:

t′ ≤ t+ (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ qH6

, TO = 4tpe + 4tppe + 4tue + 2trk + 8tre + 8tdec + 6tredec. We
denote the time taken for exponentiation operation in group G as texp.

Proof. If a Type-II adversaryAII for the second level ciphertext with access to the random oracles H̃,H1, H2, H3, H4,
H5, H6 breaks the IND-CLPRE-CCA security of the given scheme, we can construct an algorithm C which breaks
the CDH problem given the instance (P, aP, bP ).
• Initialisation: C picks η ∈R Z∗q and compute Ppub = ηP . Similar to Theorem 1, C maintains a list of all the

keys in the following lists Lpub, Lpart, Luser, Lpriv, and Lschnorr−PK .

• Phase 1: C interacts with AII in the following ways:
- OracleQueries:
C responds to the hash function queries of AII in the same way as it responded in the first level ciphertext
security.

∗ Public Key Extract Query (Ope): C generates the keys using Coron’s coin-tossing technique [8] by tossing
a biased coin ci which takes the value ci ∈ {0, 1}. For ci = 0 and ci = 1, C sets the values of the keys in
the same manner as shown in the first level ciphertext security proof against AII and initialises the above
lists with the key values respectively.

∗ Partial Key Extract Query (Oppe): When AII queries for a partial key for an IDi whose public keys
have not been replaced, C responds exactly as shown in the first level ciphertext security proof.

∗ User Key Extract Query (Oue): When AII queries for a user key for an IDi whose public keys have not
been replaced, C responds exactly as in the first level ciphertext security proof.

∗ Decryption Query (Odec): Given a decryption query for a user with IDi where ci = 0, C runs the
Decrypt(IDi,
SKi, C, params) algorithm to retrieve the plaintext m. For an IDi such that ci = 1, given the re-encryption
keys for all users,C can re-encrypt the first level ciphertext C to a second level ciphertext D under a user
IDj such that cj = 0 and then re-decrypt it.

The re-key generation query Ork, re-encryption query Ore, re-decryption query Oredec and the public key re-
placement queries are handled in the exact manner as demonstrated for the first level ciphertext security proof.

• Challenge: Once AII decides that Phase-1 is over, it outputs two messages m0,m1, the delegator identity
IDdel (whose public keys have not been replaced) the target identity IDch(whose public keys have not been
replaced) on which it wishes to be challenged. C checks if cch = 1 and cdel = 1 else it aborts. It tosses
a coin and chooses δ ∈ {0, 1} uniformly at random. It generates the re-encryption key RKdel→ch by picking

α
(1)
del−ch, α

(1)
del−ch, β

(1)
del−ch, β

(1)
del−ch ∈R Z∗q and computing the values vdel−ch = H2(α

(2)
del−ch||β

(2)
del−chij), Vdel−ch =

vdel−ch ·Ych, Wdel−ch = H3(vdel−chP )⊕(α
(2)
del−ch||β

(2)
del−ch). It simulates the challenge ciphertext for mδ as shown

stepwise:
1. Pick σ∗ ∈R {0, 1}l1 , u ∈R Z∗q and implicitly define H4(mδ, σ) = b.

2. Compute D∗1 = α
(1)
del−chbP = α

(1)
del−ch · C1.

3. Compute D∗2 = β
(1)
del−chbP = β

(1)
del−ch · C1.

4. Pick D∗3 ∈R {0, 1}l0,l1 and define H5(ydelzdel · abP, zdel · abP ) = D3 ⊕ (mδ||σ∗).
5. Set D∗4 = Vdel→ch.
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6. Set D∗5 = Wdel→ch
Note that the challenge ciphertext D∗ = (D∗1 , D

∗
2 , D

∗
3 , D

∗
4 , D

∗
5) is identically distributed to the real ciphertext

generated by the encryption algorithm. Hence, the challenge ciphertext is a valid ciphertext.

• Phase-2: The adversary AII continues to query the oracles maintained by C with the restrictions stated in
the security model.

• Guess: The adversary AII eventually produces its guess δ′ ∈ {0, 1}. C randomly picks a tuple 〈S,U, u〉 from
H5 list and outputs ydelzdelS as the solution to the CDH instance.

• Probability Analysis: We first analyse the probability with which the Challenger C aborts during the
simulation, which can occur during the partial key extraction query,the user key extract query, the re −
key generation query or the challenge phase. In the context of these four occurrences, C does not abort in
case of the following four events:

− E1 : In the partial key extract query, ci = 0.
− E2 : In the user key extract query, ci = 0.
− E3 : In the re− key generation query, the public keys of the users IDi and IDj have not been replaced.
− E4 : In the Challenge phase, cch = 1, cdel = 1 and the public keys of the target user IDch and delegator
IDdel have not been replaced.

The probability that C does not abort Pr[¬abort] = θqppeθque(1−θ)2(1−ω)2+qrk , which has a maximum value
at θOPT =

qppe+que

qppe+que+2 . Using θOPT , we obtain:

Pr[¬abort] = 2(1−ω)2+qrk

e(qppe+que+2)2 .

We analyse the simulation of the random oracles. The simulation of the random oracles occur perfectly unless
the following event take place:

− EH∗
5
: Event that ( ¯ychabP, zchbP ) was queried to H5.

The analysis of the simulation of the re-decryption oracle remains the same as shown for the first level ciphertext
security against AII . The probability of the decryption oracle rejecting valid ciphertexts throughout the entire
simulation is denoted by Edec and from previous calculations, we obtain:

Pr[Edec] ≤ qdec
( qH5

/q

1− (qH4/(2
l0+l1))

+
qH4

/(2l0+l1)

1− (qH5/q)
+

2

q

)
Let Eer denote the event (EH∗

5
∨ Edec)|¬abort. If Eer does not occur, the adversary AI does not gain any

advantage greater than 1
2 in guessing δ due to the randomness in the output of H5 oracle. Therefore, Pr[δ′ =

δ|¬Eer] = 1
2 . Note that:

Pr[δ′ = δ] = Pr[δ′ = δ|¬Eer]Pr[¬Eer] + Pr[δ′ = δ|Eer]Pr[Eer]
≤ 1/2Pr[¬Eer] + Pr[Eer] = 1/2 + 1/2Pr[Eer].

Also,

Pr[δ′ = δ] ≥ Pr[δ′ = δ|¬Eer]Pr[¬Eer] ≥ 1/2− 1/2Pr[Eer].

By the definition of the advantage of IND-CLPRE-CCA adversary, we have the advantage:

ε = |2Pr[δ′ = δ]− 1|
≤ Pr[Eer] = Pr[EH∗

5
∨ Edec)|¬abort]

≤
Pr[EH∗

5
] + Pr[Edec]

Pr[¬abort].

Therefore, we obtain the following bound on Pr[EH∗
5
] as:

Pr[EH∗
5
] ≥ Pr[¬abort] · ε− Pr[Edec]

≥ 2(1− ω)2+qrk

e(qppe + que + 2)2
− qdec

( qH5
/q

1− (qH4
/(2l0+l1))

+
qH4

/(2l0+l1)

1− (qH5
/q)

+
2

q

)
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Note that, if event EH∗
5

occurs, then the challenger C solves the CDH instance with advantage:

ε′ ≥ 1

qH5

Pr[EH∗
5
]

≥ 1

qH5

(
2(1− ω)2+qrk

e(qppe + que + 2)2
− qdec

( qH5
/q

1− (qH4
/(2l0+l1))

+
qH4

/(2l0+l1)

1− (qH5
/q)

+
2

q

))

We bound the time taken by C using t′:

t′ ≤ t+ (Tq)O(1) + (TO)texp

where Tq = qH̃ + qH1
+ qH2

+ qH3
+ qH4

+ qH5
+ qH6

, TO = 4tpe + 4tppe + 4tue + 2trk + 8tre + 8tdec + 6tredec
and texp denotes the time taken for exponentiation operation in group G.

ut

4.4 Efficiency Comparison

We give a comparison of the efficiency of our proposed CL-PRE scheme with [13] with the suggested fix as
described in Section 3.3. In Table 1, we show the computational efficiency of our scheme and the modified scheme
by comparing the time taken by the different algorithms in our protocols. Note that we use texp to denote the
time required for exponentiation in a group. The comparison reveals that our scheme is more efficient than the
existing scheme with our suggested fix.

Scheme Modified CLPRE scheme Our CLPRE Scheme
of Srinivasan et al. [13]

Setup texp texp
PartialKeyExtract 3texp 2texp

UserKeyGen 2texp texp
SetPublicKey 2texp −
PublicVerify 8texp 2texp
Re-KeyGen 5texp 2texp

Encrypt 10texp 4texp
Re-Encrypt 10texp 6texp

Decrypt 11texp 6texp
Re-Decrypt 6texp 4texp

Table 1: Efficiency comparison of the scheme [13] with the suggested fix with our CL-PRE scheme
indicates that our scheme is more efficient.

5 Conclusion

Although several CL-PRE schemes were proposed in the literature, to the best of our knowledge, only one scheme
[9] has reported the certificateless property without any known attacks to the scheme. However, the scheme is based
on costly bilinear pairing operation and satisfies a weaker notion of security, termed as RCCA security. Recently,
Srinivasan et al. [13] proposed a CL-PRE scheme without resorting to bilinear pairing in the random oracle model.
However, we demonstrated that their security proof is flawed by presenting a concrete attack. We then presented a
unidirectional CL-PRE scheme which is pairing-free and satisfies CCA-security against both the Type-I and Type-II
adversaries for the first and second level ciphertexts. We remark that a potential fix to [13] is also suggested in our paper
but our proposed algorithm is more efficient as noted from our efficiency comparison. Our work affirmatively resolves
the problems faced by PKI-based and IB-based PRE schemes by proposing an efficient pairing-free certificateless Proxy
Re-encryption scheme.
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