
Necessary conditions for designing secure stream
ciphers with the minimal internal states

Vahid Amin Ghafari1(B), Honggang Hu1, and Mohammadsadegh Alizadeh2

1Key Laboratory of Electromagnetic Space Information, Chinese Academy of
Sciences, University of Science and Technology of China, Hefei, China, 230027

2Department of Electrical Engineering,Sharif University of Technology
vahidaming@mail.ustc.edu.cn,hghu2005@ustc.edu.cn,alizadehms@ee.sharif.ir

Abstract. After the introduction of some stream ciphers with the min-
imal internal state, the design idea of these ciphers (i.e. the design of
stream ciphers by using a secret key, not only in the initialization but
also permanently in the keystream generation) has been developed. The
idea lets to design lighter stream ciphers that they are suitable for devices
with limited resources such as RFID, WSN.
We present necessary conditions for designing a secure stream cipher
with the minimal internal state. Based on the conditions, we propose
Fruit-128 stream cipher for 128-bit security against all types of attacks.
Our implementations showed that the area size of Fruit-128 is about
25.2% smaller than that of Grain-128a. The discussions are presented
that Fruit-128 is more resistant than Grain-128a to some attacks such
as Related key chosen IV attack. Sprout, Fruit-v2 and Plantlet ciphers
are vulnerable to time-memory-data trade-off (TMDTO) distinguishing
attacks. For the first time, IV bits were permanently used to strengthen
Fruit-128 against TMDTO attacks. We will show that if IV bits are
not permanently available during the keystream production step, we can
eliminate the IV mixing function from it. In this case, security level
decreases to 69-bit against TMDTO distinguishing attacks (that based
on the application might be tolerable). Dynamic initialization is another
contribution of the paper (that it can strengthen initialization of all
stream ciphers with low area cost).

Keywords: Stream Cipher, Ultra-lightweight, Lightweight, NFSR, LF-
SR, Hardware Implementation, Cryptographic Primitive

1 Introduction

There are so many devices that should be connected to each other safely. A
big part of the devices has limited resources, and they need cheap equipment for
privacy (such as RFID, WSN, and mobile communication). One of the best tools
is stream ciphers with the minimal internal state for privacy. One old and famous
rule tells that the internal state size should be at least twice of the security level
in the stream ciphers. Sprout was proposed with a minimal internal state in FSE
2015 (the size of FSR in Sprout was 80 bits) [3]. The design idea of Sprout was



2 V. A. Ghafari et al.

based on using the key not only in the initialization but also in the keystream
generation. In other words, the key used as an internal state. It was an excellent
idea because the keys should save for reused by others IV (in most of the real
world stream ciphers). Thus, stream ciphers were designed with smaller area
size.

A short while after the introduction of Sprout, many attacks were published
against it [12, 14, 16, 5, 10, 20]. The key bits did not exploit correctly in the round
key function. An important principle is that an internal state (here including key
bits) should participate in internal state updating continually. The same impact
ratio of all sections of the internal state on keystream production and internal
state updating is critical. The key bits had little effect on the internal state
updating in Sprout [2]. For compensating this problem in Plantlet cipher with
80-bit security, the size of FSR was increased to 101 bits. This change showed
that the main challenge, i.e. design stream ciphers with internal state almost
equal to the security level, has been forgotten. Furthermore, Plantlet suffers the
insecure design similar Sprout (i.e. unbalanced participations of key as a part of
the internal state in the keystream productions) [18]. A TMDTO distinguishing
attack was proposed against Plantlet [11].

Fruit-v2 was another stream cipher with the minimal internal state. The size
of FSR in Fruit-v2 was 80 bits, and it had 15 bits counter [2]. Two attacks were
proposed to Fruit-v1 with 80-bit security, and it has been updated [7, 11, 2]. For-
tunately, the main structure of Fruit-v2 is resistant against all attacks except
TMDTO distinguishing attack [11]. The attack needs 250.2 known keystream,
250.2 memory and 244.5 encryption for distinguishing the keystream of Fruit-v2
from truly random sequences. It is obvious that the attack is not practical (espe-
cially for low power hardware environment). Nevertheless, we propose necessary
conditions that strengthen the design of stream ciphers with the minimal internal
state against all types of attacks. In [11] a new idea was suggested to strengthen
the ciphers against TMDTO distinguishing attack. The new idea was to use IV
bits not only in the initialization but also in the keystream generation. In other
words, the new idea was permanently using the IV (similar to the key) in the
internal state updating and keystream production [11]. It is obvious that key
should be saved for reuse by others IVs in the most real world stream ciphers.
Thus, the using of the key does not impose any area in hardware (except for
accessing the key bits).

Also permanently using IV does not impose any area in many applications.
One famous example is A5/1 stream cipher in GSM system. Allowed IVs are
22-bit frame numbers that only one time are produced for every key (reuse the
same IV is strictly prohibited with the same key in all stream ciphers). A 22-bit
memory is dedicated to storing the IV (i.e. frame numbers) that it increases in
every loading sequentially. It is a general structure that parameter(s) (e.g. packet
number) is stored in memory as IV. Parameter(s) that is sequentially produced
is new IVs. In this structure, there is no vulnerability regard to producing the
same IV twice with the same key. In the cases that IVs are produced from
some different parameters of the system, it is still possible that IV bits would



Necessary conditions for stream ciphers with the minimal internal states 3

be available (from their sources) for permanently using in ciphers [40]. In these
cases, the existence of a mechanism for prevention of production of the same IV
under the same key is compulsory.

In situations that IV bits are not permanently available during the keystream
production, we can suggest based on two important points that it is possible to
ignore the IV mixing function in the keystream generation step (i.e. eliminate the
round IV function from Fruit-128). First point, designers of Fruit-v2 and Plantlet
ruled out TMDTO distinguishing attacks against ultra-lightweight ciphers (they
stated that the attack needs so many resources while it is only distinguishing
attacks). The second point, it is possible that the TMDTO distinguishing attacks
would be impossible based on the application or environment of a cipher [11].
We will show that if we ignore the round IV function from Fruit-128, a TMDTO
distinguishing attack is applicable with 276.1 (known) bits of keystream, 269 times
encryption and 9,261,023,232 terabytes memory. Note that the attack only can
distinguish the keystream of the cipher from truly random sequences.

Ultra-lightweight Stream cipher that Permanently Uses Key (US-
PUK): A stream cipher which uses key not only in the initialization but also
permanently in the keystream generation and its GE (gate equivalents) is less
than 80% of the hardware implementation of a Grain family member with the
same security level.

Grain-v1 and Grain-128a are famous and concrete lightweight stream ciphers
with 80 and 128-bit security, respectively [13, 1]. As these ciphers are secure
and lightweight, these are a suitable basis for comparison. It is obvious that a
hardware implementation should be in the same condition and GE of Grain-
128a should be considered excluding authentication section. Sprout, Fruit-v2,
and Plantlet are USPUK.

It is unacceptable in a USPUK that, the number of clocks in the initialization
is much more than that of a Grain family member with the same security level.
In Sprout and Plantlet cipher, the number of the initial clocks is 320 while it is
only 160 clocks for Grain-v1. As Sprout and Plantlet were designed for devices
with insufficient resources, it is not tolerable. Too many initial clocks were done
to compensate the weak initialization in Sprout and Plantlet. The maximum
number of clocks in Fruit-128 is 278 while it is 256 clocks for Grain-128a. We
propose a dynamic initialization that is suitable for USPUKs. As the internal
state updating function is bijective in stream ciphers, it is very simple to retrieve
the key from the known internal state. Although internal state updating function
is bijective in Fruit-128, retrieving the key bits is not as simple as the clock back.
The dynamic initialization idea is also useful to all stream ciphers. It can increase
security margin against key recovery attack from a known internal state with
the small cost of the area in all stream ciphers.

USPUKs have been considered recently, and some papers were published
about them. It seems that the necessary design conditions of these ciphers are
clear now.

Necessary conditions for designing secure USPUK:



4 V. A. Ghafari et al.

1- Internal state size should be twice of the security level in every situation
(e.g. under fixed key).

2- All of the internal state bits (including key bits) should be independently
affected on the internal state updating almost by the same ratio.

3- It is unacceptable to leave variable-key attacks (a resistant initialization
should be used in USPUK). We will discuss in the next section about conditions.

The paper is organized as follows. The necessary design conditions of US-
PUKs are discussed. Then, Fruit-128 as an instance of secure USPUK will be
presented. We discuss that Fruit-128 is resistant to known attacks. Finally, we
show the results of the hardware implementation.

2 The necessary design conditions of USPUKs

There are four important spaces. The minimum size of these spaces specifies the
security level margin. The half of the minimum size is the upper bound of security
level against TMDTO attacks in every stream cipher. These are 1- the space of
the key-IV 2- the space of the internal state after key-IV loading 3- the space of
the internal state before the producing first keystream 4- the space of the internal
state after the producing so many keystreams. In all possible conditions (e.g. for
a fixed key), the upper bound of the security level against TMDTO attacks is
the minimum size half of these spaces. If we consider a situation that key is
fixed in Sprout, Fruit-v2 and Plantlet ciphers, all of them are vulnerable against
TMDTO distinguishing attacks [11]. For example in Plantlet cipher, the space of
the key and IV is 170 (i.e. 80+90) bits, but the space of the internal state is 108
(i.e. 40+61+7) bits. Therefore, the security level is 54-bit (i.e. 108/2) against
distinguishing TMDTO distinguishing attacks in Plantlet. The claimed security
(and the size of key-IV i.e. 170/2) stated that the security level should be 80-bit
against TMDTO distinguishing attacks. Each 262 (i.e. 2170/2108 ) different key-
IVs produces the same internal state and same keystream. An attacker supposes
the key is fixed and he produces 254 keystreams in Plantlet. He saves keystreams
on a table. If he produces again 254 keystreams with the same key and different
IVs and search on the table, he can find at least one collision based on the
birthday paradox (distinguishing attack) [11]. The attacker finds two different
IVs that under the same key (but in a different clock) arrive at the same internal
state. The attack on Plantlet was successfully applied because the internal state
size is not twice of the security level with a fixed key. The above discussion
showed that the first condition (i.e. internal state size should be twice of the
security level under every fixed key) should be considered in the design of a
USPUK.

The second condition is that all of the internal state bits (including key bits
in a USPUK) should be independently affected on the internal state updating
(and keystream generation) almost by the same ratio. It is obvious that if a
part of internal state participates on the internal state updating much less than
other parts, the stream cipher is vulnerable to many attacks (similar: divide-
and-conquer and guess-and-determine attacks). This condition did not consider



Necessary conditions for stream ciphers with the minimal internal states 5

in the design of Sprout, and many attacks were proposed it [12, 14, 16, 5, 10, 20].
In Plantlet cipher, this vulnerability was compensated by the increasing the size
of FSR. The increasing has two problems. The first is increasing the area size
and power consumption and the second one is oblivion of the initial challenge
of the design (i.e. design stream ciphers with internal state almost equal to
the security level). In Fruit-v2, this condition was carefully considered, and its
main structure has been resisted against all types of attacks (except a trivial
distinguishing attack that it was also applied to Planet [11]).

The last condition is about initialization procedure. Designers of Plantlet
(and also Sprout) cipher mentioned that variable-key attacks (including related-
key attacks) are out of the scope of Plantlet security (as we consider that the key
is fixed, variable-key attacks (including related-key attacks) attacks are also out
of scope[18]). This is while one of the main innovations of the paper is designing
a cipher for efficiently using EEPROM for storing key bits. They suggested EEP-
ROM because changing key is easy on EEPROM (they stated that EEPROM in
a USPUK helps flexible key management) [18]. It is wonderful that the authors
of a published paper in FSE 2017 forgot their main contribution and refused a
weakness while it is directly related to their contribution. It seems that Plantlet
is vulnerable to related-key attack such as Sprout (because the initialization and
structure of Plantlet are similar to Sprout) [12, 19]. Thus variable-key attacks
(and its special case i.e. related-key attacks) should be carefully considered. We
think that every cipher should be secure against all types of attacks independent
of its application.

3 Hardware aspect

Maybe it seems that access to some bits of the key at once (e.g. 6 bits of the key
in Fruit-v2) is not efficiently possible. In the cases that one fixed key is sufficient
forever (e.g. in RFID, WSN and SIM card), MROM and PROM are two suitable
options for storing key bits. MROM and PROM allow to access to some bits of
the key efficiently in the high speed at once. Although key management is limited
in these cases, each user can burn his desirable key in a PROM. EEPROM is a
type of non-volatile memory that allows flexible key management. If EEPROM
is integrated into ASIC, there is not practically limitation on accessing to some
bits of the key at once [18]. Therefore in the discussed cases, the number and
how accessing the key bits does not significantly impact on the efficiency of a
USPUK (although the influence on the area size is proportional to the number
of access, it is completely practical in commercial cases).

The high number of accessing and non-sequential is very hard to commercial
implementations in an external EEPROM with a serial interface. For the cases
that we are interested in using external EEPROM, we should use a parallel inter-
face for accessing memory. There are very different types of external EEPROM
in the market. It seems that commercial implementation is possible in external
EEPROM with parallel interface. External EEPROM suffers side channel at-



6 V. A. Ghafari et al.

tacks. This vulnerability is as much as important that external EEPROM could
be abandoned.

New design (i.e., Fruit-128) requires to access four key bits sequentially (while
the round key function of Fruit-v2 uses six key bits randomly). In the round key
function of Fruit-128, we divide 128-bit key to four independent 32-bit keys, and
it needs that in every clock we access one bit of each 32-bit key cyclically. Thus
it is possible to implement the round key function of Fruit-128 in all types of
commercial memories.

4 The design of Fruit-128

The internal state consists of 65-bit LFSR (lt, ..., l(t+64)), 63-bit NFSR (nt, ..., n(t+62)),
10-bit counter (Cr : (c0t , ..., c

9
t )) and 7-bit counter (Cc : (c1t0, ..., c

16
t )). A gener-

al view of Fruit-128 is presented in 1. Fruit-128 accepts 128-bit secret key (K:
(ki, 0 ≤ i ≤ 127)) and 128-bit public Initial Value, (IV : (vi, 0 ≤ i ≤ 127)) as
inputs. The maximum number of the keystream bits that can be produced from
one key and IV is 264 bits. IVs should be produced in a random way.

Fig. 1. The Block Diagram of Fruit-128

Now we explain each part of the cipher in details:

Counters. the first 10 bits of the counter (Cr) are allocated to the round
key function, and the last 7 bits (Cc) are allocated to the initialization and
keystream generation. These two counters work (count) cyclically and indepen-
dently, i.e. the first counter (c0t , ..., c

9
t ) is increased one by one in each clock, and



Necessary conditions for stream ciphers with the minimal internal states 7

also the second counter (c10t , ..., c16t ) count from zero independently. These two
counters increase at each clock, and work continually (i.e. after the first and
second parts become all ones, counting from zeros to all ones again). Note that
c9t and c16t are LSB of the two counters, i.e. before the first clock, our counter is
(00000000000000000). Then, after the first clock, our counter is (00000000010000001).

Round key function. we define some indexes of the key for using in the round
key function. The indexes are 5 bits of Cr counter and they change in the each
clock. We introduce r = (c0t c

1
t c

2
t c

3
t c

4
t ), s = (c5t c

6
t c

7
t c

8
t c

9
t ), p = (c2t c

3
t c

4
t c

5
t c

6
t ) and

q = (c7t c
8
t c

9
t c

0
t c

1
t ). We combine 4 bits of the key to obtain the bits of the round

key for g function (k′t) and round key for h function(k∗t ) in each clock as follows.

k′t =kr · k(s+32) · k(p+64) ⊕ kr · k(p+64) ⊕ k(s+32) · k(q+96)

⊕ k(s+32) ⊕ k(p+64) ⊕ k(q+96)

(1)

k∗t =kr · k(s+32) · k(q+96) ⊕ kr · k(s+32) ⊕ k(p+64) · k(q+96)

⊕ kr ⊕ k(s+32) ⊕ k(p+64)

(2)

Round IV function. we define an index of the IV for using in the round IV
function. The index is dependent on Cr counter and it changes in the each clock.
We introduce y = (c3t c

4
t c

5
t c

6
t c

7
t c

8
t c

9
t ).

v∧t = vy (3)

g function. we use 1 bit of the counter, k′t, v
∧
t and 21 bits of the NFSR as

variables of g function for clocking of the NFSR. The feedback function of the
NFSR is as follows.

n(t+63) = k′t ⊕ lt ⊕ v∧t ⊕ c6t ⊕ nt ⊕ n(t+10) ⊕ n(t+29) ⊕ n(t+50)

⊕ n(t+62) · n(t+60) ⊕ n(t+15) · n(t+40) ⊕ n(t+25) · n(t+46)

⊕ n(t+1) · n(t+3) ⊕ n(t+38) · n(t+35) ⊕ n(t+8) · n(t+19) · n(t+28)

⊕ n(t+48) · n(t+55) · n(t+57) · n(t+59)

(4)

f function. the feedback function of the LFSR is primitive. Hence it can produce
a sequence with the maximum period. The feedback function of the LFSR is as
follows.

l(t+65) = lt ⊕ l(t+7) ⊕ l(t+33) ⊕ l(t+53) ⊕ l(t+61) ⊕ l(t+63) (5)



8 V. A. Ghafari et al.

h function. this function produces pre-output bits from the LFSR, key bits,
and NFSR states as follows.

ht = k∗t · n(t+62) ⊕ k∗t · n(t+1) ⊕ l(t+1) · l(t+45)

⊕ l(t+9) · l(t+57) ⊕ n(t+37) · l(t+25) ⊕ n(t+11) · l(t+64)

⊕ l(t+29) · l(t+17) ⊕ n(t+61) · n(t+62) ⊕ n(t+2) · n(t+1) · l(t+49)

(6)

Output function. the output stream will be produced by 7 bits from the
NFSR, 1 bit from the LFSR, and output of h function as follows.

zt = ht ⊕ n(t+3) ⊕ n(t+27) ⊕ n(t+47) ⊕ n(t+43) ⊕ n(t+19)

⊕ n(t+53) ⊕ n(t+60) ⊕ l(t+37)

(7)

Initialization of the cipher. we extend IV bits to the 150 bits by concate-
nating 22 bits to the end of it. 21 bit zeros and 1 bit one are concatenated to
the end of IV, as follows.

IV ′ = v0v1v2...v125v126v127000...001 (8)

In the initialization procedure, key bits are loaded to the NFSR and LFSR
from LSB to MSB (k0 to n0, k1 to n1, ..., k62 to n62, k63 to l0, k64 to l1, ..., k127
to l64). c

0
0,c

1
0, ..., c

15
0 ,c160 are set to 0 in the first step of the initialization. The

cipher is clocked 150 times, but before each clock, the XOR of the output bits
and IV ′ bits is fed to the NFSR and LFSR (i.e. zi ⊕ v′i, 0 ≤ i ≤ 149 (as show in
Figure. 1).

Then, in the second step of the initialization, we set all bits of Cr equal to LSB
of the NFSR (c0150 = n150,c

1
150 = n151, ..., c

8
150 = n158,c

9
150 = n159), 6 bits of Cc

equal to LSB of the LFSR (c11150 = l150,c
12
150 = l151, ..., c

15
150 = l154,c

16
150 = l155),

and also l150 is set to 1 (for preventing that LFSR becomes all zeros before
producing the first bit of the keystream).

Then, in the third step of the initialization, the cipher should be clocked until
all bits of Cc become ones (c10 = c11 = ... = c16 = 1) without the feedback in
the LFSR and NFSR (i.e. during the third step of the initialization the feedback
of zi ⊕ v′i is disconnected from the LFSR and NFSR). The number of clocks in
the third step of the initialization is a random number from 65 to 128 (i.e. the
minimum and maximum number of clocks are 65 is 128 respectively).

5 The design criteria

Limitation for the producing keystream. the maximum produced keystream
is 265 bits in each initialization (because the period of the NFSR is a multiple
of 265 − 1).



Necessary conditions for stream ciphers with the minimal internal states 9

Round key function. there are two important criteria in this section. First, it
should be able to provide the appropriate participation of all bits of the key in the
internal states updating. Second, the round key function should be lightweight
in hardware. The round key function produces 2×210 different keys by involving
4 bits of the key. The 4 bits are changed in every clock uniformly. If an attacker
can (by guessing the internal state and known keystreams) obtain some bits of k′t
and k∗t , it is hard to obtain the key bits due to the unknown counter (unknown
index of the key in the functions) and nonlinear round key function. k∗t was
multiplied by NFSR bits to make high degree monomials based on key bits in
the keystream (for forward and backward clocking).

Round IV function. one bit of IV is selected in every clock by this function
cyclically, and it is sent to g function. The counter specifies which IV bit is
selected.

g function. the function that produces n(t+63) has been chosen in 21 variables
of the NFSR with regard to the light implementation in the hardware (it is 29
variables in Grain-128a). If we suppose k′t ⊕ v∧t ⊕ c6t = 0, the nonlinearity of g
function will be 24× 64192 and resiliency 3. The variables for the highest degree
term have been chosen from nt with t > 47 that, the degree of polynomials
reaches the maximum possible degree in NFSR very soon.

f function. LFSR generates the sequences with the maximum period (the feed-
back polynomial is primitive). We are sure that the period of the LFSR and
NFSR is at least 265−1 (because l150 is set to 1 after disconnecting the feedback
of output from the LFSR). Some attacks were proposed to the Grain family and
Sprout from this weakness (i.e. it is possible that the LFSR becomes all zeros
after key-IV loading) [21, 5].

Dynamic initialization. it is essential to generate the monomials with the
maximal degree in the initialization, and to distribute them in all bits of the
LFSR and NFSR. We copy six bits of the LFSR to six bits of Cc counter (i.e.
all bits of Cc are changed except c10150) in the second step of initialization, and
we continue the clocking in the third step of the initialization until all bits of Cc
become ones. As c10150 becomes zero in the end of the first step of the initialization,
the number of clocks is a random number from 215 to 278 in the whole of the
initialization. We increase security margin against key recovery attacks from
known internal state by this new idea with small cost of area. As the internal
state updating function is bijective, it is very simple in most of stream ciphers
to retrieve key from known internal state. Although internal state updating
function is bijective in Fruit-128, but retrieving the key bits is not as simple as
clock back.



10 V. A. Ghafari et al.

Output function. The nonlinearity of h function is 16192. We add 8 linear
terms to increase the nonlinearity to 2(8.16192), and also to build a function with
7 resiliency. The best linear approximation of the output function has 8 terms
with 2(−7.415) bias. Regard to the minimal internal state of Fruit-128 and direct
influence of the key bits on the keystreams, we used a more complicated function
in output function than that of Grain-128a.

6 The resistance to known attacks

Only TMDTO distinguishing attack was successfully applied to all of the US-
PUK (i.e. Sprout, Fruit-v2 and Plantlet [11]). Designers of Fruit-v2 and Plantlet
ruled out TMDTO distinguishing attacks against their ciphers. They stated that
the attack needs so many resources (e.g. 250.2 (known) bits of keystream and
147 terabytes memory for the attack on Fruit-v2) and it can only distinguish
the keystream of the ciphers from truly random sequences. Nevertheless, as the
attack complexity is significantly smaller than that of brute force attack, we
considered it in the design of Fruit-128. We discuss that Fruit-128 is resistant
against all types of attacks (especially TMDTO attacks).

Time-Memory-Data Trade-off Attack. it is known that the size of the
internal state should be at least twice of its security level in every stream cipher
to resist against this attack. It means that the number of the possible internal
states should be at least 2256 for Fruit-128 after initialization procedure (or after
so many clocks) to resist against classical TMDTO attacks. The key, IV, LFSR,
NFSR, and counter were used as the internal state in Fruit-128. Thus the size
of the internal state is bigger than 256 bits in all conditions of Fruit-128. The
size of the internal state of Grain-128a and Fruit-128 under a fixed key is 256
and 266 bits respectively (266 is obtained from the sizes of IV, FSR and Cr).
Therefore the TMDTO distinguishing attack similar [11] is not applicable to
Fruit-128. Note that for a fixed key and IV in Fruit-128 (because of the LFSR
period), it is not possible that threre exist same internal states in two different
clocks (i.e. the period of the internal state is at least 265).

Another condition for resisting a stream cipher to TMDTO attack is a good
sampling resistance [6]. It means that an attacker cannot easily find the internal
states for producing the keystreams with special pattern (e.g. the keystreams
that start with 10 ones). An attacker should fix at least 7 variables of h function
to linearize the output function and to easily identify the special internal states
(it is at least 4 variables for Grain-128a). Hence it is suitable.

TMDTO Distinguishing Attack without Round IV Function. here we
want to investigate that if the round IV function is eliminated from Fruit-128,
how is possible to apply TMDTO distinguishing attacks to it. An attacker (un-
der a fixed key and without IV mixing function in the keystream generation
step) produces 269 keystreams. Because the internal state of Fruit is 138 bits,



Necessary conditions for stream ciphers with the minimal internal states 11

every keystream should be at least 138 bits. He saves keystreams in a searchable
table. If he produces again 269 keystreams with the same key and different IVs
and search them on the table, he can find at least one collision based on the
birthday paradox (distinguishing attack) [11]. The attacker finds two different
IVs that under the same key (but in a different clock) arrive at the same internal
state (and consequently the same keystream). Thus the data, time and memory
complexity of the attack are 269 × 138 bits of keystream, 269 running of the
cipher and 269 × 138 bits memory respectively. Note that the attack only can
distinguish the keystream of the cipher from truly random sequences.

Guess and Determine Attack. this attack is very important (because the
FSR in Fruit-128 is short and a guess and determine attack was applied to Sprout
[5]. If an attacker wants to produce only the 9 bits of the keystream, he needs
to guess all bits of the FSR. We suppose that the attacker guesses some bits
of FSR. He can clock one time forward and one time backward and obtains k∗t
and k∗t−1. For next clocks, he needs the new bits that should be generated by g
function. The output of g function is dependent on k′t. If the attacker guesses the
k′t bits, the complexity of the attack becomes more than that of an exhaustive
search attack after 9 clocks.

In another attack scenario, if an attacker considers the k′t bits as unknown
variables, after 11 clocks, the polynomial degree of keystream reaches 19 based
on 24 key bit variables. The degree grows very fast and he cannot solve the equa-
tion system. He cannot identify wrong candidates of internal states (or obtain
new values of internal states) before solving the equation system. Note that if
the attacker supposes that n(t+62) ⊕ n(t+1) is zero for some clocks, k∗t becomes
ineffective on keystreams. In this situation, he should guess all bits of the FSR
and Cr (i.e. 138 bits) to apply the attack. The attacker needs to clock at least
128 clocks (he obtains one equation for k′t in every clocks). As the solving the
nonlinear equation system is very hard, the complexity of the attack is more
than that of an exhaustive search attack.

Linear Approximation Attack. if the NFSR and the output function are not
chosen with suitable nonlinearity and suitable resiliency, the ciphers with Grain
structure will be vulnerable to linear approximations attack [17]. We choose the
NFSR and output function with suitable nonlinearity and resiliency. The best
linear approximation of the output has 2(−7.415) bias as follows (we suppose
k′t ⊕ c6t ⊕ v∧t = k∗t = 0).

zt = n(t+3)⊕n(t+27)⊕n(t+47)⊕n(t+43)⊕n(t+19)⊕n(t+53)⊕n(t+60)⊕ l(t+37) (9)

The best linear approximation of the NFSR feedback function has 2(−6.6)

bias as follows.

n(t+63) = lt ⊕ nt ⊕ n(t+10) ⊕ n(t+29) ⊕ n(t+50) (10)



12 V. A. Ghafari et al.

If we remove the NFSR variables between these two relations (by XORing the
shifted linear approximation of the output), we obtain the following relation with
2(−72.3) bias (by Piling-up Lemma).

zt ⊕ z(t+10) ⊕ z(t+29) ⊕ z(t+50) ⊕ z(t+63) =

l(t+3) ⊕ l(t+27) ⊕ l(t+47) ⊕ l(t+43) ⊕ l(t+19) ⊕ l(t+53)

⊕ l(t+60) ⊕ l(t+37) ⊕ l(t+47) ⊕ l(t+66) ⊕ l(t+87) ⊕ l(t+100)

(11)

If an attacker tries to obtain a relation only based on the output bits by using
the feedback function of LFSR, the bias of the relation will be too small (i.e.
about 2(−72.3)). Thus, Fruit-128 is resistant to this attack.

Related-key Attack. designers of Plantlet cipher mentioned that related-key
attacks are out of scope of Plantlet security (because the key is fixed), but when
they suggested EEPROM for saving key, and they emphasized on EEPROM
(because it is easy to rewrite a new key on EEPROM [18]), we think related-key
attacks should be considered. There are vulnerabilities in the initialization of all
members of the Grain family [15, 8] and Sprout [12, 19]. However, we propose a
new scheme in the initialization procedure to strengthen Fruit-128 against this
attack. We use the IV bits permanently in the keystream generation and also we
did not load the IV bits in the internal state and did not combine the IV and
key bits straightforward together. Therefore, Fruit-128 is resistant to this attack
by exploiting new ideas and asymmetric padding in the IV bits loading.

Cube Attack. dynamic Cube attack was applied to Grain-128 [9, 4] because
the degree of feedback of NFSR was small, i.e. 2. The degree of feedback of NFSR
was increased to 4 in Grain-128a to response this weakness [1]. Because of the
suitable initial clock number of Fruit-128 and the high degree of NFSR feedback,
it is too hard to find any small degree multiplicative expression based on some
bits of the IV in the Boolean function of the keystream. In Fruit-128, the length
of LFSR and NFSR is shorter than that of Grain-128a, and also there are 23
variables in the output function of Fruit-128 while there are 17 variables in the
output function of Grain-128a. Thus, it is acceptable that the degree of key and
IV variables in the initialization of Fruit-128 grows faster than that of Grain-
128a. As the minimum number of the clocks in the initialization of Fruit-128
(i.e. 215 clocks) is less than that of Grain-128a (i.e. 256 clocks), we implemented
a Cube attack on Fruit-128. These results show that Fruit-128 (with 215 initial
clocks) is resistant to Cube attack.

Algebraic Attack. this type of attack has not been applied to Grain family,
but a special case of this attack was applied to Sprout [4]. Weak round key
function made this weakness in Sprout. It is impossible for an attacker to apply
the pure algebraic attack on Fruit-128 because the degree of polynomials in the
internal state grows very fast. We discuss that a combination of a guess and
determine attack with an algebraic attack is not applicable to Fruit.



Necessary conditions for stream ciphers with the minimal internal states 13

If an attacker guesses bits of the NFSR, Cr and outputs of the round key
function, then he obtains three equations in each clock (one from the keystream
generation based on the LFSR bits and two equations from the round key func-
tion based on key bits). These equations are degree 2 and 3. It is not easy to
solve the equation system, but we suppose that the attacker can solve equations
of keystream and obtain 1 bits of the LFSR in each clock. In this scenario, he
should guess at least 2 × 63 bits of the round key function (because it needs
at least 63 clocks to use all bits of the key and there are 2 round key function
outputs in every clock). Totally, the attacker should guess 63+10+64 bits and
he should solve the nonlinear equation system for key). Thus, the computational
complexity of the attack is more than that of an exhaustive search attack.

Weak key-IV. there are weak key-IVs in Grain family [21] and Sprout [5, 19]. It
is possible that all bits of the LFSR become zeros immediately after initialization
for some key-IVs. In this situation, the LFSR remains all zeros for all clocks, and
NFSR statistical properties will become non-random. In this case, the period of
the cipher is unknown, and the keystream is only dependent on NFSR bits, and
the cipher is vulnerable. This situation is very important in Fruit-128 with regard
to the short FSR. As we set l150 to 1 in the second step of the initialization (and
the LFSR works independently after that), it is impossible that all bits of the
LFSR become zeros in Fruit-128. Thus, there is no weak key-IV in Fruit-128.

7 Implementation Results

The design of ultra-lightweight ciphers is very important in the technology, while
there are needs for lightweight ciphers in many fields such as RFID and WSN.
Our goal was to design a secure USPUK for 128-bit security against all types
of attacks. We tried to choose the functions and parameters based on minimum
area size. We evaluated that the security margin was minimum to achieve ultra-
lightweight cipher.

To get area size in hardware implementation for Fruit-128 and Grain-128a
(without authentication section), TSMC 90 nm technology process is used and
Synopsys Design Compiler Version C-2009.06-SP5 is used for synthesis and op-
timization.

We compare the area size of the hardware implementation of ciphers. The
area size of Fruit-128 is significantly less than Grain-128a (without authentica-
tion section), as expected with regard to the length of the internal state (the
internal state of Grain-128a is 256 bits for the FSR and 8 bits for the counter in
the initialization, but for Fruit-128 is 128 bits for the FSR and 17 bits for the
counter). Note that one GE is equivalent to the area of a 2-way NAND gate.
1 shows that the area size of Grain-128a is about 25.2% bigger than that of
Fruit-128 in our results. It is obvious that a hardware implementation should
be in the same condition and GE of Grain-128a should be considered excluding
authentication section. We did not dedicate any GE to storing the key and IV
bits. It was supposed that key and IV bits were saved for application purpose.



14 V. A. Ghafari et al.

Table 1. The area size for Fruit-128 and Grain-128a (without authentication section)
in hardware implementation

Cipher Area size(GE) Throughput (Kb/s) Platform Source

Grain-128aΩ [1] 2146 100 -Ω [1]

Grain-128a [1] 2001 100 90 nm CMOS Our work

Fruit-128 1598 100 90 nm CMOS Our work
ΩThe estimated gate count in an actual implementation [1]

Key bits should be stored in the most applications for reuse with different IVs
(implementations of Sprout, Fruit-v2, and Plantlet were done by this suppose on
key bits [3, 2, 18]). As discussed before, usually IV bits are independently pro-
duced in encryption and decryption side sequentially from the parameter(s) of
the system (e.g. from packet number in A5/1). Most of the system parameters
should be saved in memories for updating and next using. Usually, the memories
values are used as IV. New IVs and parameters are produced sequentially. Pro-
ducing the same IV is impossible under the same key. In the cases that IVs are
produced from some different parameters of the system, it is still possible that
IV bits would be available (from their sources) for permanently using in ciphers.
In these cases, the existence of a mechanism for prevention of production of the
same IV under the same key is compulsory. As already mentioned it is possible
to eliminate the round IV function from Fruit-128.

8 Conclusion

If we consider a situation that key is fixed in Fruit-v2 and Plantlet ciphers, all
of them are vulnerable to TMDTO distinguishing attacks. In addition, although
the number of clocks in the initialization of Plantlet is twice of the initial clocks
of Grain-v1 (and this is not suitable for devices with limited resources), it seems
that the initialization of Planet suffers variable-key attacks. In Plantlet proposal
variable-key attacks was left because authors stated that key is fixed (this is
not acceptable while one of the main design contributions was storing the key
on EEPROM to rewrite new keys easily). Thus we proposed Fruit-128 that it
is resistant against all types of attacks (especially to variable-key and TMDTO
distinguishing attacks).

Fruit-128 has an obvious advantage in the applications that key and IV are
permanently available in the ciphering system. The area size of Fruit-128 is about
25.2% smaller than that of Grain-128a in hardware implementation.

In situations that IV bits are not permanently available, it is possible to
eliminate the IV mixing function from the keystream production step. We showed
that if we ignore the round IV function from Fruit-128, a TMDTO attack is
applicable for distinguishing the keystream from truly random sequences under
a fixed key (with 276.1 (known) bits of keystream, 269 times encryption and
9,261,023,232 terabytes memory). The attack is unpractical and based on the



Necessary conditions for stream ciphers with the minimal internal states 15

application might be tolerable (the security level decreases to 69 bits against
distinguishing attack).

Round key function of Fruit-128 is lighter than that of Fruit-v2 and accessing
to key bits on memory is sequentially (thus Fruit-128 can efficiently work on
hardware). It is possible to redesign many of stream ciphers by design idea of
Fruit-128 and achieve significantly smaller area size.

9 Acknowledgement

This work has been supported by CAS-TWAS President’s Fellowship for Inter-
national PhD program.

References

1. Ågren, M., Hell, M., Johansson, T., Meier, W.: Grain-128a: a new version of grain-
128 with optional authentication. IJWMC 5(1), 48–59 (2011)

2. Aminghafari, V., Hu, H.: Fruit-v2: ultra-lightweight stream cipher with shorter
internal state. IACR Cryptology ePrint Archive 2016, 355 (2016)

3. Armknecht, F., Mikhalev, V.: On lightweight stream ciphers with shorter inter-
nal states. In: FSE. Lecture Notes in Computer Science, vol. 9054, pp. 451–470.
Springer (2015)

4. Aumasson, J., Dinur, I., Henzen, L., Meier, W., Shamir, A.: Efficient FPGA imple-
mentations of high-dimensional cube testers on the stream cipher grain-128. IACR
Cryptology ePrint Archive 2009, 218 (2009)

5. Banik, S.: Some results on sprout. In: INDOCRYPT. Lecture Notes in Computer
Science, vol. 9462, pp. 124–139. Springer (2015)

6. Biryukov, A., Shamir, A., Wagner, D.: Real time cryptanalysis of A5/1 on a PC.
In: FSE. Lecture Notes in Computer Science, vol. 1978, pp. 1–18. Springer (2000)

7. Dey, S., Sarkar, S.: Cryptanalysis of full round fruit. IACR Cryptology ePrint
Archive 2017, 87 (2017)

8. Ding, L., Guan, J.: Related key chosen IV attack on grain-128a stream cipher.
IEEE Trans. Information Forensics and Security 8(5), 803–809 (2013)

9. Dinur, I., Shamir, A.: Breaking grain-128 with dynamic cube attacks. In: FSE.
Lecture Notes in Computer Science, vol. 6733, pp. 167–187. Springer (2011)

10. Esgin, M.F., Kara, O.: Practical cryptanalysis of full sprout with TMD tradeoff
attacks. In: SAC. Lecture Notes in Computer Science, vol. 9566, pp. 67–85. Springer
(2015)

11. Hamann, M., Krause, M., Meier, W., Zhang, B.: Time-memory-data tradeoff at-
tacks against small-state stream ciphers. IACR Cryptology ePrint Archive 2017,
384 (2017)

12. Hao, Y.: A related-key chosen-iv distinguishing attack on full sprout stream cipher.
IACR Cryptology ePrint Archive 2015, 231 (2015)

13. Hell, M., Johansson, T., Meier, W.: Grain: a stream cipher for constrained envi-
ronments. IJWMC 2(1), 86–93 (2007)

14. Lallemand, V., Naya-Plasencia, M.: Cryptanalysis of full sprout. In: CRYPTO (1).
Lecture Notes in Computer Science, vol. 9215, pp. 663–682. Springer (2015)



16 V. A. Ghafari et al.

15. Lee, Y., Jeong, K., Sung, J., Hong, S.: Related-key chosen IV attacks on grain-
v1 and grain-128. In: ACISP. Lecture Notes in Computer Science, vol. 5107, pp.
321–335. Springer (2008)

16. Maitra, S., Sarkar, S., Baksi, A., Dey, P.: Key recovery from state information
of sprout: Application to cryptanalysis and fault attack. IACR Cryptology ePrint
Archive 2015, 236 (2015)

17. Maximov, A.: Cryptanalysis of the ”grain” family of stream ciphers. In: ASIACCS.
pp. 283–288. ACM (2006)

18. Mikhalev, V., Armknecht, F., Müller, C.: On ciphers that continuously access
the non-volatile key. IACR Transactions on Symmetric Cryptology 2016(2), 52–
79 (2017)

19. Roy, D., Mukhopadhyay, S.: Fault analysis and weak key-iv attack on sprout. IACR
Cryptology ePrint Archive 2016, 207 (2016)

20. Zhang, B., Gong, X.: Another tradeoff attack on sprout-like stream ciphers. In:
ASIACRYPT (2). Lecture Notes in Computer Science, vol. 9453, pp. 561–585.
Springer (2015)

21. Zhang, H., Wang, X.: Cryptanalysis of stream cipher grain family. IACR Cryptol-
ogy ePrint Archive 2009, 109 (2009)


