
Private Collaborative Neural Network Learning

Melissa Chase1, Ran Gilad-Bachrach1, Kim Laine1, Kristin Lauter1, and Peter Rindal2

1 Microsoft Research, Redmond, WA
2 Oregon State University, Corvallis, OR

Abstract. Machine learning algorithms, such as neural networks, create better predictive mod-
els when having access to larger datasets. In many domains, such as medicine and finance, each
institute has only access to limited amounts of data, and creating larger datasets typically re-
quires collaboration. However, there are privacy related constraints on these collaborations for
legal, ethical, and competitive reasons. In this work, we present a feasible protocol for learn-
ing neural networks in a collaborative way while preserving the privacy of each record. This is
achieved by combining Differential Privacy and Secure Multi-Party Computation with Machine
Learning.

Keywords: Deep Learning, Neural Networks, Differential Privacy, Secure Multi-Party Computa-
tion

1 Introduction

Recent advances in neural network learning showed that significant improvements in accuracies can
be achieved by having access to large datasets Krizhevsky et al. [2012]. Collecting large datasets
may be challenging in domains such as medicine and finance, where privacy is a major concern.
For example, the Health Insurance Portability and Accountability Act (HIPAA) in the United States
establishes rules to protect patient health records, and puts constraints on the ability of health care
providers to share patient data. Similarly, the Financial Privacy Rule in the Gramm–Leach–Bliley
Act puts constraints on the sharing of financial information. In other cases, the data may be dis-
tributed between competing companies. For example, credit card companies may be interested in
collaborating to create a model to detect fraud, but at the same time they are reluctant to share their
data since it may leak trade secrets. Therefore, creating large datasets is, in many cases, a lengthy
and costly legal process.

Secure Multi-Party Computation (MPC) refers to a set of cryptographic technologies designed
to enable computation over data distributed between different parties so that only the result of the
computation is revealed to the participants, but no other information is shared Yao [1982]. For ex-
ample, two companies that are considering merging their businesses may be interested in computing
how large is the intersection of their current customer bases without revealing their customer lists to
each other.

MPC has been studied for several decades, but it has only recently become feasible for compli-
cated computations due to newly discovered implementation optimizations, the availability of faster
hardware with extremely fast implementations of the AES block cipher, and the availability of fast
networking. It is now possible to evaluate circuits at the speed of up to 7 billion gates per second,
assuming the computation is represented as a Boolean circuit Araki et al. [2016]. Nevertheless, MPC
suffers from two main drawbacks for the purposes discussed in this study. First, it is still infeasible
to run generic MPC protocols over many remote parties especially due to high communication costs.
For example, Mohassel and Zhang Mohassel and Zhang [2017] have recently introduced a system

1. INTRODUCTION

that can train neural networks using MPC and secret sharing. Their work uses clever techniques to
speedup computation but nevertheless, it still requires large amounts of communication and there-
fore may be too slow for many applications. Second drawback of MPC is that while MPC secures
any intermediate result, it does not provide any privacy in the end result. That is, a trained model
might leak information about the dataset that was used to train it.

Differential Privacy (DP) Dwork et al. [2006b] addresses the issue of leakage of information
from the result of a computed function. The goal is to reveal only results such that even in the
presence of auxiliary information, it is impossible to tell if a certain record was, or was not, in
the dataset that the function was computed on. Consider for example a function that computes the
number of people in a certain hospital suffering from a particular disease. If this number is zero then
it is possible to conclude that no person who is currently in that hospital has the disease. Hence, even
innocent looking functions might leak private information.

To achieve differential privacy, it is necessary to add random noise to the result Dwork et al.
[2014]. For example, when counting the number of patients with a certain disease, it is possible to
achieve privacy by adding a Laplace-distributed random number to the computed number of patients,
and publish only the perturbed result.

While it has been showed that neural network training can be made private using differential
privacy tools Song et al. [2013], Abadi et al. [2016], DP does not provide a solution to the collabo-
ration problem discussed here. If the data is distributed between multiple parties, then each one of
them must add noise to the data it shares. This will result in excessive amounts of noise added during
the training process, which will result in a poor model. The most severe situation is when there are
many parties, but each one of them holds just small amounts of data. For example, imagine that the
goal is to train a neural network over genetic information. It may be the case that each party has
only a single record to share: their own genome. In this case, the noise would be much larger than
the amplitude of the information, and the perturbed signal would be of limited use. In this case, the
amount of noise each party adds compared to the amount of information would be so large that the
shared information would not have any practical use.

Therefore, DP provides a solution to privacy issues, but does not handle the collaboration part,
while MPC addresses the collaboration issue, but does not handle the privacy part. Hence, in this
work we marry these two technologies to support collaborative privacy, especially in the case of
training neural networks.

Training neural networks is typically done by some form of stochastic gradient descent Kelley
[1960]. In each step of this iterative process, the average of the gradients of a mini-batch of samples
is computed with respect the current weight vector. This is used as a proxy to the gradient of the
loss function, and a step is taken in the inverse direction of the gradient to minimize the loss. Some
algorithms also collect higher-order information to further accelerate the training process Kingma
and Ba [2014].

In creating a privacy preserving training process we follow the approach of Abadi et al. [2016]
and make each average gradient of a mini-batch private by adding random noise so that the perturbed
gradient becomes differentially private. We introduce an MPC protocol that allows random noise to
be added only once per mini-batch regardless of the number of parties involved in the computation.
We take special care in making the MPC protocol computationally efficient, and communication
efficient.

Our main contribution is the introduction of a private collaborative neural network training algo-
rithm with theoretical and empirical evaluations. The methods we employ can be used also in other
situations, for example, for training different types of models. Our solution assumes the semi-honest
security model, where the parties are assumed to follow the designed protocol, but may attempt to
learn private information by analyzing their view of the protocol execution. Furthermore, we assume

2

2. BACKGROUND

that the parties are non-colluding in the sense that they share only share the information instructed
to share by the protocol. We conjecture that these are realistic assumptions in many real-world ap-
plications.

2 Background

To provide a solution to the problem of private collaborative neural network learning, we combine
several technologies including MPC, DP, and secret sharing. In this section, we provide a brief
introduction to these technologies.

2.1 Differential Privacy (DP)

The goal of differential privacy is to define a notion of privacy for evaluating functions on a dataset,
and to construct mechanisms that can be mathematically proved to provide privacy in this sense
Dwork et al. [2006b, 2014]. In differential privacy, the privacy guarantee is parametrized by two
parameters: ε, δ ≥ 0. A function f : X∗ → Y is said to be (ε, δ)-DP if for every S ⊆ Y , and every
pair of datasets D,D′ ∈ X∗ that differ at a single record, it holds that

Pr [f (D) ∈ S] ≤ eε Pr [f (D′) ∈ S] + δ ,

where the probabilities are with respect to the internal randomness of f . The idea behind this defini-
tion is that differentially private functions reveal very little information about individual records in
the datasets they were computed on.

One of the ways to turn a non-private function f into a private one is by adding random noise.
This typically requires that f is a Lipschitz-smooth function with respect to some norm, i.e.

‖f (D)− f (D′)‖ ≤ ∆ |D −D′| .

In this case, it is possible to find a distribution such that the function D 7→ f(D) + Rand has the
desired privacy, when Rand is sampled from the distribution.

When using DP, it is important to keep track of the aggregated information leak if more than one
function is computed. Namely, assume a set of functions f1, f2, . . . is computed. Even if each one
of them is (ε, δ)-DP, their combination might not have the same properties. In this case, composition
bounds are use to analyze the privacy properties of the entire computation Kairouz et al. [2017]. In
these settings a distinction is being made between the non-adaptive case, in which all the functions to
be computed are announced in advance, and the adaptive case, in which the functions to be computed
may be altered based on the results of previous computations.

2.2 Secure Multi-Party Computation (MPC)

MPC is a set of cryptographic tools aimed at allowing collaboration in computation. Assume that
there are k parties such that each party i holds a private value xi. The goal is to evaluate a function
f (x1, . . . , xk) so that each party will learn the result, but no information about each other’s inputs xi
beyond what can be inferred from the result. Some MPC techniques are generic in the sense that
they can be applied to a broad range of functions (such as Boolean circuits) Yao [1982], Araki et al.
[2016], while other techniques may be designed for a specific set of functions. It has already been
shown that combining MPC and DP can be useful Dwork et al. [2006a].

3

3. ALGORITHMS AND ANALYSIS

2.3 Secret Sharing

Secret sharing is designed to allow storing data in a distributed way so that each individual share does
not reveal any information about the data, but when combined, the full data can be recovered Shamir
[1979], Beimel [2011]. For example, assume x is a number in the range [−C,C). We can pick a
random number r uniformly sampled from the same range, and create a secret share such that in one
location r is recorded, and in another location x + r smod C is recorded.3 Since both r and x + r
are uniformly distributed in [−C,C), each one of them in isolation does not reveal any information
about x. However, having access to both allows computing the secret x. It is easy to see that two
such secret shares can be added to create a secret share of the sum of the secrets. Therefore, the type
of secret sharing presented here provides an efficient method to implement an MPC protocol for the
addition function.

3 Algorithms and Analysis

In this section, we describe the algorithms proposed for solving the distributed private neural net-
work learning problem, and we also analyze these algorithms. We start by discussing the issue of
introducing privacy to gradient descent type algorithms, after which we discuss the collaborative
part.

3.1 Private Gradient Descent

Many machine learning algorithms use variants of Gradient Descent (GD) to optimize the parame-
ters of the model. In a nutshell, these algorithms begin with a random initial assignment w0 to the
parameters of the model. In some cases, an auxiliary variable a0 is initialized as well.4

In the i’th iteration a subset of the training data B is selected, and a gradient

gi =
∑
z∈Bi

F ′ (wi−1, z) (1)

is computed, where F is the function to be optimized. At this point an update function φ is used to
update the parameters of the problem

(wi, ai) = φ (wi−1, ai−1, gi)

where wi is a new assignment to the parameters of the problem, and ai is a new assignment to the
auxiliary variables. This procedure is applied several times, and the final weight vector is used as
the output of the learning process.

To ensure that the model does not leak private information, we use DP tools. These tools require
bounding the sensitivity of the output with respect to changing a single input record. However, as
observed by Abadi et al. [2016], since the update function φ might be complex, and since F ′ might
be complex as well, it is easier to make sure that gi is private, and use composition bounds Dwork
et al. [2014] to make sure that the final model has the desired DP properties. The method we describe
here is a generalization of the methods presented in Abadi et al. [2016] and Song et al. [2013].

3 smod is the symmetric mode operation formally defined as x smod C = ((x+ C) mod 2C)− C
4 For example, some algorithms use auxiliary variables to track an approximation of the Hessian of the func-

tion to be optimized.

4

3. ALGORITHMS AND ANALYSIS

The first step in making gi private is to make sure that each term F ′ (wi−1, z) is bounded, and
then add some random noise. Following Abadi et al. [2016], we define a function Clip that scales
each gradient to be no larger than the required size:

Clip (C, x) = min

(
1,

C

‖x‖

)
x ,

where the exact norm used (in this paper either L1, L2 or L∞ norm) will be discussed later, and
C > 0 is the desired size. Therefore, we replace (1) with

gi =
∑
z∈Bi

Clip (C,F ′ (wi−1, z)) . (2)

We note that in neural networks it sometimes makes sense to split the “budget” term C between
the layers, since convolution layers tend to have fewer parameters than dense layers, which leads to
different step sizes taken in each of the layers. In these cases, the vector x has a natural breakdown
into a set of vectors x1, . . . , xl. We generate a latent budget C̃ such that if ∀i,

∥∥xi∥∥ ≤ C̃, then ‖x‖ ≤
C. For the L∞-norm, C̃ = C, for the L1-norm C̃ = C/l, and for the L2-norm C̃ = C/

√
l. In these

cases Clip(C, x) is performed by applying Clip(C̃, xi) for every i.
The gi in (2) is C-sensitive in the sense that if B̃i differs from Bi only on a single record, and g̃i

is computed from B̃i, then ‖gi − g̃i‖ ≤ C. Such functions can be made DP by adding random noise
sampled from an appropriate distribution Dwork et al. [2014]. We denote by b = b (ε, δ, C, l, d) the
parameter of the distribution of the noise, which is a function of the desired privacy parameters ε
and δ, the clipping parameter C, the number of layers l, and the dimension of the gradient vector d.
Therefore, the private version of the gradient will be:

gi =
∑
z∈Bi

Clip (C,F ′ (wi−1, z)) + Rand (b) , (3)

where Rand (b) is a vector of the same dimensionality as the gradient, such that each component is
an i.i.d. sample from the noise distribution. For the L1 case, the Laplace distribution with parameter
b = C/ε will make gi (ε, 0)-DP Dwork et al. [2014]. In the L2 case, the Gaussian distribution with
parameter b = σ = C

√
2 ln (1.25/δ)/ε will make gi (ε, δ)-DP Dwork et al. [2014]. For the L∞

case, the Laplace distribution with

b =
C
√
d
(√

log 1
δ +

√
log 1

δ + 2ε
)

ε
√
2

will result in (ε, δ)-DP, which follows from composition theorems for non-adaptive queries. We
present the proof in the Appendix.

The gradient in (3) already has DP properties, but during the learning process many gradient
steps are taken, and we need to make sure that the compounded information leak throughout the
entire process is controlled. This is achieved using so-called composition theorems. Note that the
common practice in machine learning is to break the training process into epochs. In each epoch
the entire training set is broken into disjoint mini-batches. For each such mini-batch, a gradient is
computed, and the model is updated. In terms of privacy, since the mini-batches are disjoint, each
record appears in at most one mini-batch. Therefore, as long as each gradient is (ε, δ)-DP, then the
update done in the entire epoch has the same privacy properties. However, in the training process
multiple epochs are performed. Since the gradient computed on a later epoch depends on the weight

5

3. ALGORITHMS AND ANALYSIS

Algorithm 1 Private Gradient Descent (PGD)
input C > 0, a bound on the size of the gradients
input ε∗, δ∗ > 0, differential privacy parameters
input T , the number of epochs
input w0 an initial weight vector for the neural network (can be random)
input m > 0 the size of the mini-batches
output ŵ, a private approximate to argminEz[F (w, z)]

function PGD
compute ε, δ based on (4)
compute b based on ε, δ, and the norm used
compute n← dataset size divided by m
for t = 1, . . . , nT do

let Zt be the next mini-batch of size m
compute gt =

∑
z∈Zt

Clip (C,F ′ (wt−1, z)) + Rand (b)
compute (wt, at)← φ (wt−1, at−1, gt)

end for
end function

vector w at that time, and since this weight vector depends on gradients computed in earlier epochs,
it is necessary to make sure that this adaptive nature does not result in too much information being
leaked. Theorem 3.4 in Kairouz et al. [2017] showed that if each gradient is (ε, δ)-DP and T epochs
are performed, then the overall computation is (ε∗, δ∗)-DP with

δ∗ = 1−
(
1− δ̃

)
(1− δ)T

ε∗ = min

(
Tε,

T ε (eε − 1)

eε + 1
+

√√√√2Tε2 log

(
e+

√
Tε2

δ̃

)
,
T ε (eε − 1)

eε + 1
+

√
2Tε2 log

1

δ̃

)
,

(4)

where 1 ≥ δ̃ > 0. Therefore, given a requirement for (ε∗, δ∗), a value for δ, and the number of
epochs T , it is possible to search for values for δ̃ and ε such that when used in (4) will result in
the required privacy levels (ε∗, δ∗) for the entire process. The resulting algorithm is the Private
Gradient Descent (PGD) algorithm (Algorithm 1). In our implementation of this algorithm, we use
the ADAM algorithm to perform the gradient step (wt, at) ← φ (wt−1, at−1, gt), since it is fast to
converge Kingma and Ba [2014].

Analysis of the PGD algorithm (Algorithm 1) reveals interesting properties. Although in gen-
eral the functions we use may be non-convex, we limit the analysis to the convex case. Following
Theorem 5 by Dekel et al. [2012], we obtain the following result about the optimality gap of the
algorithm, where the optimality gap is the difference in terms of loss between F

(
1
T

∑T+1
t=2 wt

)
and

the minimum of F and F = Ez [f (w, z)].

Theorem 1. Let W be a compact convex space, and assume that F :W ×Z → R is L-smooth and
convex for every z. Furthermore, assume that ‖F ′‖ ≤ C.

Assume that

∀w ∈W, σ2 ≥ Ez
[
‖∇wf (w, z)−∇wF (w) ‖2

]
,

denote D =
√

maxu,v∈W ‖u− v‖22/2, and M the size of the dataset times the number of epochs.

6

3. ALGORITHMS AND ANALYSIS

The expected optimality gap (when φ represents the dual averaging algorithm with an appropri-
ate learning rate) is bounded by

2mD2L

M
+

2Dσ√
M

+
2Dσ̃√
Mm

, (5)

where σ̃2 is the variance of Rand (b).

The proof follows from Theorem 5 of Dekel et al. [2012] by observing that the variance of gt
is bounded by σ2/m + σ̃2/m2. The significance of Theorem 1 is that it shows that the choice of
the mini-batch size is not trivial in this case. Note that σ < σ̃, so if the batch size m is small, the
right-most term in (5) dominates, and the optimum would be when the batch size is not too small.
However, ifm = O

(
M1/3

)
, then the left term and the right term are of the same order of magnitude,

and further increasing m will result in degraded performance. This also suggests that it may not be
optimal to keep the batch size fixed during the learning process.

3.2 Collaborative Gradient Computation

In Section 3.1 we introduced the PGD algorithm, which is a privacy-preserving version of the gra-
dient descent algorithm. The key to achieving privacy was adding random noise to the gradient
computed over a mini-batch. However, in the collaborative setting, the records in each mini-batch
may be distributed between different parties. Therefore, in this section we introduce a protocol that
allows computing this perturbed gradient over the distributed records without leaking any interme-
diate results.

We introduce the Collaborative Private Gradient Descent algorithm (CPGD). The algorithm dif-
fers from the PGD algorithm (Algorithm 1) only in the way it computes the perturbed gradient, and
therefore we describe here only this step.

Let Z be a batch that is distributed between k parties such Z = ∪Zi, and the i’th party holds Zi

but would like to keep every z ∈ Zi private from any other party that is involved (or not involved) in
the learning process. One possible way of implementing this step is through generic MPC protocols.
The problem with this approach is both in the computational and communication complexity, espe-
cially when the batch size is large and/or the number of parties is large. Another possible approach
is to have each party compute the gradients of the part of the batch it holds, and share it with other
parties after adding random noise to make it differentially private. This approach is computationally
efficient, but may result in poor models since the amount of noise added will be large.

To overcome these limitations, we introduce a novel protocol that is efficient, secure, and has
high utility. The Collaborative Gradient Computation (CGC) algorithm (Algorithm 2) combines
several techniques. First, each party does the gradient computation on the data it holds. Next, two
hostsH1 andH2 are nominated, and the computed gradients are shared with these hosts using secret
shares. This means sharing a random vector with H2, and the gradient perturbed by this random
vector with H1. Therefore, each one of these hosts sees a random vector, but when these two vectors
are put together the true gradient is revealed.

After each party has shared its secret shares with the two hosts, the second stage of the compu-
tation begins. First, each host sums the parts of the secret shares received from the different parties.
These sums result in a secret share of the sum of the gradients over the entire mini-batch. At this
point H1 and H2 use a secure computation protocol Yao [1982], Araki et al. [2016] to decipher the
information in the secret share, and add the random noise needed for differential privacy. In terms
of computation, this engagement is simple since it is independent of the size of the mini-batch, and
of the number of parties, and it is straight-forward to parallelize. Moreover, if the different parties

7

3. ALGORITHMS AND ANALYSIS

Algorithm 2 Collaborative Gradient Computation
input k parties, each one with a dataset Zi

input C > 0, a bound on the size of the gradients
input b, a parameter for the random noise
input w, the current weight vector
input m, the batch size
output g =

∑
i

∑
z∈Zi Clip (mC,F ′ (wt, z)) + Rand (b)

Stage I:
Each party performs:

compute gi =
∑

z∈Zi Clip (C,F ′ (wt, z))

compute ri ← Uniform [−mC,mC), a random vector with the same dimension as gi

send gi + ri to host H1

send ri to host H2

Stage II:
H1:

compute g̃1 =
∑

i (gi + ri) smod mC
compute s1 a seed for the random number generator

H2:
compute g̃2 =

∑
i ri smod mC

compute s2, a seed for the random number generator
Host 1 and host 2 use the garbled circuits protocol to compute ((g̃1 − g̃2) smod mC) + Rands1⊕s2 (b)

Recall that x smod C = ((x+ C) mod 2C)− C.

and hosts do not collude, no information leaks during the entire computation until the final result is
revealed. Therefore, there is no need to add excessive amounts of noise to guarantee privacy.

In the following Lemmas we prove the correctness and the privacy properties of this interaction.

Lemma 1. If all the parties follow the protocol, then the MPC protocol computes

g =
∑
i

∑
z∈Zi

Clip (mC,F ′ (wt, z)) + Rand (b) .

Proof. H1 receives (gi + ri) smod mC, and computes the sum smod mC of these variables. From
the properties of the smod function it follows that (see the Appendix for proof):∑

i

((gi + ri) smod mC) smod mC

=
∑
i

(gi + ri) smod mC

=

[(∑
i

gi smod mC
)
+
(∑

i

ri smod mC
)]

smod mC

= g̃1 .

At the same time, H2 receives rk and computes g̃2 =
∑
rk smod mC. Hence,

(g̃1 − g̃2) smod mC =
∑
i

gi smod mC =
∑
i

gi ,

where the last equality follows since |
∑
gk| ≤

∑
|gk| < mC, and the smod function is such that if

|x| ≤ mC then x smod mC = x (see the Appendix for proof).

8

3. ALGORITHMS AND ANALYSIS

The random seed has the property that s1 ⊕ s2 is uniformly distributed and independent of any
parties view. Therefore, the selection of Rand (b) is independent as well. Hence, we conclude that
the algorithm will compute

∑
i gi + Rand (b). ut

Lemma 2. Assume that all the parties and hosts follow the Collaborative Gradient Computation
protocol and that neither of the parties or the hosts collude. The only new information revealed in
this process is g =

∑
i

∑
z∈Zi Clip (mC,F ′ (wt, z)) + Rand (b).

Proof. We evaluate the information leaking to three types of participants: external to the process,
parties contributing gradients to the process, and hosts of the computation.

External viewers and parties contributing to the process will see the end result

g =
∑
i

∑
z∈Zi

Clip (mC,F ′ (wt, z)) + Rand (b) ,

as well as any information they contributed, and nothing else. The hosts H1 and H2 have access to
the secret shares, and we need to show that no information is leaking while processing them.

Note that si is uniformly distributed even when conditioned on s1 ⊕ s2, and therefore does not
leak any information. H2 sees uniformly distributed variables ri, and therefore will not learn any
additional information. Host H1 sees {gi + ri smod mC}, but since ri is uniform in [−mC,mC)
then gi + ri smod mC is uniformly distributed too. If there exists a mechanism M such that given
g and {gi + ri smod mC} predicts a property p of g1, . . . , gk, then

Pr [M (g, {gi + ri smod mC}) = p (g1, . . . , gk)]

= Pr
[
M (g, {ui}) = p (g1, . . . , gk)

∣∣∣ui = gi + ri smod mC
]

= Pr
[
M (g, {ui}) = p (g1, . . . , gk)

∣∣∣ui ∼ Uniform [−mC,mC]
]
.

Therefore, any mechanism, even having access to the information available to one of the hosts,
cannot reveal more information than any party which observes only g. ut

3.3 Collaborative Private Gradient Descent

Combining the Private Gradient Descent algorithm (Algorithm 1) and the collaborative protocol
for computing the gradient through the Collaborative Gradient Computation (Algorithm 2) results
in a Collaborative Private Gradient Descent algorithm. This algorithm performs privacy-preserving
gradient descent on distributed datasets.

Theorem 2. Assuming all parties follow the protocol (semi-honest security model), and do not col-
lude, the Collaborative Private Gradient Descent algorithm is (ε, δ)-DP.

Proof. Lemma 2 shows that each mini-batch gradient computation does not leak any information
beyond

∑
z∈Zt

Clip (C,F ′ (wt−1, z))+Rand (b), where Zt is the current mini-batch. The parameter
b is selected so that even after computing all gradients over all mini-batches the entire process is
(ε, δ)-DP. ut

9

4. COMPLEXITY ANALYSIS

4 Complexity Analysis

In this section we analyze the computational complexity and the communication complexity of the
Collaborative Gradient Computation algorithm. When studying computational complexity, we make
a distinction between computation that is performed on plaintext and on computation performed
using cryptographic tools, since the latter can be orders of magnitude slower Araki et al. [2016].

The plaintext computation performed by the Private Gradient Descent algorithm (Algorithm 1)
is very similar to the computation performed by other distributed learning algorithms Dekel et al.
[2012]. Thus, on large datasets, it may be faster than serial algorithms that perform all computation
on a single box Dekel et al. [2012].

Cryptographic tools are needed to perform Stage II of the Collaborative Gradient Computation
(Algorithm 2). First, each host sums the values in its part of the secret shares. If there are k parties,
and the gradient is of d dimensions, then there are O(kd) such operations, each requiring a single
addition. After making all the additions, a single modular reduction is performed. Therefore, these
operations are very efficient even though they use cryptographic tools.

Next, a garbled circuits protocol is applied between the two nominated hosts, and its complexity
depends only on the dimension d of the gradient vector. Moreover, this operation is trivial to run
in parallel, since the performed computation can be done independently for each coordinate of the
vector. Regardless, it is independent of the size of the dataset and the number of parties involved.
Thus, the complexity of the cryptographic computation is5 O(dk)+O(d). We engage in this process
for every mini-batch, and therefore this complexity should be multiplied by the number of gradient
steps performed.

We measured the time it takes to perform the garbled circuit part of this protocol. We have found
that even when the hosts are simple laptops, it takes about 0.2 ms for each of the hosts to perform its
part of the computation with 32 bits of precision. The time grows to 0.6 ms for 64 bits of precision.
Note that it is easy to run this process in parallel so that all of the dimensions of the gradient vector
are treated at the same time. This can be done on a single box or multiple boxes, making the latency
of the entire process on the order of just a few milliseconds

Next, we look at the communication complexity of the protocol. In every round, every party
sends a single gradient vector regardless of the size of the data it hosts. However, since we use secret
sharing, for a d dimensional gradient vector, every party has to send 2d data points, i.e. O(d) bits.
Each party receives the aggregated d-dimensional gradient, which is O(d) bits of information as
well.

Each host receives O(kd) data items from the two parties, and broadcasts the perturbed gradient
at the end of the computation, requiring O(d) bits of communication. On top of that, the two hosts
engage in the MPC protocol to compute the perturb gradient. Each party contributes to this compu-
tation O(d) bits, since it shares d data items. When we evaluate empirically the size of the data, we
find that for 32 bits of precision the circuit required uses 2480 AND gates, and for 64 bits of precision
5561 AND gates. Therefore, the size of the garbled circuit is 79360 bytes for 32 bits of precision,
which grows to 174 KB for the 64-bit case. We note, however, that these sizes can be significantly
reduced by using other MPC schemes. For example, the size of the circuit can go down to 930 bytes
when using the protocol of Araki et al. [2016].

Since the communication complexity is independent of the size of the dataset, for very large
datasets the described protocol may even be more efficient than sending the data to a single location.

5 Since the overhead of the garbled circuits protocol is much larger than the overhead of the computation with
secret shares, we write the two terms separately even though they can be written as O(dk).

10

5. EMPIRICAL RESULTS

5 Empirical Results

We tested the algorithm on the MNIST dataset. The MNIST dataset contains 60000 training exam-
ples of hand-written digits, and 10000 testing examples. Each image consists of 28 × 28 grayscale
pixels. We conducted two experiments, one with a small network with 13940 tunable parameters
in 3 layers, and another experiment with a large network with 127540 tunable parameters in 4 lay-
ers. When these models are trained without any privacy constraints the large models achieve 98.9%
accuracy, while the smaller one achieves 98.5% accuracy.

5.1 Small Network

For this experiment a 3-layer network of the following structure was used:

1. a 5× 5 convolution layer with 5 outputs per window, a 2− 2 stride, ReLU activation function,
and padding;

2. a 1× 5× 5 convolution layer with 10 outputs per window, a 1− 2− 2 stride, no weight sharing
on the first axis, and ReLU activation function;

3. a dense layer with 10 outputs.

This model has 13940 tunable parameters. Each classifier was trained using 50 epochs over the
training data with different targets for the differential privacy ε parameter (δ = 10−3 was used in
all experiments). A parameter sweep was used to find the optimal set of parameters. The following
parameters were optimized:

– initial mini-batch size: m = 600, 6000, 60000;
– rate of mini-batch size increase: no-increase, 2x every 3 epochs;
– the learning rate in the ADAM algorithm η = 0.001, 0.01 (default parameters β1 = 0.9, β2 =
0.999 were used);

– gradient clip C = 0.01, 0.1, 1.

Table 1 shows the accuracies for different selections of norm and privacy levels. The best accuracies
were achieved when the L1 norm was used (together with the Laplace mechanism for differential
privacy), where accuracies of 89%, 92%, and 94%, for ε = 0.5, 2, 8 respectively, were obtained.
We do not have a clear intuition to explain why the L1 norm performs better than the L2 norm, and
substantially better than the L∞ norm.

Table 1. Accuracies achieved for different selections of privacy parameters and norms for the small network.

L∞ L1 L2

ε = 0.5 58.5% 89.1% 82.3%

ε = 2 73.7% 91.8% 87.8%

ε = 8 88.1% 94.2% 92.1%

As we conjectured from Theorem 1, the mini-batch size has substantial influence on the perfor-
mance. For the L1 norm, best performance was achieved when the mini-batch size was 6000. Table 2
shows how the accuracy changes when the mini-batch size is varied. Larger batch sizes may be less
influenced by the random noise injected by the DP mechanism. However, when larger batch sizes
are used, fewer gradient steps are made which results in worse accuracies. While it is true that it is
possible to increase the number of gradient steps by making more epochs, doing that will require
increasing the amount of noise injected.

11

6. DISCUSSION

Table 2. Accuracies for different mini-batch sizes (L1 norm and ε = 8) for the small network.

Initial batch size Increment step Accuracy
600 1x 89.7%
600 2x 93.7%
6000 1x 94.2%
6000 2x 93.7%

60000 1x 91.8%

5.2 Large Network

For this experiment a 4 layer network of the following structure was used:

1. a 5× 5 convolution layer with 5 outputs per window, a 2− 2 stride, ReLU activation function,
and padding;

2. a 1× 5× 5 convolution layer with 10 outputs per window, a 1− 2− 2 stride, no weight sharing
on the first axis, and ReLU activation function;

3. a dense layer with 100 outputs, and ReLU activation function;
4. a dense layer with 10 outputs.

The additional dense layer increases the number of parameters in this network to 127540, which is
9x more parameters compared to the smaller network. The accuracies for this network are presented
in Table 3. Similar to the smaller network, the L1 norm delivers the best accuracies. In all but one
case the smaller network provided better accuracies, despite the fact that when these networks are
used without privacy the larger network has better accuracy. This is to be expected since the larger
number of parameters results in larger amount of noise injected by the DP mechanism. However,
given that the amount of noise does not grow when larger datasets are used, and given the relatively
small differences in performance, especially in the L1 case, we conjecture that with larger datasets
the larger network would outperform the smaller one.

Table 3. The accuracies achieved for different selections of privacy parameters and norms for the large network.

L∞ L1 L2

ε = 0.5 24.0% 84.7% 51.8%

ε = 2 61.1% 90.3% 88.4%

ε = 8 80.3% 92.9% 90.4%

6 Discussion

In this work, we studied the problem of collaborative training of neural networks with privacy con-
straints. We showed that by combining learning techniques with cryptographic tools, it is possible
to provide a feasible solution to this problem. Special attention is made to the communication com-
plexity which is of major concern since it induces large latencies. The amount of data communicated
is independent of the size of the datasets. Moreover, it scales nicely with respect to the number of
parties involved.

12

6. DISCUSSION

In the design of the algorithms we combine techniques from learning, differential privacy and
secure multi-party computation. We show that each one of these techniques cannot achieve the des-
ignated goals. The approach we presented may be useful in other problems, for example, training
different learning algorithms.

While our results are encouraging, there are still important problems that should be addressed.
We saw in our experiments that accuracies drop when the number of parameters in the network is
large. In the era of deep learning it is important to find better ways to handle large networks. Another
issue to consider is situations where the dataset is split in different ways between the parties. In the
current work, we assumed that each party holds some records and all parties use the same schema.
However, in different settings it could be that each party holds some features on all participants. For
instance, in a municipality, the health department has health information, while the tax department
holds information about income. Handling these situations efficiently is a subject for future research.

13

Bibliography

Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, pages 308–318. ACM, 2016.

Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara. High-throughput
semi-honest secure three-party computation with an honest majority. In Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security, pages 805–817. ACM,
2016.

Amos Beimel. Secret-sharing schemes: a survey. In International Conference on Coding and Cryp-
tology, pages 11–46. Springer, 2011.

Ofer Dekel, Ran Gilad-Bachrach, Ohad Shamir, and Lin Xiao. Optimal distributed online prediction
using mini-batches. Journal of Machine Learning Research, 13(Jan):165–202, 2012.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Annual International Conference on the
Theory and Applications of Cryptographic Techniques, pages 486–503. Springer, 2006a.

Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
in private data analysis. In Theory of Cryptography Conference, pages 265–284. Springer, 2006b.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends in Theoretical Computer Science, 9(3-4):211–407, 2014.

Peter Kairouz, Sewoong Oh, and Pramod Viswanath. The composition theorem for differential
privacy. IEEE Transactions on Information Theory, 63(6):4037–4049, 2017.

Henry J Kelley. Gradient theory of optimal flight paths. Ars Journal, 30(10):947–954, 1960.
Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint

arXiv:1412.6980, 2014.
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolu-

tional neural networks. In Advances in neural information processing systems, pages 1097–1105,
2012.

Payman Mohassel and Yupeng Zhang. Secureml: A system for scalable privacy-preserving machine
learning. IACR Cryptology ePrint Archive, 2017:396, 2017.

Adi Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, 1979.
Shuang Song, Kamalika Chaudhuri, and Anand D Sarwate. Stochastic gradient descent with differ-

entially private updates. In Global Conference on Signal and Information Processing (GlobalSIP),
2013 IEEE, pages 245–248. IEEE, 2013.

Andrew C Yao. Protocols for secure computations. In Foundations of Computer Science, 1982.
SFCS’08. 23rd Annual Symposium on, pages 160–164. IEEE, 1982.

A Additional proofs

Lemma 3. For every z1, z2: ((z1 smod C) + (z2 smod C)) smod C = (z1 + z2) smod C.

Proof. The proof follows since:

BIBLIOGRAPHY A. ADDITIONAL PROOFS

((z1 smod C) + (z2 smod C)) smod C
= ((z1 + C mod 2C) + (z2 + C mod 2C)− 2C) smod C
= (((z1 + z2 + 2C) mod 2C)− 2C) smod C
= (((z1 + z2) mod 2C)− 2C) smod C
= (C + ((z1 + z2) mod 2C)− 2C) mod 2C − C
= (C + z1 + z2) mod 2C − C
= (z1 + z2) smod C .

ut

Lemma 4. If |z| < C then z smod C=z.

Proof. Note that if |z| < C then 0 ≤ z + C ≤ 2C and therefore,

z smod C = ((z + C) mod 2C)− C = (z + C)− C = C .

ut

Theorem 3. A function f : X∗ 7→ Rd is said to be ∆-sensitive in the L∞ norm if for every D,D′ ∈
X∗ that differ in exactly one element it holds that ‖f (D)− f (D′)‖∞ ≤ ∆.

Let ε, δ ≥ 0 such that δ < e−1/2 and let f be ∆-sensitive in the L∞ norm then the Laplace
mechanism applied to f is (ε, δ)-DP for

b ≥
∆
√
d
(√

log 1
δ +

√
log 1

δ + 2ε
)

ε
√
2

.

Note that another way to think about the setting discussed in this theorem is to think about f as
a set of k non-adaptive queries. Therefore, this bound holds in this case too.

Proof. Let D and D′ be such that they differ on a single element and let γ = f (D)− f (D′). From
the sensitivity of f it follows that ‖γ‖∞ ≤ ∆. To simplify notation, assume w.l.o.g. that γ is such
that ∀i, γi = ∆. Let

A =

{
x ∈ Rd : |{i : xi ≥ ∆}| ≥

d

2
− εb

2∆

}
.

Since

|xi −∆| − |xi| =

−∆ if xi ≥ ∆
∆ if xi ≤ 0

∆− 2xi if 0 < xi < ∆

then ∀x ∈ A we have that

exp

(
−‖x‖1b

)
exp

(
−‖x− δ‖1b

) = exp

(
1

b

∑
i

|xi −∆| − |xi|

)

≤ exp

(
∆

b
(d− 2 |{i : xi ≥ ∆}|)

)
≤ exp (ε) .

15

A. ADDITIONAL PROOFS BIBLIOGRAPHY

Let S ⊆ Rd and let

T = S − f (D) = {x− f (D) : x ∈ S} .

Pr [f (D) + Lap (b) ∈ S]
= Pr [Lap (b) ∈ T]
= Pr [Lap (b) ∈ T ∩A] + Pr [Lap (b) ∈ T \A]
≤ Pr [Lap (b) ∈ T ∩A] + Pr [Lap (b) /∈ A] .

Since
Pr [Lap (b) ∈ T ∩A]

=

∫
x∈T∩A

1

2b
exp

(
−
‖x‖1
b

)
dx

≤ eε
∫
x∈T∩A

1

2b
exp

(
−
‖x− γ‖1

b

)
dx

= eε Pr [γ + Lap (b) ∈ T ∩A]
≤ eε Pr [f (D′) + Lap (b) ∈ S] .

then
Pr [f (D) + Lap (b) ∈ S]

≤ eε Pr [f (D′) + Lap (b) ∈ S] + Pr [Lap (b) /∈ A]

and it suffices to show that Pr [Lap (b) /∈ A] ≤ δ.
Recall that if xi ∼ Lap (b) then Pr [xi > ∆] = 1

2 exp (−∆/b). Therefore, Pr [Lap (b) /∈ A]
equals the probability of tossing d coins with a probability of 1

2 exp (−∆/b) for heads and observing
at most d2 −

εb
2∆ heads. Since exp (−∆/b) ≥ 1−∆/b it holds that Pr [Lap (b) /∈ A] is smaller that the

probability of tossing d coins with probability 1
2 (1− ∆/b) for heads and observing at most d2 −

eb
2∆

heads. Using Hoeffding’s inequality it follows that

Pr [Lap (b) /∈ A]

≤ exp

(
−2d

(
1

2
− εb

2d∆
− 1

2

(
1− ∆

b

))2
)

= exp

(
−d
2

(
∆

b
− εb

d∆

)2
)

We would like the last term to be ≤ δ, which is equivalent to

d

2

(
∆

b
− εb

d∆

)2

≥ log
1

δ
,

which in turn is equivalent to ∣∣∣∣∆b − εb

d∆

∣∣∣∣ ≥
√

2

d
log

1

δ
. (6)

Note that if b is as stated in the statement of the theorem, then

b ≥ ∆
√
d

ε

16

BIBLIOGRAPHY A. ADDITIONAL PROOFS

and hence
εb

d∆
≥ ∆

b
.

Using this observation, we have that (6) holds if

εb

d∆
− ∆

b
≥
√

2

d
log

1

δ
,

which holds if

εb2 − d∆2 −∆b
√
2d log

1

δ
≥ 0 ,

while b, d,∆ > 0. Therefore, for (6) to hold, it suffices that

b ≥
∆
√

2d log 1
δ +

√
2∆2d log 1

δ + 4d∆2ε

2ε

=
∆
√
d
(√

log 1
δ +

√
log 1

δ + 2ε
)

ε
√
2

.

ut

17

	Private Collaborative Neural Network Learning

