
Simple Amortized Proofs of Shortness for
Linear Relations over Polynomial Rings

Carsten Baum1? and Vadim Lyubashevsky2??

1 Department of Computer Science, Bar-Ilan University, Israel
carsten.baum@biu.ac.il

2 IBM Research – Zurich, Switzerland
vad@zurich.ibm.com

Abstract. For a public value y and a linear function f , giving a zero-knowledge proof of knowledge of a
secret value x that satisfies f(x) = y is a key ingredient in many cryptographic protocols. Lattice-based
constructions, in addition, require proofs of “shortness” of x. Of particular interest are constructions
where f is a function over polynomial rings, since these are the ones that result in efficient schemes
with short keys and outputs.

All known approaches for such lattice-based zero-knowledge proofs are not very practical because they
involve a basic protocol that needs to be repeated many times in order to achieve negligible soundness
error. In the amortized setting, where one needs to give zero-knowledge proofs for many equations for
the same function f , the situation is more promising, though still not yet fully satisfactory. Current
techniques either result in proofs of knowledge of x’s that are exponentially larger than the x’s actually
used for the proof (i.e. the slack is exponential), or they have polynomial slack but require the number
of proofs to be in the several thousands before the amortization advantages “kick in”.

In this work, we give a new approach for constructing amortized zero-knowledge proofs of knowledge
of short solutions over polynomial rings. Our proof has small polynomial slack and is practical even
when the number of relations is as small as the security parameter.

1 Introduction

The security of lattice-based cryptographic primitives is based on the hardness of recovering a short
vector s when given a matrix A and t = As as inputs. The operations are performed over some
ring R, which most commonly is either Zp or a polynomial ring Zp[X]/(Xn + 1).1 Depending on
the primitive, s can represent the secret key, the randomness used during encryption, the signature
of a message, or anything else that one should not be able to obtain just by knowing A and t. In
many cryptographic protocols, someone announcing the value t would also need to be able to prove
the knowledge of a short pre-image s̄ (the pre-image may not be unique) of t satisfying

A · s̄ = t (1)

The first approach developed for constructing such a zero-knowledge proof is using Stern-type
proofs for codes [Ste93] adapted to the lattice setting [KTX08,LNSW13]. The main downside of
this technique is that it has rather long proofs. Each run of the protocol has soundness error 2/3,

? Supported by the BIU Center for Research in Applied Cryptography and Cyber Security in conjunction with the
Israel National Cyber Bureau in the Prime Minister’s Office.

?? Supported by the SNSF ERC Transfer Grant CRETP2-166734-FELICITY
1 We will use this polynomial ring throughout our paper as it is the one that is almost exclusively used in practice.

Instantiations with other monic polynomials are also possible.

thus requiring over 200 repetitions for 128 bits of security and over 400 repetitions if one would like
to have 128 bits of quantum security in the resulting NIZK proof constructed via the Fiat-Shamir
technique. Even the most basic application, such as proving the knowledge of a solution to a hash
function (e.g. the one in [LMPR08]), would require around 1KB for every round, thus making the
total proof size approximately 400 KB. More complicated applications, as well as those in which
the inputs are not taken from {0, 1}k, quickly push such proofs to the order of Megabytes. In
applications where hundreds of such proofs need to be given (which is the scenario that we consider
in this paper), this technique is therefore rather impractical.

Another technique for creating zero-knowledge proofs is the “Fiat-Shamir with Aborts” appro-
ach which allows to create a proof of knowledge of a vector s̄ with small coefficients (though larger
than those in s) and a ring element c̄ with very small coefficients satisfying As̄ = c̄t [Lyu09,Lyu12].
As long as the ring R has many elements with small coefficients, such proofs are very efficient,
producing soundness of 1 − 2−128 with just one iteration. While these proofs are good enough
for constructing practical digital signatures (e.g. [GLP12,DDLL13,BG14]), commitment schemes
with proofs of knowledge [BKLP15,BDOP16], and certain variants of verifiable encryption schemes
[LN17], they prove less than what the honest prover knows. In many applications where zero-
knowledge proofs are used, in particular those that need to take advantage of additive homomor-
phisms, the presence of the element c̄ makes these kinds of “approximate” proofs too weak to be
useful. As of today, we do not have any truly practical zero-knowledge proof systems that give a
proof of (1).

1.1 Amortized Proofs

When one considers amortized proofs, the situation is considerably more promising. Before des-
cribing the results in this area, we recall the concepts of slack and overhead that determine the
efficiency and utility of such proofs. The ratio between the norm of the vector s̄ that can be ex-
tracted from the proof and the vector s that the honest prover uses to create the zero-knowledge
proof is referred to as the slack. A slack of d implies that the coefficients of s̄ will have (approxi-
mately) log d more bits than those of s. Therefore having a small polynomial slack is usually fine
for practical purposes. The overhead refers to the number of vectors (of the same dimension as s,
and coefficient sizes which are essentially determined by the slack) that need to be generated for
a proof having negligible soundness error. Because the overhead affects the size of the total proof
linearly, it is crucial to keep it to a very small constant – preferably one or two.

One idea to prove the relation in (1) is to use the above “Fiat-Shamir with Aborts” protocol,
but with challenges that come from the set {0, 1}. This indeed gives a proof of (1) with a small
slack, but the soundness error would be 1/2, which would require the overhead to be the security
parameter λ, which makes the scheme impractical.2 On the other hand, the amortized proof given
in [DPSZ12] using the protocol from [CD09] showed that one only needs to generate λ+ k vectors
to prove the knowledge of k equations, which gives an overhead of 1 + λ/k. The main downside of
this protocol is that the slack is exponential in k.

The works of [BDLN16] and [CDXY17] gave a novel protocol, still using the Fiat-Shamir with
Aborts with 0/1 challenges idea, in which the overhead was constant (down to 2), while the slack

2 In fact, this scheme would be even less practical than Stern proofs because Stern proofs have slack 1. But as we
discuss later, the advantage of such proofs is that they can be efficient in the amortized setting, whereas we do
not currently know of a way in which Stern-type proofs can exploit amortization.

2

could be bounded by a small polynomial in the security parameter.3 The main downside of these
protocols is that they require the number of equations to be fairly large before amortization kicks in.
In particular, if the security parameter is λ, then one needs to have more than k = 4λ2 equations.4

Thus scenarios where one does not have too many (around λ as in [DPSZ12]) equations to prove
would not benefit from the protocol.

The work of [DL17] showed that one could decrease the number of equations in the above
protocol by a factor of α by increasing the running time of the proof by a factor of 2α. They
also gave a protocol requiring even fewer equations when the functions are over polynomial rings of
dimension n by using an idea from [BCK+14]. Instead of running the Fiat-Shamir protocol with 0/1
challenges, one could do it with with challenges of the form Xi. This further reduces the required
number of equations by a factor approximately log n. Nevertheless, one still needs at least a few
thousand of them in order to be able to use amortization in a practical manner.5

1.2 Our Contribution

In this paper, we give a novel protocol that works over polynomial rings in which the slack is
polynomial and amortization kicks in as soon as the number of equations is essentially the security
parameter.

Suppose that a1, . . . , am are polynomials in the ring Rp = Zp[X]/(Xn + 1) and for j ∈
{1, . . . , k}, s(j)1 , . . . , s

(j)
m are polynomials with small coefficients satisfying

m∑
i=1

ai · s(j)i = t(j). (2)

In this section, we sketch the framework for the proof of (2) for k equations over polynomial
rings of degree n which can be done with overhead 1 + λ/k and slack approximately O(

√
nmkλ)

where λ is the security parameter.

Our protocol is most naturally explained as working in two steps, both of which use the ap-
proximate proof of knowledge protocols from [Lyu09,Lyu12]. While each part is an “approximate”
proof, the combination of the two proofs yields a pre-image of the exact t(j).

In the first step, we prove the existence of small polynomials s̄
(j)
i and a polynomial c̄ satisfying

m∑
i=1

ai · s̄(j)i = c̄ · t(j). (3)

This is done by simply running the protocol from [Lyu09,Lyu12] over the ring Rp simultaneously
for all k equations. The second part of our protocol no longer works over the ring Rp, but rather
over Zp. For convenience of notation, we will therefore rewrite (2) and (3) as equations over Zp
rather than Rp.

3 To be precise, only by a super-polynomial factor in the first work.
4 Asymptotically, one could decrease k to O(λ1+ε), but it works only for rather large λ that would not be used in

practice.
5 We give more details about this in Section 4.3.

3

The polynomials a1, . . . , am can be combined into a matrix A ∈ Zn×nmp that already incorporates
the polynomial multiplication in the ring Rp (we define this matrix A explicitly in (12)). Then∑m

i=1 ai · si = t over Rp can be expressed as

As = t, with s =

 s1...
sm

 ,
where the polynomials si ∈ Rp are interpreted as vectors in Znp in the natural way via their
coefficients. Combining all k equations allows us to rewrite (2) and (3) as

AS = T (4)

and

AS̄ = Rot(c̄) ·T, (5)

where Rot(c̄) is a polynomial multiplication matrix (which we again formally introduce later – see
(11)).

The second part of our protocol then uses the approximate zero-knowledge proof from [Lyu12]
over the ring Zp to prove the knowledge of an S̄′ with small coefficients and a matrix C̄′ ∈
{−1, 0, 1}k×` such that

AS̄′ = T · C̄′. (6)

It can then be shown that (5) and (6) taken together imply that the prover either knows an exact
solution to (4) or is able to solve an instance of the Ring-SIS problem: because of the commutativity
of multiplication in the ring Rp, (5) can be rewritten as

AS̄ = Rot(c̄) ·T =⇒ Rot(c̄−1) ·AS̄ = T =⇒ A · (Rot(c̄−1)⊗ Im) · S̄ = T, (7)

where Im is an m-dimensional identity matrix. Plugging the above equation into (6), we get

AS̄′ = A · (Rot(c̄−1)⊗ Im) · S̄ · C̄′. (8)

If S̄′ 6= (Rot(c̄−1)⊗ Im) · S̄ · C̄′, then (Rot(c̄)⊗ Im) · S̄′ 6= S̄ · C̄′ and (8), which can be rewritten as

A · (Rot(c̄)⊗ Im) · S̄′ = A · S̄ · C̄′,

imply a solution to Ring-SIS due to the fact that the coefficients of (Rot(c̄)⊗ Im) · S̄′ and S̄ · C̄′ are
all small. If we assume that Ring-SIS with those coefficient sizes is a hard problem, then it must
be that

S̄′ = (Rot(c̄−1)⊗ Im) · S̄ · C̄′. (9)

We would like to then conclude that this equality implies that all the coefficients of (Rot(c̄−1)⊗Im)·S̄
are small. Since we know from (7) that (Rot(c̄−1)⊗ Im) · S̄ is a solution for (4), this will complete
the proof.

To see why the coefficients of (Rot(c̄−1)⊗Im)·S̄ are small, we need to examine how the extracted
matrix C̄′ is created. This matrix is the difference of two challenges C′1 and C′2 ∈ {0, 1}k×` from
the second step of our Σ-protocol. The crucial part is that the random challenge C′2 is chosen after

4

all the other variables have been fixed.6 We then show that if some matrix M has large coefficients,
then with high probability (which depends on the parameter `) so will the product M · (C′1 −C′2)
when C′2 is chosen uniformly from {0, 1}k×`. But the matrix S̄′ in (9) has small coefficients, and
therefore all the coefficients of (Rot(c̄−1)⊗ Im) · S̄ must be small as well.

1.3 Beyond Polynomial Rings

The key to our construction is the fact there is a large challenge set of matrices (with small
coefficients) that “commutes” with A – a fact which is used in (7). Above, we sketched our result
when the matrix A was as in (12) and we used the commutativity from (13). The soundness of this
scheme was based on the hardness of the Ring-SIS problem. More generally, we can take the matrix
A to be as in (14) and use the commutativity in (15), which will base the soundness of the scheme
on the Module-SIS problem (the presentation of the paper follows this more general approach).

If we keep the dimension of the matrix A in (14) fixed and increase d, then the dimension
of the ring Rp (in which the challenge c lies) decreases by a factor of d. Since the number of
possible challenges needs to remain constant, a smaller ring dimension implies that the norm of
the challenges must be larger, and this has a direct consequence on the size of the parameters
and the size of the proof. In practice, if we would like the number of challenges to be 2256, then
using rings of dimension at least 256 and the challenge set as in (21) allows for challenges to have
`2-norm less than 8. If we reduce the dimension of the ring Rp all the way down to 1, thus proving
linear relations over Zp, the norm of the challenge would would be 2256, and this would result in
completely impractical parameters.

An attempt for working over small rings. Instead of creating the proof in (5), one could
instead prove knowledge of S̄ and a square, invertible C̄ such that

A · S̄ = T · C̄, or equivalently, A · S̄ · C̄−1 = T

Plugging the value for T into (6), we would obtain

A · S̄′ = A · S̄ · C̄−1 · C̄′. (10)

If the equality S̄′ = S̄ ·C̄−1 ·C̄′ holds, then we would be able to conclude, via the same argument
as at the end of Section 1.2, that the coefficients of S̄ · C̄−1 are small. The problem with the proof
is that we do not have an argument as to why the equality must be true. In Section 1.2, we were
able to use the commutativity to show that if this equality does not hold, then we have a solution
to the Ring-SIS problem. In (10), we have no way of moving the matrix C̄−1 to the other side, and
therefore cannot argue that we would have a solution to SIS. We should mention that if the modulus
p is set large enough and the coefficients of S̄, S̄′ are small enough, then one could prove that for
all but a negligible fraction of randomly-generated A, there do not exist matrices S̄, S̄′, C̄, C̄′ with
small coefficients that satisfy (10). A rough calculation, however, shows that the parameters that
would be required for the preceding to hold would be completely outside of anything that one would
want to use in practice. We thus leave it as an open problem to reduce the number of amortized
samples (as compared to [BDLN16,CDXY17,DL17]) required for efficiently proving linear relations
over Zp.
6 This is enforced in the scheme by choosing the challenge for the second part of the protocol as the hash of the

output of Step 1 of the protocol, where the hash function is modeled as a random oracle.

5

2 Preliminaries

Throughout this work, lower-case bold variables such as a will denote vectors while their counter-
parts written in upper-case such as A are matrices. We will denote the set {1, . . . , k} as [k].

2.1 Polynomials

Let R be the ring Z[X]/(Xn+1), and for a prime p, Rp be the ring Zp[X]/(Xn+1). For an element
c = c0 + c1X + . . .+ cn−1X

n−1 ∈ R, we define the matrix

Rot(c) ,


c0 − cn−1 − cn−2 . . . − c1
c1 c0 − cn−1 . . . − c2
c2 c1 c0 . . . − c3
...

...
...

. . .
...

cn−1 cn−2 cn−3 . . . c0

 . (11)

The coefficients of column i (for 0 ≤ i < n) of Rot(c) are exactly the coefficients of the polynomial
cXi in R. It is easy to check that for any two polynomials b, c ∈ R, we have

Rot(b+ c) = Rot(c+ b) and Rot(b · c) = Rot(b) · Rot(c).

In particular, this implies that the multiplication of such matrices is commutative.

We define Im to be an m-dimensional integer identity matrix. For elements a1, . . . , am ∈ R, let
A be a matrix

A = [Rot(a1) | . . . | Rot(am)] ∈ Zn×nm. (12)

Then for any c ∈ R, we have

Rot(c) ·A = A · (Rot(c)⊗ Im) (13)

where ⊗ denotes the tensor product of matrices. More generally, if

A =

Rot(a1,1) | . . . | Rot(a1,m)
...

. . .
...

Rot(ad,1) | . . . | Rot(ad,m)

 ∈ Zdn×nm, (14)

then we have

(Rot(c)⊗ Id) ·A = A · (Rot(c)⊗ Im). (15)

To simplify notation, for any polynomial c ∈ R and positive integer x, we define

Rotx(c) , (Rot(c)⊗ Ix).

2.2 Vectors and Matrices

Let a = (a1, . . . , an) ∈ Zn, then the `2, `∞-norms of a are

||a|| =
√∑

i

a2i and ||a||∞ = max
i
|ai|.

6

If a instead comes from Znp then we consider the natural embedding of each coefficient from Zp
into the interval [−(p− 1)/2, (p− 1)/2] ⊂ Z, and then use the definition of the norm as above. For
a ∈ R (or Rp), the norm is defined to be the norm of the vector of its coefficients.

For matrices A,B ∈ Zn×m comprised of elements ai,j and bi,j , we define their norms and inner
products by viewing the matrices as nm-dimensional vectors:

‖A‖∞ , max
i,j
‖ai,j‖∞

‖A‖ ,
√∑

i,j

a2i,j

〈A,B〉 ,
∑
i,j

ai,j · bi,j

For a matrix X ∈ Zn×m, the largest singular value s1(X) has the property that for any v ∈ Zm,
‖X ·v‖ ≤ s1(X) · ‖v‖. Because the singular values are invariant under transpose, we also have that
for any v ∈ Zn, ‖vT ·X‖ ≤ s1(X) · ‖v‖.

2.3 The Ring-SIS and Module-SIS Problems

We give the definitions of Ring-SIS (using the notation from Section 2.1) from [LM06] and its
generalization, Module-SIS, from [LS15] in the `∞-norm.

Definition 2.1. In the Ring-SISn,m,β problem, we are given random polynomials a1, . . . , am ∈ Rp
and are asked to find a non-zero integer vector s ∈ Znm such that ‖s‖∞ ≤ β and As = 0 mod p,
where A , [Rot(a1) | . . . | Rot(am)].

Definition 2.2. In the d-dimensional Module-SISn,m,β problem, we are given random polynomials
ai,j ∈ Rp for i ∈ [d] and j ∈ [m] and are asked to find a non-zero integer vector s ∈ Znm such that
‖s‖∞ ≤ β and As = 0 mod p, where

A ,

Rot(a1,1) | . . . | Rot(a1,m)
...

. . .
...

Rot(ad,1) | . . . | Rot(ad,m)

 .
Notice that the Ring-SIS problem is exactly the Module-SIS problem with d = 1.

2.4 Probability

The below lemma and the corollary that follows it state (in a slightly generalized way) that if
s ·C mod p only has “small” coefficients when C is a matrix with random 0/1 coefficients, then s
must only have small coefficients as well.

Lemma 2.3. For all s ∈ Zkp and c′ ∈ {0, 1}k it holds that

Pr
c←{0,1}k

[
‖〈s, c− c′〉 mod p‖∞ <

1

2
· ‖s‖∞

]
≤ 1

2
.

7

Proof. Let si be the coefficient of s such that ‖si‖∞ = ‖s‖∞. Then we can write

〈s, c− c′〉 = sici +
∑
j 6=i

sjcj − 〈s, c′〉 , sici + r mod p.

If ‖r‖∞ ≥ 1
2 · ‖s‖∞ = 1

2 · ‖si‖∞, then ci would need to be 1 for any chance of sici + r to be less than
1
2 · ‖s‖∞. So we have

Pr
c←{0,1}k

[
‖〈s, c− c′〉 mod p‖∞ <

1

2
· ‖s‖∞

∣∣∣∣ ‖r‖∞ ≥ 1

2
· ‖s‖∞

]
≤ Pr

ci←{0,1}
[ci = 1] =

1

2
.

If ‖r‖∞ < 1
2 · ‖s‖∞ = ‖si‖∞, then we will show that

‖r + si‖∞ ≥
1

2
· ‖si‖∞, (16)

which implies that

Pr
c←{0,1}k

[
‖〈s, c− c′〉 mod p‖∞ <

1

2
· ‖s‖∞

∣∣∣∣ ‖r‖∞ <
1

2
· ‖s‖∞

]
≤ Pr

ci←{0,1}
[ci = 0] =

1

2
,

which will complete the proof of the lemma.
To prove (16), note that because we can assume that |si| ≤ p/2 and |r| < |si|/2, we know

that ‖r + si‖∞ is either equal to |r + si| or |r + si ± p|. It’s clear that in the former case, we have
|r + si| > |si|/2. For the latter case, assume for the sake of contradiction that u = r + si ± p with
|u| < |si|/2. This would imply that

p = | ± p| = |r + si − u| ≤ |r|+ |si|+ |u| < |si|/2 + |si|+ |si|/2 = 2|si| ≤ p.

ut

Corollary 2.4. Let M be any matrix in Zr×kp and C′ any matrix in {0, 1}k×`. Then

Pr
C←{0,1}k×`

[
‖M · (C−C′) mod p‖∞ <

1

2
· ‖M‖∞

]
≤ 2−`.

Proof. Let s be the row of M such that ‖s‖∞ = ‖M‖∞. Then

Pr
C←{0,1}k×`

[
‖M · (C−C′) mod p‖∞ <

1

2
· ‖M‖∞

]
= Pr

C←{0,1}k×`

[
‖M · (C−C′) mod p‖∞ <

1

2
· ‖s‖∞

]
≤ Pr

C←{0,1}k×`

[
‖s · (C−C′) mod p‖∞ <

1

2
· ‖s‖∞

]
≤ 2−`,

with the last inequality following directly from Lemma 2.3 because the columns of C are indepen-
dently chosen. ut

8

2.5 Discrete Gaussians over Zn

Define the function ρσ(x) = exp
(
−x2
2σ2

)
and the discrete Gaussian distribution over the integers,

Dσ, as

Dσ(x) =
ρ(x)

ρ(Z)
where ρ(Z) =

∑
v∈Z

ρ(v).

We will write X ← Dn×m
σ to mean that every coefficient of the matrix X is distributed according

to Dσ.

Using the tail bounds for the 0-centered discrete Gaussian distribution (cf. [Ban93]), we can
show that for any σ > 0, x← Dσ is likely to be close to σ. Namely, for any k > 0 it holds that

Pr
x←Dσ

[|x| > kσ] ≤ 2e−k
2/2, (17)

and when x is drawn from Dn
σ , we have

Pr
x←Dnσ

[‖x‖ >
√

2n · σ] < 2−n/4. (18)

3 Proving Knowledge

Let A ∈ Zdn×nmp be a matrix shaped as in (14), S ∈ Znm×k be an arbitrary matrix and T = A · S.
Our goal is to give a zero-knowledge proof of knowledge of an S̄ such that

A · S̄ = T.

Since the soundness of our proof of knowledge relies on the fact that it is hard to find a short solution
s such that As = 0, it should be assumed that the prover is not the one who generates A. Instead,
one should think of A as being chosen such that each polynomial ai,j ∈ Rp in (14) is random.
In practice, this can be enforced by, for example, defining A = XOF(0) for some standardized
extendable output function XOF.

3.1 Setting the Stage

We will now introduce the parameters and subroutines of our construction.

Singular Values. Let us write

S =

S1
...

Sm


where each Si is an n×k matrix, then we define the parameters s and spart as any reals that satisfy

s ≥ s1(S) (19)

spart ≥ max
i
{s1(Si)}. (20)

9

Since the parameters of our proof are most naturally derived from s and spart, we will assume that
these values are public information.

For example, if S is a matrix in which the maximal coefficient has absolute value at most γ,
then we can set

s = γ ·
√
nmk and spart = γ ·

√
nk,

Or if each coefficient of S is chosen according to Dσ, then one can use the bound in (32) and
set

s = σ · (
√
nm+

√
k + 5) and spart = σ · (

√
n+
√
k + 5).

The Challenge Sets. As outlined in Section 1.2, our proof uses two different challenges

c1 ∈ C ⊂ Rp and C2 ∈ {0, 1}k×`.

The challenge set C consists of polynomials in R whose coefficients are 0 except for α ±1’s:

C , {c ∈ R : ‖c‖∞ = 1, ‖c‖ =
√
α}, (21)

A property that we will need the set C to have is that all the non-zero elements of the difference
set C −C are invertible in the ring Rp. This property is achieved if one sets the modulus p properly
so that the polynomial Xn + 1 does not split into too many irreducible elements modulo p [LS17,
Theorem 1.1].

The definition of C implies that the `2-norm of each row of Rot(c1) and Rotm(c1) is exactly
√
α.

Therefore, each row of

Rotm(c1) · S =

Rot(c1) · S1
...

Rot(c1) · Sm


has `2-norm at most

√
α · s1(Si) ≤

√
α · spart. Since there are nm rows in S, it implies that

‖Rotm(c1) · S‖ ≤ spart ·
√
αnm. (22)

Similarly, because each column of C2 contains only 0/1 coefficients, we know that its maximum
`2-norm is

√
k. Because C2 has ` columns, we obtain

‖S ·C2‖ ≤ s ·
√
k`. (23)

Equations (22) and (23) will be useful later when we are bounding the size of the pre-image
that can be extracted from the Prover.

Rejection Sampling. In our zero-knowledge proof, the prover will want to output matrices Z1,Z2

whose distributions should be independent of the secret matrix S. During the protocol, the prover
obtains Z′i = Bi + Yi where Bi depends on the secret S and Yi is a “masking” matrix each of
whose coefficients is a discrete Gaussian with standard deviation σ. To remove the dependency of
Z′i on Bi, we use the rejection sampling procedure from [Lyu12] in Algorithm 1, which has the
properties described in Lemma 3.1.

Lemma 3.1 ([Lyu12]). Let B ∈ Zn×m be any matrix. Consider a procedure that samples a Y ←
Dn×m
σ and then returns the output of RejectionSample(Z := Y+B,B, σ, ρ) where σ ≥ 12

ln ρ ·‖B‖. The

probability that this procedure outputs 1 is within 2−100 of 1/ρ. The distribution of Z, conditioned
on the output being 1, is within statistical distance of 2−100 of Dn×m

σ .

10

Algorithm 1 RejectionSample(Z,B, σ, ρ)

u← [0, 1)

if u > 1
ρ
· exp

(
−2〈Z,B〉+‖B‖2

2σ2

)
then

return 0
else

return 1
end if

Checking Bounds. In the protocol, the verifier will accept if and only if the values Z1,Z2, sent
by the prover in the last round, are bounded in their norm as defined in Algorithm 2. The reader
is encouraged, at this point, to skip to Section 3.2 and come back to Algorithm 2 and Proposition
3.2 after becoming familiar with the main protocol in Figure 1.

Algorithm 2 IsSmall(Z1,Z2)
Output 1 if and only if the following 3 conditions are satisfied:

1. The `2-norm of every row of Z1 is at most
√

2k · σ1.
2. Every entry of Z2 has magnitude at most 7 · σ2.

3. If Z2 ∈ Znm×` is written as


Z

(1)
2

...

Z
(m)
2

 for Z
(i)
2 ∈ Zn×`, then every column of every Z

(i)
2 has `2-norm at most

√
2n · σ2.

We now show that, if Z1,Z2 are generated as in the protocol, then IsSmall will output 1 with
high probability when the parameters have bounds that occur in practical applications.

Proposition 3.2. Let Z1 ∈ Znm×k,Z2 ∈ Znm×` have entries that are distributed according to Dσ1

and Dσ2 respectively. If ` < 1000,m < 100, n ≥ 128,mn < 214 and k > 100, then IsSmall(Z1,Z2)
will return 1 with probability > 1− 2−8.

Proof. Each row of Z1 has dimension k, so by (18) the probability that its `2-norm is greater than√
2k · σ1 is less than 2−k/4. By a union bound, the probability that any of the nm rows has norm

greater than
√

2k · σ1 is nm · 2−k/4.
By (17), a coefficient of Z2 will have magnitude greater than 7 · σ2 with probability less than

2 · e−49/2 ≈ 2−34. Thus the probability that at least one of the nm` coefficients will be be greater
than 7 · σ2 is less than nm` · 2−34.

Every column of Z
(i)
2 is of dimension n, and so by (18), we have that the probability that a

column will have norm greater than than
√

2n · σ2 is less than 2−n/4. Each Z
(i)
2 has ` columns and

there are m such matrices, thus the probability that at least one column will have norm larger than
2−n/4 is less than `m · 2−n/4.

The probability that IsSmall(Z1,Z2) will return 1 is therefore greater than

1− (nm · 2−k/4 + nm` · 2−34 + `m · 2−n/4).

With the parameter bounds in the statement of the lemma, the above probability is greater than
1− (2−9 + 2−10 + 2−15) > 1− 2−8. ut

11

A list of all the important parameters of the protocol, as introduced above, can be found in
Table 1.

Parameter Use

n Degree of the polynomial that defines R

m Number of columns in A

d Number of rows in A

k Number of equations being simultaneously proven

` Number of columns in the second challenge

α Number of non-zero entries in the first challenge
(
argminx(

(
n
x

)
· 2x > 2256)

)
C The set of first challenges (as in (21))

s Spectral norm of the secret (as in (19))

spart Maximum spectral norm of sub-matrices of the secret (as in (20))

ρ1, ρ2 Inverses of the accepting probabilities of the rejection sampling

σ1 Standard deviation of coefficients of Y1 (and of the transmitted Z1):
(

12
ln ρ1
· spart ·

√
nmα

)
σ2 Standard deviation of coefficients of Y2 (and of the transmitted Z2):

(
12

ln ρ2
· s ·
√
k`
)

Table 1. Parameters of the proof.

3.2 The Zero-Knowledge Proof

The complete protocol P3Rounds can be found in Figure 1.

Correctness. If the prover follows the protocol, then

A · Z1 = A · Rotm(c1) · S + A ·Y1

= Rotd(c1) ·A · S + A ·Y1

= Rotd(c1) ·T + W1 mod p,

where the second equality follows from (15). We also have

A · Z2 = A · S ·C2 + A ·Y2 = T ·C2 + W2 mod p.

Thus an honest verifier will always accept a non-aborting transcript.
To compute the probability that the prover does not abort, observe that (22) and the definition

of σ1 allow us to use Lemma 3.1 to conclude that u1 = 1 with probability ≈ 1/ρ1. Similarly, (23)
and the definition of σ2 allow us to use Lemma 3.1 to conclude that u2 = 1 with probability ≈ 1/ρ2.
If u1 = u2 = 1, this implies that Z1,Z2 are distributed (within statistical distance 2−100) as Dnm×k

σ1
and Dnm×`

σ2 , respectively. Then Proposition 3.2 says that u3 = 1 with probability at least 1− 2−8.
Therefore the probability that the prover does not abort is at least

1

ρ1 · ρ2
· (1− 2−8).

12

Protocol P3Rounds

Prover’s Information: S ∈ Znm×k
Public Instance-Specific Information: A ∈ Zdn×nmp ,T := A · S ∈ Zdn×kp

Prover Verifier

Y1 ← Dnm×k
σ1 , W1 := A ·Y1

Y2 ← Dnm×`
σ2 , W2 := A ·Y2

W1,W2-
c1 ← C

c1�
Z1 := Rotm(c1) · S + Y1

C2 ∈ {0, 1}k×` := H(Z1, c1)
Z2 := S ·C2 + Y2

u1 ← RejectionSample(Z1,Rotm(c1) · S, σ1, ρ1)
u2 ← RejectionSample(Z2,S ·C2, σ2, ρ2)
u3 ← IsSmall(Z1,Z2)
if u1 = 0 ∨ u2 = 0 ∨ u3 = 0, abort

Z1,Z2 -
Accept iff IsSmall(Z1,Z2) = 1
and A · Z1 = Rotd(c1) ·T + W1

and A · Z2 = T · H(Z1, c1) + W2

Fig. 1. 3-Round Proof. H : {0, 1}∗ → {0, 1}k×` is a cryptographic hash function modeled as a
random oracle.

Zero Knowledge. We will now prove that our protocol is honest-verifier zero-knowledge. More
concretely, we only show that the protocol is zero-knowledge when the prover does not abort prior
to sending Z1,Z2. The reason that this is enough for practical purposes is that HVZK Σ-protocols
are first converted into non-interactive proofs via the Fiat-Shamir transform. The non-interactive
protocol (Algorithm 3 in Section A.1) generates challenges c1 as the hash of Wi and T, and
otherwise repeats the prover’s part of the protocol until a non-abort occurs and the Prover outputs
the transcript Z1,Z2, c1. Therefore only the non-aborting transcripts will be seen, and thus only
they need to be simulated. One can also, using the standard technique of sending commitments
of the W1,W2 and only opening them in case a non-abort occurs, make the interactive protocol
zero-knowledge. We give more details in Appendix A.

Lemma 3.3. There exists an algorithm S that, on input (A,T), generates transcripts

(W1,W2, c1,C2,Z1,Z2)

which are within statistical distance 2−99 away from the non-aborting transcripts of the protocol in
Figure 1.

Proof. Consider the following algorithm S:

1. Sample Z1 ← Dnm×k
σ1 , c1 ← C, and set W1 := A · Z1 − Rotd(c1) ·T.

2. Sample Z2 ← Dnm×`
σ2 , set C2 := H(Z1, c1) and W2 := A · Z2 −T ·C2.

3. Output (W1,W2, c1,C2,Z1,Z2) if IsSmall(Z1,Z2) = 1, otherwise go to Step 1.

13

We already showed in the section on “Correctness” that in the real protocol when no abort
occurs, the distributions Z1 and Z2 are distributed within statistical distance 2−100 of Dnm×k

σ1 and
Dnm×`
σ2 , respectively (and independent of S1, c1,S2,C2). Since W1 is completely determined by

A,T,Z1, and c1, the distribution (Z1, c1,W1) on Line 1 of S is within 2−100 of the distribution of
these variables in the actual protocol.

The variable C2 is determined by Z1 and c1 and W2 is again completely determined by A,T,Z2,
and C2. Therefore the distribution of (Z2,C2,W2) on Line 2 of S is within 2−100 of the distribution
of these variables in the actual protocol.

The deterministic procedure IsSmall(Z1,Z2) is the same in the actual protocol and in S and
therefore running it does not increase the statistical distance of the output. Therefore the statistical
distance of the output of S is within 2·2−100 of that in the non-aborting run of the real protocol. ut

Soundness. We now move to proving the soundness of the protocol. The proof will be done in
three steps. Lemma 3.4 is a standard argument following [Dam10] that shows that if a Prover
runs in time t and succeeds with probability ε, then there is an extractor who, in time O(t/ε) and
constant probability, can extract some linear equations relating the public key parts A and T. In
Theorem 3.5, we then show that if there is an algorithm who can extract such information, then he
can either recover a pre-image of T or solve the Module-SIS problem for A. The proof of Theorem
3.5 uses the information-theoretic Lemma 3.6 that proves that if H is a purely-random function to
which the Prover only has black-box access to, then the recovered pre-image in Theorem 3.5 has
small coefficients.

Lemma 3.4. If there is a Prover P that succeeds in protocol P3Rounds in time t with probability
ε > 2−254, then there exists an extractor EP that outputs Z1,Z

′
1, c1 6= c′1,Z2,Z

′
2 with probability

ε′ ≥ 1/8 such that

A · (Z1 − Z′1) = Rotd(c1 − c′1) ·T (24)

A · (Z2 − Z′2) = T · (H(Z1, c1)− H(Z′1, c
′
1)). (25)

Moreover, for each s ∈ N the extractor runs in time at most t′ = 12st/ε except with probability
2−s+1.

Proof. Consider the following algorithm EP :

(1) Sample randomness r ← {0, 1}O(λ) uniformly at random for the Prover P. Then run P on r,
until it outputs W1,W2.

(2) Send a random challenge c1 ← C to the Prover P. If P does not output Z1,Z2 such that
(W1,W2, c1,Z1,Z2) is an accepted transcript, then go to step (1).

(3.1) Rewind P for the same r until the challenge was sent. Send a new challenge c′1 ← C \ {c1}
to P.

(3.2) If P outputs Z′1,Z
′
2 such that (W1,W2, c

′
1,Z

′
1,Z

′
2) is an accepted transcript then output

Z1,Z2, c1, c
′
1,Z

′
1,Z

′
2 and terminate.

(3.3) Sample c← Bε/16. If c = 1 then abort, otherwise go to step (3.1).7

7 Bε/16 is the Bernoulli probability distribution that outputs 1 with probability ε/16 and 0 otherwise. The purpose
of this step is for the algorithm to abort in case he selected a challenge c1 for which it is very unlikely that the
Prover will be able to answer a second challenge.

14

Damg̊ard showed in [Dam10, Theorem 1] that EP outputs two transcripts

(W1,W2, c1,Z1,Z2), (W1,W2, c
′
1,Z

′
1,Z

′
2)

that satisfy the verification equations with probability at least 1/8. Equations (24), (25) are then
obtained from the output of EP by writing down the verification equations and eliminating W1,W2.

We will now show that EP runs in expected time O(t/ε). First, it is straightforward to see
that the extractor finds Z1,Z2, c1 in expected time t/ε since the event of obtaining a first valid
response follows a geometric distribution. The probability that EP proceeds to Step (3.1) in more
than k1 = ln(2)s/ε steps is less than

(1− ε)k1 < exp(−εk1) = 2−s.

Similarly, it might happen that the prover P will never respond with a second valid response on
a fixed random tape r and EP never terminates in step (3.2). By the same argument as before,
the event of abort in step (3.3) follows a geometric distribution. Then after at most k2 ≈ 11s/ε
iterations the extractor will have terminated except with probability 2−s. By a union bound, EP
will terminate in time at most ≈ 12st/ε except with probability 2−s+1. ut

Theorem 3.5. Suppose that there exists an extractor EP,H making q queries to H(·) that succeeds
in producing the outputs from the statement of Lemma 3.4 in time t′ with probability ε′. Then there
exists an algorithm which, in time approximately t′ and with probability at least ε′−q2 ·2−`−1−2−`,
can output one of two things: either a short solution S̄ that satisfies A · S̄ = T mod p with

‖S̄‖∞ ≤ 2 · ‖Z2 − Z′2‖∞ ≤ 28 · σ2,

or a solution to `∞-norm Module-SISnd,nm,β problem for

β = 23/2 · k · σ1 + 25/2 ·
√
αn · σ2.

Proof. We now describe the algorithm. Whenever EP,H queries the function H, our algorithm checks
whether it was previously outputted, and if not, assigns a random value in {0, 1}k×` to the query.
Once EP,H returns the values from Lemma 3.4, the algorithm outputs

S̄ = Rot−1m (c1 − c′1) · (Z1 − Z′1). (26)

First, we see that

A · S̄ = Rot−1d (c1 − c′1) ·A · (Z1 − Z′1) = T,

where the first equality follows from (15) and the second from (24). Thus S̄ is indeed a pre-image
of T and all that we have left to prove is that the coefficients of S̄ have small magnitudes.

For convenience, we define C2 = H(Z1, c1) and C′2 = H(Z′1, c
′
1). Then plugging in A · S̄ into

(25), we obtain

A · (Z2 − Z′2) = A · S̄ · (C2 −C′2), (27)

If (Z2 − Z′2) 6= S̄ · (C2 − C′2), then we will show that we obtain a solution to Module-SIS. In
particular, if (Z2−Z′2) 6= S̄ · (C2−C′2), then due to the invertibility of Rotm(c1− c′1), we also have
that

15

Rotm(c1 − c′1) · (Z2 − Z′2) 6= Rotm(c1 − c′1) · S̄ · (C2 −C′2) = (Z1 − Z′1) · (C2 −C′2), (28)

where the equality comes from the definition of S̄ in (26). If we similarly multiply (27) by Rotm(c1−
c′1) and apply the identity from (15), we obtain

A ·
(
(Rotm(c1 − c′1)) · (Z2 − Z′2)− (Z1 − Z′1) · (C2 −C′2)

)
= 0. (29)

Equation (28) implies that some column of the above pre-image of 0 is non-zero, and we therefore
have a solution to Module-SISnd,nm,β for some value β.

To compute β, we need to compute the maximum coefficient of the pre-image of 0. Every row
of C2 −C′2 has −1/0/1 coefficients, and therefore has norm at most

√
k. Since each row of Z1 and

Z′1 has norm at most
√

2k · σ1, the Cauchy-Schwartz and triangular inequalities imply that each
coefficient of the product (Z1 − Z′1) · (C2 −C′2) has magnitude at most 23/2 · k · σ1.

We now move on to computing a bound on the coefficient size of Rotm(c1−c′1) ·(Z2−Z′2). Using
the same notation as in Algorithm 2, we rewrite the preceding product as

Rotm(c1 − c′1) · (Z2 − Z′2) =


Rot(c1 − c′1) ·

(
Z
(1)
2 − Z

′(1)
2

)
...

Rot(c1 − c′1) ·
(
Z
(m)
2 − Z

′(m)
2

)
 .

By the triangular inequality, for all i, every column of
(
Z
(i)
2 − Z

′(i)
2

)
has norm at most 23/2 ·

√
n ·σ2

and each row of Rot(c1 − c′1) has norm at most 2
√
α. By the Cauchy-Schwartz inequality, it then

follows that every coefficient of Rotm(c1 − c′1) · (Z2 − Z′2) has magnitude at most 25/2 ·
√
αn · σ2.

Equations (28) and (29) therefore imply that we can extract a solution to Module-SISnd,nm,β
for

β = 23/2 · k · σ1 + 25/2 ·
√
αn · σ2.

If we assume that such a Module-SIS problem instance is hard, it must therefore be that

(Z2 − Z′2) = S̄ · (C2 −C′2). (30)

In Lemma 3.6, we will show that because C2 and C′2 are derived via a random oracle from S̄, it
implies that the extractor EP,H making q queries to H(·) (yet otherwise having possibly unlimited
running time) has probability less than q2 · 2−`−1 + 2−` of outputting a S̄ with some coefficient
larger than 2 · ‖(Z2 − Z′2)‖∞ that still satisfies (30).

This will complete the proof of the Theorem. ut

Lemma 3.6. Suppose that an algorithm AH makes q queries to H(·). Then the probability, over
the randomness of H(·), that AH succeeds in producing Z1,Z

′
1, c1 6= c′1 defining an

M , Rot−1m (c1 − c′1) · (Z1 − Z′1)

that satisfies
‖M‖∞ > 2 · ‖M · (H(Z1, c1)− H(Z′1, c

′
1))‖∞ (31)

is at most q2 · 2−`−1 + 2−`.

16

Proof. We first observe that an AH that never makes the queries H(Z1, c1) and H(Z′1, c
′
1) has

probability at most 2−` of satisfying (31). This follows directly from Corollary 2.4.
An algorithm AH making q queries to H who succeeds (with probability larger than 2−`) must

therefore make q queries

C
(i)
2 = H

(
Z
(i)
1 , c

(i)
1

)
for i ∈ [q] and then output (Z1, c1) =

(
Z
(i)
1 , c

(i)
1

)
and (Z′1, c

′
1) =

(
Z
(j)
1 , c

(j)
1

)
that he queried that

satisfy (31). Without loss of generality, we can assume that i < j. We will now bound the probability
with which AH can succeed after making query j.

After j − 1 queries of the form H
(
Z
(i)
1 , c

(i)
1

)
for i ∈ [j − 1], AH has j − 1 equations of the form

C
(i)
2 = H

(
Z
(i)
1 , c

(i)
1

)
. The algorithm can “succeed” after making query j, if for some i < j, we have∥∥∥M(i,j)

∥∥∥
∞
> 2 ·

∥∥∥M(i,j) ·
(
C

(j)
2 −C

(i)
2

)∥∥∥
∞

where
M(i,j) , Rot−1m

(
c
(j)
1 − c

(i)
1

)
·
(
Z
(j)
1 − Z

(i)
1

)
.

Observe that the value for C
(j)
2 will be chosen uniformly at random from {0, 1}k×` on this jth

query. Corollary 2.4 then tells us that

Pr
C

(j)
2 ←{0,1}k×`

[∥∥∥M(i,j) ·
(
C

(j)
2 −C

(i)
2

)∥∥∥
∞
<

1

2
·
∥∥∥M(i,j)

∥∥∥
∞

]
≤ 2−`.

By the union bound, we obtain that

Pr
C

(j)
2 ←{0,1}k×`

[
∃ i < j , s.t.

∥∥∥M(i,j) ·
(
C

(j)
2 −C

(i)
2

)∥∥∥
∞
<

1

2
·
∥∥∥M(i,j)

∥∥∥
∞

]
≤ (j − 1) · 2−`.

Because there are a total of q queries to H, and so j ranges from 1 to q, another union bound states
that

Pr
C

(t)
2 ←{0,1}k×`

t∈[q]

[
∃i < j , s.t.

∥∥∥M(i,j) ·
(
C

(j)
2 −C

(i)
2

)∥∥∥
∞
<

1

2
·
∥∥∥M(i,j)

∥∥∥
∞

]

≤
q∑
j=1

(j − 1) · 2−` < q2 · 2−`−1,

and this completes the proof. ut

4 Practical Considerations and Sample Instantiations

If we want to simultaneously prove k equations using the challenge matrix C2 ∈ {0, 1}k×`, then the
entire proof will consist of k + ` vectors. It can be seen from Theorem 3.5 and Table 1 that, the
larger k and ` are, the larger the “soundness slack” of the solution will be. It is therefore always
advantageous to set ` to be as small as possible. The combination of Theorem 3.5 with Lemma 3.4

17

implies that if there is a Prover who runs in time t and succeeds with probability ε while making q
queries to the random oracle H, then we can extract either a solution or solve the related Module-
SIS instance in time ≈ 12t/ε with probability ≈ 1

8 − q
2 · 2−`−1. Setting ` = 2 log q + 5 would make

the preceding probability constant.
If one assumes that the Prover is classical, then q is at most 2128, and therefore one could

set ` > 260. It is difficult to say anything precise about quantum provers which are allowed to
make queries to H in superposition. Also, since Lemma 3.4 implicitly uses rewinding, an extractor
cannot actually use it to retrieve the pre-image S̄. In this case, the common approach in the
literature on lattice-based zero-knowledge proofs of knowledge is to simply double the length of
the hash function range to protect against Grover’s attack and then assume that this makes the
classically-secure protocol also secure against quantum attacks. There have not yet been any natural
counterexamples to such constructions. In the same spirit, it is then reasonable to double the allowed
number of queries that the Prover makes. Thus, for 128-bits of security, we should set q = 2256 and
` > 516.

When converting our Σ-protocol into a non-interactive version via the Fiat-Shamir transform
(obtaining Algorithms 3 and 4), one loses an additional factor of q in the success probability of the
extraction algorithm (cf. [AABN08]). But because the Fiat-Shamir transformation has been widely
used for several decades, and we still do not have examples where this loss in the proof actually
translates into practice, one usually ignores this factor q when choosing practical parameter. One
could also make an argument that the q2 factor in Theorem 3.5 is an artifact of the proof and is due
to the fact that Lemma 3.6 is allowing for an algorithm which can query H q times and then consider
all the

(
q
2

)
differences of these queries (which is what happens in the extraction), whereas the real

Prover must answer one of the q responses of H. It may therefore be reasonable to only set ` > 256
rather than doubling it. In particular, if we did the proof directly on the 5-round protocol in Figure
2, then we would only have a linear factor of q. Our guess is that, just like the loss of the factor of q
when transforming a Σ-protocol to a NIZK, the loss of the factor of q when converting our 5-round
protocol into a Σ-protocol doesn’t have any practical implications. But since our protocol is new,
it may be wise to err on the side of caution for now. In the next section, we will set parameters for
both ` = 261 and ` = 517 to illustrate the slight difference that this choice causes.

4.1 Sample Parameters

There are many different applications where one may want to apply our result, so we will just give a
simple instantiation to give a sense for the size of the parameters and for comparison with previous
works. Suppose that we have k equations of the form A ·s = t where the coefficients of s are chosen
from Dσ. The linear equations can be written in matrix form as A · S = T.

From [Ver10] (also see [MP12, Lemma 2.9]), we can put a sharp bound on the spectral norm of
matrices that are chosen like S as

Pr
S←Dx×kσ

[s1(S) > σ · (
√
x+
√
k + r)] < exp

(
−πr2

)
. (32)

Plugging in x = nm and x = n into the above equation with r = 5 yields a bound on s and
spart that holds with probability greater than 1 − 2−110. In Table 2 we give instantiations of our
scheme such that recovering S from A and T, as well as fulfilling either of the two consequences
of Theorem 3.5 is conjectured to be approximately 2−128-hard for quantum algorithms using the
cryptanalysis from [DLL+17]. The only distinction in the first four sets of parameters are the values

18

of k and `. In set 5, we change ρ1, ρ2 in a way that makes the algorithm run twice as slow (because
it requires twice as many repetitions), but allows one to reduce the proof size versus parameter set
4 in case we have more equations to prove simultaneously.

Set 1 Set 2 Set 3 Set 4 Set 5

n 256 256 256 256 256
d 7 7 7 7 7
m 14 14 14 14 14

log2 p 36 36 36 36 36
σ 3 3 3 3 3
k 250 500 250 500 1000
` 261 261 517 517 517
α 60 60 60 60 60

s, spart (242, 110) (262, 130) (242, 110) (262, 130) (289, 157)

ρ1, ρ2 (
√

3,
√

3) (
√

3,
√

3) (
√

3,
√

3) (
√

3,
√

3) (
√

6,
√

6)

proof size / equation 21KB 16KB 32KB 22KB 16KB
commit size / equation 8KB 8KB 8KB 8KB 8KB

Hermite factor original proof 1.003 1.003 1.003 1.003 1.003
Hermite factor SIS 1.0036 1.0038 1.0037 1.0038 1.0039

slack 223.5 224.2 224.1 224.7 224.6

Table 2. Sample Parameters

4.2 Efficiency

We will now give a rough estimate of the efficiency of our protocol, using parameter set 4 in Table
2. We did not implement our protocol, but the basic operations that it uses are described in various
other papers and allow us to obtain a ballpark estimate of the running time.

Computing each column of the matrix W1 and W2 requires the multiplication of m polynomials
in Rp, thus requiring a total of mk+m` polynomial multiplications. Computing Z1 then requires a
further mk multiplications in Rp, for a total of 2mk+ml multiplications. If the degree of the ring Rp
is n = 256, then we know from [LS17] that each operation requires about 30K cycles when p ≈ 229.
Since our prime p is larger and may require more than 64 bits for multiplication, we can double the
number of cycles to 60K. For the fourth set of parameters in Table 2, this implies that the total
number of cycles spent on polynomial multiplication will be around one billion cycles. Since our
proof will need to be repeated approximately ρ1 · ρ2 = 3 times, we can roughly approximate that
we will spend 1.5 seconds doing polynomial multiplications on a 2.5GHz machine.

We also need to generate nmk + nm` ≈ 3.7 · 106 discrete Gaussians for every iteration. Ex-
trapolating from [MW17, Figure 1], one can generate approximately 6 · 106 discrete Gaussians per
second. We will need to generate 3 · 3.7 · 106 discrete Gaussians for the five expected runs of our
algorithm, which would require approximately 1.85 seconds.

Another operation is the multiplication of S · C2 in the creation of Z2. Asymptotically, this
is the most expensive operation requiring Θ(nmk`) operations. But matrix multiplications of this
form are extremely efficient in practice – on a 2.5 GHz machine, the linear algebra package Scilab
can perform about 15 multiplications of S ·C2 per second. This means that five such multiplications
take 1

3 of a second. If we then generously assume that all the other overhead in our protocol, such

19

as vector additions and hash function evaluations, take 0.75 seconds, then the total time for the
protocol will require less than 4.5 seconds. Since we are amortizing over 500 proofs, this comes out
to approximately 9 milliseconds per proof.

4.3 Comparison

We will now compare our protocol with the parameters given in [DL17] for the protocol that works
over polynomial rings: if one is simultaneously proving approximately 8000 equations, then one
requires 16m multiplications over Rp per proof and 16nm discrete Gaussians (see [DL17, Table 1]).
Using the same numbers as in Section 4.2 and ignoring any overhead cost, we obtain approximately
11 milliseconds per sample. Due to the fact that the slack is smaller (see [DL17, Table 2]), it is
reasonable to assume that for some applications one would be able to use a modulus that is less
than 32 bits and so polynomial multiplications can be implemented more efficiently. [DL17] also has
no requirement to choose a modulus such that Xn+1 does not split too much (which is necessary in
our case, because we need all non-zero elements in C−C to be invertible). It is therefore conceivable
that the multiplication operation could take as little as 10000 cycles (i.e. 6 times faster), which
would make the running time approximately 10 milliseconds per proof (with most of the time being
used for the Gaussian sampling). Thus when one has enough samples available, the proof techniques
in [BDLN16,CDXY17,DL17] are roughly as efficient as the one in this paper.

Decreasing the required number of samples, however, has a significant effect on the running
time of the protocol in [DL17]. For example, decreasing the required number of proofs to 2200 ends
up increasing the running time by a factor of 8, and decreasing to 1300 slows down the protocol by
a factor of 128. For this latter parameter, the protocol in this paper is therefore over two orders of
magnitude more efficient.

One could of course overcome the minimum number of samples requirement by simply adding
“dummy” equations. This would, however, increase the overhead of the proof. Our proof sizes
are a little longer than those in [DL17], but the difference is not large enough for it to be be-
neficial to use the latter scheme with an artificially-inflated number of secrets. The proofs from
[BDLN16,CDXY17,DL17] have a smaller slack by around a factor of 8. The proof size given in
[DL17, Table 2] would correspond to n = 256 and m = 4 in the current paper, which would not
have 128-bit security against quantum attacks. One would need to increase m to 6 or 7 to have the
same security, which would end up with proof sizes that are still around 30% smaller than those in
the current paper. We should also point out that when using the protocol in this paper, one can
increase k > `, and the amortized proof size will drop due to the fact that Z2 only depends on `
(see for example the difference between parameter Sets 1 and 2 as well as 4 and 5 in Table 2). Thus
if we have more samples, it is possible to eliminate the 30% disadvantage in the proof size.

The conclusion is that when the number of proofs is large (over 7000), then the protocols
derived from [BDLN16,CDXY17,DL17] are roughly of the same efficiency as the one in the present
paper. On the other hand, as the number of samples decreases, the previous protocols slow down
exponentially, and thus the protocol in the current paper becomes increasingly superior.

5 Open Problems

We think that the most natural open problem is if one can devise a practical protocol that can
even further reduce the number of required equations until amortization applies. One can of course
trivially halve the number of samples, which will simply cause the overhead to double. The open

20

question therefore is whether it’s possible to reduce the required number of samples while not
increasing the overhead (but possibly slightly increasing the slack). Since the overhead is directly
tied to the variable `, a very tempting solution to try and reduce ` would be to choose the matrix
C2 differently so that the probability decreases below 1

2 . For example, one could think that by
choosing the coefficients from {0, 1, 2, 3} rather than from {0, 1} one could reduce the probability
to 1

4 . This is unfortunately not true: if the vector s consists of coefficients that are all near p/2, then
no matter what the distribution of c is, the inner product 〈s, c〉 mod p will be near 0 (and thus an
inner product of a large vector with c will be small) only depending on the parity of the sum of
the coefficients in c. Thus the obvious idea of just changing the distribution of C2 will not result
in an improvement. Still, we do not discount the possibility that something more clever could be
done with the matrix C2.

Another technique that sometimes helps, but we did not find a use for in this paper, is the idea
from [BCK+14] to use challenges of the form ±Xi rather than just from the set {0, 1}. In previous
works, this reduced the soundness error of a protocol over polynomial lattices from 1/2 to 1/2n
which requires less repetitions of a protocol proving one equation by a factor of log 2n [BCK+14]
or reduces the number of required samples before amortization kicks in by approximately the same
factor [DL17]; but we have not been able to find a use for it in this work. Trying to apply this
technique is also a very tempting avenue of research since it could reduce the number of samples
by a factor of O(log n) which would allow us to efficiently amortize over as few as 50 equations.

As mentioned in the introduction, we do not see a way to apply the techniques in this paper
towards practical improvements in proving amortized equations over Zp (thus improving
[BDLN16,CDXY17,DL17] in the generic setting and reducing the soundness to the SIS problem),
and so this remains an open problem. We also mention that there could be some constant-factor
optimizations over the parameters in Theorem 3.5 – especially in the reduction from Module-SIS.
For practical applications it would be particularly useful to reduce them because, as seen in the
sample instantiation, they are larger than the coefficients of the extracted solution.

Acknowledgments

We would like to thank Michael Walter for discussions and clarifications about discrete Gaussian
sampling from [MW17].

References

AABN08. Michel Abdalla, Jee Hea An, Mihir Bellare, and Chanathip Namprempre. From identification to signatures
via the fiat-shamir transform: Necessary and sufficient conditions for security and forward-security. IEEE
Trans. Information Theory, 54(8):3631–3646, 2008.

Ban93. Wojciech Banaszczyk. New bounds in some transference theorems in the geometry of numbers. Mathe-
matische Annalen, 296:625–635, 1993.

BCK+14. Fabrice Benhamouda, Jan Camenisch, Stephan Krenn, Vadim Lyubashevsky, and Gregory Neven. Better
zero-knowledge proofs for lattice encryption and their application to group signatures. In ASIACRYPT,
pages 551–572, 2014.

BDLN16. Carsten Baum, Ivan Damg̊ard, Kasper Green Larsen, and Michael Nielsen. How to prove knowledge of
small secrets. In CRYPTO, pages 478–498, 2016.

BDOP16. Carsten Baum, Ivan Damg̊ard, Sabine Oechsner, and Chris Peikert. Efficient commitments and zero-
knowledge protocols from ring-sis with applications to lattice-based threshold cryptosystems. IACR Cryp-
tology ePrint Archive, 2016:997, 2016.

21

BG14. Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based on learning
with errors. In CT-RSA 2014, pages 28–47, 2014.

BKLP15. Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, and Krzysztof Pietrzak. Efficient zero-
knowledge proofs for commitments from learning with errors over rings. In ESORICS, pages 305–325,
2015.

CD09. Ronald Cramer and Ivan Damg̊ard. On the amortized complexity of zero-knowledge protocols. In
CRYPTO, pages 177–191, 2009.

CDXY17. Ronald Cramer, Ivan Damg̊ard, Chaoping Xing, and Chen Yuan. Amortized complexity of zero-knowledge
proofs revisited: Achieving linear soundness slack. In EUROCRYPT, pages 479–500, 2017.

Dam10. Ivan Damg̊ard. On Σ-protocols, 2010. http://www.cs.au.dk/~ivan/Sigma.pdf.
DDLL13. Léo Ducas, Alain Durmus, Tancrède Lepoint, and Vadim Lyubashevsky. Lattice signatures and bimodal

gaussians. In CRYPTO (1), pages 40–56, 2013.
DL17. Rafaël Del Pino and Vadim Lyubashevsky. Amortization with fewer equations for proving knowledge of

small secrets. IACR Cryptology ePrint Archive, 2017:280, 2017. To appear in CRYPTO 2017.
DLL+17. Léo Ducas, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler, and Damien Stehlé.

CRYSTALS - dilithium: Digital signatures from module lattices. IACR Cryptology ePrint Archive,
2017:633, 2017.

DPSZ12. Ivan Damg̊ard, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from somew-
hat homomorphic encryption. In CRYPTO, pages 643–662, 2012.

FS86. Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO, pages 186–194, 1986.

GLP12. Tim Güneysu, Vadim Lyubashevsky, and Thomas Pöppelmann. Practical lattice-based cryptography: A
signature scheme for embedded systems. In CHES, pages 530–547, 2012.

KTX08. Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Concurrently secure identification schemes based
on the worst-case hardness of lattice problems. In ASIACRYPT, pages 372–389, 2008.

LM06. Vadim Lyubashevsky and Daniele Micciancio. Generalized compact knapsacks are collision resistant. In
ICALP (2), pages 144–155, 2006.

LMPR08. Vadim Lyubashevsky, Daniele Micciancio, Chris Peikert, and Alon Rosen. SWIFFT: A modest proposal
for FFT hashing. In FSE, pages 54–72, 2008.

LN17. Vadim Lyubashevsky and Gregory Neven. One-shot verifiable encryption from lattices. In EUROCRYPT,
pages 293–323, 2017.

LNSW13. San Ling, Khoa Nguyen, Damien Stehlé, and Huaxiong Wang. Improved zero-knowledge proofs of know-
ledge for the ISIS problem, and applications. In PKC, pages 107–124, 2013.

LS15. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. Des.
Codes Cryptography, 75(3):565–599, 2015.

LS17. Vadim Lyubashevsky and Gregor Seiler. Partially splitting rings for faster lattice-based zero-knowledge
proofs. Cryptology ePrint Archive, Report 2017/523, 2017. http://eprint.iacr.org/2017/523.

Lyu09. Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based signatures. In
ASIACRYPT, pages 598–616, 2009.

Lyu12. Vadim Lyubashevsky. Lattice signatures without trapdoors. In EUROCRYPT, pages 738–755, 2012.
MP12. Daniele Micciancio and Chris Peikert. Trapdoors for lattices: Simpler, tighter, faster, smaller. In EURO-

CRYPT, pages 700–718, 2012.
MW17. Daniele Micciancio and Michael Walter. Gaussian sampling over the integers: Efficient, generic, constant-

time. IACR Cryptology ePrint Archive, 2017:259, 2017. To appear in Crypto 2017.
Ste93. Jacques Stern. A new identification scheme based on syndrome decoding. In CRYPTO, pages 13–21, 1993.
Ver10. Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. CoRR, abs/1011.3027,

2010.

A Alternative Proofs

In this section, we present alternative ways in which the proof in P3Rounds could be presented. Its
most useful use in practice is as a NIZK proof that is derived via the Fiat-Shamir transform, and
we present it in Section A.1. We also show that one can get rid of the random oracle assumption in
P3Rounds by expanding it into a 5-round proof (Section A.2). In this latter section we also describe

22

http://www.cs.au.dk/~ivan/Sigma.pdf
http://eprint.iacr.org/2017/523

some techniques that one can use to make the 3-round and 5-round proofs zero-knowledge proofs
zero-knowledge even in the case that the prover aborts, as well as how to increase the completeness of
the interactive protocol with only a minor increase in the communication complexity. We point out
that all the techniques in this section are standard, so we just describe them here for convenience.

A.1 Non-Interactive Proof

A three-round honest-verifier zero-knowledge proof such as P3Rounds is used in practice by converting
it to a non-interactive protocol using the Fiat-Shamir transform [FS86]. This requires an additional
cryptographic hash function H′, modeled as a random oracle, that maps {0, 1}∗ to the domain of
C. We present the Prove and Verify protocols as Algorithms 3 and 4 with all the notation as in
the P3Rounds protocol. Notice that the Prove algorithm only outputs valid transcripts and so partial
transcripts that end in an abort are never revealed to the verifier. For this reason it was enough to
prove zero-knowledge of non-aborting transcripts in Section 3.2.

Algorithm 3 Prove(A,S). H : {0, 1}∗ → {0, 1}k×` and H′ : {0, 1}∗ → C are cryptographic hash
functions modeled as random oracles.
1: Y1 ← Dnm×k

σ1 , W1 := A ·Y1

2: Y2 ← Dnm×`
σ2 , W2 := A ·Y2

3: c1 := H′(W1,W2,T)
4: Z1 := Rotm(c1) · S + Y1

5: C2 ∈ {0, 1}k×` := H(Z1, c1)
6: Z2 := S ·C2 + Y2

7: u1 ← RejectionSample(Z1,Rotm(c1) · S, σ1, ρ1)
8: u2 ← RejectionSample(Z2,S ·C2, σ2, ρ2)
9: u3 ← IsSmall(Z1,Z2)

10: if u1 = 0 ∨ u2 = 0 ∨ u3 = 0, goto Step 1
11: return (Z1,Z2, c1)

Algorithm 4 Verify(A,T,Z1,Z2, c1)

1: C2 := H(Z1, c1)
2: W1 := A · Z1 − Rotd(c1) ·T
3: W2 := A · Z2 −T ·C2

4: Accept iff IsSmall(Z1,Z2) = 1 and c1 = H′(W1,W2,T)

A.2 5-Round Protocol

P3Rounds is a Σ-protocol that uses a cryptographic hash function H which needs to be modeled as
a random oracle. Thus it can also be seen as a transformation of a 5-round protocol into a 3-round
one. In this section, we provide the 5-round version P5Rounds (in Figure 2) which does not require a
random oracle. In addition, we make the necessary (but standard) modifications in order to reduce
the communication complexity and also prove that the protocol is zero-knowledge even if a partial
transcript that ends in an abort is output. We point out that these latter two changes can just as
easily be applied to the 3-round protocol P3Rounds.

23

The purpose of using the cryptographic hash function H in P3Rounds was to force the prover
to obtain the challenge C2 after choosing his response Z1. Thus one can convert the 3-round
protocol into a 5-round one by making the prover send Z1 as a response and then receive C2

from the verifier. It’s easy to see that the proof for the zero-knowledge property of the non-aborting
transcripts from Section 3.2 carries over without any changes. To make the proof zero-knowledge for
all transcripts, the prover needs to not reveal the values W1,W2 in case of abort. He can therefore
send commitments to these values and only open them in case the transcript is non-aborting. The
simulation for aborting transcripts would then simply send commitments of 0. Furthermore, since
the probability that an aborting transcript is sent is independent of the secret S, the simulator
knows exactly with what probability to send an aborting transcript.

Protocol P5Rounds

Com(µ, r) is the commitment function of a commitment scheme whose parameters are provided as a CRS
Prover’s Information: S ∈ Znm×k
Public Instance-Specific Information: A ∈ Zdn×nmp ,T := A · S ∈ Zdn×kp

Prover Verifier

Y1 ← Dnm×k
y , W1 := A ·Y1

Y2 ← Dnm×`
y , W2 := A ·Y2

r1 ← {0, 1}256, com1 := Com(W1, r1)
r2 ← {0, 1}256, com2 := Com(W2, r2)

com1, com2-
c1 ← C

c1�
Z1 := Rotm(c1) · S + Y1

u1 ← RejectionSample(Z1,Rotm(c1) · S, σ1, ρ1)
if u1 = 0 then abort

r1,Z1 -
C2 ← {0, 1}k×`

C2�
Z2 := S ·C2 + Y2

u2 ← RejectionSample(Z2,S ·C2, σ2, ρ2)
u3 ← IsSmall(Z1,Z2)
if u2 = 0 ∨ u3 = 0 then abort

r2,Z2 -
W1 := A · Z1 − Rotd(c1) ·T
W2 := A · Z2 −T ·C2

Accept iff IsSmall(Z1,Z2) = 1
and Com(W1, r1) = com1

and Com(W2, r2) = com2

Fig. 2. 5-Round HVZK Proof without Random Oracles.

A.3 Amplification of Completeness in the Interactive Protocol

Since our interactive protocols use rejection sampling, they do not have perfect completeness – so
the basic protocol may need to be repeated several times. When the protocol is made non-interactive

24

via the Fiat-Shamir transform, it clearly attains perfect completeness with the completeness error
of the interactive scheme only affecting the expected running time – that is if the prover in the
interactive protocol succeeds with probability ε, the expected number of iterations of the non-
interactive protocol will be 1/ε.

One can also use standard techniques to decrease the completeness error of the interactive
protocol – the idea is the same as for constructing Merkle signatures using a hash tree, and we only
provide a sketch here. The prover creates α commitments (rather than just 1) in the first round
of the protocol, creates a hash tree from the commitments, and sends the root of the hash tree.
The verifier then sends an ordered list of challenges and the prover attempts to create a response
to challenge i using the secret information in commitment i. The first challenge to which he can
successfully respond becomes the response, and the prover opens the corresponding commitment.
In addition to sending the response and opening the commitment, the prover must prove that this
commitment was part of the hash tree. For this, he sends the logα adjacent nodes along the path
from the commitment at the leaf to the root of the tree. If the completeness is ε, then this technique
increases the completeness to 1− (1− ε)α. The size of the proof only increases by logα hash values,
and the running time of the first round of the protocol increases by a factor of α.

To prove zero-knowledge, we consider the simulator that creates a non-aborting transcript and
places it at position i, where i is chosen from the same distribution as in the real proof (since the
probability of an abort is public information, this distribution is geometric). The simulator then
fills the other leafs with random values, honestly generates the hash tree, chooses all the other
random challenges, and honestly opens the hash tree in the response stage.

25

	Simple Amortized Proofs of Shortness for Linear Relations over Polynomial Rings
	Carsten Baum and Vadim Lyubashevsky

