
Adaptive-Secure VRFs with Shorter Keys
from Static Assumptions

Răzvan Roşie

ENS, CNRS, INRIA and PSL Research University, Paris, France
razvan.rosie@ens.fr

Abstract. Verifiable random functions are pseudorandom functions producing publicly verifiable proofs for
their outputs, allowing for efficient checks of the correctness of their computation. In this work, we introduce
a new computational hypothesis, the n-Eigen-Value assumption, which can be seen as a relaxation of the Un -
MDDH assumption, and prove its equivalence with the n-Rank assumption. Based on the newly introduced
computational hypothesis, we build the core of a verifiable random function having an exponentially large input
space and reaching adaptive security under a static assumption. The final construction achieves shorter public
and secret keys compared to the existing schemes reaching the same properties.

Keywords: verifiable random function, Matrix-DDH, eigenvalue assumption.

1 Introduction
The notion of a pseudorandom function (PRF), introduced in the seminal work of Goldreich, Goldwasser and
Micali [GGM86], is a foundational building block in theoretical cryptography. A PRF is a keyed functionality guar-
anteeing the randomness of its output under various assumptions. PRFs found applications in the construction of
both symmetric and public-key primitives. Since the inception of their investigation, various number-theoretical
constructions targeted efficiency [NR04,Lys02] or enhancing the security guarantees [BMR10]. Recent develop-
ments of PRFs include works on key-homomorphic PRFs [BLMR13,BPR12,BV15] or functional PRFs and their
variants [BGI14,SW14].

A stronger, related and theoretically relevant concept, the notion of verifiable random function (VRF), has been
introduced by Micali, Rabin and Vadhan [MRV99] in 1999. A verifiable random function behaves similarly to its
simpler pseudorandom counterpart, but in addition to its output value y , it also creates publicly verifiable proofs
π allowing efficient verification of the correctness of the computation. Among their proposed applications, Micali
and Rivest mention simple, non-interactive lottery systems [MR02], while Micali and Reyzin found applications in
reducing the number of rounds to 3 in zero-knowledge proofs [MR04].

More recently, VRFs found more practical applications in preventing zone enumeration attacks against the DNS
Security Extensions (DNSSEC). Originally, the Domain Name System (DNS) was not designed to handle denial-of-
service (DOS) attacks, an issue DNSSEC attempts to solve. However, so called zone enumeration attacks are still
possible even against DNSSEC. To give a flavour, a query for the IP corresponding to the domain www.mddh.com

can be answered positively by the zone server, which also signs the mapping between the domain name and the
IP. Similar queries (i.e. for the IP of eigenvalue.mddh.com) may be answered negatively. Negative queries are the
sensitive issues related to DNSSEC: trivial solutions of replying to every single query or issuing non-existence mes-
sage for all lexicographical combinations are simply not feasible. RFC4034 (NSEC3) [LMR+05] tackles this problem
by preparing a lexicographically ordered array of the names under the current zone and providing the “neighbours”
for queries with negative replies. Still, in such a way, attackers can fully learn the (names, IP) pairs under the zone.
The work of Goldberg et al. [GNP+15] proposes a new solution (NSEC5) that prevents zone-enumeration attacks
in DNSSEC. Preventing zero-enumeration attacks follows from the privacy property of the NSEC5 construction,
which is achieved by the means of a VRF.

The first construction of a VRFs was introduced in [MRV99] and was based on the RSA s(k)-hardness assumption,
obtaining a scheme with unrestricted input lengths. Since then, various works targeted constructions of VRFs that

razvan.rosie@ens.fr

accomplish (1) adaptive security [HW10], (2) security under standard assumption [DY05] and (3) exponentially
large input spaces [ACF09,HW10]. However, the realization of VRFs that simultaneously achieve these three re-
quirements, but without having to rely on a q-type assumption has been proven a difficult task until the recent
work of Hofheinz and Jager [HJ16]. The impeding constraint in achieving adaptive security resides in the lack of
techniques for removing the q-type assumptions from the security proofs. As described by [Che06], q-type as-
sumptions get stronger with the increase of the parameter q . Recently, an interesting, lattice-based approach has
been recently proposed in [Yam17]: although the computational hypothesis used is still not static, we point out the
reduced sizes of the proofs and secret keys obtained in the constructions introduced in [Yam17]. This work targets
VRFs under static assumptions using the framework introduced in [HJ16].

The VRF by Hofheinz and Jager. The core of the construction by Hofheinz and Jager is inspired by the scheme

introduced by Lysyanskaya in [Lys02], where the output corresponding to x ∈ {0,1}k is defined as y = g
∏k

i=1 ai ,xi . The
novel technique presented in [HJ16] consists in replacing the set of (uniform) unidimensional exponents ai ,0/1 with
matrix exponents. The crux point is to benefit from the algebraic properties enabled by the chain of matrix multi-
plications (linear maps in this case) in order to remove the need for q-type assumptions. The full realization of the
VRF in [HJ16] involves an extra generic step of post-processing the vectorial output of the matrix construction via
a final multiplication with a randomness extractor. The size of matrices and the issued proofs (proportional to the
binary length of the input) constitutes the main downside of the construction introduced by Hofheinz and Jager.
Therefore, an interesting open problems resides in obtaining constructions with shorter parameters or proofs.

Our contributions. A first contribution is the introduction of a novel computational assumption (the
n-Eigen-Value assumption), that we prove equivalent to the n-Rank assumption (Section 3). Informally, it
states that given an encoding of a uniform n ×n matrix having (at least) one eigenvalue in Zp , a computationally
bounded adversary cannot distinguish between an encoding of its eigenvalue ([λ] := gλ) and an encoding of a
uniformly sampled element. Finally, we provide a VRF based on the framework introduced in [HJ16] and prove
its adaptive security under the aforementioned assumption. In essence, we adopt the same methodology of
obtaining the output through matrix multiplications. In terms of comparison with the previous construction,
we are able to reduce the size of the keys, by eliminating n elements from each pair of n ×n matrix needed. For
efficient implementation over bilinear maps, where the dimension of the matrices is 3×3, the result translates in
reducing the size of the secret and verification keys by a factor of one sixth.

Our technique. We give a brief overview of the proof technique we use and explain the difficulty encountered while
attempting to reduce the dimensions of the matrix-based keys even with a constant factor. For brevity, consider a

simplified version of our construction having the output generated as: g v> = g u>
∏k

i=1(Mi−Pi ,xi
). The crucial property

we want to achieve is a linear mapping between v(j−1) = u> ·∏ j−1
i=1 (Mi −Pi ,xi) and v(j) = u> ·∏ j

i=1(Mi −Pi ,xi) through

the means of M j −P j ,x j . If v(j−1) belongs to a pre-established subspace S j−1, we intend to map it to S j by mul-

tiplication with M j −P j ,x j ; otherwise (v(j−1) 6∈S j−1), the matrix multiplication should guarantee that v(j) 6∈S j . To
ensure this, we consider an orthogonal component n⊥S j−1 and attempt to “hide” it in P j ,0 or P j ,1 (in fact in their
difference depending on the challenge X (0)). Thus if v(j−1) ∈ S j−1, then the inner-product n> ·v(j−1) = 0 (and 6= 0
for v(j−1) 6∈S j−1).

The second idea that we will apply is to consider a representation of n where its last entry is 1; stated differently
n> = (α1, . . . ,αn−1,1). Setting the last component to 1 enables us to save a row per index in the matrix construction
we provide. In some sense, the main difficulty in going beyond one row elimination consists in the number of
constant components we can obtain in n. The basic construction is presented in Section 4, while an adaptive
construction is given in Section 5. Finally, we simply get the VRF through the generic transform introduced in
[HJ16] (stated in Theorem 3, Appendix A.3).

2 Preliminaries

We denote by s
$← S the fact that s is picked uniformly at random from a finite set S. Variables in bold capital letters

stand for matrices (e.g. M) while bold lowercase letters represent vectors (e.g. u). A subscript i on a vector u (e.g. ui)
stands for the i -th component of the vector. An analogue convention is used for matrices. By [a] := g a we denote

2

the “encoding of an element” w.r.t. a group generator g ∈G, while through [M] and [u], we denote the encodings of
a matrix, respectively vector. W denotes the matrix formed by the top n −1 rows of a matrix W of size n ×n. When
working with a family of vectors v, we use the upper script to distinguish between them: v(0),v(1), We abuse
notation and extend it to bilinear maps by writing e([A], [B]) = e(g , g)A·B = [A ·B] to denote the matrix obtained
after multiplying the exponents and getting as a result the pairing of entries. By C (A), we denote the columnspace
of a matrix A, and by C (A>), we denote its rowspace. We denote the security parameter by λ ∈N and we assume it is
given to all algorithms in the unary representation 1λ. We regard an algorithm as being randomized (unless stated)
and being modeled by stateless Turing machine. PPT as usual stands for “probabilistic polynomial-time.” Given a
randomized algorithm A we denote the action of running A on input(s) (1λ, x1, . . .) with uniform random coins r

and assigning the output(s) to (y1, . . .) by (y1, . . .)
$←A (1λ, x1, . . . ;r). We denote the set of all negligible functions by

NEGL. With x̄ ≺ x, we denote a bitstring prefix.

2.1 Definitions

We recall the standard definition of a VRF and the novel notion of verifiable vector hash function from [HJ16].
Certified Bilinear Group Generators are presented in Appendix A.1.

Definition 1 (Verifiable Random Function). A verifiable random function consists of a tuple of three PPT algo-
rithms VRF := (VRF.Gen,VRF.Eval,VRF.Vfy), defined as:

– VRF.Gen takes as input the security parameter 1λ (in unary), and outputs a secret key sk together with a verifi-
cation key vk;

– VRF.Eval takes as inputs a secret key sk and a string X ∈ {0,1}k and outputs a function value Y ∈Y (where Y is
a finite set) and a proof π;

– VRF.Vfy takes as inputs a verification key vk, a string X ∈ {0,1}k , a value Y ∈ Y , and a proof π, and outputs a
bit.

Moreover, we require the following three properties to hold:

– Correctness: Pr

[
VRF.Vfy(vk,Y , X ,π) = 1

∣∣∣∣∣ (sk, vk)
$←VRF.Gen(1λ)

(Y ,π)
$←VRF.Eval(sk, X)

]
= 1

– Unique Provability: for any (vk, sk) (even maliciously generated) and any X ∈ {0,1}k , there does not exist any
(Y0,π0,Y1,π1) such that Y0 6= Y1 and VRF.Vfy(vk, X ,Y0,π0) =VRF.Vfy(vk, X ,Y1,π1) = 1

– Pseudorandomness: for any PPT adversary A = (A0,A1), its advantage:

AdvvrfVRF(A ,λ) := 2 ·Pr
[
ExpVRFA

VRF(λ) = 1
]
−1 ∈ NEGL

is negligible, where ExpVRFA
VRF is defined in Figure 1, and where the adversary never repeats a query twice (in

particular, it cannot query the challenge X ∗ to the oracle O). We define the security experiments for both selective
and adaptive security — selective security being similar except the challenge X ∗ is chosen by the adversary before
seeing a verification key.

Vector hash functions (VHFs) are extensions of programmable hash functions [HK08], with outputs represented
vectorially. Programmable hash functions are number theoretic hashes that work in two indistinguishable modes:
using standard keys, the hash behaves “normally”, but under trapdoor keys, the output follows a particular alge-
braic specification.

Definition 2 (Verifiable Vector Hash Function). A verifiable vector hash function consists in a tuple of three algo-
rithms VHF= (VHF.Gen,VHF.Eval,VHF.Vfy) defined as:

– VHF.Gen takes as input a certified bilinear group Π for a security parameter 1λ, and outputs an evaluation key
and a verification key (ek, vk);

– VHF.Eval takes as input an evaluation key ek and an input X and outputs a vector of group encodings [v] ∈Gn

together with a proof of correctness π ∈ {0,1}∗;
– VHF.Vfy takes as input a verification key vk, an input X , a vector [v], and a proof π, and outputs a bit b,

3

ExpVRFA
VRF(1λ):

(X ∗, st)
$←A0(1λ)

(sk, vk)
$←VRF.Gen(1λ)

b
$← {0,1}

(X ∗, st)
$←A O (·)

0 (vk)

Y ∗ ←Chal(X ∗,b)
b′ $←A O (·)

1 (st ,Y ∗)
Return b = b′

O (X):
(Y ,π) ←VRF.Eval(sk, X)
Return (Y ,π)

Chal(X ∗,b):
If b = 0 then
(Y ∗,π) ←VRF.Eval(sk, X ∗)
Else
Y ∗ $←Y

Return Y ∗

Sel TrapIndA
VHF(λ):

b
$← {0,1}

Π
$←GrpGen(1λ)

(X (0), st)
$←A0(1λ)

(vk0,ek0)
$←VHF.Gen(Π)

B
$← GLn(Zp)

(vk1,ek1)
$←VHF.TrapGen(Π, [B] , X (0))

b′ $←A
Ob (·), Ocheck(·)

(st , vkb)
Return b = b′

O0(X):

([v] ,π)
$←VHF.Eval(ek0, X)

Return ([v] ,π)

O1(X):
(β,π) ←VHF.TrapEval(ek1, X)
[v] := [B] ·β
Return ([v] ,π)

Ocheck(X):
(β,π) ←
VHF.TrapEval(ek1, X)
(β1, . . . ,βn) :=β
If βn 6= 0 then Return 1
Else Return 0

Fig. 1: The experiment (game) defining the pseudorandomness of a VRF (top). The experiment and oracles defin-

ing indistinguishability for selective/adaptive programmable VHFs (down). A boxed value is included in the

selective game, double-boxed in the adaptive game.

and such that they satisfy the following two properties, termed correctness and unique provability:

– For correctness, we require that:

Pr

VHF.Vfy(vk, [v] , X ,π) = 1;

∣∣∣∣∣∣∣
Π

$←GrpGen(1λ)∧
(vk,ek) ←VHF.Gen(Π)∧(
[v] ,π

)←VHF.Eval(ek, X)

= 1 . (1)

– Unique provability requires that, for any verification key vk and any input X , there does not exist any tuple(
[v]1 ,πv, [w] ,πw

)
with [v] 6= [w] and such that:

VHF.Vfy(vk, X , [v] ,πv) =VHF.Vfy(vk, X , [w] ,πw) = 1 . (2)

We require that aVHF reaches selective/adaptive programmability with respect to trapdoor procedures (to be used
in security proofs) as introduced in [HJ16]. We also denote them as PVHFs (programmable VHFs). The adaptive
programmability is similar and is defined in Definition 4.

Definition 3 (Selective Programmability). A verifiable vector hash fuction VHF= (VHF.Gen, VHF.Eval, VHF.Vfy)
is selectively programmable if there exist two PPT algorithms (VHF.TrapGen, VHF.TrapEval):

– VHF.TrapGen takes as input Π
$←GrpGen(1λ), a matrix [B] ∈Gn×n , and X (0) ∈ {0,1}k and outputs a verification

key vk and a trapdoor evaluation key td;
– VHF.TrapEval takes as input a trapdoor evaluation key and a string X ∈ {0,1}k , and outputs a vector β ∈Zn

p and
a proof π ∈ {0,1}∗,

4

such that the following three properties hold:

– Correctness:

Pr

VHF.Vfy(vk, [v] , X ,π) = 1

∣∣∣∣∣∣∣
Π

$←GrpGen(1λ)∧
(vk, td)

$←VHF.TrapGen(Π, [B], X (0))∧
(β,π)

$←VHF.TrapEval(td , X)∧ [v] := [B] ·β

= 1 (3)

– Well-Distributed Outputs: for q = q(λ) a polynomial, there exists a polynomial poly such that for any

X (0), X (1), . . . , X (q) ∈ ({0,1}k)
q+1

with X (i) 6= X (0) for all i ∈ {1, . . . , q}, we have:

Pr

β(0)
n 6= 0∧β(i)

n = 0;
∀i = 1, . . . , q

∣∣∣∣∣∣∣
Π

$←GrpGen(1λ)∧B
$← GLn(Zp)∧

(vk, td)
$←VHF.TrapGen(Π, [B], X (0))∧

(β(i),π)
$←VHF.TrapEval(td , X (i))

≥ 1

poly(k)
(4)

where β(i)
n denotes the n-th component of β(i).

– Indistinguishability: for any PPT adversary A = (A0,A1), its advantage:

Advsel-ind-vhf
VHF (A ,λ) := 2 ·Pr

[
SelTrapIndA

VHF(λ) = 1
]
−1

is negligible, where experiment SelTrapIndVHF is defined in Figure 1. Intuitively, we require that verification keys
generated using VHF.Gen are indistinguishable from those generated using VHF.TrapGen.

Definition 4 (Adaptive Programmability). A verifiable vector hash function VHF = (VHF.Gen, VHF.Eval,
VHF.Vfy) is adaptively programmable, if algorithms (VHF.TrapGen, VHF.TrapEval), defined as above except that
VHF.TrapGen takes as input only Π and [B] (and no longer an input X (0)), exist, and satisfy the above correctness,
well-distribution, and such that the advantage of any PPT adversary A , defined as:

Advind-vhf
VHF (A ,λ) := 2 ·Pr

[
TrapIndA

VHF(λ) = 1
]
−1 ,

is negligible, where experiment SelTrapIndVHF is defined in Figure 1.

3 The Eigen Value Assumption

In this section, we propose a new assumption, termed the n-Eigen-Value assumption, which we prove to be equiv-
alent to the n-Rank assumption, whose definition is also recalled below. The purpose of this assumption is to
offer more flexibility than the n-Rank assumption; we then use the n-Eigen-Value to prove the security of our con-
struction (which then holds under the standard n-Rank assumption). Before giving the formal definition of our
assumption, let us recall the definition of the n-Rank assumption in a group G:

Definition 5 (n-Rank Assumption). Let Mi denote a n ×n matrix (n ≥ 2) of rank i sampled uniformly at random
from

{
W

∣∣W ∈ Zn×n
p ∧ RANK(W) = i

}
. Let A be any PPT adversary. Then the advantage of A against the n-Rank

problem in a group G, defined as:

Advn-rank
G (A ,λ) := Pr

[
A

(
[Mn] ,1λ

)= 1
]
−Pr

[
A

(
[Mn−1] ,1λ

)= 1
]

,

is negligible.

Remark 1 (Computational vs Decisional n-Rank). Note that Definition 5 implicitly makes the n-Rank assumption
“computational”: distinguishing between the two ranks implicitly gives the rank of the matrix.

5

The natural n-Eigen-Value counterpart of the n-Rank assumption, roughly saying that
(
[M] , [λ]

) ≈c
(
[M] , [$]

)
—

the encoding of an eigenvalue for a randomly sampled matrix M is indistinguishable from the encoding of a ran-
dom element, needs a more careful definitional setting. This happens because not every M defined over Zn×n

p has
its eigenvalues belonging to Zp . Concretely, the (monic) characteristic polynomial of M is irreducible with proba-
bility:

µ= 1

n
+O

(
p−n/2 ·pn

)
. (5)

For large p,µ approaches 1/n. Thus, the probability that a random matrix M has eigenvalues inZp is simply 1−1/n.
Still, practical applications would benefit for small values of n, and the aforementioned probability in Equation (5)
is significant, so we employ a different strategy.

Based on the previous observation, we now define the n-Eigen-Value assumption as follows: let A,B be two ma-
trices of ranks respectively n −1,n, and L be randomly sampled from Zn×n

p (which has rank n with overwhelming

probability). We set Mn−1 ← L ·A+λ · In and Mn ← B. We now claim that the two distributions —
(
[Mn−1] , [λ]

)
and(

[Mn] , [$]
)

— are indeed computationally indistinguishable.

Definition 6 (n-Eigen-Value). Let A
$← {

W
∣∣W ∈ Zn×n

p ∧ rank(W) = n −1
}
, B

$← Zn×n
p and L

$← GLn(Zp). Let A be a
PPT algorithm. The advantage of any PPT adversary A against the n-Eigen-Value problem in a group G, defined as:

Advn-ev
G (A ,λ) := Pr

[
A

(
[M] , [λ] ,1λ

)= 1
]
−Pr

[
A

(
[N] , [r] ,1λ

)= 1
]

,

is negligible, where M ← L ·A+λ · In , N ← B and r
$←Zp .

Theorem 1. The n-Rank assumption holds in G if and only if the n-Eigen-Value assumption holds in G.

Proof. We prove this statement by proving both implications separately.

n-Rank⇒ n-Eigen-Value. Let A be an adversary against the n-Eigen-Value problem in G. We then build an ad-
versary B against the n-Rank problem in G as follows: B is given a matrix of group elements [M] with M being of

rank n−1 or n. It then picks uniformly at random an invertible matrix L
$← GLn(Zp), a scalar λ

$←Zp and computes
[B]= [M ·L+λ · In]. Finally, it sends ([B] , [λ]) to A . When A halts with some bit b, B outputs b.

Then, assuming M is a rank n matrix, det(B−λ · In) = det(M ·L) 6= 0, since M and L are rank n matrices, and then λ
is not an eigenvalue of B, and B simulates precisely the setting

(
[B] , [r]

)
(with overwhelming probability). Now, if

M is a rank n−1 matrix, so is M ·L, and then det(B−λ · In) = 0, which implies that λ is an eigen value of B. Then, B

simulates exactly the setting
(
[B] , [λ]

)
.

n-Eigen-Value ⇒ n-Rank. Let now A denote an adversary against the n-Rank problem in G. Then we build an
adversary B against the n-Eigen-Value problem in G as follows: B is given a tuple ([M] , [λ]) with λ being either
random or an eigenvalue of M (for the second case, M = L ·A+λ · In). Then, B simply computes [M−λ · In] and
sends it to A . When A halts with some bit b, B outputs b.

Indeed, if λ is not an eigenvalue and M is uniformly sampled, M−λ · In is just a uniform matrix in Zn×n
p , which

is then of rank n with overwhelming probability, and B simulates correctly the case where the input matrix for
the n-Rank adversary has rank n. However, if λ is indeed an eigenvalue, then det(M−λ ·In) = 0, which implies that
M−λ·In has rank at most n−1 (rank n−1 with overwhelming probability). In this case, B simulates the case where
the input matrix to the n-Rank solver has rank n −1.

This concludes the proof of Theorem 1. ut

4 A new programmable vector hash function construction
Verifiable random functions can be build generically on top of programmable verifiable vector hash functions. We
recall their transform allowing to obtain PVHF-based VRFs in Appendix A.3. In what follows, we contribute by
introducing a new PVHF construction with smaller public and secret keys compared to the construction proposed
in [HJ16], and relying on a new technique.

6

4.1 A new PVHF construction

For e : G×G→ GT a symmetric pairing with |G| = p (p prime), let D0 and D1 be the following “pattern” matrix
distributions:

D0 =



d1,1 d1,2 . . . d1,n
0 0 . . . 0
0 0 . . . 0
...

... . . .
...

0 0 . . . 0

 D1 =


0 0 . . . 0

d2,1 d2,2 . . . d2,n
.

dn−1,1 dn−1,2 . . . dn−1,n
0 0 . . . 1

 , where di , j
$←Zp , i ∈ [n −1], j ∈ [n].

VHF.Gen(1λ):

u
$←Zn

p

(Mi ,Pi ,0,Pi ,1)
$←Zn×n

p ×D0 ×D1,∀i ∈ [k −1]

(Mk,0,Mk,1)
$←Zn×n

p ×Zn×n
p

vk :=
(
[u], {[Mi ,Pi ,b ,Mk,b]}i∈[k−1],b∈{0,1}

)
sk :=

(
u, {Mi ,Pi ,b ,Mk,b}i∈[k−1],b∈{0,1}

)
Return (vk, sk)

VHF.Eval(x, sk):

[v] := [u> ·Mx]
π := {

[u> ·Mx̄] : ∀x̄ ≺ x
}

Return ([v],π)

VRF.Vfy(x, vk, [y],π):

check e([u> ·M(i)
x̄], [1])

?= e([Mi ,xi], [u> ·M(i−1)
x̄]),∀i ∈ [k]

Fig. 2: The underlying VHF construction, used to construct a selective PVHF for inputs of length k. We use the
following notation Mx :=∏k−1

i=1

(
Mi −Pi ,xi

) ·Mk,xk
. We emphasize the representation size of Pi ,0,Pi ,1 is n2-n, which

translates in 6 elements for efficient construction using 3×3 matrices, thus obtaining a more efficient construction
in terms of both public and secret keys when comparing to the one in [HJ16].

Overview of the construction. We define a VHF construction in Figure 2, show its correctness and unique prov-
ability, then introduce the trapdoor algorithms in Section 4.2 and prove programmability.

– TheVHF.Gen algorithm of the proposed scheme generates a set of uniform matrices
(
M j , P j ,0,P j ,1

)
, ∀ j ∈ [k-1],

sampled according to the appropriate distributions. The set of “plain” matrices form the secret key sk, while
the vk is set to be their encodings.

– The VHF.Eval procedure under sk, corresponding to x ∈ {0,1}k outputs:

[
u> ·

(k−1∏
i=1

(
Mi −Pi ,xi

)) ·Mk,xk

]
In some sense, our evaluation procedure is similar to the one described in [Lys02], but we use a matrix multi-
plication construction rather than a unidimensional product.

– The VHF.Vfy procedure checks if all the pairings of (1) the vectors constituting the proof π, with (2) the matri-
ces forming the public key, are correct.

Fine tunning the VHF to achieve well-distributed outputs. We also justify the need for uniform matrices corre-
sponding to position k. Well-distributed outputs, as formulated in Definition 3 (Figure 1), enforces the last sub-
space (W) we work to be the one spanned by the first n−1 canonical vectors. The reason for this constraint, resides
in the proof for pseudorandomness: the outcome of the trapdoor evaluation is multiplied by a (n-LIN-distributed -
cf. [EHK+13], page 9) matrix B . To cope with this subtlety, we “fine-tune” the PVHF, by doing the following change:
we replace the matrices in the last position

(
Mk ,Pk,0,Pk,1

)
with two “proper”, random matrices

(
Mk,0,Mk,1

)
.

4.1.1 Correctness and unique provability. Correctness (1) follows immediately from the construction. Unique
provability (2) follows from the deterministic evaluation. We prove it formally below:

Lemma 1. The VHF construction presented in Figure 2 achieves unique provability, according to Definition 2.

7

Proof. Suppose there exists a public key vk, a strings X of length k, and a tuple ([v],π, [w],φ) with [v] 6= [w] and
[v], [w] ∈Gn such that: VHF.Vfy(vk, X , [v],π) =VHF.Vfy(vk, X , [w],φ) = 1 .

To prove uniqueness (2), we use of the properties of the construction. Suppose there exists a vector index j ∈ [n]
such that [v j] 6= [w j]. We expand [v j] 6= [w j] as follows:

[v j] 6= [w j] ⇐⇒
(
u> ·

k−1∏
i=1

(Mi −Pi ,xi) ·Mk,xk

)
j
6=

(
u> ·

k−1∏
i=1

(Mi −Pi ,xi) ·Mk,xk

)
j

(6)

The expanded equation shows the output values are uniquely determined by the secret key and the input string x,
in a fully deterministic procedure. Hence, from Equation (6), it follows the unique provability property. ut

4.2 Proving Selective Programmability

As usual, provable security is achieved via a reduction to a computationally hard problem; in our case, we rely on
the n-Eigen-Value assumption (detailed in Section 3), stating that ([A], [λ]) ≈c ([B], [$]) — the distribution of en-
coded matrices with their eigenvalues is indistinguishable from the uniform distribution defined over all encoded
matrices and some random group elements.

Overview. To prove selective programmability (Definition 3) w.r.t. a challenge X (0) for the VHF in Fig-
ure 2, we gradually replace the relevant rows in P j ,0,P j ,1 with vectors lying in the rowspace defined
by the challenge n-Eigen-Value tuple

(
[A] , [e]

)
(i.e the eigenspace of [A − e · In]). Among these vectors,

we attempt to “hide” the orthogonality components for the rowspace defined by the matrices corre-
sponding to position j -1 (Figure 3). We also replace M j such that

(
M j − P j ,X (0)

j

)
linearly maps vectors be-

tween rowspaces defined by
(
M j−1 − P j−1,1−X (0)

j−1

)
and

(
M j − P j ,1−X (0)

j

)
. Then, given the k pairs of matrices{(

M1 −P1,0,M1 −P1,1
)
, . . . ,

(
Mk−1 −Pk−1,0,Mk−1 −Pk−1,1

)
,
(
Mk,0,Mk,1

)}
, the value u> ·MX (0) completely determines

u (since MX (0) has full rank w.h.p.), whereas for any x 6= X (0), Mx is a matrix of rank n − 1 (because for some j,
M j −P j ,1−X (0)

j
has rank n−1 and it’s a term in the product represented by Mx), so u> ·Mx loses information about u.

The trapdoor mode algorithms VHF.TrapGen and VHF.TrapEval are described below:

1. VHF.TrapGen sets all the matrices (M j ,P j ,0,P j ,1) such that:

– it first generates, uniformly at random, a subspace of dimension n −1, denoted S0 and a uniform u
$← Zn

p ,
which with overwhelming probability will not belong to S0.
– it incrementally constructs the challenge-related matrices such that M j −P j ,1−X (0) defines a rowspace of
rank n −1, denoted S j . Also, M j −P j ,X (0) defines a linear map between the subspaces S j−1 and S j ; formally(
M j −P j ,X (0)

)
: S j−1 →S j .

Achieving the linear map property is more subtle, and requires a careful programming of the matrices

M j ,P j ,0,P j ,1. The VHF.TrapGen begins by sampling L j
$← Zn×n

p . It also samples S j
$← Z

(n−1)×n
p such that its

rowspace defines S j . A normal vector (α1, . . . ,αn−1,1), orthogonal on S j−1 is also computed. Finally the
matrices can be set as in Figure 3:

The intuition behind this setting is given by the orthogonal component. The value of the inner product be-
tween v(j−1) and the orthogonal component on S j−1 will enable/disable the membership of v(j) to S j : a zero
inner product means that v(j−1) ∈ S j−1, otherwise v(j−1) 6∈ S j . Finally Mk,1−X (0) is sampled from Sk , while

Mk,X (0) is set to map Sk−1
C−1

−−→ W
C ′
−→ Sk , where W is the subspace spanned by the first n-1 vectors from the

canonical basis.
2. VHF.TrapEval behaves exactly as the VHF.Eval with the noticeable difference, that for a trapdoor algorithm,

the resulting vector is multiplied with the matrix B, as specified in Figure 1.

We now prove well-distributed outputs and indistinguishability.

8

P j ,1 =


0 0 . . . 0

s
(j)
2,1 s

(j)
2,2 . . . s

(j)
2,n −α2

.

s
(j)
n−1,1 s

(j)
n−1,2 . . . s

(j)
n−1,n −αn−1

0 0 . . . −1

 P j ,0 =


s

(j)
1,1 s

(j)
1,2 . . . s

(j)
1,n +α1

0 0 . . . 0
.
0 0 . . . 0



M j = L j ·
(

S j
s>j ·S j

)
+P

j ,1−X (0)
j

,∀ j ∈ [k −1]

M
k,1−X (0)

k
= Lk ·

(
Sk

s>k ·Sk

)
M

k,1−X (0)
k

=
(

L
′
k ·Sk−1

r
′

)−1

·
(

L
′′
k ·Sk

r
′′

)

Fig. 3: Matrices M j ,P j ,0,P j ,1 for j ∈ [k-1] generated for the trapdoor mode. The matrices Mk,0,Mk,1 are generated
as in [HJ16].

4.2.1 Well-distributed outputs

Lemma 2. The PVHF construction presented in Figure 2 has well-distributed outputs according to Definition 3.

Proof. The triple
(
M j ,P j ,0,P j ,1

)
j∈[k−1] — as defined in Figure 3 — can be used to construct matrices with the prop-

erties enumerated below:

1. Property 1. M j −P j ,X (0)
j

= L
′
j ·

(
S j

s> ·S j

)
+(−1)

X (0)
j ·N, where N is the zero matrix except the last column being set

to
(
α1,α2, . . . ,αn−1,1

)
. (A detailed proof is worked out in Appendix B).

2. Property 2. M j −P j ,1−X (0)
j

= L j ·
(

S j

s> ·S j

)
.

An invariant is used to easily encapsulate the well-distributed outputs property:

∃ matrices S1, . . . ,Sk ∈Z(n−1)×n
p of rank n −1 such that for each x ∈ {0,1} j not a prefix of X (0), Mx lies in S j ,

where C
(
S>

j

)=S j .

We demonstrate the invariant is preserved under the setting of matrices shown in Figure 3 by proving a set of
simple lemmata. Essentially, the first one ensures that

(
M j −P j ,1−X (0)

j

)
: Zn

p → S j . The second and third lemmas

state that M j −P j ,X (0)
j

will map vectors from S j−1 →S j for j ∈ [k-1]. Full proofs are given in Appendix C.

– Lemma 3. Let S
$←Z

(n−1)×n
p , s

$←Zn
p . Let b ∈Zn

p . Then ∃a ∈Zn
p s.t: b> ·

(
M j −P

j ,1−X (0)
j

)
= a> ·

(
S j

s>j ·S j

)
.

– Lemma 4. Let S
$←Z

(n−1)×n
p and s

$←Zn
p . Let v ∈Zn

p and b> = v>·
(

S j−1
s>j−1 ·S j−1

)
. Then ∃a ∈Zn

p such that b>·
(

M j −P
j ,1−X (0)

j

)
=

a> ·
(

S j
s>j ·S j

)
.

– Lemma 5. Let S
$← Z

(n−1)×n
p and s

$← Zn
p . ∀v ∈ Zn

p let b> 6= v> ·
(

S j−1
s>j−1 ·S j−1

)
. Then ∀a ∈ Zn

p we have b> ·
(

M j −P
j ,X (0)

j

)
6=

a> ·
(

S j
s>j ·S j

)
.

Finally, care is needed because the special way of sampling Mk,0 and Mk,1. Their trapdoor form is given in Figure 3
and the argument for linear maps is the one we mentioned before. Moreover, according to the Definition 3, one
needs to ensure that Sk =W , which implies a special form for Sk used to instantiate

(
Mk,0,k,1

)
. Finally, the invariant

immediately follows from the lemmas, and therefore we obtain well-distributed outputs for the construction in
Figure 2. ut

9

4.2.2 Indistinguishability proof.The procedures VHF.Gen and VHF.TrapGen used in the indistinguishability se-
curity experiment (Definition 3) are given in Figure 4.

VHF.Gen(Π):

u
$←Zn

p

(Ai ,Bi ,0,Bi ,1)
$←Zn×n

p ×D0 ×D1,
i ∈ [k −1],b ∈ {0,1}(

Dk,0,Dk,1
) $←Zn×n

p ×Zn×n
p

vk :=
(
[u] , {[Ai] , [Bi ,b] , [Dk,b]}i∈[k−1],b∈{0,1}

)
sk :=

(
u, {Ai ,Bi ,b ,Dk,b}i∈[k−1],b∈{0,1}

)
Return (vk, sk)

VHF.TrapGen(Π, [B], X (0)):

u
$←Zn

p(
Mi ,Pi ,0,Pi ,1

)
are sampled according to Figure 10, Appendix D(

Mk,0,Mk,1
)

are sampled according to Figure 10, Appendix D

vk :=
(
[u] , {[Mi] , [Pi ,b] , [Mk,b]}i∈[k−1],b∈{0,1},

)
td :=

(
u, {Mi ,Pi ,b ,Mk,b}i∈[k−1],b∈{0,1},

)
Return (vk, td)

Eval0(x):

v> := u> ·∏k−1
i=1 (Ai −Bi ,xi) ·Dk,xk

Return [v]

Eval1(x):

v> := u> ·∏k−1
i=1 (Mi −Pi ,xi) ·Mk,xk

Return [B ·v]

Fig. 4: The VHF.Gen and VHF.TrapGen procedures and the oracles used by the indistinguishability security exper-
iment defined in Figure 1. We provide explicit forms for the two evaluation oracles.

Theorem 2. The PVHF construction presented in Figure 2 is indistinguishable according to Definition 3.

Proof. Intuitively, we build the proof on transitions based on indistinguishability between hybrid games (Figure 5,
left side). Game0 will correspond to the setting where the matrices used by the VHF.TrapGen are sampled via the
VHF.Gen procedure. A transition between the hybrids j -1 and j consists in replacing the first j pairs of matrices in
the public key with ones sampled according to VHF.TrapGen. To facilitate the transition from Game j to Game j+1

we introduce an intermediate hybrid security experiment, defined in Figure 5 (right side). Lemmata 6, 7 are used
to prove the transitions between Game j → Game j ,A and Game j ,A → Game j+1.

Lemma 6. For j ∈ [k−2], a PPT adversary A distinguishes between Game j and Game j ,A with negligible advantage:

Pr
[

GameA
j = 1

]
−Pr

[
GameA

j ,A = 1
]
∈ NEGL.

Proof (Lemma 6). We prove an adversary cannot detect the transition between Game j and Game j+1, via the inter-
mediate sub-hybrid game we have introduced. The transition between Game j and Game j ,A relies on a statistical
argument. In Game j , the tuple

(
M j+1,P j+1,0,P j+1,1

)
corresponding to the position j +1 are sampled uniformly from

Zn×n
p ×D0×D1. In Game j ,A , we sample the matrices in position j +1 using the trapdoor distribution. The indistin-

guishability follows from the fact that in Game j ,A (Figure 5) , all the entries in P j+1,0,P j+1,1 are sampled uniformly
at random; observe the entries in the last columns of P j+1,0,P j+1,1 consists in the sum (difference) of randomly
sampled ri ,n +αi . Thus, the orthogonality components

(
α1, . . . ,αn−1,1

)
are indistinguishable from uniform ele-

ments, which implies that Pr
[

GameA
j = 1

]
−Pr

[
GameA

j ,A = 1
]
∈ NEGL. ut

Lemma 7. For j ∈ [k-2], a PPT adversary distinguishes between Game j ,A and Game j+1 with negligible advantage:

Pr
[

GameA
j ,A = 1

]
−Pr

[
GameA

j+1 = 1
]
≤ Advn-ev

G (A ,λ).

Proof (Lemma 7). One can observe that our trapdoor construction differs from the one introduced in [HJ16] in
the sense that instead of using two matrices, we use a matrix and two vectors (when n = 3), in a sense aiming to
compress as much info as possible in the two row vectors.

Reduction to the n-Eigen-Value assumption. We take the contrapositive. Let A be a PPT adversary having a non-
negligible advantage in distinguishing between Game j ,A and Game j+1. We build an adversary A ′ that wins the
n-Eigen-Value game with the same probability. The n-Eigen-Value game commences by sampling a bit b′. A ′ is

10

VHF.TrapGen(Π, [B], X (0),1λ): // Game j

u
$←Zn

p

(Ai ,Bi ,0,Bi ,1)
$←Zn×n

p ×D0 ×D1

(Mi ,Pi ,0,Pi ,1),∀i ∈ [j] are sampled as in Figure 10

(Mk,0,Mk,1)
$←Zn×n

p ×Zn×n
p

vk :=
(
[u], {[Mi], [Pi ,b]}i∈[j],b∈{0,1},

{[Ai], [Bi ,b], [Mk,b]}i∈[k−1]−[j],b∈{0,1}

)
td :=

(
u, {Mi ,Pi ,b}i∈[j],b∈{0,1},

{Ai ,Bi ,b ,Mk,b}i∈[k−1]−[j],b∈{0,1}

)
Return (vk, td)

VHF.TrapGen(Π, [B], X (0),1λ): // Game j ,A

u
$←Zn

p

(Ai ,Bi ,0,Bi ,1)
$←Zn×n

p ×D0 ×D1(
Mi ,Pi ,0,Pi ,1

)
i≤ j are sampled according to Figure 10

P j+1,0 =


r1,1 r1,2 . . . r1,n +α1

0 0 . . . 0
.
0 0 . . . 0



P j+1,1 =


0 0 . . . 0

r2,1 r2,2 . . . r2,n −α2

.
rn−1,1 rn−1,2 . . . rn−1,n −αn−1

0 0 . . . −1


M j+1

$←Zn×n
p(

Mk,0,Mk,1
) $←Zn×n

p ×Zn×n
p

vk :=
(
[u], {[Mi], [Pi ,b]}i∈[j+1],b∈{0,1},

{[Ai], [Bi ,b], [Mk,b]}i∈[k−1]−[j+1],b∈{0,1},
)

td :=
(
u, {Mi ,Pi ,b}i∈[j+1],b∈{0,1},

{Ai ,Bi ,b ,Mk,b}i∈[k−1]−[j+1],b∈{0,1}

)
Return (vk, td)

Eval1(x): // Game j

v> = u> ·∏ j
i=1(Mi −Pi ,xi)·∏k−1
i= j+1(Ai −Bi ,xi) ·Mk,xk

Return [B ·v]

Eval1(x): // Game j ,A

v> = u> ·∏ j+1
i=1 (Mi −Pi ,xi)·∏k−1
i= j+2(Ai −Bi ,xi) ·Mk,xk

Return [B ·v]

Fig. 5: We describe the VHF.TrapGen and VHF.TrapEval procedures used during the indistinguishability experi-
ment defined in Figure 1 for Game j∈[k−1] (left) and Game j ,A (right). VHF.Gen and VHF.Eval are identical to ones
described in Figure 4.

given as input a pair ([A], [eb]); e0 stands for an eigenvalue for A and e1 for a uniform element. We provide the
internal working of A ′ (Figure 6) in what follows:

– Input: given a tuple ([A], [eb]), we set the Mi ,Pi ,0,Pi ,1, i ∈ [j] as in the Game j ,A . We embed the challenge in
M j+1,P j+1,0,P j+1,1 as depicted in Figure 3.

– A ′ is able to construct the evaluation oracle, given that it knows the values of the matrices used, except the
ones corresponding to index j +1 (which are encoded). This means that A ′ is be able to interact with the eval-
uation oracle.

Correctness of the simulation:

– if eb is an eigenvalue for A, then the matrices M j+1,P j+1,0,P j+1,1 are distributed as in Game j+1.
– if eb is not an eigenvalue for A, but a uniformly sampled element from Zp , the matrices are distributed exactly

as in Game j ,A , the argument relying on the fact that (A−eb · In) is a full rank matrix:

11

Algorithm A ′(([A], [eb]), j ,λ
)
:

1.

[(
S j+1

s>j+1 ·S j+1

)]
← [A−eb · In] (we abuse notation — the last row matching the form s>j+1 ·S j+1)

2. set
(
td , vk

)
as in Game j ,A ; set

(
[M j+1], [P j+1,0], [P j+1,1]

)
as in Figure 3

3. A ′ builds Eval(·) as follows:
3.1. A ′ knows all the matrices, except the one on position j +1 (built from challenge)
3.2. A ′ computes Eval(x) = [

u> ·∏k−1
i=1

(
Mi −Pi ,xi

) ·Mk,xk

]= [v] as follows:

3.2.1. compute “in plain” v(j)> = u> ·∏ j
i=1

(
Mi −Pi ,xi

)
3.2.2. compute [v(j+1)>] = [v(j)> · (M j+1 −P j+1,x j+1

)
]

3.2.3. compute [v>] = [v(k)>] = [v(j+1)>] ·∏k−1
i= j+2

(
Mi −Pi ,xi

) ·Mk,xk

4. b ←A Eval(·); return b

Fig. 6: The reduction algorithm used in the proof of Lemma 7.

– P j+1,0 =


s(j+1)

1,1 s(j+1)
1,2 . . . s(j+1)

1,n +α1

0 0 . . . 0
.
0 0 . . . 0

 is indistinguishable from its equivalent from Game j ,A , due to the fact

that (s(j+1)
1,1 , s(j+1)

1,2 , . . . , s(j+1)
1,n) are uniform elements.

– P j+1,1 =


0 0 . . . 0

s(j+1)
2,1 s(j+1)

2,2 . . . s(j+1)
2,n −α2

.

s(j+1)
n−1,1 s(j+1)

n−1,2 . . . s(j+1)
n−1,n −αn−1

0 0 . . . −1

 is indistinguishable from its equivalent from Game j ,A , due to the

fact that {si , j } are uniform elements.
– M j+1 = L j+1·

(
A−eb ·In

)+P j ,1−X (0)
j

. We argue for pseudorandomness based on the fact that L j+1 is a uniformly

sampled matrix which randomizes the left side, and the result of the multiplication with the full rank matrix
A−eb · In is also uniform. Thus M j+1 is a uniform matrix if eb is not an eigenvalue for A.

– Finally, if the adversary A can distinguish the way M j ,P j+1,0,P j+1,1 were set up, based on A and eb , then it can
break the n-Eigen-Value assumption.

ut

Hence, the advantage of an adversary distinguishing between Game0 and Gamek−1 is bounded by:

Pr
[

GameA
0 = 1

]
−Pr

[
GameA

k−1 = 1
]
≤ (k −1) ·Advn-ev

G (A ,λ) .

Final games. In Gamek we change the setup for
(
Mk,0,Mk,1

)
. We rely on the same technique as in [HJ16]: given a

challenge tuple ([A], [eb]), we set
[

Mk,x∗
k

]
= [A−eb · In] and

[
Mk,1−x∗

k

]
= C−1

k ·[C′
k

]
, where the forms of Ck and C′

k are

depicted in Figure 8. Pictorially, one can visualize C−1
k mapping Sk−1 →W and C′

k mapping W →Sk . The simulator
knows C−1

k and can construct
[
C′

k

]
based on the challenge ([A], [eb]) (by sampling uniformly n − 1 encodings of

vectors in the subspace Sk defined by A− eb · In). eb not an eigenvalue implies a uniformly sampled C′, and thus
we are in the setting corresponding to Gamek−1. On the other hand, if eb is an eigenvalue, then we are in the setting
corresponding to Gamek .

The final transition, from Gamek → Gamek+1, consists in embedding B (Definition 3) in Mk,0 and Mk,1. This is
done by setting Sk as W and multiplying the resulting Mk,0,Mk,1 with a uniformly sampled B, which guarantees
indistinguishability from random. B is to be used in Theorem 3 to embed the n-Lin assumption and prove the

12

pseudorandomness of the final (generic) VRF construction. Thus:

Pr
[

GameA
0 = 1

]
−Pr

[
GameA

k+1 = 1
]
= k ·Advn-ev

G (A ,λ)+O
(
k ·n/p

)
1

Finally, this completes the proof of Theorem 2, and shows the VHF is selectively programmable. Adaptive pro-
grammability is similar and shown in Section 5. ut

5 Adaptive programmable PVHFs

The adaptive PVHF is obtained on top of the selective one defined in Figure 2, with the additional change that
we make use of an admissible hash function AHF (Definition 8, Appendix A.2). AHFs, introduced in [BB04], and
utilized in [CHKP10,AFL12], are useful tools for doing the “jump” from selective to adaptive security. In terms of
the PVHF construction introduced in Section 4.1, the main change consists in hashing the inputs via an AHF. The
resulting strings are used to feed the VHF.Eval,VHF.TrapEval algorithms defined for the PVHF. A partial change
consists in the form of the matrices corresponding to positions for which KAHF =?.

VHF.TrapGen([B],1λ):

u
$←Zn

p

KAHF
$←KeyGenAHF(1λ)

set
(
Mi ,Pi ,0,Pi ,1

)
as in Figure 8

set
(
Mk,0,Mk,1

)
as in Figure 8

vk :=
(
[u], {[Mi], [Pi ,b], [Mk,b]}i∈[k−1],b∈{0,1}

)
td :=

(
u, {Mi ,Pi ,b ,Mk,b }i∈[k−1],b∈{0,1},KAHF

)

VHF.TrapEval(x, td):

x ← AHFK (x)
β> = u> ·Mx
π= ({

[u> ·Mx̄] : ∀x̄ ≺ x
})

return ([B ·β],π)

VHF.Vfy(x, vk, [y],π):

check e([M(i)
x̄ ·u], [1])

?= e([Mi ,xi
], [M(i−1)

x̄ ·u]),∀i ∈ [k]

Fig. 7: The adaptive PVHF obtained via AHFs.

The process of sampling the trapdoor keys (td , vk) depends on the key KAHF, and is done as follows:

1. If KAHF, j ∈ {0,1}, then the matrices
(
M j ,P j ,0,P j ,1

)
are set as in the selective case (Figure 3).

2. If KAHF, j = ?, a more careful instantiation is required. If this is the case, we want that both M j − P j ,0 and
M j −P j ,1 to map vectors between S j−1 and S j . For this to happen, an adaptive VHF.TrapGen will sample the
matrices as follows:

C j =


s

(j−1)
1,1 s

(j−1)
1,2 . . . s

(j−1)
1,n

s
(j−1)
2,1 s

(j−1)
2,2 . . . s

(j−1)
2,n

.

r
(j−1)
n,1 r

(j−1)
n,2 . . . r

(j−1)
n,n

 C′
j =


s

(j)
1,1 s

(j)
1,2 . . . s

(j)
1,n

s
(j)
2,1 s

(j)
2,2 . . . s

(j)
2,n

.

r
(j)
n,1 r

(j)
n,2 . . . r

(j)
n,n



D j =
(

L j 0
0 1

)
·


s

(j−1)
1,1 s

(j−1)
1,2 . . . s

(j−1)
1,n

s
(j−1)
2,1 s

(j−1)
2,2 . . . s

(j−1)
2,n

.
0 0 . . . δ

 D′
j =

(
L′

j 0

0 1

)
·


s

(j)
1,1 s

(j)
1,2 . . . s

(j)
1,n

s
(j)
2,1 s

(j)
2,2 . . . s

(j)
2,n

.
0 0 . . . δ


P j ,0

$←D0

M j = C−1
j ·C′

j +P j ,0

P j ,0 −P j ,1 = D−1
j ·D′

j

Fig. 8: Matrices M j ,P j ,0,P j ,1 corresponding to KAHF, j =?. For the case where KAHF, j 6=?, the matrices are sampled

as in Figure 3. Here, L j and L′
j are uniform (n−1)×(n−1) matrices and δ

$←Zp , the first n−1 rows in C j are sampled

from S j−1; rx,y denotes a random element in Zp .

1 n/p is the probability that a matrix sampled uniformly at random in Zn×n
p is singular.

13

Lemma 8. The construction defined in Figure 7 yields an adaptive secure PVHF.

Proof (Lemma 8). Correctness and unique provability are proven as in the selective case. To motivate the well-

distributed outputs, observe that if KAHF, j = ?, then D−1
j ·D j matches the pattern

(
R

0 0. . .1

)
where R stands for a

uniformly sampled (n −1)×n matrix. When KAHF, j =?, then multiplying with M j −P j ,x j will be either C−1
j ·C′

j or

C−1
j ·C′

j +D−1
j ·D′

j . Both C−1
j ·C′

j and D−1
j ·D′

j map S j−1 to S j , and so does their sum.

To motivate indistinguishability for KAHF, j = ?, observe that both C j and C′
j are full rank matrices, and the el-

ements in C′
j are uniformly sampled (S j being a uniform subspace), thus C′

j acting as a randomness extractor.

This randomizes M j . We also have to show that no computational adversary can distinguish P j ,0 and P j ,1 (thus
D−1

j ·D′
j) from a uniform matrix sampled from the same distributions. Both D j and D′

j are pre-multiplied with

two upper-corner uniform matrices acting as randomness extractors for D j and D′
j . The top rows of D j and D′

j
are therefore uniform. For completeness, we mention that if KAHF,k =?, we instantiate both Mk,0 and Mk,1 of the
form C−1

k,0/1 ·C′
k,0/1.

Finally, we point out that Ocheck oracle needed in the adaptive indistinguishability experiment defined in Figure 1
can be implemented using K AHF . ut

The adaptive PVHF represents the platform used to build an adaptive secure VRF under a static assumptions
via the generic transform given in Appendix A.3(Theorem 3). The final advantage of an adversary A winning the
pseudorandomness game being:

AdvvrfVRF(A ,λ) ≤ AdvIndist.
PVHF(A ,λ)+Advn−LIN(A ,λ) = `AHF ·Advn-ev

G (A ,λ)+O
(
`AHF ·n/p

)+Advn−LIN(A ,λ) .

Acknowledgements. The author was supported by EU Horizon 2020 research and innovation programme under
grant agreement No H2020-MSCA-ITN-2014-643161 ECRYPT-NET.

References

ACF09. Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions from identity-based key encapsulation.
In Antoine Joux, editor, EUROCRYPT 2009, volume 5479 of LNCS, pages 554–571. Springer, Heidelberg, April 2009.

AFL12. Michel Abdalla, Dario Fiore, and Vadim Lyubashevsky. From selective to full security: Semi-generic transformations
in the standard model. In Marc Fischlin, Johannes Buchmann, and Mark Manulis, editors, PKC 2012, volume 7293 of
LNCS, pages 316–333. Springer, Heidelberg, May 2012.

BB04. Dan Boneh and Xavier Boyen. Secure identity based encryption without random oracles. In Matthew Franklin,
editor, CRYPTO 2004, volume 3152 of LNCS, pages 443–459. Springer, Heidelberg, August 2004.

BGI14. Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions. In Hugo
Krawczyk, editor, PKC 2014, volume 8383 of LNCS, pages 501–519. Springer, Heidelberg, March 2014.

BLMR13. Dan Boneh, Kevin Lewi, Hart William Montgomery, and Ananth Raghunathan. Key homomorphic PRFs and their
applications. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume 8042 of LNCS, pages 410–428.
Springer, Heidelberg, August 2013.

BMR10. Dan Boneh, Hart William Montgomery, and Ananth Raghunathan. Algebraic pseudorandom functions with im-
proved efficiency from the augmented cascade. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, edi-
tors, ACM CCS 10, pages 131–140. ACM Press, October 2010.

BPR12. Abhishek Banerjee, Chris Peikert, and Alon Rosen. Pseudorandom functions and lattices. In David Pointcheval and
Thomas Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 719–737. Springer, Heidelberg, April
2012.

BV15. Zvika Brakerski and Vinod Vaikuntanathan. Constrained key-homomorphic PRFs from standard lattice assumptions
- or: How to secretly embed a circuit in your PRF. In Yevgeniy Dodis and Jesper Buus Nielsen, editors, TCC 2015, Part
II, volume 9015 of LNCS, pages 1–30. Springer, Heidelberg, March 2015.

Che06. Jung Hee Cheon. Security analysis of the strong Diffie-Hellman problem. In Serge Vaudenay, editor, EURO-
CRYPT 2006, volume 4004 of LNCS, pages 1–11. Springer, Heidelberg, May / June 2006.

14

CHKP10. David Cash, Dennis Hofheinz, Eike Kiltz, and Chris Peikert. Bonsai trees, or how to delegate a lattice basis. In Henri
Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 523–552. Springer, Heidelberg, May 2010.

DY05. Yevgeniy Dodis and Aleksandr Yampolskiy. A verifiable random function with short proofs and keys. In Serge Vaude-
nay, editor, PKC 2005, volume 3386 of LNCS, pages 416–431. Springer, Heidelberg, January 2005.

EHK+13. Alex Escala, Gottfried Herold, Eike Kiltz, Carla Ràfols, and Jorge Villar. An algebraic framework for Diffie-Hellman
assumptions. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume 8043 of LNCS, pages 129–147.
Springer, Heidelberg, August 2013.

GGM86. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal of the ACM,
33(4):792–807, October 1986.

GNP+15. Sharon Goldberg, Moni Naor, Dimitrios Papadopoulos, Leonid Reyzin, Sachin Vasant, and Asaf Ziv. NSEC5: Provably
preventing DNSSEC zone enumeration. In NDSS 2015. The Internet Society, February 2015.

HJ16. Dennis Hofheinz and Tibor Jager. Verifiable random functions from standard assumptions. In Eyal Kushilevitz and
Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of LNCS, pages 336–362. Springer, Heidelberg, January 2016.

HK08. Dennis Hofheinz and Eike Kiltz. Programmable hash functions and their applications. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 21–38. Springer, Heidelberg, August 2008.

HW10. Susan Hohenberger and Brent Waters. Constructing verifiable random functions with large input spaces. In Henri
Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 656–672. Springer, Heidelberg, May 2010.

LMR+05. Matt Larson, Dan Massey, Scott Rose, Roy Arends, and Rob Austein. Resource records for the dns security extensions.
Resource, 2005.

Lys02. Anna Lysyanskaya. Unique signatures and verifiable random functions from the DH-DDH separation. In Moti Yung,
editor, CRYPTO 2002, volume 2442 of LNCS, pages 597–612. Springer, Heidelberg, August 2002.

MR02. Silvio Micali and Ronald L. Rivest. Micropayments revisited. In Bart Preneel, editor, CT-RSA 2002, volume 2271 of
LNCS, pages 149–163. Springer, Heidelberg, February 2002.

MR04. Silvio Micali and Leonid Reyzin. Physically observable cryptography (extended abstract). In Moni Naor, editor,
TCC 2004, volume 2951 of LNCS, pages 278–296. Springer, Heidelberg, February 2004.

MRV99. Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. Verifiable random functions. In 40th FOCS, pages 120–130. IEEE
Computer Society Press, October 1999.

NR04. Moni Naor and Omer Reingold. Number-theoretic constructions of efficient pseudo-random functions. Journal of
the ACM, 51(2):231–262, 2004.

SW14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption, and more. In
David B. Shmoys, editor, 46th ACM STOC, pages 475–484. ACM Press, May / June 2014.

Yam17. Shota Yamada. Asymptotically compact adaptively secure lattice ibes and verifiable random functions via general-
ized partitioning techniques. 2017.

A Standard Definitions
A.1 Certified Bilinear Group Generators

We recall the definition of Bilinear Group Generators [HJ16].

Definition 7 (Certified Bilinear Group Generators). A bilinear group generator is a PPT algorithmGrpGen takes as
input a security parameter (in unary) 1λ, and outputs a tupleΠ= (p,G,GT ,?,?T ,e,φ(1)) and such that the following
properties hold:

– p is prime whose size log(p) ∈Ω(λ);
– (G,?) and (GT ,?T) are groups of order p described by two efficient isomorphismsφ andφT from (Zp ,+) to (G,?)

and (GT ,?T) respectively, and such that ? :G×G→G and ?T :GT ×GT →GT are efficient operations;
– e :G×G→GT is an efficient non-degenerate pairing, so that for any x ∈Zp \{0}, e(φ(x),φ(x)) 6=φT (0).

Furthermore, we say that GrpGen is certified if there exists a deterministic polynomial-time algorithm GrpVfy with
the following two properties, termed parameter validation and recognition and unique representation:

– Parameter validation asks that, on input a string Π, GrpVfy outputs 1 if and only if Π= (p,G,GT , ?,?T ,e,φ(1))
and satisfies the above properties.

– Recognition and unique representation requires that each element inG (defined above) has a unique representa-
tion, which can be recognized efficiently. Specifically, on inputsΠ,h, GrpVfy outputs 1 if and only if GrpVfy(Π) =
1 and h =φ(x) for some x ∈Zp .

As already mentioned above, we denote by [x]g the group element g x , which then corresponds to φ(x) with g =
φ(1), and adopt similar notation for elements of GT .

15

A.2 Admissible Hash Functions

We define admissible hash functions as follows.

Definition 8 (Admissible Hash Functions). For a function AHF : {0,1}k → {0,1}`AHF , and K ∈ {0,1,?}`AHF , we define
the function FK : {0,1}k → {CO,UN}:

FK (X) = UN ⇐⇒ ∀i : Ki =AHF(X)i ∨Ki =?

We say that AHF is q-admissible if there exist a PPT algorithm KeyGen and a polynomial poly such that for all
X (0), X (1), . . . , X (q) with X (0) 6∈ {X (i)}i=1,...,q , we have:

Pr
[

FK (X (0)) = UN∧FK (X (1)) = CO∧·· ·∧FK (X (q)) = CO
]
≥ 1

poly(k)
,

where the probability is over K
$← KeyGen(1λ). We further say that AHF is an admissible hash function is AHF is

q-admissible for any polynomial q = q(λ).

A.3 Generic constructions of VRF on top of PVHFs

We state the generic transform of a VRF defined on top of a PVHF. It post-processes the output of the PVHF as
by multiplication with a vector acting as a randomness extractor, and adding relevant components to the proof
generated by the PVHF.

Theorem 3 (Hofheinz and Jager [HJ16]). Given an adaptive (selective) secure PVHF, the construction depicted in
Figure 9 yields an adaptive (selective) secure VRF under the n−LIN assumption.

VRF.Gen(1λ):

v
$←Zn

p

Π
$←GrpGen(1λ)

(vkPVHF, skPVHF)
$←VHF.Gen(Π,1λ)

vk :=
(
[v], vkPVHF

)
sk :=

(
v, skPVHF

)

VRF.Eval(x, sk):

([z],πPVHF)
$←VHF.Eval(sk, x)

[y] := [v>z] = [
∑k+1

i=1 vi ·zi]
π := (

[v1 ·z1], . . . , [vk+1 ·zk+1],πPVHF
)

return ([y],π)

VRF.Vfy(x, vk, [y],π):

check e([vi], [zi])
?= e([zi ·vi], [1])

check [y]
?= [

∑k+1
i=1 vi ·zi]

check VHF.Vfy(vkPVHF,πPVHF, x, [z])

Fig. 9: The generic construction used to obtain verifiable random functions based on programmable verifiable
vector hash function, as presented in [HJ16].

B Proof of well-distributed outputs

We prove that M j −P j ,X (0) = L
′
j ·

(
S j

s>j ·S j

)
+ (−1)X (0)

i N, where the matrices are defined in Figure 3 and N is the n ×n

zero matrix, except the last column being set to
(
α1,α2, . . . ,αn−1,1

)
.

16

Proof (Property 1, Lemma 2).

M j −P j ,X (0) = L j ·
(

S j

s> ·S j

)
+P j ,1−X (0)

j
−P j ,X (0)

= L j ·
(

S j

s> ·S j

)
+ (−1)X (0)

i


−s(j)

1,1 −s(j)
1,2 . . . −s(j)

1,n −α1

s(j)
2,1 s(j)

2,2 . . . s(j)
2,n −α2

.

s(j)
n−1,1 s(j)

n−1,2 . . . s(j)
n−1,n −αn−1

0 0 . . . −1



= L j ·
(

S j

s> ·S j

)
+ (−1)X (0)

i


−1 0 . . . 0 0
0 1 . . . 0 0

.
0 0 . . . 1 0
0 0 . . . 0 0

 ·
(

S j

s> ·S j

)
+ (−1)X (0)

i N

= L
′
j ·

(
S j

s>j ·S j

)
+ (−1)X (0)

i N

(7)

ut

C Proofs for Lemmata 3, 4, 5

Lemma 3. Let S
$←Z

(n−1)×n
p and s

$←Zn
p . Let b ∈Zn

p . Then ∃a ∈Zn
p such that: b> · (M j −P j ,1−X (0)) = a> ·

(
S j

s>j ·S j

)
.

Proof (Lemma 3).

b> · (M j −P j ,1−X (0)) =
(
b> ·L j

)
︸ ︷︷ ︸

a>

·
(

S j

s>j ·S j

)

= a> ·
(

S j

s>j ·S j

)
= (a1, a2, . . . , an)> ·

(
S j

s>j ·S j

)

=
n−1∑
i=1

(ai +an · ti) ·s>i ∈
{

z
∣∣∣z> = a> ·

(
S j

s>j ·S j

)}
(8)

ut

Lemma 4. Let S
$← Z

(n−1)×n
p and s

$← Zn
p . Let v ∈ Zn

p and b> = v> ·
(

S j−1

s>j−1 ·S j−1

)
. Then ∃a ∈ Zn

p such that b> · (M j −

P j ,1−X (0)) = a> ·
(

S j

s>j ·S j

)
.

Proof (Lemma 4). Let b> ∈S j−1. Then b> · (M j −P j ,X (0)) =
(
b> ·L j

)
︸ ︷︷ ︸

a>

·
(

S j

s>j ·S j

)
+b> ·N︸ ︷︷ ︸

0

= a> ·
(

S j

s>j ·S j

)
. ut

Lemma 5. Let S
$← Z

(n−1)×n
p and s

$← Zn
p . ∀v ∈ Zn

p let b> 6= v> ·
(

S j−1

s>j−1 ·S j−1

)
. ∀a ∈ Zn

p we have b> · (M j −P j ,X (0)) 6=

a> ·
(

S j

s>j ·S j

)
.

17

Proof (Lemma 5). Let b> 6∈S j−1. Then b> · (M j −P j ,X (0)) =
(
b> ·L j

)
︸ ︷︷ ︸

a>

·
(

S j

s>j ·S j

)
+b> ·N︸ ︷︷ ︸

6=0

6= a> ·
(

S j

s>j ·S j

)
. ut

D Procedure for obtaining
(
M j , P j ,0, P j ,1

)
during the hybrids

Input:
S - (n-1) x n uniform matrix
i - the game index
X (0) - a challenge bitstring

Output:
(M j ,P j ,0,P j ,1) j∈[i−1]

Si ← S
for j=i to 1 do:

δ j
$←Zp

s j
$←Zn−1

p

L j
$←Zn×n

p

S j−1
$←Z

(n−1)×n
p

compute (α1, . . .αn−1,1)⊥S j−1

P j ,0 =


s(j)

1,1 s(j)
1,2 . . . s(j)

1,n +α1

0 0 . . . 0
.
0 0 . . . 0



P j ,1 =


0 0 . . . 0

s(j)
2,1 s(j)

2,2 . . . s(j)
2,n −α2

.

s(j)
n−1,1 s(j)

n−1,2 . . . s(j)
n−1,n −αn−1

0 0 . . . −1


M j = L j ·

(
S j

s>j ·S j

)
+P j ,1−X (0)

j

endfor

Fig. 10: A recursive algorithm for sampling trapdoor matrices for i ∈ [k −1].

18

	Adaptive-Secure VRFs with Shorter Keys from Static Assumptions

