
On the Tightness of Forward-Secure Signature Reductions

Michel Abdalla1,2, Fabrice Benhamouda3, and David Pointcheval1,2

1 Département d’informatique de l’ENS, École normale supérieure,
CNRS, PSL Research University, 75005 Paris, France.

{Michel.Abdalla,David.Pointcheval}@ens.fr
2 INRIA

3 IBM Research, Yorktown Heights, NY, USA.
Fabrice.Benhamouda@normalesup.org

Abstract

In this paper, we revisit the security of factoring-based signature schemes built via the Fiat-Shamir
transform and show that they can admit tighter reductions to certain decisional complexity assumptions
such as the quadratic-residuosity, the high-residuosity, and the φ-hiding assumptions. We do so by
proving that the underlying identification schemes used in these schemes are a particular case of the lossy
identification notion recently introduced by Abdalla et al. at Eurocrypt 2012. Next, we show how to
extend these results to the forward-security setting based on ideas from the Itkis-Reyzin forward-secure
signature scheme. Unlike the original Itkis-Reyzin scheme, our construction can be instantiated under
different decisional complexity assumptions and has a much tighter security reduction. Moreover, we
also show that the tighter security reductions provided by our proof methodology can result in concrete
efficiency gains in practice, both in the standard and forward-security setting, as long as the use of
stronger security assumptions is deemed acceptable. Finally, we investigate the design of forward-secure
signature schemes whose security reductions are fully tight.

mailto:michel.abdalla@ens.fr,david.pointcheval@ens.fr
mailto:fabrice.benhamouda@normalesup.org

Contents
1 Introduction 1

2 Preliminaries 3

3 Lossy Key-Evolving Identification and Signature Schemes 8
3.1 Lossy Key-Evolving Identification Scheme . 9
3.2 Generalized Fiat-Shamir Transform . 11

4 Tighter Security Reductions for Guillou-Quisquater-like Schemes 17
4.1 Guillou-Quisquater Scheme . 18
4.2 Variant of the Itkis-Reyzin Scheme . 21

5 Analysis of our Variant of the Itkis-Reyzin Scheme 22
5.1 Computation of the Exponents e1, . . . , eT . 22
5.2 Optimizations . 23
5.3 Choice of Parameters . 24
5.4 Comparison with Existing Schemes . 24

6 Generic Factoring-Based Forward-Secure Signature Scheme 26
6.1 Generic Factoring-Based Forward-Secure Signature Scheme 26
6.2 An Optimization . 28
6.3 Instantiations . 29

7 Impossibility Results on Tightness 30
7.1 Intuition . 31
7.2 Key-Verifiable Key-Evolving Signature Scheme . 31
7.3 Black-Box Non-Rewinding Reductions . 32
7.4 Main Theorem . 32

8 Multi-User and Tightly Forward-Secure Signature Schemes 33
8.1 M-SUF-CMA Signature Schemes . 33
8.2 From M-SUF-CMA to Forward-Secure Signature Schemes 34

9 Constructions of Tightly Secure M-SUF-CMA Signature Schemes 35
9.1 Preliminaries . 36
9.2 Construction Based on Commitments and Simulation-Extractable NIZKs 38
9.3 Construction Based on One-Time M-SUF-CMA Schemes 40

Acknowledgments 43

References 44

A Relations Between Security Notions 48

B Mathematical Tools 49

C Proofs of Security Based on the Forking Lemma for Key-Evolving Collision-Intractable
Identification Schemes 52
C.1 Key-Evolving Collision-Intractable Identification Schemes 52
C.2 Generalized Fiat-Shamir Transformation . 53
C.3 Security of the Itkis-Reyzin Scheme . 55

ii

1 Introduction

A common paradigm for constructing signature schemes is to apply the Fiat-Shamir transform [FS87]
to a secure three-move canonical identification protocol. In these protocols, the prover first sends a
commitment to the verifier, which in turn chooses a random string from the challenge space and sends
it back to the prover. Upon receiving the challenge, the prover sends a response to the verifier, which
decides whether or not to accept based on the conversation transcript and the public key. To obtain the
corresponding signature scheme, one simply makes the signing and verification algorithms non-interactive
by computing the challenge as the hash of the message and the commitment. As shown by Abdalla et al.
in [AABN02], the resulting signature scheme can be proven secure in the random oracle model as long
as the identification scheme is secure against passive adversaries and the commitment has large enough
min-entropy. Unfortunately, the reduction to the security of the identification scheme is not tight and
loses a factor qh, where qh denotes the number of queries to the random oracle.

If one assumes additional properties about the identification scheme, one can avoid impossibility results
such as those in [GBL08, PV05, Seu12] and obtain a signature scheme with a tighter proof of security.
For instance, in [MR02], Micali and Reyzin introduced a new method for converting identification schemes
into signature schemes, known as the “swap method,” in which they reverse the roles of the commitment
and challenge. More precisely, in their transform, the challenge is chosen uniformly at random from the
challenge space and the commitment is computed as the hash of the message and the challenge. Although
they only provided a tight security proof for the modified version of Micali’s signature scheme [Mic94], their
method generalizes to any scheme in which the prover can compute the response given only the challenge
and the commitment, such as the factoring-based schemes in [FFS88, FS87, GQ88, OO90, OS91]1. This
is due to the fact that the prover in these schemes possesses a trapdoor (such as the factorization of the
modulus in the public key) which allows it to compute the response. On the other hand, their method
does not apply to discrete-log-based identification schemes in which the prover needs to know the discrete
log of the commitment when computing the response, such as in [Sch90].

In 2003, Katz and Wang [KW03] showed that tighter security reductions can be obtained even with
respect to the Fiat-Shamir transform, by relying on a proof of membership rather than a proof of knowledge.
In particular, using this idea, they proposed a signature scheme with a tight security reduction to the
hardness of the DDH problem. They also informally mentioned that one could obtain similar results
based on the quadratic-residuosity problem by relying on a proof that shows that a set of elements
in Z∗N are all quadratic residues. This result was recently extended to other settings by Abdalla et
al. [AFLT12], who presented three new signature schemes based on the hardness of the short exponent
discrete log problem [PS98, vW96], on the worst-case hardness of the shortest vector problem in ideal
lattices [LM06, PR06], and on the hardness of the Subset Sum problem [IN96, MM11]. Additionally, they
also formalized the intuition in [KW03] by introducing the notion of lossy identification schemes and
showing that any such scheme can be transformed into a signature scheme via the Fiat-Shamir transform
while preserving the tightness of the reduction.

Tight security from lossy identification. In light of these recent results, we revisit in this paper
the security of factoring-based signature schemes built via the Fiat-Shamir transform. Even though the
swap method from [MR02] could be applied in this setting (resulting in a slightly different scheme), our
first contribution is to show that these signature schemes already admit tight security reductions to certain
decisional complexity assumptions such as the quadratic-residuosity, the high-residuosity [Pai99], and the
φ-hiding [CMS99] assumptions. We do so by showing that the underlying identification schemes used in
these schemes are a particular case of a lossy identification scheme [AFLT12]. As shown in Section 4.1 in
the case of the Guillou-Quisquater signature scheme [GQ88], our tighter security reduction can result in
concrete efficiency gains with respect to the swap method. However, this comes at the cost of relying
on a stronger security assumption, namely the φ-hiding [CMS99] assumption, instead of the plain RSA

1In [BPS16], Bellare, Poettering, and Stebila call these schemes trapdoor and provide a formal definition for it.

1

assumption. Nevertheless, as explained by Kakvi and Kiltz in [KK12], for carefully chosen parameters,
the currently best known attack against the φ-hiding problems consists in factorizing the corresponding
modulus, which is also the best known attack against the plain RSA assumption.

More generally, one needs to be careful when comparing the tightness of different security reductions,
especially if the underlying complexity assumptions and security models are different. In order to have
meaningful comparisons, we would like to stress that we focus mainly on schemes whose security holds
in the random oracle model [BR93] and whose underlying computational assumptions have comparable
complexity estimates, as in the case of the φ-hiding [CMS99] and plain RSA assumptions for carefully
chosen parameters.

Tighter reductions for forward-secure signatures. Unlike the swap method of Micali and
Reyzin, the prover in factoring-based signature schemes built via the Fiat-Shamir transform does not need
to know the factorization of the modulus in order to be able to compute the response. Using this crucial
fact, the second main contribution of this paper is to extend our results to the forward-security setting.
To achieve this goal, we first introduce in Section 3 the notion of lossy key-evolving identification schemes
and show how the latter can be turned into forward-secure signature schemes using a generalized version
of the Fiat-Shamir transform. As in the case of standard signature schemes, this transformation does not
incur a loss of a factor qh in the security reduction. Nevertheless, we remark that the reduction is not
entirely tight as we lose a factor T corresponding to the total number of time periods.

After introducing the notion of lossy key-evolving identification schemes, we show in Section 4.2 that
a variant of the Itkis-Reyzin forward-secure signature scheme [IR01] (which can be seen as an extension of
the Guillou-Quisquater scheme to the forward-security setting) admits a much tighter security reduction,
albeit to a stronger assumption than the plain RSA assumption, namely the φ-hiding assumption. However,
we point out that the most efficient variant of the Itkis-Reyzin scheme does not rely on the plain RSA
assumption but on the strong RSA assumption. There is currently no known reduction between the strong
RSA and the φ-hiding assumption.

Concrete security. As in the case of standard signature schemes, the tighter security reductions
provided by our proof methodology can result in concrete efficiency gains in practice. More specifically, as
we show in Section 5, our variant of the Itkis-Reyzin scheme outperforms the original scheme for most
concrete choices of parameters.

Generic factoring-based signatures and forward-secure signatures. As an additional con-
tribution, we show in Section 6 that all the above-mentioned schemes can be seen as straightforward
instantiations of a generic factoring-based forward-secure signature scheme. This enables us to not only
easily prove the security properties of these schemes, but to also design a new forward-secure scheme
based on a new assumption, the gap 2t-residuosity.2 This assumption has been independently considered
and proven secure by Benhamouda, Herranz, Joye, and Libert in [JL13, BHJL16], under a variant of the
quadratic residuosity assumption together with a new reasonable assumption called the “squared Jacobi
symbol” assumption.

Impossibility and existential results for tight forward-secure signature schemes. As
pointed out above, the reductions for our forward-secure signature schemes are not entirely tight as we
still lose a factor T corresponding to the total number of time periods. Hence, an interesting question
to ask is whether it is possible to provide a better security reduction for these schemes. To answer this
question, we first show in Section 7 that the loss of a factor T in the proof of forward security cannot
be avoided for a large class of key-evolving signature schemes, which includes the ones considered so far.
This is achieved by extending Coron’s impossibility result in [Cor02] to the forward-secure setting.

Next, in Sections 8 and 9, we show how to avoid these impossibility results and build forward-secure
signature schemes whose security reductions are fully tight. To do that, we first propose a new notion of

2We originally called this assumption the strong-2t-residuosity in [ABP13]. In this full version, we prefer to use the same
name as in [JL13].

2

security for signature schemes in Section 8: strong unforgeability in a multi-user setting with corruptions
(M-SUF-CMA). This notion is related to the security definition given by Menezes and Smart in [MS04] but
unlike theirs, our notion takes into account user corruptions. Next, we propose generic transformations
from M-SUF-CMA signature schemes to forward-secure signature schemes which preserve tightness.
Finally, in Section 9, we provide several instantiations of M-SUF-CMA signature schemes with tight
security reductions to standard non-interactive hard problems. The results in Sections 8 and 9 are
mostly of theoretical interest as the schemes that we obtain are significantly less efficient than the ones in
preceding sections.

In an independent paper [BJLS16, Section 5.1], Bader et al. also studied signature schemes in a
multi-user setting (with corruptions). Using a meta-reduction, they showed that M-SUF-CMA cannot
be tightly reduced to standard non-interactive hard problems, if secret keys can be re-randomized. On
the one hand, contrary to our meta-reduction for forward-secure signature schemes, their meta-reduction
allows for rewinding. On the other hand, if we forget about rewindings, our impossibility result implies
the one in [BJLS16] for M-SUF-CMA signature schemes, as forward-secure signature schemes can be
constructed from M-SUF-CMA signature schemes with a tight reduction.3

Publication Note. An abridged version of this paper appeared in the proceedings of PKC 2013 [ABP13].
In this version, we give more precise and formal security definitions and statements, we include complete
proofs of security, and we provide new impossibility and existential results for tight forward-secure signature
schemes. Most notably, we demonstrate that the loss of a factor T corresponding to the total number of
time periods cannot be avoided in the proof of forward security for a large class of key-evolving signature
schemes, including all the schemes considered in [ABP13]. In addition, we also show how to avoid these
impossibility results and build forward-secure signature schemes whose security reductions are fully tight.
Organization. Section 2 recalls some basic definitions and complexity assumptions used in the paper.
Section 3 introduces lossy key-evolving identification schemes and shows how to transform them into
forward-secure signature schemes. Section 4 applies our security proof methodology to two cases: the
Guillou-Quisquater signature scheme and its extension to the forward-secure setting, which is a variant
of the Itkis-Reyzin forward-secure signature scheme in [IR01]. Section 5 compares our variant of the
Itkis-Reyzin forward-secure signature scheme to the original one and to the MMM scheme by Malkin,
Micciancio, and Miner [MMM02]. Section 6 introduces a generic factoring-based forward-secure signature
scheme along with various instantiations. Section 7 provides further results regarding the reduction
tightness of forward-secure signature schemes. In particular, it shows that the loss of a factor T in
the proof of forward security cannot be avoided for a large class of key-evolving signature schemes,
which includes the ones considered in the previous sections. Sections 8 and 9 show how to avoid the
impossibility results in Section 7 and build forward-secure signature schemes with tight security reductions.
The appendix provides additional results regarding forward-secure signature schemes. More precisely,
Appendix A presents a few relations between different security notions for forward-signature schemes.
Appendix B presents several results used in the security analysis of our signature schemes. Finally,
Appendix C provides additional proofs used in the concrete security analysis in Section 5.

2 Preliminaries

2.1 Notation and Conventions

Let N denote the set of natural numbers. If N ∈ N and N ≥ 2, then ZN = Z/NZ is the ring of integers
modulo N , and Z∗N is its group of units. If e,N ∈ N and e,N ≥ 2, then an element y ∈ Z∗N is an e-residue
modulo N if there exists an element x ∈ Z∗N such that y = xe mod N . We denote the set of e-residues
modulo N by HRN [e].

3Furthermore, M-SUF-CMA signature schemes with re-randomizable secret keys yield forward-secure signature schemes in
the class we consider in our impossiblity result, if the secret key is re-randomized before signing.

3

If n ∈ N, then {0, 1}n denotes the set of n-bit strings, and {0, 1}∗ is the set of all bit strings. The
empty string is denoted ⊥. An empty table T is denoted [], and T[x] is the value of the table at index x
and is equal to ⊥ if undefined. If x is a string then |x| denotes its length, and if S is a set then |S| denotes
its size. If S is finite, then x $← S denotes the assignment to x of an element chosen uniformly at random
from S. If A is an algorithm, then y ← A(x) denotes the assignment to y of the output of A on input x,
and if A is randomized, then y $← A(x) denotes that the output of an execution of A(x) (with fresh coins)
is assigned to y. Unless otherwise indicated, an algorithm may be randomized. We denote by k ∈ N the
security parameter. Let P denote the set of primes and P`e denote the set of primes of length `e. Most of
our schemes are in the random oracle model [BR93].

2.2 Games

The definitions and proofs in this paper use code-based game-playing techniques [BR06]. In such games,
there exist procedures for initialization (Initialize) and finalization (Finalize) and procedures to respond
to adversary oracle queries. A game G is executed with an adversary A as follows. First, Initialize
executes and its outputs are the inputs to A. Then A executes, its oracle queries being answered by
the corresponding procedures of G. When A terminates, its output becomes the input to the Finalize
procedure. The output of the latter, denoted G(A), is called the output of the game, and “G(A)⇒ y”
denotes the event that the output takes a value y. The running time of an adversary is the worst case
time of the execution of the adversary with the game defining its security, so that the execution time of
the called game procedures is included.
Review of code-based game-playing proofs. We recall some background on code-based game-
playing. The boolean flag bad is assumed initialized to false. We say that games Gi,Gj are identical
until bad if their programs differ only in statements that (syntactically) follow the setting of bad to true.
For examples, games G0,G1 of Figure 3.2 are identical until bad. Let us now recall two lemmas stated
in [BR06] and in [BNN07].

Lemma 2.1 ([BR06]) Let Gi,Gj be identical-until-bad games, and A an adversary. Then we have
|Pr [Gi(A)⇒ 1]− Pr [Gj(A)⇒ 1]| ≤ Pr [Gi(A) sets bad].

Lemma 2.2 ([BNN07]) Let Gi,Gj be identical-until-bad games, and A an adversary. Let Goodi,Goodj
be the events that bad is never set in games Gi,Gj, respectively. Then, Pr [Gi(A)⇒ 1 ∧ Goodi] =
Pr [Gj(A)⇒ 1 ∧ Goodj].

2.3 Statistical Distance

Let D1 and D2 be two probability distributions over a finite set S and let X and Y be two random
variables with these two respective distributions. The statistical distance between D1 and D2 is also the
statistical distance between X and Y :

1
2
∑
x∈S
|Pr [X = x]− Pr [Y = x]| .

If the statistical distance between D1 and D2 is less than or equal to ε, we say that D1 and D2 are ε-close
or are ε-statistically indistinguishable. If the D1 and D2 are 0-close, we say that D1 and D2 are perfectly
indistinguishable.

We use the following lemma.

Lemma 2.3 Let S0 and S1 two finite sets such that S1 ⊆ S0. Let D0 and D1 be the uniform distributions
over S0 and S1 respectively. Let N0 = |S0| and N1 = |S1| be the cardinals of S0 and S1 respectively. Then,
the statistical distance between D0 and D1 is 1−N1/N0.

4

Proof: The statistical distance is:

D = 1
2 ·

∑
x∈S1

∣∣∣∣Pr
y

$←D0
[y = x]− Pr

y
$←D1

[y = x]
∣∣∣∣+ ∑

x∈S0\S1

∣∣∣∣Pr
y

$←D0
[y = x]− Pr

y
$←D1

[y = x]
∣∣∣∣


= 1
2 ·
(
N1 ·

∣∣∣∣ 1
N0
− 1
N1

∣∣∣∣+ (N0 −N1) ·
∣∣∣∣ 1
N0
− 1

∣∣∣∣) = 1
2 ·
(

1− N1
N0

+ 1− N1
N0

)
= 1− N1

N0
.

2.4 Complexity Assumptions

The security of the signature schemes being analyzed in this paper will be based on decisional assumptions
over composite-order groups: the quadratic residuosity assumption, the high residuosity assumption, the
φ-hiding assumption, and a new assumption called the gap 2t-residuosity. We also need to recall the
strong RSA assumption to be able to compare our scheme with the Itkis-Reyzin scheme [IR01].

For all these assumptions, the underlying problem consists in distinguishing two distributions D1 and
D2. More precisely, an adversary D is said to (t, ε)-solve or (t, ε)-break the underlying problem if it runs
in time t and ∣∣∣Pr

[
D(x) = 1

∣∣∣ x $← D1
]
− Pr

[
D(x) = 1

∣∣∣ x $← D2
]∣∣∣ ≤ ε.

Then the underlying problem is said to be (t, ε)-hard if no adversary can (t, ε)-solve it.
φ-hiding assumption [CMS99, KOS10]. The φ-hiding assumption, introduced by Cachin, Micali, and
Stadler in [CMS99], states that it is hard for an adversary to tell whether a prime number e divides the
order φ(N) of the group Z∗N . In this paper, we use a very slight variant of the formulation in [KOS10].4

More formally, let `N be a function of k, let `e be a public positive constant smaller than 1
4`N . Let

RSA`N denote the set of all tuples (N, p1, p2) such that N = p1p2 is `N -bit number which is the product of
two distinct `N/2-bit primes, as in [KOS10]. N is called an RSA modulus. Likewise, let R be a relation
on p1 and p2. We denote by RSA`N [R] the subset of RSA`N for which the relation R holds. The φ-hiding
assumption states that the two following distributions are computationally indistinguishable:

{(N, e) | e $← P`e , (N, p1, p2) $← RSA`N [gcd(e, φ(N)) = 1]}

{(N, e) | e $← P`e , (N, p1, p2) $← RSA`N [p1 = 1 mod e]},

where φ(N) is the order of Z∗N .
We remark that the these two distributions can be sampled efficiently if we assume the widely-accepted

Extended Riemann Hypothesis (Conjecture 8.4.4 of [BS96]).
Quadratic residuosity. The quadratic-residuosity assumption states that it is hard to distinguish
a 2-residue (a.k.a, a quadratic residue) from an element of Jacobi symbol 1, modulo an RSA modulus N .

More formally, let N be an RSA modulus. We recall that HRN [2] denotes the set of all 2-residues
modulo N . Let JN [2] be the set of elements in Z∗N with Jacobi symbol 1. The quadratic-residuosity
assumption states that the two following distributions are computationally indistinguishable:

{(N, y) | N $← RSA`N , y
$← HRN [2]}

{(N, y) | N $← RSA`N , y
$← JN [2] \ HRN [2]}.

High residuosity. Let e be an RSA modulus and N = e2. The high-residuosity assumption states
that it is hard to distinguish a e-residue modulo N from an element from Z∗N .

4We enforce that e is co-prime to φ(N), while in [KOS10], they enforce instead that φ(N) is divisible by another randomly
chosen `e-bit prime e′. This slightly simplifies proofs, notation, and bounds, but the original assumption could be used as
well.

5

More formally, let JN [e] = Z∗N . The high-residuosity assumption states that the two following
distributions are computationally indistinguishable:

{(N, e, y) | e $← RSA`N , N ← e2, y
$← HRN [e]}

{(N, e, y) | e $← RSA`N , N ← e2, y
$← JN [e] \ HRN [e]}.

Gap 2t-residuosity. We introduce the gap 2t-residuosity assumption, that states that it is hard for
an adversary to decide whether a given element y (in Z∗N) of Jacobi symbol 1 is a 2t-residue or is even not
a 2-residue, when 2t divides p1 − 1 and p2 − 1.

More formally, this assumption states that the two following distributions are computationally
indistinguishable:

{(N, e, y) | N $← RSA`N [p1, p2 = 1 mod 2t], y $← HRN [2t]}

{(N, e, y) | N $← RSA`N [p1, p2 = 1 mod 2t], y $← JN [2] \ HRN [2]}.

This assumption has been independently considered and proven secure by Benhamouda, Herranz, Joye,
and Libert in [JL13, BHJL16], under a variant of the quadratic residuosity assumption together with a
new reasonable assumption called the “squared Jacobi symbol” assumption.

Strong RSA. The strong RSA assumption states that, given an element y ∈ Z∗N , it is hard for an
adversary to find an integer 2 ≤ e ≤ 2`e and an element x ∈ Z∗N such that y = xe mod N , where `e is
a function of the security parameter k. In this article, we actually use the variant of the strong RSA
assumption described in [IR01]. As explained in the latter article, compared to the original version of the
assumption introduced independently in [BP97] and in [FO97], we restrict N to be a product of two safe
primes5 and we restrict e to be at most 2`e for some value `e. We remark that, formally, we have defined
a family of assumptions indexed by `e, a function of k.

2.5 Forward-Secure Signature Schemes

A forward-secure signature scheme is a key-evolving signature scheme in which the secret key is updated
periodically while the public key remains the same throughout the lifetime of the scheme [BM99]. Each
time period has a secret signing key associated with it, which can be used to sign messages with respect to
that time period. The validity of these signatures can be checked with the help of a verification algorithm.
At the end of each time period, the signer in possession of the current secret key can generate the secret
key for the next time period via an update algorithm. Moreover, old secret keys are erased after a key
update.

Formally, a key-evolving signature scheme is defined by a tuple of algorithms FS = (KG, Sign,Ver,
Update) and a message spaceM, providing the following functionality. Via (pk, sk) $← KG(1k , 1T), a user
can run the probabilistic key generation algorithm KG to obtain a pair (pk, sk1) of public and secret
keys for a given security parameter k and a given total number of periods T . sk1 is the secret key
associated with time period 1. Via ski+1 ← Update(ski), the user in possession of the secret key ski
associated with time period i ≤ T can generate a secret key ski+1 associated with time period i+ 1. By
convention, skT+1 = ⊥. Via (σ, i) $← Sign(ski,M), the user in possession of the secret key ski associated
with time period i ≤ T can generate a signature (σ, i) for a message M ∈ M for period i. Finally, via
d← Ver(pk, (σ, i),M), one can run the deterministic verification algorithm to check if σ is a valid signature
for a message M ∈ M for period i and public key pk, where d = 1 if the signature is correct and 0
otherwise. For correctness, it is required that for all honestly generated keys (sk1, . . . , skT) and for all
messages M ∈M, Ver(pk,Sign(ski,M),M) = 1 holds with all but negligible probability.

5A prime number p is safe if it can be written as p = 2q + 1, where q is a prime number.

6

Games Expeuf-cma
FS ,k,T (A), Expsuf-cma

FS ,k,T (A), Expw-euf-cma
FS ,k,T (A) and Expw-suf-cma

FS ,k,T (A)

Initialize(1k , 1T)

ı̃
$← {1, . . . , T} // (S)

S ← ∅
b← T + 1
(pk, sk1) $← KG(1k , 1T)
for i = 1, . . . , T − 1

ski+1 ← Update(ski)
return (pk, T)

Sign(M , i)
(σ, i) $← Sign(ski,M)
S ← S ∪ {(M , i)} // (e)
S ← S ∪ {(M , (σ, i))} // (s)

return (σ, i)

Break-In(i)
if 1 ≤ i ≤ T then

b← min(i,b)
return ski

else
return ⊥

Finalize(M ∗, (σ∗, i∗))
d← Ver(pk, (σ∗, i∗),M ∗)
if (M ∗, i∗) ∈ S // (e)
if (M ∗, (σ∗, i∗)) ∈ S // (s)

then d← 0
if i∗ ≥ b

then d← 0
if i∗ 6= ı̃

then d← 0 // (S)
return d

Figure 2.1: Games defining the EUF-CMA, SUF-CMA, W-EUF-CMA and W-SUF-CMA security of a key-evolving
signature scheme FS = (KG,Sign,Ver,Update). Boxed lines marked (e) are only for the existential variants, boxed
lines marked (s) are only for the strong variants, and boxed lines marked (S) are only for the selective variants.

Existential and strong forward security. Informally, a key-evolving signature scheme is exis-
tentially forward-secure under adaptive chosen-message attack (EUF-CMA), if it is infeasible for an
adversary —also called forger— to forge a signature σ∗ on a message M ∗ for a time period i∗, even with
access to the secret key for a period i > i∗ (and thus to all the subsequent secret keys; this period i is
called the break-in period) and to sign messages of its choice for any period (via a signing oracle), as long
as he has not requested a signature on M ∗ for period i∗ to the signing oracle.

This notion is a generalization of the existential unforgeability under adaptive chosen-message attacks
(EUF-CMA for signature schemes) [GMR84] to key-evolving signature scheme. It is a slightly stronger
variant of the definition in [BM99]. Compared to [BM99], we do not restrict the adversary to only perform
signing queries with respect to the current time period and we allow multiple Break-In queries (only the
break-in period taken into account is the minimum of all these periods). The advantage of the first change
is that the game is simpler than the one with the definition of Bellare and Miner in [BM99]. Concerning
the second change, the classical notion which only allows a single Break-In query is equivalent, as it is
possible to guess which query corresponds to the minimum period. However, that does not preserve the
tightness of the reduction. Anyway, it seems that most of the current schemes (maybe even all of them)
also satisfy our stronger definition, using nearly the same reductions.

In the remainder of the paper, we also use a stronger notion: (strong) forward security (SUF-CMA).
In this notion, the forger is allowed to produce a signature σ∗ on a message M ∗ for a period i∗, such that
the triple (M ∗, i∗, σ∗) is different from all the triples produced by the signing oracle.

More formally, let us consider the games Expeuf-cma
FS ,k,T (A) and Expsuf-cma

FS ,k,T (A) depicted in Figure 2.1.
We then say that FS is (t, qh, qs, ε)-existentially-forward-secure, if for any adversary A running in time
at most t and making at most qh queries to the random oracle and qs queries to the signing oracle:
Adveuf-cma

FS ,k,T (A) = Pr
[

Expeuf-cma
FS ,k,T (A)⇒ 1

]
≤ ε. And FS is (t, qh, qs, ε)-forward-secure, if for any such

adversary: Advsuf-cma
FS ,k,T (A) = Pr

[
Expsuf-cma

FS ,k,T (A)⇒ 1
]
≤ ε.

Selective security notions. In addition to the previous classical security notions, we also consider
two weaker notions: selective forward security and selective existential forward security, which
are very useful to compare different schemes. In these notions, the time period of the forgery is chosen at
the beginning at random but not disclosed to the adversary, and the adversary loses when it does not
produce a forgery for the chosen time period. We could have opted for a more classical selective version
where the adversary chooses the time period of the forgery at the beginning, but that would have made
notation more cumbersome.

More precisely, when defining the selective forward security and selective existential forward security

7

notions, the challenger of the adversary, picks a period ı̃ uniformly at random at the beginning and
reject the forged signature if it does not correspond to the period ı̃, as in the games Expw-euf-cma

FS ,k,T (A)
and Expw-suf-cma

FS ,k,T (A) depicted in Figure 2.1. Then we say that a key-evolving signature scheme is
(t, qh, qs, ε, δ)-selectively-(existentially)-forward-secure if there is no adversary A (running in time at most t,
doing at most qh requests to the random oracle, and qs requests of signatures), such that, with probability
at least δ, the challenger chooses a period ı̃ and a key pair (pk, sk1), such that A forges a correct signature
for period ı̃ with probability at least ε. The idea of this definition is to separate the success probability
for a given period and a given key pair, from the choice of the period and the key pair. This enables us
to repeat the experiments with the same period and key pair to increase the success probability of the
adversary (for a given period and key pair). The main reason we need to keep the same period and key
pair at each repetition is that our reduction “embeds” the challenge of the underlying assumption into
them and this challenge cannot be changed between two repetitions, as the assumptions we use are not
known to be random self-reducible.

Finally, we remark that our selective notions are actually extensions of the security definition of Micali
and Reyzin in [MR02]. These notions are weaker than the previous ones in the following way: if a scheme
is (t, qh, qs, T εδ)-(existentially)-forward-secure, then it is (t, qh, qs, ε, δ)-selectively-(existentially)-forward-
secure, as proven in Appendix A.

Remark 2.4 In order to be able to compare different schemes, as in [MR02], we suppose that any attacker
which (t, qh, qs, ε)-breaks the selective forward security (where there is no δ and ε is the classical success
probability here) of a scheme also (t, qh, qs, ε, δ = 1/2)-breaks it.6 In other words, (t, qh, qs, ε, 1/2)-selective
forward security implies (t, qh, qs, T ε)-forward security. As shown in Section 5.4, it enables us to do a
quite fair comparison, if we consider that a (t, qh, qs, T ε)-forward-secure scheme has log2(t/(Tε)) bits of
security, which is the intuitive notion of security.

At first, we might think that just assuming that a (t, qh, qs, T ε)-forward-secure scheme provides
log2(t/(Tε)) bits of security should be sufficient to do fair comparisons. This would indeed be sufficient
for our new security reductions, as they basically ensure that if some assumption (e.g., the φ-hiding
assumption) is (t′, ε′)-hard, then the signature scheme is (t, qh, qs, T ε)-forward-secure for t ≈ t′ and ε ≈ ε′.
But unfortunately, security reductions based on the forking lemma (to which we want to compare our new
security reductions) only ensure that if some assumption (e.g., the RSA assumption) is (t′, ε′)-hard, then
the signature scheme is (t, qh, qs, T ε)-forward-secure for t ≈ t′ and ε ≈ ε′2/qh. In that case, log2(t/(Tε)) is
even not well-defined. That is why, following [MR02], we introduced the notions of (t, qh, qs, ε, δ)-selective-
(existential)-forward-security to solve this problem (see Theorem C.1 and also the discussions around
Theorem 2 in [MR02]).

More details on the relations between these security notions can be found in Appendix A.

3 Lossy Key-Evolving Identification and Signature Schemes

In this section, we present a new notion, called lossy key-evolving identification scheme, which combines
the notions of lossy identification schemes [AFLT12], which can be transformed to tightly secure signature
scheme, and key-evolving identification schemes [BM99], which can be transformed to forward-secure
signature via a generalized Fiat-Shamir transform (not necessarily tight, and under some conditions).
Although this new primitive is not very useful for practical real-world applications, it is a tool that will
enable us to construct forward-secure signatures with tight reductions, via the generalized Fiat-Shamir
transform described in Section 3.2.

61/2 is just an arbitrary constant. It can be any reasonable constant.

8

3.1 Lossy Key-Evolving Identification Scheme

The operation of a key-evolving identification scheme is divided into time periods 1, . . . , T , where a different
secret is used in each time period, and such that the secret key for a period i+ 1 can be computed from
the secret key for the period i. The public key remains the same in every time period. In this paper, a
key-evolving identification scheme is a three-move protocol in which the prover first sends a commitment
cmt to the verifier, then the verifier sends a challenge ch uniformly at random, and finally the prover
answers by a response rsp. The verifier’s final decision is a deterministic function of the conversation
with the prover (the triple (cmt, ch, rsp)), of the public key, and of the index of the current time period.

Informally, a lossy key-evolving identification scheme has T + 1 types of public keys: normal public
keys, which are used in the real protocol, and i-lossy public keys, for i ∈ {1, . . . , T}, which are such that
no prover (even not computationally bounded) should be able to make the verifier accept for the period i
with non-negligible probability. Furthermore, for each period i, it is possible to generate an i-lossy public
key, such that the latter is indistinguishable from a normal public key even if the adversary is given access
to any secret key for period i′ > i.

More formally, a lossy key-evolving identification scheme ID is defined by a tuple (KG, LKG,Update,
Prove, C,Ver) such that:

• KG is the normal key generation algorithm which takes as input the security parameter k and the
number of periods T and outputs a pair (pk, sk1) containing the public key and the prover’s secret
key for the first period.

• LKG is the lossy key generation algorithm which takes as input the security parameter k and the
number of periods T and a period i and outputs a pair (pk, ski+1) containing an i-lossy public key
pk and a prover’s secret key for period i+ 1 (skT+1 = ⊥).

• Update is the deterministic secret key update algorithm which takes as input a secret key ski for
period i and outputs a secret key ski+1 for period i+ 1 if ski is a secret key for some period i < T ,
and ⊥ otherwise. We write Updatej the function Update composed j times with itself (Updatej(ski)
is a secret key ski+j for period i+ j, if i+ j ≤ T).

• Prove is the prover algorithm which takes as input the secret key for the current period, the current
conversation transcript (and the current state st associated with it, if needed) and outputs the next
message to be sent to the verifier, and the next state (if needed). We suppose that any secret key
ski for period i always contains i, and so i is not an input of Prove.

• C is the set of possible challenges that can be sent by the verifier. The set C might implicitly depend
on the public key. In our constructions, it is of the form {0, . . . , c− 1}`.

• Ver is the deterministic verification algorithm which takes as input the conversation transcript and
the period i and outputs 1 to indicate acceptance, and 0 otherwise.

A randomized transcript generation oracle TrID
pk,ski,k is associated to each ID, k, and (pk, ski). TrID

pk,ski,k
takes no inputs and returns a random transcript of an “honest” execution for period i. More precisely, the
transcript generation oracle TrID

pk,ski,k is defined as follows:
function TrID

pk,ski,k
(cmt, st) $← Prove(ski) ; ch $← C ; rsp $← Prove(ski, cmt, ch, st)
return (cmt, ch, rsp)

An identification scheme is said to be lossy if it has the following properties:

1. Completeness of normal keys. ID is said to be complete, if for every period i, every security
parameter k and all honestly generated keys (pk, sk1) $← KG(1k), Ver(pk, cmt, ch, rsp, i) = 1 holds
with probability 1 when (cmt, ch, rsp) $← TrID

pk,ski,k(), with ski = Updatei−1(sk1).

9

2. Simulatability of transcripts. Let (pk, sk1) be the output of KG(1k) for a security parameter
k, and ski be the output of Updatei−1(sk1). Then, ID is said to be ε-simulatable if there exists a
probabilistic polynomial time simulator T̃r

ID
pk,i,k with no access to any secret key, which can generate

transcripts {(cmt, ch, rsp)} whose distribution is statistically indistinguishable from the transcripts
output by TrID

pk,ski,k , where ε is an upper-bound for the statistical distance. When ε = 0, then ID is
said to be perfectly simulatable.
This property is also often called statistical honest-verifier zero-knowledge [GMR89, BMO90, Cra96].

3. Key indistinguishability. Consider the experiments Expind-keys-real
ID,k (D) and Expind-keys-lossy

ID,k (D),
defined as follows:

Expind-keys-real
ID,k (D)
ı̃

$← {1, . . . , T}
(pk, sk1) $← KG(1k , 1T) ; sk ı̃+1

$← Updateı̃(sk1)
return D(pk, sk ı̃+1)

Expind-keys-lossy
ID,k (D)
ı̃

$← {1, . . . , T}
(pk, sk ı̃+1) $← LKG(1k , 1T , ı̃)
return D(pk, sk ı̃+1)

D is said to (t, ε)-solve the key indistinguishability problem if it runs in time t and∣∣∣Pr
[

Expind-keys-real
ID,k (D) = 1

]
− Pr

[
Expind-keys-lossy

ID,k (D) = 1
]∣∣∣ ≥ ε.

Furthermore, we say that ID is (t, ε)-key-indistinguishable, if no algorithm (t, ε)-solves the key-in-
distinguishability problem.

4. Lossiness. Let Ii be an impersonator for period i (i ∈ {1, . . . , T}), st be its state. We consider the
experiment Explos-imp-pa

ID,k,i (Ii) played between Ii and a hypothetical challenger:

Explos-imp-pa
ID,k,i (Ii)

(pk, ski+1) $← LKG(1k , 1T , i) ; (cmt, st) $← Ii(pk, ski+1) ; ch $← C ; rsp $← Ii(ch, st)
return Ver(pk, cmt, ch, rsp, i)

The impersonator Ii is said to ε-solve the impersonation problem with respect to i-lossy public
keys if Pr

[
Explos-imp-pa

ID,k,i (Ii) = 1
]
≥ ε. Furthermore, ID is said to be ε-lossy if, for any period

i ∈ {1, . . . , T}, no (computationally unrestricted) algorithm ε-solves the impersonation problem
with respect to i-lossy keys.

In addition, the commitment space of ID has min-entropy at least β, if for every period i, every
security parameter k, and all honestly generated keys (pk, sk1) $← KG(1k), every bit string cmt∗, if
ski = Updatei−1(sk1), then:∣∣∣Pr

[
cmt = cmt∗

∣∣∣ (cmt, st) $← Prove(ski)
]∣∣∣ ≤ 2−β.

Usually, an identification scheme is also required to be sound, i.e., for a period i chosen uniformly
at random, it should not be possible for an adversary to run the protocol with a honest verifier and to
make the latter accept, if the public key has been generated honestly ((pk, sk1) $← KG(1k , 1T)) and if the
adversary is only given a secret key ski+1. But, in our case, this soundness property follows directly from
the key indistinguishability and the lossiness properties.

We could also consider more general lossy identification schemes where the simulatability of transcripts
is computational instead of being statistical. However, we opted for not doing so because our security
reduction is not tight with respect to the simulatability of transcripts.

10

KG(1k , 1T)
(pk, sk1) $← KG(1k , 1T)
return (pk, sk1)

Update(ski)
sk ← Update(ski)
return sk

Sign(ski,M)
(cmt, st) $← Prove(ski)
ch ← H((cmt,M , i))
rsp $← Prove(ski, cmt, ch, st)
σ ← (cmt, rsp)
return (σ, i)

Ver(pk, (σ, i),M)
(cmt, rsp)← σ
ch ← H((cmt,M , i))
d← Ver(pk, cmt, ch, rsp, i)
return d

Figure 3.1: Generalized Fiat-Shamir transform for forward-secure signature

We remark that, for T = 1, a key-evolving lossy identification scheme becomes a standard lossy
identification scheme, described in [AFLT12].7

Finally, we say that ID is response-unique if the following holds either for every lossy public key or
for every normal public key (or for both): for all periods i ∈ {1, . . . , T}, for all bit strings cmt (which
may or may not be a correctly generated commitment), and for all challenges ch, there exists at most one
response rsp such that Ver(pk, cmt, ch, rsp, i) = 1.

3.2 Generalized Fiat-Shamir Transform

The forward-secure signature schemes considered in this paper are built from a key-evolving identification
scheme via a straightforward generalization of the Fiat-Shamir transform [FS87], depicted in Figure 3.1.
More precisely, the signature for period i is just the signature obtained from a Fiat-Shamir transform
with secret key ski = Updatei−1(sk1) (with the period i included in the random oracle input).

Let FS [ID] = (KG, Sign,Ver) be the signature scheme obtained via this generalized Fiat-Shamir
transform.
Main security theorem. The following theorem is a generalization of Theorem 1 in [AFLT12] to key-
evolving schemes. If we set T = 1 in Theorem 3.1, we get the latter theorem with slightly improved bounds,
since forward security for T = 1 reduces to the notion of strong unforgeability for signature schemes. For
the sake of simplicity and contrary to [AFLT12] where the completeness property of the underlying lossy
identification scheme was only assumed to hold statistically, we assume perfect completeness, as this is
satisfied by all of the schemes that we consider.

Theorem 3.1 Let ID = (KG, LKG,Update,Prove, C,Ver) be a key-evolving lossy identification scheme
whose commitment space has min-entropy at least β (for every period i), let H be a hash function modeled
as a random oracle, and let FS [ID] = (KG,Sign,Ver) be the signature scheme obtained via the generalized
Fiat-Shamir transform (Figure 3.1). If ID is εs-simulatable, complete, (t′, ε′)-key-indistinguishable, and
ε`-lossy, then FS [ID] is (t, qh, qs, ε)-existentially-forward-secure in the random oracle model for:

ε = T
(
ε′ + (qh + 1)ε`

)
+ qsεs + (qh + qs + 1)qs/2β and t ≈ t′ − (qs tSim−Sign + (T − 1) tUpdate)

where tSim−Sign denotes the time to simulate a transcript using T̃r
ID

and tUpdate denotes the time to update a
secret key using Update. Furthermore, if ID is response-unique, FS [ID] is also (t, qh, qs, ε)-forward-secure.

The proof of Theorem 3.1 is an adaptation of the proof in [AFLT12] to the forward-security setting. As
in [AFLT12], the main idea of the proof is to switch the public key of the signature scheme with a lossy one,
for which forgeries are information-theoretically impossible with high probability. In our case, however, we
need to guess the period i∗ of the signature output by the adversary, in order to choose the correct type

7Contrary to the definition of lossiness given in [AFLT12], the impersonator I1 does not have access to an oracle T̃r
ID
pk,1,k

in Explos-imp-pa
ID,k,1 (I1). However, we remark that this has no impact on the security definition as the execution of T̃r

ID
pk,1,k does

not require any secret information.

11

of lossy key to be used in the reduction and this is why we lose a factor T in the reduction. Moreover,
as in [AFLT12], signatures queries are easy to answer thanks to the simulatability of the identification
scheme. Finally, similarly to [AFLT12] and contrary to [AABN02], we remark that the factor qH only
multiply terms which are statistically negligible and, hence, they have no effect on the tightness of the
proof.

Proof: Let us suppose there exists an adversary A which (t, qh, qs, ε)-breaks the existential forward
security of FS . Let us consider the games G0, . . . ,G9 of Figures 3.2 and 3.3. The random oracle H is
simulated using a table HT containing all the previous queries to the oracle and its responses.

Before describing precisely all the games and formally showing that two consecutive games are indistingui-
shable, let us give a high-level overview of these games. The first game G0 corresponds to the original
security notion. We then change the way signatures are computed: instead of getting the challenge ch
from the random oracle after generating the commitment cmt, we first choose it and then program the
random oracle. We deal with programming and the possible collisions that it could generate in the games
G1, G2, and G3. We then simulate all signatures using the transcript simulator T̃r

ID
pk,i,k in the game G4, as

ch can now be chosen independently of cmt. From this point on, the secret keys are only used to answer
the Break-In queries. Hence, we can now guess the time period i∗ of the forgery, abort if this is not
guessed correctly, and generate a lossy public key for period i∗+ 1 onwards (in the games G6, G7, and G8).
This makes us lose a factor T in the reduction. Finally, the lossiness property ensures that the adversary
cannot generate a valid signature with non-negligible probability.

Let us now provide the proof details. First, we will assume that the set of queries to the random
oracle made by the adversary always contains the query (cmt∗,M ∗). This is without loss of generality
because, given any adversary, we can always create an adversary (with the same success probability and
approximately the same running time) that performs this query before calling Finalize. It only increases
the total amount of hash queries by 1.

G0 corresponds to a slightly stronger game than the game Expeuf-cma
FS ,k,T (A) defining the existential forward

security of a key-evolving signature built from a key-evolving scheme via generalized Fiat-Shamir transform.
We only force the forgery to be such that (cmt∗,M ∗, i∗) is different from all the previous queries to the
signing oracle, instead of just (M∗, i∗) being different from all the previous queries. This corresponds to a
security notion stronger than existential forward-security but still weaker than strong forward-security
(where we have to consider (cmt∗, rsp∗,M ∗, i∗)).

In G0, we have inlined the code of the random oracle in the procedure Sign, and we set bad whenever
H((cmt,M , i)) is already defined. We have also modified the code of the random oracle H such that the
fp-th query (the critical query eventually related to the forgery) is answered by ch∗, a random challenge
chosen in Initialize, where fp is a random integer in the range {1, . . . , qh + 1}. These modifications do
not change the output of the original game.

To compute the probability Pr [G0(A) sets bad], we remark that, for each signing query, the probability
that there is a collision (i.e., bad is set for this query) is at most (qh + qs + 1)/2β . By the union bound, we
have Pr [G0(A) sets bad] ≤ (qh + qs + 1)qs/2β.

In G1, when bad is set, a new random value forH((cmt,M , i)) is set in Sign. Since G0 and G1 are identical
until bad, thanks to Lemma 2.1, we have Pr [G0(A)⇒ 1] − Pr [G1(A)⇒ 1] ≤ Pr [G0(A) sets bad] ≤
(qs + 1)qs/2β.

In G2, bad is no more set and the procedure Sign is rewritten in an equivalent way. Since the latter does
not change the output of the game, we have Pr [G1(A)⇒ 1] = Pr [G2(A)⇒ 1].

In G3, the procedure Sign is changed such that the values (cmt, ch, rsp) are computed using the tran-
script generation function TrID

pk,sk,k . Since the latter does not change the output of the game, we have

12

Initialize(k, T) Game G0,G1,G2,G3,G4

001 S,HT,QT← []
002 hc← 1 ; b← T + 1
003 fp $← {1, . . . , qh + 1} ; ch∗ $← C
004 (pk, sk1) $← KG(1k , 1T)
005 for i = 1, . . . , T − 1
006 ski+1 ← Update(ski)
007 return (pk, T)
H(x) Game G0, . . . ,G9

011 if HT[x] =⊥ then
012 QT[hc]← x
013 if hc 6= fp then
014 HT[x] $← C
015 else
016 HT[x] $← ch∗
017 hc← hc + 1
018 return HT[x]
Break-In(i) Game G0,G1,G2,G3,G4

021 if 1 ≤ i ≤ T then
022 b← min(i, b)
023 return ski

024 else
025 return ⊥

Sign(M , i) Game G0, G1

031 (cmt, st) $← Prove(ski)

032 if HT[(cmt,M , i)] 6=⊥ then
033 bad← true

034 HT[(cmt,M , i)] $← C
035 else
036 HT[(cmt,M , i)] $← C
037 ch $← HT[(cmt,M , i)]
038 rsp $← Prove(ski, cmt, ch, st)
039 σ ← (cmt, rsp)
040 S[(cmt,M , i)]← rsp
041 return (σ, i)

Sign(M , i) Game G2

231 (cmt, st) $← Prove(ski)
232 ch $← C
233 HT[(cmt,M , i)]← ch
234 rsp $← Prove(ski, cmt, ch, st)
235 σ ← (cmt, rsp)
236 S[(cmt,M , i)]← rsp
237 return (σ, i)
Sign(M , i) Game G3

331 (cmt, ch, rsp) $← TrID
pk,ski,k

332 HT[(cmt,M , i)]← ch
333 σ ← (cmt, rsp)
334 S[(cmt,M , i)]← rsp
335 return (σ, i)
Sign(M , i) Game G4, . . . ,G9

431 (cmt, ch, rsp) $← T̃r
ID
pk,i,k

432 HT[(cmt,M , i)]← ch
433 σ ← (cmt, rsp)
434 S[(cmt,M , i)]← rsp
435 return (σ, i)
Finalize(M ∗, (σ∗, i∗)) Game G0,G1,G2,G3,G4

051 d← Ver(pk, (σ∗, i∗),M ∗)
052 if i∗ ≥ b then
053 d← 0
054 (cmt∗, rsp∗)← σ∗

055 if S[(cmt∗,M ∗, i∗)] 6=⊥ then
056 d← 0
057 return d

Figure 3.2: Games G0, . . . ,G4 for proof of Theorem 3.1. G1 includes the boxed code at line 034 but G0 does not.

13

Initialize(k, T) Game G5,G6,G7

501 S,HT,QT← []
502 hc← 1 ; b← T + 1
503 fp $← {1, . . . , qh + 1} ; ch∗ $← C
504 ı̃

$← {1, . . . , T}
505 (pk, sk1) $← KG(1k , 1T)
506 for i = 1, . . . , T − 1
507 ski+1 ← Update(ski)
508 return (pk, T)
Initialize(k, T) Game G8,G9

801 hc← 1 ; b← T + 1
802 fp $← {1, . . . , qh + 1} ; ch∗C
803 ı̃

$← {1, . . . , T}
804 (pk, sk ı̃+1) $← LKG(1k , 1T , ı̃)
805 for i = 1, . . . , ı̃
806 ski ← ⊥
807 for i = ı̃+ 1, . . . , T − 1
808 ski+1 ← Update(ski)
809 return (pk, T)
H(x) Game G0, . . . ,G9

011 if HT[x] =⊥ then
012 QT[hc]← x
013 if hc 6= fp then
014 HT[x] $← C
015 else
016 HT[x] $← ch∗
017 hc← hc + 1
018 return HT[x]

Break-In(i) Game G5, G6

521 if 1 ≤ i ≤ T then
522 b← min(i, b)
523 if i ≤ ı̃
524 bad← true
525 return ⊥
526 return ski

527 else
528 return ⊥

Break-In(i) Game G7,G8,G9

721 if 1 ≤ i ≤ T then
722 b← min(i,b)
723 if i ≤ ı̃
724 return ⊥
725 return ski

726 else
727 return ⊥
Sign(M , i) Game G4, . . . ,G9

431 (cmt, ch, rsp) $← T̃r
ID
pk,i,k

432 HT[(cmt,M , i)]← ch
433 σ ← (cmt, rsp)
434 S[(cmt,M , i)]← rsp
435 return (σ, i)

Finalize(M ∗, (σ∗, i∗)) Game G5, G6

551 d← Ver(pk, (σ∗, i∗),M ∗)
552 if i∗ ≥ b then
553 d← 0
554 if i∗ 6= ı̃ then
555 bad← true
556 d← 0
557 (cmt∗, rsp∗)← σ∗

558 if S[(cmt∗,M ∗, i∗)] 6=⊥ then
559 d← 0
560 return d

Finalize(M ∗, (σ∗, i∗)) Game G7,G8, G9

751 d← Ver(pk, (σ∗, i∗),M ∗)
752 if i∗ ≥ b or i∗ 6= ı̃ then
753 d← 0
754 (cmt∗, rsp∗)← σ∗

755 if QT[fp] 6= (cmt∗,M ∗) then
756 bad← true
757 d← 0
758 if S[(cmt∗,M ∗, i∗)] 6=⊥ then
759 d← 0
760 return d

Figure 3.3: Games G5, . . . ,G9 for proof of Theorem 3.1. G6 includes the boxed code at lines 525 and 556 but G5
does not; G9 includes the boxed code at line 757 but G7 and G8 do not.

14

Pr [G2(A)⇒ 1] = Pr [G3(A)⇒ 1].
In G4, the qs calls to the transcript generation function TrID

pk,ski,k are replaced by qs calls to the simulated

transcript generation function T̃r
ID
pk,i,k . Since the statistical distance between the distributions output by

TrID
pk,ski,k and by T̃r

ID
pk,i,k is at most εs, we have Pr [G3(A)⇒ 1]− Pr [G4(A)⇒ 1] ≤ qsεs.

In G5, a period ı̃ ∈ {1, . . . , T} is chosen uniformly at random, and bad is set when the adversary queries
Break-In with a period b ≤ ı̃ or when the adversary outputs a signature for a period i∗ 6= ı̃. Since if G5
outputs 1, we have i∗ < b, “bad is never set and G5 outputs 1” (event G5(A)⇒ 1 ∧ Good5) if and only if
“i∗ = ı̃ and G5 outputs 1.” Therefore, we have:

Pr [G5(A)⇒ 1 ∧ Good5] =
T∑
i=1

Pr [G5(A)⇒ 1 ∧ i∗ = i = ı̃] = 1
T

Pr [G5(A)⇒ 1] = 1
T

Pr [G4(A)⇒ 1],

where the second equality comes from the fact that Pr [ı̃ = i] = 1
T and that the event “ı̃ = i” is independent

from the event “G5(A)⇒ 1 ∧ i∗ = i”.
In G6, the empty string ⊥ is returned if Break-In is queried with a period i ≤ ı̃, and the game outputs 0
if i∗ 6= ı̃. Since G5 and G6 are identical until bad, according to Lemma 2.2, we have

Pr [G5(A)⇒ 1 ∧ Good5] = Pr [G6(A)⇒ 1 ∧ Good6] = Pr [G6(A)⇒ 1].

In G7, some procedures have been rewritten in an equivalent way, and bad is now set when the query
(cmt∗,M ∗) is not the fpth query to the random oracle. Since the latter does not change the output of the
experiment, we have Pr [G6(A)⇒ 1] = Pr [G7(A)⇒ 1].
In G8, the key is generated using the lossy key generation algorithm LKG for period ı̃ instead of the
normal key generation algorithm KG. From any adversary A able to distinguish G7 from G8, it is
straightforward to construct an adversary which (t′, ε′′)-solves the key indistinguishability problem
with t′ ≈ t + (qstSim−Sign + (T − 1)tUpdate) and ε′′ = |Pr [G7(A)⇒ 1]− Pr [G8(A)⇒ 1]|. Therefore,
thanks to the (t′, ε′)-key-indistinguishability of ID, if the adversary runs in time approximately at most
t′ − (qstSim−Sign + (T − 1)tUpdate):

Pr [G7(A)⇒ 1]− Pr [G8(A)⇒ 1] ≤ ε′. (3.1)

In G9, the game outputs 0 if the signature does not correspond to the challenge ch∗. Since we have

Pr [G8(A)⇒ 1 ∧ Good8] = Pr [G8(A)⇒ 1] · Pr [QT[fp] = (cmt∗,M ∗)] = 1
qh + 1Pr [G8(A)⇒ 1],

and Pr [G9(A)⇒ 1 ∧ Good9] = Pr [G9(A)⇒ 1], according to Lemma 2.2, we have Pr [G8(A)⇒ 1] =
(qh + 1)Pr [G9(A)⇒ 1].
From any adversary A for G9, it is straightforward to construct an adversary I (not necessarily computa-
tionally bounded) which ε′′-solves the impersonation problem with ε′′ = Pr [G9(A)⇒ 1]. Therefore, we
have Pr [G9(A)⇒ 1] ≤ ε`.
From the previous equalities and inequalities, we deduce that, for any adversary A running in time
approximately at most t′ − (qstSim−Sign + (T − 1)tUpdate):

ε ≤ Pr [G0(A)] ≤ T
(
ε′ + (qh + 1)ε`

)
+ qsεs + (qh + qs + 1)qs/2β.

Let us now prove that FS is strongly forward-secure (with the same parameters) if ID is response-unique.
We first remark that, if we replace line 055 of G0 in Figure 3.2 by

15

if S[(cmt∗,M ∗, i∗)] = rsp∗ then
then we get exactly the game for forward security.
Therefore, if normal keys are response-unique, it is clear that this new game is equivalent to the original
game G0, since if S[(cmt∗,M ∗, i∗)] is defined, it is the only possible response rsp∗.
If lossy keys are response-unique, to prove forward security, it is sufficient to replace lines 055, 558, and 758
for games G0, . . . ,G9 in Figure 3.2 and Figure 3.3 by

if S[(cmt∗,M ∗, i∗)] = rsp∗ then
Then the probability the adversary wins the new game G9 is still bounded by εl since if S[(cmt∗,M ∗, i∗)]
is defined, it is the only possible response rsp∗.

Remark 3.2 As in the standard Fiat-Shamir transform, the signature obtained via the generalized
transform consists of a commitment-response pair. However, in all schemes proposed in this paper, the
commitment can be recovered from the challenge and the response. Hence, since the challenge is often
shorter than the commitment, it is generally better to use the challenge-response pair as the signature in
our schemes. Obviously, this change does not affect the security of our schemes.

Security theorems for comparisons with previous schemes. In the sequel, to be able to do a fair
comparison, we also need the following variant of Theorem 3.1 and its associated straightforward corollary.

Theorem 3.3 Let ID = (KG, LKG,Update,Prove, C,Ver) be a key-evolving lossy identification scheme
whose commitment space has min-entropy at least β (for every period i), let H be a hash function modeled
as a random oracle, and let FS [ID] = (KG,Sign,Ver) be the signature scheme obtained via the generalized
Fiat-Shamir transform. If ID is εs-simulatable, complete, (t′, ε′)-key-indistinguishable, and ε`-lossy, then
FS [ID] is (t, qh, qs, ε, δ)-selectively-existentially-forward-secure in the random oracle model for:

t ≈
(
t′ − (T − 1) tUpdate

)
·
(
ε− qsεs − (qh + qs + 1)qs/2β

)
− qstSim−Sign

as long as

ε > qsεs + (qh + qs + 1)qs/2β and ε′ ≤ δ
(

1− 1
e

)
− (qh + 1) ε`
ε− qsεs − (qh + qs + 1)qs/2β

where where tSim−Sign denotes the time to simulate a transcript using T̃r
ID
, tUpdate denotes the time to

update a secret key using Update, and e (not to be confused with e) is the base of the natural logarithm.
Furthermore, if ID is response-unique, FS [ID] is also (t, qh, qs, ε, δ)-selectively-forward-secure.

Corollary 3.4 Under the same hypothesis of Theorem 3.3, FS [ID] is (t, qh, qs, ε, δ)-selectively-existen-
tially-forward-secure in the random oracle model for:

t ≈ (t′ − (T − 1) tUpdate) · ε
2 − qstSim−Sign

as long as

ε ≥ 2
(
qsεs + (qh + qs + 1)qs/2β

)
and ε′ ≤ δ

(
1− 1

e

)
− 2 (qh + 1) ε`

ε
.

Furthermore, if ID is response-unique, FS [ID] is also (t, qh, qs, ε, δ)-selectively-forward-secure.

In concrete instantiations in the sequel, we often omit tUpdate and tSim−Sign as these values are small
compared to t′, for any reasonable parameters. For any ε > 0 satisfying the above inequalities, under the
assumption of Remark 2.4, we can say that the scheme FS [ID] is about (t′ε2 , qh, qs, T ε)-forward-secure

16

(i.e., provide about log2(t′/(2T)) bits of security), if the underlying identification scheme ID is (about)
(t′, (1− 1/e)/2)-hard. In other words, the security reduction loses a factor about T .

Proof of Corollary 3.4 from Theorem 3.3: It is a direct corollary of Theorem 3.3. The condition
ε > 2

(
qsεs + (qh + qs + 1)qs/2β

)
ensures that ε− qsεs − (qh + qs + 1)qs/2β ≥ ε/2.

Proof of Theorem 3.3: Let us suppose there exists an adversary A that (t, qh, qs, ε, δ)-breaks FS [ID].
In particular, A (t, qh, qs, εδ)-breaks FS [ID].

The proof of Theorem 3.3 is very similar to the proof of Theorem 3.1. We use the same games, except for
Initialize and Finalize of games G1, . . . ,G5 which are replaced by the ones of game G6. Indeed, in the
game of the selective security, a period ı̃ is chosen in Initialize and the adversary has to forge a signature for
this period. Then the proof is identical except that Pr [G4(A)⇒ 1] = Pr [G5(A)⇒ 1] = Pr [G6(A)⇒ 1]
and except for the inequality of Equation (3.1) (page 15).

We remark that, if we write γ =
(
qsεs + (qh + qs + 1)qs/2β

)
:

Pr [G7(A)⇒ 1] ≥ ε− γ with probability at least δ over (pk, sk1, ı̃) (3.2)
Pr [G8(A)⇒ 1] ≤ (qh + 1) ε` (3.3)

Let us construct an adversary B which (t′′, ε′′)-breaks the key indistinguishability property with t′′ ≈
t+qstSim−Sign

ε−γ + (T − 1)tUpdate and ε′′ ≥ δ
(
1− 1

e

)
− 1

ε−γ (qh + 1) ε`. B takes as input a period ı̃, a public key
pk and a secret key sk ı̃+1 for period ı̃+ 1. It then runs A 1

ε−γ times and simulates the oracles as in game
G7 (or G8, which is equivalent), except for Initialize where it uses directly its inputs ı̃, pk and sk ı̃+1
(instead of picking them at random). If A outputs a correct forgery during one of its runs, B outputs 1.
Otherwise, it outputs 0.

Clearly B perfectly simulates the environment of A in the game G7, if pk is not lossy, or in the game G8,
if pk is lossy. According to Equation (3.2), if pk is not lossy, we have

Pr [B ⇒ 1 | pk normal] ≥ δ Pr

B ⇒ 1

∣∣∣∣∣∣
pk normal and
Pr [G7(A)⇒ 1]
≥ ε− γ

 ≥ δ
(
1− (1− (ε− γ))

1
ε−γ
)
≥ δ

(
1− 1

e

)

and, according to Equation (3.3), if pk is lossy, we have

Pr [B ⇒ 1 | pk lossy] ≤ 1
ε− γ

Pr [G8(A)⇒ 1] ≤ 1
ε− γ

(qh + 1) ε`.

Therefore, the advantage of B is ε′′ ≥ δ
(
1− 1

e

)
− 1

ε−γ (qh + 1) ε`. Its running time is t′′ ≈ t+qstSim−Sign
ε−γ +

(T − 1)tUpdate. This proves the theorem.

4 Tighter Security Reductions for Guillou-Quisquater-like Schemes

In this section, we prove tighter security reductions for the Guillou-Quisquater scheme (GQ, [GQ88]) and
for a slight variant of the Itkis-Reyzin scheme (IR, [IR01]), which can also be seen as a forward-secure
extension of the GQ scheme. We analyze the practical performance of this new scheme in the next section
of this article.

17

4.1 Guillou-Quisquater Scheme

Let us describe the identification scheme corresponding to the GQ signature scheme,8 before presenting
our tight reduction and comparing it with the swap method.

Scheme. Let N be a product of two distinct `N -bit primes p1, p2 and let e be a `e-bit prime, co-prime to
φ(N) = (p1 − 1)(p2 − 1), chosen uniformly at random.9 Let S be an element chosen uniformly at random
in Z∗N and let U = Se mod N . Let c = e ≥ 2`e−1 and C = {0, . . . , c − 1}. The (normal) public key is
pk = (N, e, U) and the secret key is sk = (N, e, S).

The goal of the identification scheme is to implicitly prove U is an e-residue.10 The identification
scheme is depicted in Figures 4.1 and 4.2. It works as follows. We recall that the scheme only supports
one time-period (i.e., T = 1). Therefore, the Update algorithm is not needed and sk1 = sk.First, the
prover chooses a random element R ∈ Z∗N , computes Y ← Re mod N . It sends Y to the verifier, which
in turn chooses c ∈ {0, . . . , c− 1} and returns it to the prover. Upon receiving c, the prover computes
Z ← R · Sc mod N and sends this value to the verifier. Finally, the verifier checks whether Z ∈ Z∗N and
Ze = Y · U c and accepts only in this case.11

The algorithm LKG chooses e and N = p1p2 such that e divides p1 − 1, instead of being co-prime to
φ(N), and chooses U uniformly at random among the non-e-residue modulo N . The lossy public key is
then pk = (N, e, U). Proposition B.13 and Proposition B.16 show that if U is chosen uniformly at random
in Z∗N , it is not an e-residue with probability 1− 1/e and that it is possible to efficiently check whether U
is an e-residue or not if the factorization of N is known: U is a e-residue if and only if, for any j ∈ {1, 2},
e does not divide pj − 1 or U (pj−1)/e = 1 mod pj .

In the original scheme, any prime number e of large enough length `e could be used —to get negligible
soundness or lossiness probability, `e needs to be at least equal to k. However, for our proof to work, we
need the φ-hiding assumption to hold. This implies in addition that `e < `N/4.

Security. Existing proofs for the GQ scheme lose a factor qh in the reduction. In this section, we prove
the previously described identification scheme ID is a lossy identification scheme, under the φ-hiding
assumption. This yields a security proof of the strong unforgeability of the GQ scheme, with a tight
reduction to this assumption.

More formally, we prove the following theorem:

Theorem 4.1 The identification scheme ID depicted in Figures 4.1 and 4.2 is complete, perfectly
simulatable, key-indistinguishable, (1/c)-lossy, and response-unique. More precisely, if the φ-hiding
problem is (t′, ε′)-hard, then the identification scheme ID is (t, ε)-key-indistinguishable for:

t ≈ t′ and ε ≤ ε′ + 1
2`e−1 .

Furthermore, the min-entropy β of the commitment space is log2(φ(N)) ≥ `N − 1.

Thanks to Corollary 3.4 (with T = 1), we have the following corollary:

8There is a small difference between the GQ scheme described below and the original one in [GQ88]: in this paper, the
distribution of e is assumed to be uniform over `e-bit primes, such that e does not divide φ(N), while in [GQ88] there was no
restriction on e. See also Footnote 11.

9We choose e to be co-prime to φ(N) in this paper, as this makes the identification scheme response-unique and slightly
simplifies the key indistinguishability proof. We point out the distribution of uniform `e-bit primes is `N +1

2`e−1 -close to the
distribution of `e-bit primes that are co-prime to φ(N), according to Proposition B.19. Therefore, up to losing a negligible
`N +1
2`e−1 term in the security reduction, we can also take e to be a `e-bit prime.

10When e is co-prime with φ(N), any element U ∈ Z∗N is an e-residue. However, under the φ-hiding assumption, this case
is indistinguishable from the case where e divides φ(N), in which case only 1 out of e elements of Z∗N is an e-residue. This is
why we simply say that the goal of the identification scheme is to implicitly prove that U is an e-residue.

11The test Z ∈ Z∗N can be replaced by the less expensive test Z mod N 6= 0, as explained in Section 6.2.

18

KG(1k , 1)
e

$← P`e

(N, p1, p2) $← RSA`N
[gcd(e, φ(N)) = 1]

S
$← Z∗N

U ← Se mod N
pk ← (N, e, U)
sk ← (N, e, S)
return (pk, sk)

LKG(1k , 1, 1)
e

$← P`e

(N, p1, p2) $← RSA`N
[p1 = 1 mod e]

U ← Z∗N \ HRN [e]
pk ← (N, e, U)
return (pk,⊥)

Prove(sk)
(N, e, S)← sk
st = R

$← Z∗N
cmt = Y ← Re mod N
return (cmt, st)

Prove(sk, cmt, ch, st)
(N, e, S)← sk
R← st
rsp = Z ← R · Sc mod N
return rsp

Ver(pk, cmt, ch, rsp, 1)
(N, e, U)← pk
Y ← cmt
c ← ch
Z ← rsp
if Z ∈ Z∗N and Ze = Y · Uc then

return 1
else

return 0

Figure 4.1: Formal description of the Guillou-Quisquater identification scheme (`e and `N are two parameters
depending on k and c = e ≥ 2`e−1)

Theorem 4.2 If the φ-hiding problem is (t′, ε′)-hard, then the GQ scheme is (t, qh, qs, ε, δ)-selectively-
forward-secure for T = 1 period in the random oracle model for:

t ≈ t′ · ε
2

as long as

ε ≥ 2(qh + qs + 1)qs
2`N−1 and ε′ + 1

2`e−1 ≤ δ
(

1− 1
e

)
− 2 (qh + 1)

2`e−1 ε
,

where e (not to be confused with e) is the base of the natural logarithm.

Under the assumption of Remark 2.4, we can say that the scheme is about (tε2 , qh, qs, ε)-strongly-
unforgeable if the φ-hiding problem is (t, (1− 1/e)/2)-hard. This means roughly that if we want a k-bit
security, the modulus has to correspond to a security level of k ′ ≈ k bits, which is tight.

Prover Verifier
Input: sk = (N, e, S) Input: pk = (N, e, U)

R
$← Z∗N

Y ← Re mod N Y -
c� c $← {0, . . . , c− 1}

Z ← R · Sc mod N Z -
if Z /∈ Z∗N or Ze 6= Y · Uc

return reject
return accept

Figure 4.2: Pictorial description of the Guillou-Quisquater identification scheme

19

Proof of Theorem 4.1: The proof that ID is complete follows immediately from the fact that, if
U = Se mod N , an honest execution of the protocol will always result in acceptance as Ze = (R · Sc)e =
Re · (Se)c = Y · U c.

Simulatability ID follows from the fact that, given pk = (N, e, U), we can easily generate transcripts
whose distribution is perfectly indistinguishable from the transcripts output by an honest execution of
the protocol. This is done by choosing Z uniformly at random in Z∗N and c uniformly at random in
{0, . . . , c− 1}, and setting Y = Ze/U c.

Let us prove the key indistinguishability property. When e is co-prime with φ(N), the function f
defined by f(x) = xe mod N is a permutation over Z∗N (see, e.g., Proposition B.14). Therefore, when
pk = (N, e, U) $← KG(1k , 1), the element U = Se ∈ Z∗N (with S

$← Z∗N) is uniformly random. The
distribution of normal public keys is therefore indistinguishable from the one where e divides φ(N) and U
is chosen uniformly at random, according to the φ-hiding assumption. And in this latter distribution, U is
not a e-residue with probability 1− 1/e ≥ 1− 1/2`e−1 according to Proposition B.15, so this distribution
is (1/2`e−1)-close to the distribution of lossy keys according to Lemma 2.3. Hence, we get the bound of
the theorem.

To show that ID is lossy, we note that, when the public key is lossy, for every element Y chosen by the
adversary, there exists only one value of c ∈ {0, . . . , c − 1} for which there exists a response Z that is
considered valid by the verifier. To see why, assume for the sake of contradiction that there exist two
different values c1 and c2 in {0, . . . , c− 1} for which there exists a valid response. Denote by Z1 and Z2
one of the valid responses in each case. Without loss of generality, assume that c1 < c2. Since Ze1 = Y ·U c1

and Ze2 = Y · U c2 , we have that (Z2/Z1)e = U c2−c1 . As c2 − c1 is a positive number smaller than 2`e−1, it
is co-prime to e (since e is a prime and e ≥ 2`e−1). Therefore, according to Bézout’s identity, there exists
two integers u, v such that: ue+ v(c2 − c1) = 1. So:

U = Uue+v(c2−c1) = (Uu)e(U c2−c1)v = (Uu(Z2/Z1)v)e

and U is a e-residue, which is impossible. This means that the probability that a valid response Zi exists
in the case where U is not a e-residue is at most 1/c. It follows that ID is 1/c-lossy.

Response-uniqueness of ID follows from the fact that for any normal public key pk = (N, e, U), e
is co-prime with φ(N) and so the function f defined by f(x) = xe mod N is a permutation over Z∗N .
For a commitment Y and a challenge c, the only response that is accepted by the verifier is therefore:
Z = (Y · U c)1/e. Note that since Z ∈ Z∗N and Ze = Y · U c, Y is also necessarily in Z∗N .

Finally, as for any normal public key pk = (N, e, U), the function f defined by f(x) = xe mod N is a
permutation over Z∗N , commitments Re are uniformly random in Z∗N . Therefore the commitment space
has min-entropy log2(φ(N)) ≥ `N − 1.

Comparison with the swap method. Applying the swap method [MR02] to the GQ identification
scheme can also provide a signature with a tight reduction, to the RSA problem. But in this case, the
signing algorithm needs to compute the e-root of the output of the random oracle modulo N . Therefore,
instead of requiring two exponentiations modulo N with a `e-bit exponent, the signing algorithm requires
one such exponentiation and one exponentiation modulo N with a `N -bit exponent. So, our signing
algorithm is about `N/(2`e) times faster, for the same parameters and the same security level, if we
consider the φ-hiding problem is as hard as the RSA problem, and if we disregard the small differences of
the exact tightness of the reductions. Furthermore, the swap method cannot be directly extended to the
forward-secure extension of the GQ scheme, described in the next section, because the prover has to know
the factorization of N .

20

4.2 Variant of the Itkis-Reyzin Scheme

Scheme. The idea of this forward-secure extension of the GQ scheme consists in using a different e for
each period. More precisely, let e1, . . . , eT be T distinct `e-bit primes chosen uniformly at random, among
`e-bit primes that are co-prime to φ(N). Let fi = ei+1 · · · eT , fT = 1, and E = e1 . . . eT . Let S be an
element chosen uniformly at random in Z∗N and let U = SE mod N . Let Si = SE/ei and S′i = SE/fi . Then
the public key is pk = (N, e1, . . . , eT , U) and the secret key for period i is ski = (N, ei, . . . , eT , Si, S′i). We
remark we can easily compute ski+1 from ski, since Si+1 = S′

fi+1
i mod N and S′i+1 = S′

ei+1
i mod N .

For period i, we have Seii = U and the identification scheme works exactly as the previous one with
public key pk = (N, ei, U) and secret key sk = (N, ei, Si).

For the sake of simplicity, in this naive description of the scheme, we store the exponents e1, . . . , eT in
both the public and secret keys. Therefore, the keys are linear in T , the number of periods. It is possible
to have constant-size keys, either by using fixed exponents,12 or by computing the exponents using a
random oracle. This will be discussed in Section 5.1.

Security. The security proof is similar to the one for the previous scheme, with the main difference
being the description of the lossy key generation algorithm LKG. More precisely, on input (1k , 1T , i), the
algorithm LKG generates ei and N = p1p2 such that ei divides p1 − 1, instead of being co-prime to φ(N),
and chooses U ′ uniformly at random among the non-ei-residues modulo N . Then it chooses T − 1 distinct
random `e-bit primes e1, . . . , ei−1, ei+1, . . . , eT , and sets U = U ′ei+1···eT mod N , Si+1 = U ′ei+2···eT mod N
and S′i+1 = U ′ei+1 mod N . The public key is pk = (N, e1, . . . , eT , U) and the secret key for period i+ 1 is
ski+1 = (N, ei+1, . . . , eT , Si+1, S

′
i+1) (or ⊥ if i = T). We remark that, since U ′ is a non-ei-residue, U is

also a non-ei-residue and so the public key pk is i-lossy.
More formally, using a similar analysis as for Theorem 4.1, we can prove the following theorem.

Theorem 4.3 The identification scheme ID described above is complete, perfectly simulatable, key-
indistinguishable, (1/c)-lossy, and response-unique. More precisely, if the φ-hiding problem is (t′, ε′)-hard,
then the identification scheme ID is (t, ε)-key-indistinguishable for:

t ≈ t′ and ε ≤ ε′ + 1
2`e−1 .

Furthermore, the min-entropy β of the commitment space is log2(φ(N)) ≥ `N − 1.

Theorem 4.4 If the φ-hiding problem is (t′, ε′)-hard, then our variant of the IR scheme is (t, qh, qs, ε, δ)-
selectively-forward-secure in the random oracle model for:

t ≈ t′ · ε
2

as long as

ε ≥ 2(qh + qs + 1)qs
2`N−1 and ε′ + 1

2`e−1 ≤ δ
(

1− 1
e

)
− 2 (qh + 1)

2`e−1 ε
,

where e (not to be confused with e) is the base of the natural logarithm.

Under the assumption of Remark 2.4, we can say that the scheme is about (tε2 , qh, qs, T ε)-forward-secure
if the φ-hiding problem is (t, (1− 1/e)/2)-hard. This means roughly that if we want a k-bit security, the
modulus has to correspond to a security level of k ′ ≈ k + log2(T) bits (k′ being an approximate solution
of 2k′ = 2kε

2
1
Tε).

12However, if we use fixed exponents, we need to rely on a variant of the φ-hiding assumption, which uses fixed exponents
instead of random ones. That is why we do not consider this solution in this paper.

21

AlgH′H′′(i)
001 found ← false
002 cpt ← 0
003 while found 6= true
004 x← H′′(i‖cpt)
005 x← x with LSB and MSB set to 1
006 if isPrime(x) then
007 break
008 cpt ← cpt + 1
009 return x

AlgProgH′′H′(i‖cpt)
010 cpt′ ← 0
011 while HT′′(i‖cpt′) 6= H′(i)
012 if HT′′(i‖cpt′) =⊥ then
013 y

$← {0, 1}`e

014 y′ ← y with LSB and MSB set to 1
015 if isPrime(y′) then
016 HT′′(i‖cpt′)← H′(i)
017 break
018 else
019 HT′′(i‖cpt′)← y
020 cpt′ ← cpt′ + 1
021 if cpt > cpt′ and HT′′(i‖cpt) =⊥ then
022 HT′′(i‖cpt) $← {0, 1}`e

023 return HT′(i‖cpt)

Figure 5.1: Construction of a hash function AlgH′H′′ = H′ which outputs prime numbers, from a classical hash
function H′′ which outputs `e-bit string; and algorithm AlgProgH′′ which can simulate H′′ in such a way that
AlgH′AlgProgH′′H′

= H′. isPrime is a primality test. HT′′ is a table which is initially empty.

5 Analysis of our Variant of the Itkis-Reyzin Scheme
In this section, we analyze our variant of the IR scheme and compare it with the original IR scheme [IR01]
and the MMM scheme [MMM02].

5.1 Computation of the Exponents e1, . . . , eT

As explained before, storing the exponents e1, . . . , eT in the keys is not a good idea since the key size
becomes linear in T . Since we need e1, . . . , eT to be random primes to be able to do the reduction of
key indistinguishability property to the φ-hiding assumption, we can use a second hash function H′ (also
modeled as a random oracle in the proof) that outputs prime numbers of length `e, and set ei = H′(i).
Hash function for prime numbers which can be modeled as a random oracle. We can
construct a hash function H′ that outputs prime numbers of length `e, from a classical hash function H′′
that only outputs `e-bit strings, as H′(i) = AlgH′H′′(i) where the algorithm AlgH′ is depicted in Figure 5.1.
This construction is close to the construction of a pseudorandom function (PRF) mapping to prime
numbers in [HW09].

Furthermore, we remark that, if H′′ is modeled as a random oracle, then so can H′ = AlgH′H′′ . More
precisely, we can simulate any experiment with a random oracle H′ that outputs prime numbers, by
an experiment with random oracle H′′, by setting H′′ = AlgProgH′′H′ , where the algorithm AlgProgH′′ is
depicted in Figure 5.1. When the primality test isPrime is probabilistic (instead of being deterministic),
the simulation might not be perfect but is still statistically indistinguishable.

For efficiency purposes, it is necessary to use a probabilistic primality test for isPrime, such as Miller-
Rabin. Let us now study the error probability of AlgH′. To do that, let C denote the random variable
equal to the number of primality tests needed in AlgH′ (i.e., the final value of cpt + 1), if the primality
tests are deterministic. According to Proposition B.18, C is a geometric random variable of parameter at
least 1/(`e − 1). So its expectation E [C], the average number of calls to isPrime, is at most `e − 1. Let
us suppose the error probability of the test (i.e., the probability a composite number is considered prime)
is εp = 2−ρ. In this case, the error probability of AlgH′ for input i is at most

ε′ =
∞∑
j=0

Pr
[
C = j ∧ isPrime has done an error on
H′(i‖0), H′(i‖1), . . . or H′(i‖j)

]
≤
∞∑
j=0

Pr [C = j] j εp = E [C] εp ≤ (`e − 1)εp.

22

Let us now analyze the security of the resulting scheme when ei is set to AlgH′(i). We suppose
that ski contains the exponent ei. The secret key length is increased only by a small amount and the
signing algorithm becomes faster, since it does not need to recompute ei. For the sake of simplicity, we
suppose KG, LKG, and Update use a deterministic algorithm isPrime′ instead of isPrime for the generation
of the exponents ei = AlgH′(i).13 In the resulting scheme, the only difference in the security proof for
when the exponents e1, . . . , eT are stored in the public key is the following: the call to Ver in the procedure
Finalize might compute an exponent ei∗ = AlgH′(i∗) different from the one computed by LKG. The use
of a deterministic primality test for KG, LKG, and Update ensures that everywhere else is the security
reduction, the exponents ei are computed correctly. We do not want to do such an assumption for the
primality test for Ver, as we want to optimize the speed of Ver as much as possible.

We can adapt the security proof by replacing isPrime in AlgH′ in the verification in the procedure
Finalize of the forward security game by a deterministic algorithm isPrime′. This just adds a term
(`e − 1)εp to the final probability for the adversary to win the original game.

Let us now analyze the performance of AlgH′. If we forget the probability of errors of the primality test
and do not take into account the time to call H′′,14 the average time of AlgH′ is (E [C]−1)tisPrime−composite +
tisPrime−prime, where tisPrime−composite is the average running time of isPrime if its input is a composite number,
and tisPrime−prime is the average running time of isPrime if its input is a prime.

For Miller-Rabin test, if the input is prime, the algorithm roughly does ρ/2 exponentiations modulo an
`e-bit number with an `e-bit exponent. Otherwise, if the input is a composite number, it does fewer than
4/3 such exponentiations on average.15 Therefore, tisPrime−prime ≈ ρ3

2
1
2 `e

3 and tisPrime−composite ≈ 3
2

4
3 `e

3,
therefore the total time is about (3

4ρ+ 2`e)`e3.16 In comparison, the time of a signature or a verification (if
the exponents e1, . . . , eT are stored in the public key) is the time of two exponentiations with a modulus
of length `N and an exponent of length `e, that means about 2`Nk2. A practical comparison can be found
in Table 5.2.

5.2 Optimizations

In this section, we analyze optimizations of the original IR scheme and see that they can be applied to
our scheme too. We also propose a specific optimization for our scheme.

Checking Z 6= 0 mod N instead of Z ∈ Z∗N in Ver.. As explained in Footnote 11, we can change
the test Z ∈ Z∗N in Ver by the test Z 6= 0 mod N . We suppose that this optimization is done in our
comparison in Table 5.2.

ei power of small primes. If we slightly change the ei to be power of small primes εi: ei = ε
`e/blog(εi)c
i ,

we can make the generation of ei faster since generating a small `e′-bit prime εi is about (`e/`e′)3 faster
than generating a `e-bit prime ei. However, we need to change the φ-hiding assumption in order to be
able to do the security reduction.17

Pebbling. We also remark that the pebbling mechanism described in [IR01] can directly be applied to
our scheme.

13They can also use a probabilistic algorithm isPrime′′ with error probability ε′′p so that T · (`e − 1) · ε′′p ≤ 2−k−1. In that
case, in the reduction, we would first replace isPrime′′ by a deterministic algorithm isPrime′ in KG and Update. This would
just add a term 2−secpar to the final probability for the adversary to win the original game.

14In practice, H′′ will be implemented using a hash function which is hundred times faster than any primality test.
15Actually, a Miller-Rabin test should be a little faster than an exponentiation since we can stop the exponentiation before

the end, in some cases.
16The factor 3

2 comes from the fact that in average, an exponentiation by a `e-bit number requires 3
2 `e multiplications,

using the square-and-multiply algorithm.
17More precisely, we need e in the φ-assumption to be chosen as a power of a small prime number. The distribution

of N = p1p2 such that e divides p1 can be sampled in polynomial time, if we assume the extended Riemann hypothesis
(Conjecture 8.4.4 of [BS96]), exactly as when e is a prime. But to our knowledge, this new variant of the φ-hiding has not
been analyzed and might actually not hold.

23

Table 5.1: Choice of parameters

k qh qs `e εp `N

80 280 230 123 2−80 ≥ 1248
128 2128 246 171 2−128 ≥ 3248

Storing cpt. Another possible trade-off consists in storing the last cpt of AlgH′ for each i, in the public
and secret keys. Since E [C] ≤ `e − 1, the expected size of cpt is log2 `e and storing them increases the
size of the keys by T log2 `e. For small values of T this can be useful, since this completely removes the
necessity of isPrime in Sign, Ver, and Update.

5.3 Choice of Parameters

In order to be able to compare the original IR scheme with our scheme, we need to choose various
parameters. In Table 5.1, we show our choice of parameters for two security levels: k = 80 bits and
k = 128 bits. When choosing these parameters, we considered a value of T = 220, as it enables to update
the key every hour for up to 120 years. In both cases, εp = 2−ρ denotes the maximum error probability
of the probabilistic primality test used in the random oracle for prime numbers H′, whereas qh and qs
specify the maximum number of queries to the random oracle and to the signing oracle, respectively, in
the forward-security game. Choices of qh and qs comes from [MR02]: qh = 2k because hash queries can be
computed by the adversary itself, while qs is much lower as each signing query needs to be answered by
an honest user.

Let us explain our choice for `e. As in [MR02], we suppose Tε, δ ≥ 2−20 ≈ 10−6.18 And we chose
`e ≈ k + 43 to satisfy inequalities in security reductions in Theorem 4.4 and Theorem 5.1.19 In the sequel,
all the parameters are fixed except the length `N of the modulus.

5.4 Comparison with Existing Schemes

Comparison with the Itkis-Reyzin scheme. In this section, we compare the original IR scheme
without optimization with our scheme (in which ei is stored in the secret key ski, as in the IR scheme).
The original IR scheme is very close to our scheme. The only differences are that the IR scheme requires
that the factors p1 and p2 of the modulus N are safe primes20 and that IR signatures for period i contain
the used exponent ei. Therefore the IR verification algorithm does not need to recompute the exponent,
and is faster. In order to prevent an adversary from using an exponent for the break-in period to sign
messages for an older period, the exponent has to be in a different set for each period. The security of the
scheme comes from the strong RSA assumption. Unfortunately, we cannot use such an optimization with
our security reduction for our scheme, because we need to know which exponent the adversary will use to
make the key lossy for this exponent. But, as explained in Section 5.2, the other optimizations of the
original IR scheme can also be applied to our scheme.

We first remark that for the same parameters k, `e, `N , our key generation algorithm is slightly
faster since it does not require safe primes; and our signing and key update algorithms are as fast as
the IR ones. The key and signature lengths of the signatures are nearly the same as the IR ones (IR
signatures are only `e-bits longer than our signatures). The real difference is the verification time since
our verification algorithm needs to recompute the ei, contrary to the IR scheme. Verification consists of
two exponentiations (modulo N with an `e-bit exponent) for the original scheme and two exponentiations

18We use Tε instead of ε because of the way selective security notions are defined, see Remark 2.4 to understand this
choice.

19The constant 43 comes from − log2 ε− log2 δ + 3 (for our scheme) and − log2 ε+ log2 T + 3 (for the original IR scheme).
20A safe prime p is an odd prime such that (p− 1)/2 is also prime. This assumption is needed for the security reduction of

the IR scheme.

24

Table 5.2: Benchmark (using parameters of Table 5.1)

exponentiationa prime generationb sig. / verification orig.c verification newd

k `N op.e msf op.e msf op.e msf op.e msf

k `N
3
2 `e `N

2 n/a (3
4 ρ+ 2 `e) `e

3 n/a 3 `e `N
2 n/a 3 `e `N

2 +
(3

4 ρ+ 2 `e) `e
3

n/a

(theoretical times)

80 1248 0.29 · 109 0.15 0.68 · 109 0.26 0.58 · 109 0.30 1.26 · 109 0.56
(parameters chosen without considering exact security but just hardness of factoring N — insecure, should not be used)

80 1920 0.68 · 109 0.34 0.68 · 109 0.26 1.36 · 109 0.68 2.04 · 109 0.94
(parameters chosen for our variant of the IR scheme considering exact security using our new reduction)

80 6848 8.65 · 109 3.09 0.68 · 109 0.26 17.3 · 109 6.18
(parameters chosen for the original IR scheme considering exact security using the original reduction in [IR01])

k: security parameter; `N : size of the modulus N ; `e: size of the exponents; εp = 2−ρ: probability of error of the
Miller-Rabin probabilistic primality test, here ρ = k, see Section 5.1;

a time for an exponentiation modulo N with a `e-bit exponent; just for information, as this is one of the most important
operation of the various schemes;

b time to generate the prime numbers e;
c verification time of the original scheme (also equal to the signature time for both schemes), estimated using the time of
the two exponentiations;

d verification time of our scheme, estimated using the time of the two exponentiations and of the prime generation;
e approximate theoretical complexity;
f time on an Intel Core i5 750 (2.67 GHz), using GMP version 5.0.4 (http://gmplib.org), in our own implementation.

and an evaluation of the random prime oracle (roughly equivalent to a random prime generation) for our
scheme.

Let us now focus on the exact security of the two schemes. As explained by Kakvi and Kiltz in [KK12],
the best known attacks against the φ-hiding problems are the factorization of N . Let us also consider it is
true for the strong RSA problem (since it just strengthens our result if it is not the case). We recall that
currently, no reductions are known between the strong RSA and the φ-hiding problems.

In Appendix C.3, we show the following theorem, for the Itkis-Reyzin scheme:

Theorem 5.1 If the strong RSA problem is (t′, ε′)-hard, then the previous scheme is (t, qh, qs, ε, δ)-
selectively-forward-secure in the random oracle model for:

t ≈ t′ · ε
4qh + 6

as long as

ε ≥ 2
((qh + qs + 1)qs

2`N−2`e−2 + qh + 1
2`e−1

)
and ε′ ≤ δ

(
1− 1

e

)2
,

where e (not to be confused with e) is the base of the natural logarithm.

For any ε > 0 satisfying the above inequalities, under the assumption of Remark 2.4, we can say that
the scheme is about (t′ε4qh , qh, qs, T ε)-forward-secure (i.e., provide about log2(t′/(4qhT)) bits of security) if
the strong-RSA problem is (about) (t′, (1− 1/e)2/2)-hard. This means that, if we want k bits of security
and if we suppose that strong-RSA is as hard as factorization, then the modulus has to correspond to a
security level of about k ′ ≈ k + log2(Tqh) (k being an approximate solution of 2k′ = 2kε

4qh
1
Tε), compared to

only k ′ ≈ k + log2(T) bits for our variant (see end of Section 4.2).
Therefore, with our choice of parameters, if we want k = 80 bits of security, we need to choose a

25

http://gmplib.org

modulus length `N such that the factorization is k + log2(T) = 100-bit hard21 (for our scheme) and
k+log2(Tqh) = 180-bit hard (for the original scheme). This corresponds to about `N ≈ 1920 and `N ≈ 6848
respectively, according to Ecrypt II [ECR11]. In this case, according to Table 5.2, our verification algorithm
is about 6 times faster (0.94ms vs 6.18ms) and our signing algorithm is about 9 times faster (0.68ms vs
6.18ms). And our scheme generates 3.5 times shorter signatures.

Comparison with the MMM scheme. The MMM scheme [MMM02] is one of the most efficient generic
constructions of forward-secure signatures (from any signature scheme), to the best of our knowledge.
Furthermore, it does not require to fix the number of periods T . However, in the security proof, we have
to bound the number of periods T the adversary can use (as query for the oracles Sign and Break-In).
Its forward security can be reduced to the strong unforgeability of the underlying signature scheme with a
loss of a factor T .

If we want to compare the MMM scheme with our variant of the IR scheme, the fairest solution is to
instantiate the MMM scheme with the GQ scheme. Then we can use our tight reduction of the GQ scheme
to the φ-hiding problem, to prove that the resulting MMM scheme is forward-secure with a relatively tight
(losing only a factor T) reduction to the φ-hiding problem. In this setting, the MMM scheme and our
scheme have approximately the same proven security. And the comparison of the MMM scheme with
our scheme is roughly the same as the comparison in [MMM02] between the IR scheme and the MMM
scheme (which did not take into account the tightness of the reduction).

Very roughly, we can say that the MMM key generation and key update algorithms are faster (about
T times faster). However, MMM secret keys are longer. And, even if MMM public keys are shorter (more
than 30 times for k = 80, `N = 1248), in most cases, it is not really useful since signatures with the MMM
scheme are about four times longer than signatures with our scheme (4`N + (log k + log T)k compared
to `N + k), and also about twice as long as the sum of the length of a public key of our scheme and a
signature. Therefore, since the public key is used for verification, the total memory needed to store input
data needed for the verification of a signature with the MMM scheme is still twice the amount of the
one needed with our scheme. Furthermore, our scheme outperforms the MMM scheme with respect to
verification time (considering Table 5.2, since the MMM verification algorithm verifies two classical GQ
signatures). This means that, if verification time, signing time, and signature size are critical (for example,
if verification or signing has to be performed on a smart-card), it would be more advantageous to use our
scheme instead of the MMM scheme. More generally, our scheme tends to fare better than the MMM
scheme if key updates are not performed as often and if T can be bounded by a reasonable constant. This
would be the case, for example, if keys are updated once a day and the expected lifetime of the scheme is
3 years (T = 210), and key update time is not an important parameter.

6 Generic Factoring-Based Forward-Secure Signature Scheme

In this section, we show that all our previous results on the GQ scheme and its forward-secure extension can
be generalized and applied to several other schemes. To do so, we first introduce a new generic factoring-
based key-evolving lossy identification scheme and then show that several factoring-based signature and
forward-secure signature schemes can be seen as simple instantiations of this generic scheme.

6.1 Generic Factoring-Based Forward-Secure Signature Scheme

Scheme. Let ` be a parameter, let N be an integer without small divisors, and let e1, . . . , eT be T
integers and E be the least common multiple of e1, . . . , eT . Let S1, . . . , S` be elements in Z∗N and let

21We say that the factorization is n-bit hard if factorizing a given random RSA modulus with constant probability of
success (for example 1/2) takes time at least 2n. As usual when we want to choose parameters, we suppose that the strong
RSA problem and the φ-hiding problems are as hard as factorization, as the best known algorithms to solve these problems
just consist in factorizing the modulus N (for the parameters we have chosen).

26

Prover Verifier
ski = (N, e1, . . . , eT , pk = (N, e1, . . . , eT ,

S1,i, . . . , S`,i, . . .) U1, . . . , U`)

for j = 1, . . . , `
Rj

$← Z∗N
Yj ← Rei

j mod N Y1, . . . , Y` -
c1, . . . , c`� c1, . . . , c`

$← {0, . . . , c− 1}`

for j = 1, . . . , `
Zj ← Rj · S

cj

j,i mod N Z1, . . . , Z` -

for j = 1, . . . , `
if Zj /∈ Z∗N or Zei

j 6= Yj · U
cj

j

return reject
return accept

Figure 6.1: Description of the generic identification scheme ID for proving that the elements U1, . . . , U` in pk are
all ei-residues (for each j ∈ {1, . . . , `}, Uj = Sei

j,i mod N).

U1, . . . , U` ∈ Z∗N be the corresponding E-powers. That is, for each j ∈ {1, . . . , `}, Uj = SEj mod N .
The public key is pk = (N, e1, . . . , eT , U1, . . . , U`).22 Let fi be the least common multiple of ei+1, . . . , eT

for each i ∈ {1, . . . , T} (fT = 1) and let Sj,i = S
E/ei
j and S′j,i = S

E/fi
j , for each 1 ≤ i ≤ T and each

1 ≤ j ≤ `. Then, the secret key for period 1 ≤ i ≤ T is ski = (i,N, ei, . . . , eT , S1,i, . . . , S`,i, S
′
1,i, . . . , S

′
`,i).

We remark that it is possible to compute ski+1 from ski by computing: Sj,i+1 = S
′fi/ei+1
j,i mod N and

S′j,i+1 = S
′fi/fi+1
j,i mod N .

The identification scheme is depicted in Figure 6.1 and is a straightforward extension of our variant
of the IR scheme in Section 4.2. For period i, the prover’s goal is to prove that the elements U1, . . . , U`
are all ei-residues. The scheme works as follows. First, the prover chooses an element Rj ∈ Z∗N and
computes Yj ← Reij mod N , for j ∈ {1, . . . , `}. It then sends Y1, . . . , Y` to the verifier, which in turn
chooses c1, . . . , c` ∈ {0, . . . , c− 1}` (i.e., C = {0, . . . , c− 1}`) and returns it to the prover. Upon receiving
c1, . . . , c`, the prover computes Zj ← Rj · S

cj
j,i mod N for j ∈ {1, . . . , `} and sends these values to the

verifier. Finally, the verifier checks whether Zj ∈ Z∗N and Zeij = Yj · U
cj
j for j ∈ {1, . . . , `} and accepts

only if this is the case.
As in the case of our variant of the IR scheme in Section 4.2, we store the exponents e1, . . . , eT in both

the public and secret keys for the sake of simplicity. Nevertheless, in our concrete instantiations, it is
possible to avoid storing these exponents either by computing them using a random oracle, as discussed
in Section 5.1. Furthermore, in some cases, these exponents are a deterministic and easily computable
function of the time period, and do not need to be stored in the public key.

Security. The proof of existential forward-security security uses the following condition:

Condition 6.1 There exist a normal key generation algorithm KG and a lossy key generation algorithm
LKG which take as input the security parameter k and the period i and output a pair (pk, sk ′i+1) such that,
for every i ∈ {1, . . . , T}:

• the pair (pk, sk ′i+1) generated by LKG is computationally indistinguishable from a pair (pk, ski+1)
generated by KG and i calls to Update (to get ski+1 from sk1);

• when (pk = (N, e1, . . . , eT , U1, . . . , U`), sk ′i+1) is generated by LKG, for all c ∈ {0, . . . , c− 1}, none

22As for our variant of the IR scheme, we can use a hash function modeled as a random oracle (in the security proof) to
avoid storing the exponents in the keys, as explained in Section 5.1.

27

of U1, . . . , U` is a e′ei,c,N -residue, where e
′
ei,c,N is:

e′ei,c,N = gcd
j∈{1,...,m}

 gcd(ei, (pkjj − p
kj−1
j))

gcd(c, ei, (pkjj − p
kj−1
j))

· e′i,j

 ,
with N = pk1

1 . . . pkmm being the prime decomposition of N and e′i,j being the greatest divisor of ei
co-prime to pkii − p

ki−1
i .

We have the following security theorem:

Theorem 6.2 Under Condition 6.1, ID is complete, perfectly simulatable, key-indistinguishable and
(1/c`)-lossy. Furthermore, the min-entropy β of the commitment scheme is at least the minimum over
i ∈ {1, . . . , T} of ` log2(φ(N, ei)) where φ(N, ei) is the number of ei-residues modulo N .

Theorem 3.1 allows us to relate the existential forward-security of our generic key-evolving signature
scheme FS to the security of the underlying identification scheme ID. Thus our generic key-evolving
signature scheme FS is existentially forward-secure under Condition 6.1.

Proof of Theorem 6.2: Let us do the proof for the case T = 1 and omit indices i to make the proof
easier to understand. The key-evolving extension (T > 1) is straightforward.
Informally, the first part of the condition just corresponds key indistinguishability, whereas the second part
of the condition corresponds to lossiness. More precisely, the second part ensures that, in a lossy setting,
given a commitment, there cannot be more than one challenge for which there exists a response. This
follows from some arithmetical results on residues, described in Appendix B.1, and namely in Theorem B.11.
Formally, we have to show that ID meets the simulatability, completeness, key indistinguishability, and
lossiness conditions.
The proof that ID is complete follows immediately from the fact that, if Uj = Sej mod N for j ∈ {1, . . . , `},
an honest execution of the protocol will always result in acceptance as Zej = (Rj · S

cj
j)e = Rei · (Sej)

cj =
Yj · U

cj
j .

Simulatability of ID follows from the fact that, given pk = (N, e, U1, . . . , U`), we can easily generate
transcripts whose distribution is perfectly indistinguishable from the transcripts output by an honest
execution of the protocol. This is done by choosing Zj uniformly at random in Z∗N and cj uniformly at
random in {0, . . . , c− 1}, and setting Yj = Zej /U

cj
j for j ∈ {1, . . . , `}.

Key indistinguishability directly follows from Condition 6.1.
To show that ID is lossy, we note that, when the public key is lossy, for every element Yj chosen by
the adversary, there exists only one value of cj ∈ {0, . . . , c − 1} for which there exists a valid response
Zj which passes the test. To see why, assume for the sake of contradiction that there exist two different
values cj,1 and cj,2 in {0, . . . , c− 1} for which there exists a valid response. Denote by Zj,1 and Zj,2 one of
the valid responses in each case. Without loss of generality, assume that cj,1 < cj,2. Since Zej,1 = Yj · U

cj,1
i

and Zej,2 = Yj · U
cj,2
j , we have that (Zj,2/Zj,1)e = U

cj,2−cj,1
j . As cj,2 − cj,1 is a positive number smaller

than c, this means that Uj is an e′e,cj,2−cj,1,N -residue, according to Theorem B.11, which is a contradiction.
This means that the probability that a valid response Zj exists in the case where Uj is pseudo-e-residue is
at most 1/c. Since there are ` challenges, it follows that ID is ε`-lossy, with ε` = 1/c`.

6.2 An Optimization

Let us present an optimization of the generic scheme for our cases. We consider the case of a classical
signature scheme (T = 1) for the sake of simplicity.

28

We can remark that if the factorization23 of N is hard, then we can replace the test Zj ∈ Z∗N by
Zj mod N = 0, in the identification scheme depicted in Figure 6.1. We just need to remark that the
(existential) forward-security (or unforgeability) game with the original verification and the one with the
new verification are identical until the following bad event happens: one of the Zj is not equal to 0 modulo
N , nor co-prime to N .

In all our schemes, knowing the factorization of N enables to solve key indistinguishability very
efficiently (in polynomial time). Looking at the proof of Theorem 3.1, we remark that this optimization
does not change the security bounds: we can indeed use the test Zj mod N = 0 in Games G0 to G7,
and then use the test Zj ∈ Z∗N instead for the following games. This does not change the bound in
Equation (3.1) on page 15 for the reduction to key indistinguishability, as if Zj mod N = 0 but Zj /∈ Z∗N ,
we can factor N and directly solve key indistinguishability.

6.3 Instantiations

Guillou-Quisquater signature scheme. The case where T = 1, c = e is an `e-bit prime number
co-prime with φ(N), and ` = 1 coincides with the GQ identification scheme recalled in Section 4.1. We
already proved in Theorem 4.1, that this scheme ID is a lossy identification scheme. But let us now prove
it again using Theorem 6.2, by showing that the scheme satisfies Condition 6.1.

We can prove the first part of Condition 6.1 (key indistinguishability of ID), as in Theorem 4.1.
In addition, e′e,c,N = e for any c ∈ {1, . . . , c − 1}. Indeed, if gcd(e, (pj − 1)) = e, e′j = 1; otherwise

gcd(e, (pj−1)) = 1 and e′j = e, because e is prime. Therefore gcd(e, (pj−1))·e′j = e and gcd(e, c, (pj−1)) =
1, for j ∈ {1, 2}. And U1 is not a e-residue, when the public key is lossy. So, Condition 6.1 is satisfied.

Quadratic-residuosity-based signature scheme. The case where e = c = 2 and T = 1 is an
important instantiation of the generic scheme as it coincides with the quadratic-residuosity-based scheme
informally suggested by Katz and Wang in [KW03].

Suppose the algorithm LKG chooses U1, . . . , U` uniformly at random from the set JN [e] \ HRN [e]. Let
us prove that Condition 6.1 is satisfied. To prove the key indistinguishability, we use the fact that the
e-residuosity problem is random-self-reducible. That is, the distribution (U1, . . . , U`) where Ui is chosen
uniformly at random from HRN [e] is indistinguishable from the distribution (U,Uαe2 mod N, . . . , Uαe` mod
N) where U is chosen uniformly at random from HRN [e] and αi for i ∈ {2, . . . , `} is chosen uniformly at
random from Z∗N . The latter distribution is clearly indistinguishable from the distribution (U1, . . . , U`)
where Ui is chosen uniformly at random from JN [e] \ HRN [e] due to the hardness of the e-residuosity
problem. As a result, ID (t′, ε′)-key-indistinguishable where t′ ≈ t. Furthermore, e′e,c,N = 2 for any
c ∈ {1, . . . , c− 1} (i.e., c = 1), since gcd(e, (pj − 1)) = 2, gcd(e, c, (pj − 1)) = 1 and e′j = 1, for j ∈ {1, 2}.

According to our security proof, this scheme is existentially unforgeable in the random oracle model
based on the hardness of the quadratic-residuosity problem as long as ` is large enough to make the term
qh/2` negligible. And the reduction is tight.

2t-root signature scheme by Ong and Schnorr. The case where e = c = 2t, ` = 1, and T = 1
coincides with the 2t-root identification scheme by Ong and Schnorr [OS91]. Suppose N = p1p2 is an
RSA modulus such that 2t divides p1 − 1 and p2 − 1, and the algorithm LKG chooses U1, . . . , U` uniformly
at random from the set JN [2] \ HRN [2]. Let us prove that, if the gap 2t-residuosity problem is hard,
Condition 6.1 is satisfied.

Indeed, the key indistinguishability directly comes from the gap 2t-residuosity. And, e′e,c,N is a multiple
of 2 for any c ∈ {1, . . . , c− 1}, since gcd(e, (pj − 1)) = 2t, gcd(e, c, (pj − 1)) divides 2t−1 and e′j = 1, for
j ∈ {1, 2}. So, Condition 6.1 is satisfied.

According to our security proof, this scheme is existentially unforgeable in the random oracle model
based on the hardness of the gap 2t-residuosity problem as long as t is large enough to make the term

23By factorization, we mean finding any non-trivial factor of N .

29

qh/2t negligible. And the reduction is tight.
We can easily extend this scheme to ` > 1. The self-reducibility of the gap 2t-residuosity problem

enables to prove the key indistinguishability. In this case, we only need the term qh/2`t to be negligible.

Paillier signature scheme. The case where ` = 1, T = 1, and e = p1p2 is an RSA modulus,
N = e2 = p2

1p
2
2 and c ≤ min(p1, p2) coincides with the Paillier signature scheme [Pai99].

Suppose c ≤ min(p1, p2) (we can choose for example, c = b
√
e/2c, if p1, p2 ≥

√
e/2) and the al-

gorithm LKG chooses U1, . . . , U` uniformly at random from the set JN [e] \ HRN [e]. The proof of key
indistinguishability is similar to the one of the above schemes.

In addition, e′e,c,N = p1p2 = e for any c ∈ {1, . . . , c − 1}. Indeed, if gcd(e, (pj − 1)) = p3−j ,
gcd(e, (p2

j − pj)) = p1p2 and e′j = 1; otherwise gcd(e, (p2
j − pj)) = pj and e′j = p3−j . Therefore

gcd(e, (p2
j − pj)) · e′j = e and gcd(e, c, (pj − 1)) = 1, for j ∈ {1, 2}. So, Condition 6.1 is satisfied.

According to our security proof, the construction provides a signature scheme existentially unforgeable
with a tight security reduction to the N -residuosity problem of [Pai99].

Our variant of the Itkis-Reyzin scheme. The case where T ≥ 1, e is a `e-bit prime number, and
` = 1 coincides with our variant of the Itkis-Reyzin scheme in Section 4.2.

2t-root forward-secure signature scheme. The case in which ei = 2t(T−i+1) with t a positive
integer, N = p1p2 is an RSA modulus such that 2tT divides p1−1 and p2−1, and c = 2t is a generalization
of the quadratic-residuosity-based scheme and the 2t-root scheme. In this case, fi = ei, and we do not
need to store S′j,i (for j ∈ {1, . . . , `}.

The proof that Condition 6.1 is satisfied, is quite similar to the proof of the 2t-root signature scheme by
Ong and Schnorr above. To generate a lossy key for period ı̃, LKG chooses S1,̃ı, . . . , S`,̃ı uniformly at random
in JN [2] \ HRN [2], Sj,i = S

eı̃/ei
j,̃ı for i > ı̃, and Uj = Seı̃j,̃ı. We then remark that key indistinguishability can

be trivially reduced to the key indistinguishability problem for the 2t-root scheme by Ong and Schnorr in
Section 6.3, which itself can be reduced to the gap 2t(T−ı̃+1)-residuosity assumption. The lossiness can
also be proven as for the 2t-root scheme by Ong and Schnorr.

Therefore, this scheme is existentially forward-secure in the random oracle model based on the hardness
of the gap 2ti-residuosity assumption, for all i ∈ {1, . . . , T}, as long as the exponent t and the parameter `
are large enough to make the term qh/2t` negligible. And the reduction is relatively tight (we only lose a
factor T).

Although this scheme appears to be new, it is of limited interest as its public key and secret key sizes
are linear in the number T of time periods.

7 Impossibility Results on Tightness

Up to now, all the security proofs of forward security that we presented lose at least a factor T . In this
section, we investigate whether such a loss in the reduction is inherent to the proposed schemes. Towards
this goal, we show that any better reduction R from the forward security of a key-evolving signature
scheme to a non-interactive hard problem Π can be converted into an efficient adversary against this hard
problem for a large class of key-evolving schemes, which includes the previous schemes in this article.
Therefore, the reduction for these schemes necessarily loses a factor T .

The idea of the proof is similar to the Coron’s impossibility result in [Cor02, KK12]. After giving the
intuition of the proof, we formally define the class of key-evolving schemes to which it applies, namely
the key-verifiable schemes. Then, we specify the types of reductions in which we are interested, namely
black-box non-rewinding reductions to non-interactive problems. Finally, we formally state the optimality
result.

We recall that in an independent paper [BJLS16, Section 5.1], Bader et al. also studied signature
schemes in a multi-user setting (with corruptions). Please refer to the introduction for more details.

30

7.1 Intuition

Our meta-reduction closely follows the one in [Cor02] and works roughly as follows. First, it chooses a
random period i∗ ∈ {1, . . . , T} and runs the reduction R, asking for the secret key ski∗ of period i∗. Then,
it rewinds the reduction R, asks for the secret key of period i∗ + 1, and outputs a signature σ∗ for the
period i∗ for a random message, using ski∗ . Note that this signature is a valid forgery for the reduction,
because, after rewinding, the break-in period is i∗ + 1 > i∗. As a result, we have constructed an adversary
for the problem Π, from the reduction R, by simulating a forger.

However, this strategy does not work directly for two reasons. Firstly, this simulation is not perfect
because it only outputs a forgery for periods i∗ for which the reduction knows the secret key ski∗ , whereas
a real forger can output a forgery for periods for which the reduction knows or does not know the secret
key ski∗ . In fact, the idea behind the reductions for the schemes proposed in the previous sections is
exactly to choose a random period i, create a bad key for this period i, and hope that the forger will
output a signature for this period i. Actually this is the main reason why our meta-reduction does not
prevent the existence of any reduction, but only the existence of reductions losing less than a factor T .

Secondly, there can be several different secret keys for a given public key and each of these secret
keys may produce a different signature. Therefore, the signature σ∗ generated by our adversary has
not necessarily the same distribution as a signature which would have been generated by a real forger
(who cannot rewind the reduction). That is why, the previous idea only works for a certain type of
key-evolving signatures, which we call key-verifiable. Intuitively, a key-evolving signature scheme is said
to be key-verifiable if one can check whether a given bit string is a secret key. Moreover, any secret key
(or more precisely, any bit string) that passes the test produces the same signature distribution. This is
the case in particular for all the schemes described in previous sections.

7.2 Key-Verifiable Key-Evolving Signature Scheme

More formally, a key-evolving signature scheme FS is εk-key-verifiable, if there exists a deterministic
polynomial time algorithm VerK which takes as input a public key pk, a period i and a bit string and
outputs a bit, such that, for any period i, for any public key pk:

• VerK(pk, i, ski) = 1 for any real secret key ski,

• VerK(pk, i + j,Updatej(s̃ki)) = 1 for any j ∈ {0, . . . , T − i}, for any bit string s̃ki such that
VerK(pk, i, s̃ki) = 1,

• for any instantiation of the random oracle, for any message M , for any bit string s̃ki, if we have
VerK(pk, i, s̃ki) = 1, then Ver(pk,Sign(s̃ki,M)) = 1,

• for any j ∈ {0, . . . , T − i}, for any instantiation of the random oracle, for all pk, s̃ki, and ˜sk ′i+j ,
if VerK(pk, i, s̃ki) = 1 and VerK(pk, i + j, ˜sk ′i+j) = 1, then the two following distributions are
εk-statistically indistinguishable:

{(M , σ) | M $←M, σ
$← Sign(Updatej(s̃ki),M)}

{(M , σ) | M $←M, σ
$← Sign(˜sk ′i+j ,M)},

• VerK(pk, i,⊥) = 0 for i ∈ {1, . . . , T}, VerK(pk, T + 1,⊥) = 1.

We remark that all the schemes described in previous sections are trivially 0-key-verifiable: to verify a
secret key ski, we check whether Seij,i = Sj and S′fij,i = S′j for all j ∈ {1, . . . , `}.

31

7.3 Black-Box Non-Rewinding Reductions

We use the same formalization as Coron in [Cor02]. Let Π be a non-interactive (hard) problem, and FS
be a key-evolving signature scheme. In our case, a non-interactive problem Π is just a set of instances and
a function which maps an instance I (a bit string) to an answer Ia. A problem Π is said (t, ε)-hard if no
probabilistic adversary running in time t, which is given an instance I chosen uniformly at random, can
output Ia, with probability larger than ε.

A reduction algorithm R (tR, qh, qs, εA, εR)-reduces the forward security of FS to the problem Π, if R
takes as input a random instance I of Π, interacts with an adversary A which (·, qh, qs, εA)-breaks the
forward security of FS , and outputs a solution to the instance I with probability at least εR and after at
most tR additional processing time.24

The interactions between the reduction and the adversary involve five types of queries: signature
queries, break-in queries, random-oracle queries, initialization queries, and finalization queries. In other
words, we only consider black-box reduction without rewinding: the reduction cannot access the code of
the adversary nor can it rewind the adversary.

7.4 Main Theorem

In this section, we prove that, if a key-evolving signature scheme is key-verifiable, then any black-box
non-rewinding reduction from its forward security to a hard problem Π can be used to solve Π with
probability roughly greater than εR − εA/T . This means that if the success probability of the reduction
εR is greater than εA/T , then one can solve the hard problem. In particular, in our case, this shows
that the security proof of our variant of the Itkis-Reyzin scheme is optimal. More formally, we prove the
following theorem:

Theorem 7.1 Let Π be a non-interactive hard problem, FS = (KG,Sign,Ver,Update) be a εk-key-verifiable
key-evolving signature scheme, and R be a black-box non-rewinding reduction algorithm (see Section 7.3).
If R (tR, qh, qs, εA, εR)-reduces the forward security of FS to the problem Π, then, from R, we can build
an algorithm B which (t, ε)-solves the hard problem Π, with

t ≈ 2tR + T (tUpdate + tBreak-In) ε = εR −
εA
T
− εk.

where tUpdate is the time of Update of FS and tBreak-In is the time of the Break-In procedure of the
reduction R (and so tBreak-In ≤ tR).

We remark that this theorem also applies to existential forward security under key-only attack (i.e., qs = 0)
and also when the signature is in the standard model. This theorem also holds with respect to the original
notion of forward security in [BM99].

Proof: Firstly, we remark that we can change R such that, in any given state of the reduction (in which
Break-In has not been called), the outputs s̃ki of a Break-In request for periods i are so that, there
exists ı̃ ∈ {1, . . . , T}, such that for any i > ı̃, VerK(pk, i, s̃ki) = 1 and for any i ≤ ı̃, VerK(pk, i, s̃ki) = 0.
For that, it suffices to use the maximum i ≤ ı̃ such that VerK(pk, i, s̃ki) = 1 as ı̃, and then to output
Updatei−ı̃(s̃ki) if i ≥ ı̃ and ⊥ otherwise. This clearly does not decrease the success probability of the
reduction, since any adversary can be transformed such that it outputs ⊥ as soon as VerK(pk, i, s̃ki) = 0.
Furthermore, this only increases the time of R by at most T (tUpdate + tBreak-In). This transformation of
R ensures that the probability that VerK(pk, i, s̃ki) = 0 and VerK(pk, i+ 1, s̃ki+1) = 1 is at most 1/T , if i
is chosen uniformly at random in {1, . . . , T}.
We now consider the following (all powerful) adversary A: it picks a period i∗ uniformly at random in
{1, . . . , T}. Then it finds by brute-force a key s̃ki∗ such that VerK(pk, i∗, s̃ki∗) = 1. He queries Break-In

24tR does not include the time of the forger.

32

with period i∗ + 1. Let s̃ki∗+1 be the output of Break-In. If VerK(pk, i∗ + 1, s̃ki∗+1) = 0, it stops and
outputs ⊥. Otherwise, it chooses a random message M ∗ (or a fixed message, it does not matter) and
computes a signature σ∗ on M ∗ using s̃ki∗ . Finally it outputs σ∗ to R with probability εA, and ⊥ with
probability 1− εA.
If the reduction R plays with such an adversary, it should solve the hard problem with probability εR, by
definition. Let us now describe an adversary B which has approximately the same external behavior (the
reduction sees approximately the same distribution of queries) as A; but which works in polynomial time
by rewinding the reduction R.
Firstly, B picks i∗ uniformly at random in {1, . . . , T} and queries Break-In with period i∗. Let s̃ki∗ be the
output of Break-In. Then, B rewinds the reduction R before calling Break-In, and queries Break-In
with period i∗ + 1. Let s̃ki∗+1 be the output of Break-In. If VerK(pk, i∗ + 1, ski∗+1) = 0, B submits the
signature ⊥ (since the reduction R has cheated). Otherwise, B chooses a random message M ∗, compute a
signature σ∗ of M ∗ using ˜ski∗ and submits the signature σ∗ of M ∗ under period i∗, with probability εA,
and ⊥ with probability 1− εA. We remark that the reduction sees that B does exactly the same queries
as A, except for the last query Finalize (the submission of the forged signature σ∗), because it does not
see it has been rewound. Therefore, we just have to analyze the difference between the distribution of σ∗.
We remark that, thanks to the initial discussion, the probability εBad that VerK(pk, i∗, s̃ki∗) = 0 and
VerK(pk, i+ 1, s̃ki+1) = 1 is at most εBad ≤ 1/T . Let us call this case, the bad case. In the bad case, the
behavior of B only differs from the one of A, with probability εA, because A outputs ⊥, with probability
1− εA. Therefore, in the bad case, the probability the R solves Π is at least εR − εA.
Furthermore, in the good case, the signature produced is statistically indistinguishable from a signature
produced using ski, since VerK(pk, i, ski) = 1, and since FS is key-verifiable. Therefore, in this good case,
the signature could have been produced by A, and the reduction solves the hard problem with probability
at least εR − εk.
So, the total success probability of our adversary B for problem Π is at least (εR − εA) · εBad + (εR − εk) ·
(1− εBad) ≥ εR − εA · εBad − εk · (1− εBad) ≥ εR − εA/T − εk.

8 Multi-User and Tightly Forward-Secure Signature Schemes
In this section and in the next, we show how to circumvent the previous impossibility result, by constructing
key-evolving signature schemes which are not key-verifiable and whose forward security can be tightly
reduced to the underlying hard problem. In order to make the construction as clear as possible, we first
introduce in Section 8.1 a new security notion for classical signature schemes, namely strong unforgeability
in a multi-user setting with corruptions (M-SUF-CMA). Next, in Section 8.2, we present a transformation
from M-SUF-CMA to forward-secure signature schemes which preserves tightness. Finally, in Section 9,
we propose two constructions of M-SUF-CMA signature schemes with tight security reductions to the
underlying hard problem.

8.1 M-SUF-CMA Signature Schemes

Informally the M-SUF-CMA security notion is close to the classical SUF-CMA security notion, except the
adversary can dynamically ask for public keys pk, and for the associated secret key of any received public
key pk (i.e., “corrupt” the public key pk), and wins if it forges a signature for a non-corrupted public key.

More formally, a signature scheme is (t, I, qh, qs, ε)-M-SUF-CMA, if, for any adversary A running in
time at most t and making at most I queries to the key generation oracle KG, at most qh queries to the
random oracle, at most qs queries to the signing oracle:

Advm-suf-cma
DS ,k,I (A) = Pr

[
Expm-suf-cma

DS ,k,I (A)
]
≤ ε,

33

Game Expm-suf-cma
DS ,k (A)

Initialize(1k)
S ← ∅
P ← []
par $← PG(1k)
for i = 1, . . . , I

(pki, ski)← KG(par)
return par

KG(par)
(pk, sk) $← KG(par)
P [pk]← sk
return pk

Corrupt(pk)
sk ← P [pk]
P [pk]←⊥
return sk

Sign(M , pk)
sk ← P [pk]
if sk =⊥

then return ⊥
σ

$← Sign(sk,M)
S ← S ∪ {(pk,M , σ)}
return σ

Finalize(pk∗,M ∗, σ∗)
d← Ver(pk∗, σ∗,M ∗)
if (pk∗,M ∗, σ∗) ∈ S

then d← 0
if P [pk∗] =⊥

then d← 0
return d

Figure 8.1: Game defining the M-SUF-CMA security of a signature scheme DS = (PG,KG, Sign,Ver)

where Expm-suf-cma
DS ,k,I (A) is the game depicted in Figure 8.1. In this definition, we also include an additional

algorithm PG that takes 1k as input and generates common parameters par for the signature scheme. The
common parameters par are also given as input to KG together with the security parameter 1k .

This new definition is quite different from the definition of multi-user security introduced by Menezes
and Smart in [MS04], since, on the one hand, we do not take into account the key substitution attack
(and so in this way, our notion is weaker) but, on the other hand, we allow the corruption of any entity
(and in this way, our notion is stronger).
Link with SUF-CMA. It is straightforward to see that any (t, qh, qs, ε)-SUF-CMA signature scheme is
also a (t, I, qh, qs, ε/I)-M-SUF-CMA signature scheme. The reduction just consists in guessing the index
of the public key of the forged signature.

We remark the M-SUF-CMA notion is somewhat more realistic than SUF-CMA, since a signature
scheme is never used by only one user in practice. For example, if a large company uses I signature keys
and that some of these keys may have been compromised by an adversary, this company may want to
ensure that this adversary will be unable to produce valid signatures for any of the uncorrupted keys.
But, if a scheme loses a factor I in the M-SUF-CMA security reduction, and if I is large enough, the
security of the whole system can be affected (for example, if I = 240 and the expected level of security if
80 bits, then an attacker may be able to forge a signature in time 240, which is feasible). Therefore a
tight M-SUF-CMA scheme is not only a tool to construct tight forward-secure scheme but can also be
important in practice.

8.2 From M-SUF-CMA to Forward-Secure Signature Schemes

A naive generic construction of a forward-secure scheme FS = (KG, Sign,Ver,Update) from a standard
signature scheme DS ′ = (PG′,KG′, Sign′,Ver′), described in [And00, BM99] and depicted in Figure 8.2, is
to simply use a different key pair (pki, ski) for each period i. Even though this construction has linear-sized
public and secret keys, proving it secure in a tight manner is already not trivial. However, if DS ′ is
(t, I, qs, qh, ε)-M-SUF-CMA, then it is straightforward to see that FS is (t, qs, qh, ε)-forward-secure for
T = I periods.

More efficient generic constructions of forward-secure signature schemes FS from standard SUF-CMA
signature schemes DS ′ were proposed in [And00, BM99, Kra00, MMM02]. As in the case of the naive
construction in Figure 8.2, the security of the forward-secure signature scheme in [And00] and of the binary
certification tree construction in [BM99] can also be tightly reduced to the M-SUF-CMA security of DS ′,

34

KG(1k , 1T)
par $← PG(1k)
for i = 1, . . . , T

(pki, ski) $← KG′(par)
pk ← (pk1, . . . , pkT)
sk1 ← (sk1, . . . , skT)
return (pk, sk1)

Update(ski)
(ski, . . . , skT)← ski

ski+1 ← (ski+1, . . . , skT)
return ski+1

Sign(ski,M)
(ski, . . . , skT)← ski

σ
$← Sign′(ski,M)

return (σ, i)

Ver(pk, (σ, i),M)
(pk1, . . . , pkT)← pk
d← Ver(pki, σ,M)
return d

Figure 8.2: Naive construction of a forward-secure signature scheme from a standard signature scheme

1

pk2‖pk3

20 leaf

3

pk4‖pk7

21 leaves

7

pk8‖pk15

22 leaves

...

Legend: key used (j −→ (pkj , skj))

message(s) signed by (pkj , skj)
subtree

Figure 8.3: Unbalanced certification tree (for an unbounded number of periods)

in a straightforward way. Thus, these two constructions can be used to construct tightly forward-secure
signature schemes from tight M-SUF-CMA signature schemes.

This is not directly the case of the constructions in [Kra00] and in [MMM02], due to the use of (forward-
secure) pseudorandom generators (PRGs) to generate the randomness for key generation. However, if these
PRGs can be modeled by random oracles, then the security of these two constructions can also be tightly
reduced to the M-SUF-CMA security of DS ′. Furthermore, we remark that the idea of using unbalanced
trees in [MMM02] can also be combined with the binary certification tree construction in [BM99], using a
binary certification tree as depicted in Figure 8.3. This enables to get a forward-secure scheme for an
unbounded number of periods (T = 2k), while still having verification time and signature size for period i
only linear in log i (instead of linear in log T = k).

We refer the reader to [MMM02] for comparison of these various constructions.

9 Constructions of Tightly Secure M-SUF-CMA Signature Schemes

In this section, after recalling some basic tools in Section 9.1, we provide two constructions of M-SUF-
CMA signature schemes with tight security reductions to their underlying hard problem, one based
on simulation-extractable non-interactive zero-knowledge proofs and another one based on one-time
M-SUF-CMA schemes.

As tight M-SUF-CMA signature schemes directly yield tight forward-secure signature schemes, we need
to get around the impossibility result from Section 7. Hence, our schemes need to be non-key-verifiable.
Intuitively, in all our constructions, the idea is to have at least two possible (perfectly indistinguishable)
secret keys for the same public key, such that knowing one secret key and a signature for another secret

35

key can be used to solve some hard problem. Therefore, the reduction consists in generating honestly all
the public and secret keys and hoping that the adversary uses another secret key for its forgery. Since it
cannot know which secret key is used by the reduction, this will happen with probability at least 1/2,
independently of the number of issued signatures or of the number of issued public keys (or periods, when
the scheme is transformed into a forward-secure signature scheme).

We would like to remark that, despite having tight security reductions, the signature schemes in
this section are mostly of theoretical interest since they are significantly less efficient than the non-tight
schemes in previous sections.

9.1 Preliminaries

Collision-Resistant Hash Functions

A hash function family (Hk)k is a family of functions H from {0, 1}∗ to a fixed-length output, namely Zp
in this paper (with p a prime number). Such a family is said (t, ε)-collision-resistant if any adversary
A running in time at most t cannot find a collision with probability more than ε:

Pr
[

M0 6= M1 and H(M0) = H(M1)
∣∣∣ H $← Hk ; (M0,M1) $← A(H)

]
≤ ε.

Discrete Logarithm

Let us denote by (p,G, g) a cyclic group of prime order p generated by g. Let us recall a classical problem:
discrete logarithm.

Definition 9.1 [Discrete Logarithm Problem (DL)] The Discrete Logarithm assumption says that, in a
group (p,G, g), when we are given gx for unknown random x

$← Zp, it is hard to find x. More precisely,
the DL problem is (t, ε)-hard if no adversary running in time t, can compute x from gx with probability
at most ε.

Commitment Scheme

A commitment scheme allows a user to commit to a value without revealing it but without being able
to later change his mind. In this paper, we only consider perfectly hiding commitment schemes. More
formally, a commitment is defined by a tuple C = (C.Setup,Commit,Ver) such that:

• C.Setup is a probabilistic polynomial time algorithm which takes as input a unary representation of
the security parameter k and outputs a common reference string (CRS) crs;

• Commit is a probabilistic polynomial time algorithm which takes as input the CRS crs, an element
X from some set XC, and outputs a bit string c, called a commitment c to X, and a bit string δ,
called a decommitment;

• Ver is a probabilistic algorithm which takes as input the CRS crs, a commitment c, a corresponding
decommitment δ, and the committed element X; and outputs 1 to indicate acceptance and 0
otherwise;

and such that it satisfies the three following properties:

1. Correctness. A commitment scheme is correct if a commitment and decommitment generated
honestly are correctly verified. More formally, for any security parameter k, for any crs $← C.Setup(1k),
and for all X ∈ XC , we have:

Pr
[

Ver(crs, c, δ,X) = 1
∣∣∣ (c, δ) $← Commit(crs, X)

]
= 1;

36

2. Perfectly hiding. A commitment scheme is perfectly hiding if an adversary, even powerful, cannot
know which message is committed in a commitment c. More formally, C is said perfectly hiding, if
the distributions of commitments c to X are identical, for all X ∈ XC ;

3. Binding. A commitment scheme is binding if an adversary cannot produce a commitment and
two decommitments for two different messages. More formally, C is said (t, ε)-binding, if for any
adversary A running in time at most t:

Pr
[
X0 6= X1, Ver(crs, c, δ0, X0) = 1, and Ver(crs, c, δ1, X1) = 1 |

crs $← C.Setup(1k) ; (c, δ0, X0, δ1, X1) $← A(crs)
]
≤ ε.

For our constructions, we suppose that we can sample a uniform value X from XC and that the cardinal
|XC | is superpolynomial in the security parameter k.

Simulation-Extractable Non-Interactive Zero-Knowledge Proofs

Let us first recall the notion of (labeled) simulation-extractable non-interactive zero-knowledge proof.
We consider the quasi-adaptive setting, where the common reference string is allowed to depend on the
language [JR13].
Non-interactive proof systems. Intuitively a proof system is a protocol which enables a prover
to prove to a verifier that a given word or statement x is in a given NP-language. We are interested in
non-interactive proofs, i.e., proofs such that the prover just sends one message.

More formally, let (Llpar)lpar be a family of languages in NP (indexed by some parameter lpar) with
witness relationRlpar, i.e., Llpar = {x | ∃ω, Rlpar(x, ω) = 1}. We suppose lpar is generated by a probabilistic
polynomial time algorithm L.Setup taking as input the a unary representation of the security parameter.
Furthermore, we suppose that Rlpar(x, ω) can be checked in polynomial time in the security parameter. In
the sequel, we often omit lpar when it is clear from context.

A labeled non-interactive proof system for L is defined by a tuple Π = (Π.Setup,Prove,Ver), such that:

• Π.Setup is a probabilistic polynomial time algorithm which takes as inputs a unary representation
of the security parameter k and a language parameter lpar, and outputs a common reference string
(CRS) crs;

• Prove is a probabilistic polynomial time algorithm which takes as input the CRS crs, a label
` ∈ {0, 1}∗, a word x ∈ L, and a witness ω for x (such that R(x, ω) = 1), and outputs a proof π
with label ` that x is in L;

• Ver is a deterministic algorithm which takes as input the CRS crs, a label ` ∈ {0, 1}∗, a word x,
and a proof π and outputs 1 to indicate acceptance and 0 otherwise;

and such that it verifies the two following properties:

1. Perfect completeness. A non-interactive proof is complete if an honest prover knowing a statement
x ∈ L and a witness ω for x can convince an honest verifier that x is in L, for any label. More
formally, Π is said perfectly complete, if for any security parameter k, for any ` ∈ {0, 1}∗, for any
lpar $← L.Setup(1k), for any x ∈ L and ω such that R(x, ω) = 1, for any crs $← Π.Setup(1k), we have
Ver(crs, `, x,Prove(crs, `, x, ω)) = 1;

2. Soundness. A non-interactive proof is said (quasi-adaptively) sound, if no polynomial time adversary
A can prove a false statement with non-negligible probability. More formally, Π is (t, ε)-sound if for
any adversary running in time at most t and any lpar $← L.Setup(1k):

Pr
[

Ver(crs, `, x, π) = 1 and x /∈ L
∣∣∣ crs $← Π.Setup(1k , lpar) ; (`, x, π) $← A(crs)

]
≤ ε.

37

Non-interactive zero-knowledge proofs (NIZK). An (unbounded) NIZK (non-interactive zero-
knowledge proof) is a non-interactive proof system with two simulators Sim1 and Sim2, which can simulate
Π.Setup and Prove, but such that Sim2 does not need any witness. More formally a NIZK is defined
by a tuple Π = (Π.Setup,Prove,Ver, Sim1, Sim2) such that (Π.Setup,Prove,Ver) is a non-interactive proof
system, and:

• Sim1 is a probabilistic algorithm which takes as inputs a unary representation of k and a language
parameter lpar, and generates a CRS crs and a trapdoor τ , such that Sim2 can use τ to simulate
proofs under crs;

• Sim2 is a probabilistic algorithm which takes as input the CRS crs, a corresponding trapdoor τ , a
label `, a word x (not necessarily in L), and outputs a (fake or simulated) proof π for x;

and such that it satisfies the following property:

• Unbounded zero-knowledge. A NIZK is said (unbounded) zero-knowledge if simulated proofs
are indistinguishable from real proofs. More formally, Π is (t, ε)-unbounded-zero-knowledge if, for
any adversary running in time at most t and any lpar $← L.Setup(1k):∣∣∣Pr

[
A(crs)Prove(crs,·,·,·) = 1

∣∣∣ crs $← Π.Setup(1k , lpar)
]
−

Pr
[
A(crs)Sim′(crs,τ,·,·,·) = 1

∣∣∣ (crs, τ) $← Sim1(1k , lpar)
] ∣∣∣ ≤ ε

where Sim′(crs, τ, `, x, ω) = Sim2(crs, τ, `, x) if R(x, ω) = 1 and ⊥ otherwise.

We are also interested in a stronger property than soundness:

• Simulation extractability. A NIZK is said simulation-extractable if there exists a polynomial
time algorithm Ext which can extract a witness from any proof generated by the adversary, even if
the adversary can see simulated proofs. More formally, Π is (t, ε)-simulation-sound-extractable if,
for any adversary running in time at most t and any lpar $← L.Setup(1k):

Pr
[

Ver(crs, x, π) = 1, (`, x, π) /∈ S, and R(x,Ext(crs, τ, `, x, π)) = 0 |

(crs, τ) $← Sim1(1k , lpar) ; (x, π) $← ASim2(crs,τ,·,·)(crs)
]
≤ ε

where S is the set of queries-answers (`, x, π) from Sim2.

We call a simulation-extractable NIZK, an SE-NIZK.

9.2 Construction Based on Commitments and Simulation-Extractable NIZKs

Generic construction. We construct a M-SUF-CMA signature scheme from a (perfectly hiding)
commitment scheme and a simulation-extractable NIZK. The construction is depicted in Figure 9.1. The
public key is a commitment c of a random value X $← XC. Then a signature of a message M is an
SE-NIZK, labeled by the message M , which proves the knowledge of the committed value X and the
associated decommitment information δ. The verification consists in checking the SE-NIZK is correct and
labeled with M .

We remark that this construction is very similar to the leakage-resilient signature scheme of Haralambiev
in [Har11], which is a variant of the scheme of Katz and Vaikuntanathan [KV09].
Security. We can tightly reduce the M-SUF-CMA security to the binding property of the commitment
scheme and to the unbounded zero-knowledge and simulation extractability properties of the SE-NIZK.

38

PG(1k)
crsC

$← C.Setup(1k)
lpar← crsC
crsΠ

$← Π.Setup(1k , lpar)
par ← (crsC , crsΠ)
return par

KG(par , 1k)
(crsC , crsΠ)← par
X

$← XC
(c, δ) $← Commit(crsC , X)
pk ← c ; sk ← (X, δ)
return (pk, sk)

Sign(par , sk,M)
(crsC , crsΠ)← par
(X, δ)← sk
π

$← Prove(crsΠ,M , c, (X, δ))
σ ← π
return σ

Ver(par , pk, σ,M)
(crsC , crsΠ)← par
c← pk ; π ← σ
return Ver(crsΠ,M , c, π)

Figure 9.1: A M-SUF-CMA signature scheme from a commitment scheme C and a SE-NIZK Π for the language
LCcrs = {c | ∃(X, δ), Ver(crsC , c, δ,X) = 1}

Intuitively, this comes from the fact the adversary does not know which X the signer (or the reduction)
has chosen. Therefore, if it forges a signature for some public key pk = c, then the reduction can extract a
decommitment information δ and a message X different from the one used to create pk = c. And this is
computationally hard, due to the binding property of the commitment scheme.

Formally, we have the following security theorem.

Theorem 9.2 The signature scheme depicted in Figure 9.1 is M-SUF-CMA. More precisely, if the
underlying commitment scheme C is (tC , εC)-binding and if the underlying SE-NIZK Π is (tz, εz)-unbounded-
zero-knowledge, (te, εe)-simulation-extractable, then the signature schemes is (t, ε)-forward-secure for:

ε = εz + εe + 1
|XC |

+ εC and t ≈ min(tz, te, tC),

where |XC | is the cardinal of XC, tKG denotes the average time of an execution of KG, tSign denotes the
average time of a query to Sign, texp is the time for an exponentiation in the cyclic group G, and qs denotes
the total number of signature queries.

Proof: Let us just sketch the games of the proof here.

Game G0: we simulate all SE-NIZK. This game is indistinguishable from the original game due to the
unbounded zero-knowledge property of the SE-NIZK.

Game G1: we extract the witness of the proof of the forged signature σ∗ (for message M ∗ and public
key pk∗) and check that this witness is a pair (X∗, δ∗) such that Ver(crsC , c, δ∗, X∗). If not, then we
abort. The probability of aborting is at most εe due to the simulation-extractability property of the
SE-NIZK.

Game G2: let X and δ be the message and the corresponding decommitment in sk∗ (i.e., the ones used
to generate c in pk∗). If X = X∗, we abort. This happens with probability at most 1/|XC |, since
the adversary has no information on X (nothing he sees depends on this value, as the commitment
scheme is perfectly hiding).

Then, for the last game, if the adversary wins, we have opened the commitment c with two different
messages: X and X∗, which is computationally hard because of the binding property of the commitment
scheme.

Instantiations. For our whole construction to be tight, we need a commitment scheme and an associated
SE-NIZK with a tight reduction for the unbounded zero-knowledge and simulation extractability properties,
where “tight” means that the reduction does not lose a factor which depends on the number of queries to
the oracles Prove, Sim′, and Sim2.

Construction without random oracles. For that purpose, we can use a labeled version of the
SE-NIZK1 construction in [ADK+13] (which is a more efficient variant of the SE-NIZK in [HJ12]), simply

39

PG(1k)
Generate (p,G, g) for k
H

$← Hk
par ← (p,G, g,H)
return par

KG(par)
b

$← {0, 1}
xb

$← Z∗p ;Xb ← gxb

X1−b
$← G∗

y0, y1
$← Zp ; Y ← Xy0

0 ·X
y1
1

pk ← (X0, X1, Y)
sk ← (b, xb, y0, y1)
return (pk, sk)

Sign(par , sk,M)
(b, xb, y0, y1)← sk
sb ← yb − H(M)/xb

s1−b ← y1−b

σ ← (s0, s1)
return σ

Ver(par , pk, σ,M)
(X0, X1, Y)← pk
(s0, s1)← σ
Z ← gH(M) ·Xs0

0 ·X
s1
1

if Z = Y then
return 1

else
return 0

Figure 9.2: A one-time M-SUF-CMA signature scheme

by adding the label to the part signed by the one-time signature. As the original construction, this labeled
variant can be proved simulation-extractable under the Decisional Linear (DLin) assumption [BBS04],
with a tight reduction.

This SE-NIZK can handle pairing product equations whose right-hand side is a product of pairings of
constant group elements, as Groth-Sahai NIZK [GS08]. Therefore, we need a commitment scheme for
which messages X and decommitment information δ are group elements, and for which the decommitment
algorithm consists in verifying such pairing-product equations. This is the case of the commitment scheme
TC3 in [Har11], which is perfectly hiding and computationally binding under the DLin assumption.

Construction with random oracles. In the random-oracle model, we can replace the complex
Groth-Sahai-based SE-NIZK with an SE-NIZK based on Ω-protocols [GMY06] and the Fiat-Shamir
transform.

9.3 Construction Based on One-Time M-SUF-CMA Schemes

In this section, we show how to build a tightly secure M-SUF-CMA signature scheme based on a one-time
M-SUF-CMA signature scheme, where the latter is a M-SUF-CMA signature scheme for which one can sign
at most qs = 1 message with respect to each public key. Towards this goal, we first present in Section 9.3
an efficient construction of a one-time M-SUF-CMA signature scheme based on the strong one-time
signature scheme proposed by Groth [Gro06]. Interestingly, we remark that one-time M-SUF-CMA
signature schemes can already be directly used to build a special type of key-evolving signatures, known
as fine-grained forward-secure [CK06], where the signer can sign at most one message in each time period
and has to update his or her secret key after each signature.

Next, in Section 9.3, we show how to convert one-time M-SUF-CMA signature scheme into a standard
M-SUF-CMA signature scheme with the help of a random oracle. This is achieved by showing that random
oracles can help us replace standard M-SUF-CMA signature schemes with their one-time versions for all
the internal nodes of the generic forward-secure construction in Section 8.2.

One-time M-SUF-CMA scheme

The scheme we propose is very close to the strong one-time signature scheme proposed by Groth in [Gro06].
It is depicted in Figure 9.2.

Proposition 9.3 The scheme DS described above is (t, I, qs, 0, ε)-one-time-M-SUF-CMA, if the DL
problem is (t′, ε′)-hard and H is (t′′, ε′′)-collision-resistant (see Section 9.1), for

ε = ε′′ + 2ε′ t ≈ min(t′, t′′)

Before giving a formal proof, let us first sketch the three main ideas of the proof. First, the DL
problem is random self-reducible. Second, if the adversary asks for a signature (s0, s1) on a message M

40

Finalize(pk∗,M ∗, σ∗) Game G0, G1

001 d← Ver(par , pk∗, σ∗,M ∗)
002 sk∗ ← P [pk∗]
003 if sk∗ =⊥ then return 0
004 (X0, X1, Y)← pk∗ ; (b, xb, y0, y1)← sk∗
005 (s∗0, s∗1)← σ

006 Z ← gH(M∗) ·Xs∗0
0 ·X

s∗1
1

007 if Z 6= Y then d← 0
008 if (pk∗,M ∗, σ∗) ∈ S then d← 0
009 find a triple (M , σ, i∗) ∈ S
010 if such a triple exists (it is then unique) then
011 (s0, s1)← σ
012 else
013 M $←M\ {M ∗}
014 (s0, s1)← Sign(sk,M)
015 if M 6= M ∗ and H(M) = H(M ∗)
016 bad← true
017 d← 0
018 return d

Finalize(pk∗,M ∗, σ∗) Game G2, G3

201 d← Ver(par , pk∗, σ∗,M ∗)
202 sk∗ ← P [pk∗]
203 if sk∗ =⊥ then return 0
204 (X0, X1, Y)← pk∗ ; (b, xb, y0, y1)← sk∗
205 (s∗0, s∗1)← σ

206 Z ← gH(M∗) ·Xs∗0
0 ·X

s∗1
1

207 if Z 6= Y then d← 0
208 if (pk∗,M ∗, σ∗) ∈ S then d← 0
209 find a triple (M , σ, i∗) ∈ S
210 if such a triple exists (it is then unique) then
211 (s0, s1)← σ
212 else
213 M $←M\ {M ∗}
214 (s0, s1)← Sign(sk,M)
215 if M 6= M ∗ and H(M) = H(M ∗) then d← 0
216 if d = 1 and s1−bi

= s∗1−bi

217 bad← true
218 d← 0
219 return d

Figure 9.3: Games G0, . . . ,G3 for proof of Proposition 9.3. G1 includes the boxed code at line 017 but G0 does not.
G3 includes the boxed code at line 218 but G2 does not.

and produces a signature (s∗0, s∗1) on a message M ∗ such that s∗1−b 6= s1−b, one can compute the discrete
logarithm x1−b of X1−b:

x1−b = H(M) + xbsb − H(M ∗)− xbs∗b
s∗1−b − s1−b

.

Third, the bit b cannot be known by the adversary (it is completely independent from (s0, s1) and the
public key pk∗), and so a valid forgery of the adversary will satisfy the above property with probability at
least 1/2 (if we ignore collisions in the hash function).

Proof: Suppose there exists an adversary A which (t, I, qs, 0, ε)-breaks the one-time M-SUF-CMA-security
of DS . Let us consider the games G0, . . . ,G3 of Figure 9.3.
G0 corresponds to a slight variant of the one-time version of the game Expm-suf-cma

DS ,k (A) defining the
one-time M-SUF-CMA-security of DS . Only the Finalize procedure is depicted in Figure 9.3, the other
procedures are the same as in Expm-suf-cma

DS ,k (A). Furthermore we set bad when the adversary submit a
message M ∗ for a public key pk∗ which has the same hash as the message M it queried to the signing
oracle Sign for public key pk∗ (or a random message M if it has not queried the signing oracle for public
key pk∗i). G0 has the same output as the original game.
Since, when bad is set, there is a collision in the hash function (H(M) = H(M ∗) but M 6= M ∗),
Pr [G0(A) sets bad] ≤ ε′′. In G1, when bad is set, Finalize rejects the forged signature and outputs 0.
Since G0 and G1 are identical until bad, thanks to Lemma 2.1, we have

Pr [G0(A)⇒ 1]− Pr [G1(A)⇒ 1] ≤ Pr [G0(A) sets bad] ≤ ε′′.

In G2, bad is now set when s1−b = s∗1−b. These two modifications do not change the output of the game
and so Pr [G1(A)⇒ 1] = Pr [G2(A)⇒ 1].
Let us now prove that Pr [G2(A) sets bad] ≤ Pr [G2(A)⇒ 1]/2. Let us suppose G2(A)⇒ 1. We have
the following equation:

Y = gH(M) ·Xs0
0 ·X

s1
1 = gH(M∗) ·Xs∗0

0 ·X
s∗1
1

41

which implies
H(M) + s0 x0 + s1 x1 = H(M ∗) + s∗0 x0 + s∗1 x1. (9.1)

If M = M ∗, since (pk∗,M ∗, σ∗) /∈ S (otherwise d = 0), then (s0, s1) 6= (s∗0, s∗1). Otherwise, M = M ∗, and
thus H(M) 6= H(M ′), and we also have (s0, s1) 6= (s∗0, s∗1). Let us suppose s0 6= s∗0 without loss of generality
(the proof works similarly when s1 6= s∗1).
Let us now show that conditioned on the view of the adversary, b = 0 with probability 1

2 . For that, we
remark that knowing all the public keys pk and their associated secret keys sk except sk∗ and knowing
M ,M ∗, s0, s1, for each value of b (0 or 1), there exist exactly one unique corresponding value for the pair
(y0, y1):

y1−b = s1−b yb = sb + H(M)/xb,

where x0, x1 ∈ Zp are defined by X0 = gx0 and X1 = gx1 . Therefore s1−b 6= s∗1−b with this probability,
namely 1

2 , and Pr [G2(A) sets bad] ≤ Pr [G2(A)⇒ 1]/2.
In G3, when bad is set, Finalize rejects the forged signature and outputs 0. Since G2 and G3 are identical
until bad, thanks to Lemma 2.1, we have

Pr [G2(A)⇒ 1]− Pr [G3(A)⇒ 1] ≤ Pr [G2(A) sets bad] ≤ Pr [G2(A)⇒ 1]/2.

and so Pr [G2(A)⇒ 1] ≤ 2Pr [G3(A)⇒ 1].
Now let us prove that Pr [G3(A)⇒ 1] ≤ ε′. Indeed, from A, we can create an adversary which can
compute the DL of any element X ∈ G∗. We just need to simulate the game G3, except we compute X1−b
as Xr for a random r ∈ Z∗p (instead of picking it at random in G∗) for all keys generated by KG (not only
pk∗). Then, if A wins the game, we can easily compute the discrete logarithm x of X because, according
to Equation (9.1):

r x = x1−b = H(M) + xbsb − H(M ∗)− xbs∗b
forges1−b − s1−b

.

Therefore Pr [G3(A)⇒ 1] ≤ ε′.
From the previous equalities and inequalities, we deduce that, for any adversary A running in time
approximately at most t, its probability success is ε ≤ Pr [G0(A)⇒ 1] ≤ ε′′ + 2ε′.

From One-Time M-SUF-CMA to M-SUF-CMA

In this section, we describe a tightness-preserving transform from a one-time M-SUF-CMA scheme to a
(standard) M-SUF-CMA scheme, using a hash function modeled as a random oracle. A similar idea was
used by Goldreich in [Gol87] to render the GMR signature scheme [GMR84] memoryless.

The main idea behind the construction is to implicitly construct a certification tree, as depicted in
Figure 9.4. In this tree, each node j is associated with a fresh pair of public and secret keys for the
underlying one-time M-SUF-CMA scheme, where each internal node’s secret key is used to sign the public
keys of its children and where the secret keys associated with the leaves are used to sign the actual
messages. In order to avoid having to store the entire tree or to maintain a state, the randomness used by
the key-generation and signing algorithms of each node are computed in a deterministic manner via a
hash function, which is modeled as a random oracle, using a random seed and the node position as input.
Moreover, in order to avoid reusing the same leaf twice for signing two different messages, the choice of
the leaf used to sign a message is also done via a hash function, using the same random seed and the
message itself as input.

More precisely, let DS = (PG,KG, Sign,Ver) be a one-time M-SUF-CMA scheme and let H1 and H2 be
two hash functions, modeled as random oracles, which:

42

1

pk2‖pk3

2

pk4‖pk5

4

pk8‖pk9

22k

msg M
22k + 1

msg M

5

pk10‖pk11

22k + 2

msg M

22k + 3

msg M

3

pk6‖pk7

6

pk12‖pk13

2 · 22k − 4

msg M

2 · 22k − 3

msg M

7

pk14‖pk15

2 · 22k − 2

msg M

2 · 22k − 1

msg M

Legend:
key used (j −→ (pkj , skj))

message(s) signed by (pkj , skj)

Figure 9.4: Certification tree

• on input s‖j (s ∈ {0, . . . , 22k − 1}, j ∈ {1, . . . , 22k}), H1 outputs a pair (rKG, rSign) of a random tape
rKG for KG and a random tape rSign for Sign;

• on input s‖M (s ∈ {0, . . . , 22k − 1},M ∈M), H2 outputs an integer i in {1, . . . , 22k}.

We then construct a classical M-SUF-CMA scheme DS ′ = (PG′,KG′, Sign′,Ver′) as follows. The common
parameter generation algorithm PG′, on input 1k , simply runs par $← PG(1k) and outputs par . The key
generation KG′, on input (par , 1k), starts by choosing a random seed s ∈ {0, . . . , 22k − 1}, which will
play the role of the secret signing key. It then computes (rKG, rSign) = H1(s‖1) followed by (sk1, pk1) =
KG(par , 1k ; rKG) and outputs (pk1, s) as its public and secret keys. The signing algorithm Sign′, on input
(par , s,M), selects the leaf labeled 22k − 1 + H2(s‖M), computes all the signatures along the path from
the root of the certification tree to this leaf, using (rKGj , rSignj) = H1(s‖j) as the randomness for the key-
generation and signing algorithms for each node j in the path. It then outputs this list of 2k + 1 signatures
together with the corresponding public keys as the signature σ of M . The verification algorithm Ver, on
input (par , pk1, σ,M) simply checks that all the signatures in the list are valid using the corresponding
public keys.

If each message is signed using a different leaf (which happens with overwhelming probability), each
key skj is used to sign only one message. It is then easy to see that the M-SUF-CMA security of this new
signature scheme can be tightly reduced to the one-time M-SUF-CMA of the underlying signature scheme:
a forgery to the new scheme directly implies a forgery for the one-time scheme (for at least one of the
public keys on the path from the message of the forgery to the root of the tree).

The reader acquainted with the construction of Goldreich may wonder why we cannot simply use a
PRF instead of a random oracle, as in the original construction. The reason for this is that, since the key
of the PRF would need to be stored in the secret key of the signature scheme, we would need to know in
advance which secret keys will be corrupted. While we would need to compute honestly the output of the
PRF for corrupted secret keys, we would need to use the pseudorandomness property of the PRF to use
random values for the output of the PRF for the secret key corresponding to the forgery.

Acknowledgments
We would like to thank Mihir Bellare and Eike Kiltz for their helpful comments on a preliminary version
of this paper, the anonymous referees of PKC 2013 for their valuable input, and Benoît Libert for his
discussion with the second author on simulation-sound NIZK and random oracles. We would also like to
thank the anonymous reviewers for Journal of Cryptology for their insightful comments.

43

This work was supported in part by the French ANR-10-SEGI-015 PRINCE Project, in part by the
CFM Foundation, and in part by the European Commission through the FP7-ICT-2011-EU-Brazil Program
under Contract 288349 SecFuNet and the ICT Program under Contract ICT-2007-216676 ECRYPT II.
The second author was supported in part by the Defense Advanced Research Projects Agency (DARPA)
and Army Research Office (ARO) under Contract No. W911NF-15-C-0236.

References

[AABN02] M. Abdalla, J. H. An, M. Bellare, and C. Namprempre. From identification to signatures
via the Fiat-Shamir transform: Minimizing assumptions for security and forward-security. In
EUROCRYPT 2002, LNCS 2332, pages 418–433. Springer, Heidelberg, April / May 2002.
(pages 1 and 12.)

[ABP13] M. Abdalla, F. Ben Hamouda, and D. Pointcheval. Tighter reductions for forward-secure
signature schemes. In PKC 2013, LNCS 7778, pages 292–311. Springer, Heidelberg, Febru-
ary / March 2013. (pages 2 and 3.)

[ADK+13] M. Abe, B. David, M. Kohlweiss, R. Nishimaki, and M. Ohkubo. Tagged one-time signatures:
Tight security and optimal tag size. In PKC 2013, LNCS 7778, pages 312–331. Springer,
Heidelberg, February / March 2013. (page 39.)

[AFLT12] M. Abdalla, P.-A. Fouque, V. Lyubashevsky, and M. Tibouchi. Tightly-secure signatures from
lossy identification schemes. In EUROCRYPT 2012, LNCS 7237, pages 572–590. Springer,
Heidelberg, April 2012. (pages 1, 8, 11, and 12.)

[And00] R. Anderson. Two remarks on public-key cryptology. Manuscript. Relevant material pre-
sented by the author in an invited lecture at the 4th ACM Conference on Computer and
Communications Security, CCS 1997, Zurich, Switzerland, April 1–4, 1997, September 2000.
(page 34.)

[BBS04] D. Boneh, X. Boyen, and H. Shacham. Short group signatures. In CRYPTO 2004, LNCS
3152, pages 41–55. Springer, Heidelberg, August 2004. (page 40.)

[BHJL16] F. Benhamouda, J. Herranz, M. Joye, and B. Libert. Efficient cryptosystems from 2k-th power
residue symbols. Journal of Cryptology, 2016. To appear. (pages 2 and 6.)

[BJLS16] C. Bader, T. Jager, Y. Li, and S. Schäge. On the impossibility of tight cryptographic reductions.
In EUROCRYPT 2016, Part II, LNCS 9666, pages 273–304. Springer, Heidelberg, May 2016.
(pages 3 and 30.)

[BM99] M. Bellare and S. K. Miner. A forward-secure digital signature scheme. In CRYPTO’99, LNCS
1666, pages 431–448. Springer, Heidelberg, August 1999. (pages 6, 7, 8, 32, 34, and 35.)

[BMO90] M. Bellare, S. Micali, and R. Ostrovsky. The (true) complexity of statistical zero knowledge.
In 22nd ACM STOC, pages 494–502. ACM Press, May 1990. (page 10.)

[BNN07] M. Bellare, C. Namprempre, and G. Neven. Unrestricted aggregate signatures. In ICALP
2007, LNCS 4596, pages 411–422. Springer, Heidelberg, July 2007. (page 4.)

[BP97] N. Bari and B. Pfitzmann. Collision-free accumulators and fail-stop signature schemes without
trees. In EUROCRYPT’97, LNCS 1233, pages 480–494. Springer, Heidelberg, May 1997.
(page 6.)

44

[BPS16] M. Bellare, B. Poettering, and D. Stebila. From identification to signatures, tightly: A
framework and generic transforms. In ASIACRYPT 2016, Part II, LNCS 10032, pages 435–464.
Springer, Heidelberg, December 2016. (page 1.)

[BR93] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In ACM CCS 93, pages 62–73. ACM Press, November 1993. (pages 2 and 4.)

[BR06] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In EUROCRYPT 2006, LNCS 4004, pages 409–426. Springer, Heidelberg,
May / June 2006. (page 4.)

[BS96] E. Bach and J. Shallit. Algorithmic Number Theory. MIT Press, August 1996. (pages 5
and 23.)

[CD95] R. Cramer and I. Damgård. Escure signature schemes based on interactive protocols. In
CRYPTO’95, LNCS 963, pages 297–310. Springer, Heidelberg, August 1995. (page 52.)

[CK06] J. Camenisch and M. Koprowski. Fine-grained forward-secure signature schemes without
random oracles. Discrete Applied Mathematics, 154(2):175–188, 2006. (page 40.)

[CMS99] C. Cachin, S. Micali, and M. Stadler. Computationally private information retrieval with
polylogarithmic communication. In EUROCRYPT’99, LNCS 1592, pages 402–414. Springer,
Heidelberg, May 1999. (pages 1, 2, and 5.)

[Cor02] J.-S. Coron. Optimal security proofs for PSS and other signature schemes. In EURO-
CRYPT 2002, LNCS 2332, pages 272–287. Springer, Heidelberg, April / May 2002. (pages 2,
30, 31, and 32.)

[Cra96] R. Cramer. Modular Design of Secure Yet Practical Cryptographic Protocols. PhD thesis, CWI
and University of Amsterdam, Amsterdam, The Netherlands, November 1996. (page 10.)

[Dus98] P. Dusart. Autour de la fonction qui compte le nombre de nombres premiers. Thesis, Université
de Limoges, 1998. (page 51.)

[ECR11] ECRYPT II yearly report on algorithms and keysizes, 2011. (page 26.)

[FFS88] U. Feige, A. Fiat, and A. Shamir. Zero-knowledge proofs of identity. Journal of Cryptology,
1(2):77–94, 1988. (page 1.)

[FO97] E. Fujisaki and T. Okamoto. Statistical zero knowledge protocols to prove modular polynomial
relations. In CRYPTO’97, LNCS 1294, pages 16–30. Springer, Heidelberg, August 1997.
(page 6.)

[FS87] A. Fiat and A. Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In CRYPTO’86, LNCS 263, pages 186–194. Springer, Heidelberg, August
1987. (pages 1 and 11.)

[GBL08] S. Garg, R. Bhaskar, and S. V. Lokam. Improved bounds on security reductions for discrete
log based signatures. In CRYPTO 2008, LNCS 5157, pages 93–107. Springer, Heidelberg,
August 2008. (page 1.)

[GMR84] S. Goldwasser, S. Micali, and R. L. Rivest. A “paradoxical” solution to the signature problem
(extended abstract). In 25th FOCS, pages 441–448. IEEE Computer Society Press, October
1984. (pages 7 and 42.)

45

[GMR89] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof
systems. SIAM Journal on Computing, 18(1):186–208, 1989. (page 10.)

[GMY06] J. A. Garay, P. D. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using
signatures. Journal of Cryptology, 19(2):169–209, April 2006. (page 40.)

[Gol87] O. Goldreich. Two remarks concerning the Goldwasser-Micali-Rivest signature scheme. In
CRYPTO’86, LNCS 263, pages 104–110. Springer, Heidelberg, August 1987. (page 42.)

[GQ88] L. C. Guillou and J.-J. Quisquater. A practical zero-knowledge protocol fitted to security
microprocessor minimizing both trasmission and memory. In EUROCRYPT’88, LNCS 330,
pages 123–128. Springer, Heidelberg, May 1988. (pages 1, 17, and 18.)

[Gro06] J. Groth. Simulation-sound NIZK proofs for a practical language and constant size group
signatures. In ASIACRYPT 2006, LNCS 4284, pages 444–459. Springer, Heidelberg, December
2006. (page 40.)

[GS08] J. Groth and A. Sahai. Efficient non-interactive proof systems for bilinear groups. In
EUROCRYPT 2008, LNCS 4965, pages 415–432. Springer, Heidelberg, April 2008. (page 40.)

[Har11] K. Haralambiev. Efficient Cryptographic Primitives for Non-Interactive Zero-Knowledge Proofs
and Applications. PhD thesis, New York University, 2011. (pages 38 and 40.)

[HJ12] D. Hofheinz and T. Jager. Tightly secure signatures and public-key encryption. In
CRYPTO 2012, LNCS 7417, pages 590–607. Springer, Heidelberg, August 2012. (page 39.)

[HW09] S. Hohenberger and B. Waters. Short and stateless signatures from the RSA assumption. In
CRYPTO 2009, LNCS 5677, pages 654–670. Springer, Heidelberg, August 2009. (page 22.)

[IN96] R. Impagliazzo and M. Naor. Efficient cryptographic schemes provably as secure as subset
sum. Journal of Cryptology, 9(4):199–216, 1996. (page 1.)

[IR01] G. Itkis and L. Reyzin. Forward-secure signatures with optimal signing and verifying. In
CRYPTO 2001, LNCS 2139, pages 332–354. Springer, Heidelberg, August 2001. (pages 2, 3,
5, 6, 17, 22, 23, 25, and 55.)

[JL13] M. Joye and B. Libert. Efficient cryptosystems from 2k-th power residue symbols. In
EUROCRYPT 2013, LNCS 7881, pages 76–92. Springer, Heidelberg, May 2013. (pages 2
and 6.)

[JR13] C. S. Jutla and A. Roy. Shorter quasi-adaptive NIZK proofs for linear subspaces. In
ASIACRYPT 2013, Part I, LNCS 8269, pages 1–20. Springer, Heidelberg, December 2013.
(page 37.)

[KK12] S. A. Kakvi and E. Kiltz. Optimal security proofs for full domain hash, revisited. In
EUROCRYPT 2012, LNCS 7237, pages 537–553. Springer, Heidelberg, April 2012. (pages 2,
25, and 30.)

[KOS10] E. Kiltz, A. O’Neill, and A. Smith. Instantiability of RSA-OAEP under chosen-plaintext
attack. In CRYPTO 2010, LNCS 6223, pages 295–313. Springer, Heidelberg, August 2010.
(page 5.)

[Kra00] H. Krawczyk. Simple forward-secure signatures from any signature scheme. In ACM CCS 00,
pages 108–115. ACM Press, November 2000. (pages 34 and 35.)

46

[KV09] J. Katz and V. Vaikuntanathan. Signature schemes with bounded leakage resilience. In ASI-
ACRYPT 2009, LNCS 5912, pages 703–720. Springer, Heidelberg, December 2009. (page 38.)

[KW03] J. Katz and N. Wang. Efficiency improvements for signature schemes with tight security
reductions. In ACM CCS 03, pages 155–164. ACM Press, October 2003. (pages 1 and 29.)

[LM06] V. Lyubashevsky and D. Micciancio. Generalized compact Knapsacks are collision resistant. In
ICALP 2006, Part II, LNCS 4052, pages 144–155. Springer, Heidelberg, July 2006. (page 1.)

[Mic94] S. Micali. A secure and efficient digital signature algorithm. Technical Memo MIT/LCS/TM-
501b, Massachusetts Institute of Technology, Laboratory for Computer Science, April 1994.
(page 1.)

[MM11] D. Micciancio and P. Mol. Pseudorandom knapsacks and the sample complexity of LWE search-
to-decision reductions. In CRYPTO 2011, LNCS 6841, pages 465–484. Springer, Heidelberg,
August 2011. (page 1.)

[MMM02] T. Malkin, D. Micciancio, and S. K. Miner. Efficient generic forward-secure signatures with
an unbounded number of time periods. In EUROCRYPT 2002, LNCS 2332, pages 400–417.
Springer, Heidelberg, April / May 2002. (pages 3, 22, 26, 34, and 35.)

[MR02] S. Micali and L. Reyzin. Improving the exact security of digital signature schemes. Journal of
Cryptology, 15(1):1–18, 2002. (pages 1, 8, 20, 24, 48, 52, 53, 54, and 55.)

[MS04] A. Menezes and N. Smart. Security of signature schemes in a multi-user setting. Designs,
Codes and Cryptography, 33(3):261–274, 2004. (pages 3 and 34.)

[OO90] K. Ohta and T. Okamoto. A modification of the Fiat-Shamir scheme. In CRYPTO’88, LNCS
403, pages 232–243. Springer, Heidelberg, August 1990. (page 1.)

[OS91] H. Ong and C.-P. Schnorr. Fast signature generation with a Fiat-Shamir-like scheme. In
EUROCRYPT’90, LNCS 473, pages 432–440. Springer, Heidelberg, May 1991. (pages 1
and 29.)

[Pai99] P. Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
EUROCRYPT’99, LNCS 1592, pages 223–238. Springer, Heidelberg, May 1999. (pages 1
and 30.)

[PR06] C. Peikert and A. Rosen. Efficient collision-resistant hashing from worst-case assumptions on
cyclic lattices. In TCC 2006, LNCS 3876, pages 145–166. Springer, Heidelberg, March 2006.
(page 1.)

[PS98] S. Patel and G. S. Sundaram. An efficient discrete log pseudo random generator. In CRYPTO’98,
LNCS 1462, pages 304–317. Springer, Heidelberg, August 1998. (page 1.)

[PS00] D. Pointcheval and J. Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13(3):361–396, 2000. (page 52.)

[PV05] P. Paillier and D. Vergnaud. Discrete-log-based signatures may not be equivalent to discrete
log. In ASIACRYPT 2005, LNCS 3788, pages 1–20. Springer, Heidelberg, December 2005.
(page 1.)

[Sch90] C.-P. Schnorr. Efficient identification and signatures for smart cards (abstract) (rump session).
In EUROCRYPT’89, LNCS 434, pages 688–689. Springer, Heidelberg, April 1990. (page 1.)

47

[Seu12] Y. Seurin. On the exact security of Schnorr-type signatures in the random oracle model. In
EUROCRYPT 2012, LNCS 7237, pages 554–571. Springer, Heidelberg, April 2012. (page 1.)

[vW96] P. C. van Oorschot and M. J. Wiener. On Diffie-Hellman key agreement with short exponents.
In EUROCRYPT’96, LNCS 1070, pages 332–343. Springer, Heidelberg, May 1996. (page 1.)

A Relations Between Security Notions
Micali and Reyzin introduced the (t, qh, qs, ε, δ)-selective-security notion for signatures in [MR02] but
without explaining its relation to the standard (t, qh, qs, ε)-security notion. In Section 2.5, we presented a
generalization of this selective notion to the forward-security setting (W-SUF-CMA and W-EUF-CMA).
In this appendix, we prove several propositions to improve our understanding of the relation between these
two notions. These propositions apply to both selective forward security (W-SUF-CMA) and selective
existential forward security (W-EUF-CMA). Therefore, for the sake of clarity, we focus on selective
forward security.

First, we have the following straightforward proposition:
Proposition A.1 Let ε, δ ∈ [0, 1]2, such that Tεδ < 1. A (t, qh, qs, T εδ)-forward-secure scheme is also
(t, qh, qs, ε, δ)-selectively-forward-secure.

Proof: Let A be an adversary which (t, qh, qs, ε, δ)-selectively-breaks the scheme. Then, it is clear from the
definitions that Advw-euf-cma

FS ,k,T (A) ≥ εδ. But we also have Advw-euf-cma
FS ,k,T (A) = 1

T Adveuf-cma
FS ,k,T (A). Therefore

Adveuf-cma
FS ,k,T (A) ≥ Tεδ, and A (t, qh, qs, T εδ)-breaks the scheme.

Unfortunately, the converse of Proposition A.1 is not necessarily true. Let ε, δ, η ∈]0, 1]3 and qh ≥ 1
and suppose there exists a (t, qh, qs, 0)-secure scheme FS .25 By using FS , we can construct a (t, qh, qs, ε, δ)-
selectively-secure scheme FS ′ which is not (t, qh, qs, (1 − η)δ)-secure. Let the scheme FS ′ be the same
as FS except that the key generation algorithm KG includes the secret key sk1 in the public key pk
with probability δ(1− η). Clearly, there exists an adversary which can (t, qh, qs, (1− η)δ)-break FS ′, but
no adversary can (t, qh, qs, ε, δ)-selectively-break FS ′, since only a proportion δ(1 − η) of the keys are
breakable. As a result, if a scheme is only proven to be (t, qh, qs, ε, δ)-selectively-secure, no matter how
small is ε, if δ′ < δ, the scheme is not necessarily (t, qh, qs, δ′)-secure.

We can also construct a (t, qh, qs, ε, δ)-selectively-secure scheme FS ′ which is not (t, qh, qs, (1− η)ε)-
secure, if there exists a scheme FS for which the best adversary A wins the game Expw-euf-cma

FS ,k,T (A) with
probability (1− η)ε (independently of the choice of the period i, and of the key pair (pk, sk1)).26 As a
result, if a scheme is only proven to be (t, qh, qs, ε, δ)-selectively-secure, no matter how small is δ, the
scheme is not necessarily (t, qh, qs, ε′)-secure if ε′ < ε.

After these negative results, let us now present a positive one pertaining the relation between these
notions.
Proposition A.2 Suppose there are λ different possible key pairs (pk, sk1), and that KG chooses uniformly
at random one of them.27 Let FS be a key-evolving scheme. Let ε′ ∈]0, 1[and α = 1 + log(λT).

If FS is (t, qh, qs, ε, δ)-selectively-forward-secure for any ε, δ ∈]0, 1]2 such that εδ ≥ ε′/(αT), then FS
is (t, qh, qs, ε′)-forward-secure.

Proof: Let A be an adversary which (t, qh, qs, ε′)-breaks the scheme. Then we have Adveuf-cma
FS ,k,T (A) ≥ ε′,

and as in the previous proof, we also have

Advw-euf-cma
FS ,k,T (A) = Adveuf-cma

FS ,k,T (A)/T ≥ ε′/T.
25We could use a (t, qh, qs, ε′)-secure scheme with a small enough ε′. But this would make the proof more complicated.
26By best, we mean that, for any fixed period i and key pair (pk, sk1), no adversary can win the game with probability

greater than (1− η)ε.
27This is the case with most currently used schemes.

48

Let us consider the advantages Advw-euf-cma
FS ,k,T (A) for each triple (pk, sk1, i). Let us sort them in decreasing

order and write them ε′1 ≥ · · · ≥ ε′λT . By hypothesis, all triples are equiprobable, therefore, we have

ε′

T
≤ Advw-euf-cma

FS ,k,T (A) = ε′1 + · · ·+ ε′λT
λT

.

We remark that since ε′1 ≥ · · · ≥ ε′λT , if one of the j first triples is used in the game, the advantage
Advw-euf-cma

FS ,k,T (A) is at least ε′j . Therefore, for any j, A (t, qh, qs, ε′j , j/(λT))-selectively-breaks FS . So we
just need to prove that for some j, ε′jj/(λT) ≥ ε′/(αT). Let us suppose for all j, ε′j < (λε′)/(αj), by
contrapositive. Then, we can sum these inequalities and we get

λε′ ≤
λT∑
j=1

ε′j <
λε′

α

λT∑
j=1

1
j
< λε′

where the rightmost inequality comes from the well-known inequality for harmonic series:
∑λT
j=1

1
j < α.

This is contradictory. So we have proven the proposition.

Corollary A.3 Under the same assumptions as in Proposition A.2, if FS is (t, qh, qs, ε′/(αT), ε′/(αT))-
selectively-forward-secure, then FS is (t, qh, qs, ε′)-forward-secure.

Proof: We just need to remark that if εδ ≥ ε′/(αT), then, since δ, ε ≤ 1, we have ε, δ ≥ ε′/(αT) and thus
FS is also (t, qh, qs, ε, δ)-selectively-forward-secure. And we apply Proposition A.2.

B Mathematical Tools

B.1 Results on Residues

This section presents various results on multiples (i.e., residues for an additive law) in cyclic groups
and then uses them to prove results on residues of Z∗N , with N ≥ 3 an odd number. In this section,
gcd(a, b) = a ∧ b is the greatest common divisor (gcd) of a and b.

Multiples in cyclic groups

Let n be an integer greater or equal to 2. Let a be an element of Zn.

Definition.

Definition B.1 Let α be a positive integer. a is an α-multiple (modulo n) if and only if there exists
b ∈ Zn, such that a = αb.

Characterization of α-multiples in Zn. Let gcd(u, v) = u ∧ v be the greatest common divisor of
two integers u and v.

Remark B.2 If β is an integer which divides n, β divides (a mod n) if and only if it divides any (a+ `n)
(where ` is an integer). In this case, we say that β divides a.

Theorem B.3 Let α be a positive integer. a is an α-multiple if and only if gcd(α, n) divides a.

49

Proof: If a is an α-multiple, there exists b ∈ Zn such that a = αb mod n, so there exists an integer m
such that α divides a−mn. Therefore gcd(α, n) divides a−mn and gcd(α, n) divides a.
Suppose d = gcd(α, n) divides a. There exists b such that a = db. Thanks to Bezout theorem, there exists
two integers u and v such that uα+ vn = d. Then, in Zn, a = db = db− vnb = uαb and a is an α-multiple.

Corollary B.4 There are exactly n
gcd(α,n) α-multiples modulo n. Furthermore for each α-multiples modulo

n, there exists gcd(α, n) elements b ∈ Zn, such that a = αb.

Proof: Thanks to the previous theorem, the α-multiples are the elements gcd(α, n) · a, with a ∈ {0, . . . ,
n

gcd(α,n) − 1}. And if a is an α-multiple, there exists b such that a = αb, and then a = α · (b+ i n
gcd(α,n)), for

each i ∈ {0, . . . , gcd(α, n)− 1}.

In addition, we have the following corollary, which leads to an efficient way of checking e-residuosity in
Z∗N in Proposition B.16:

Corollary B.5 Let α be a positive integer. a is an α-multiple if and only if n
gcd(α,n)a = 0 (in Zn).

Proof: Thanks to the previous theorem, it is sufficient to prove that n
gcd(α,n)a = 0 if and only if gcd(α, n)

divides a. If gcd(α, n) divides a, clearly n
gcd(α,n)a = 0. Otherwise, let us write a = gcd(α, n)q + r, with

0 ≤ r < gcd(α, n), then n
gcd(α,n)a = nr

gcd(α,n) 6= 0 in Zn.

Main theorem.

Theorem B.6 Let α, β, γ be three positive integers. Suppose γ is co-prime to n. Then, βa is a α-multiple,
if and only if a is a γ α∧n

α∧β∧n -multiple.

Remark B.7 Let us choose a = α∧n
α∧β∧n . Then βa is divisible by α ∧ n and so is an α-multiple. But,

for any divisor γ 6= 1 of n, which does not divides α∧n
α∧β∧n , a is not a γ-multiple. Hence, we can see the

theorem as optimal.

Proof: If a is a γ α∧n
α∧β∧n -multiple, a is divisible by gcd(γ α∧n

α∧β∧n , n) = α∧n
α∧β∧n and so βa is divisible by α∧n

and a is an α-multiple.
If βa is an α-multiple, βa is divisible by α ∧ n. α∧n

α∧β∧n is co-prime to β
α∧β∧n and divides β

α∧β∧na. So,
thanks to Gauss theorem, a is divisible by α∧n

α∧β∧n . Since gcd(γ α∧n
α∧β∧n , n) = α∧n

α∧β∧n , a is a γ α∧n
α∧β∧n -multiple.

Residues of Z∗N
We can then use the previous results to prove some results on residues of Z∗N .

Definition B.8 Let e be a positive integer. A ∈ Z∗N is a e-residue modulo N if and only if there exists
B ∈ Z∗N such that A = Be.

Remark B.9 Let p be an odd prime number and k a positive integer. It is well know there exists a
group isomorphism ψpk from Z∗

pk
to Zpk−pk−1 . And we can see that, for any A ∈ Z∗

pk
, A is a e-residue

modulo pk if and only if ψpk(A) is a e-multiple (in Zpk−pk−1).

Let N = pk1
1 . . . pkmm be the prime decomposition of N .

The following lemma comes directly from the Chinese Remain Theorem:

50

Lemma B.10 A ∈ Z∗N is a e-residue modulo N if and only is it is an e-residue modulo pkii for all i.

And then, thanks to Theorem B.6, Remark B.9, and Lemma B.10, we have the following theorem:

Theorem B.11 Let e, c be two positive integer, and U,Z two elements of Z∗N such that Ze = U c (i.e.,

U c is a e-residue). Then U is a e′-residue, with e′ the gcd of all e∧(pkii −p
ki−1
i)

c∧e∧(pkii −p
ki−1
i)

· ei, with ei the largest

divisor of e co-prime to pkii − p
ki−1
i (for i ∈ {1, . . . ,m}).

Remark B.12 The optimality of this theorem comes from the optimality of Theorem B.6.

We recall that φ(N) =
∏m
i=1(pkii − p

ki−1
i) is the cardinal of Z∗N . Thanks to Remark B.9, Lemma B.10,

and Corollary B.4, we also have the following proposition:

Proposition B.13 The number of e-residues modulo N is:

φ(N, e) =
m∏
i=1

pki − pki−1

e ∧ (pki − pki−1)

Furthermore, each e-residue modulo N has exactly φ(N)/φ(N, e) roots.

When e is co-prime with φ(N), we have φ(N, e) = φ(N), hence we get the following corollary:

Corollary B.14 When e is co-prime with φ(N), all elements of Z∗N are e-residues. Furthermore, each
element of Z∗N has exactly a unique root. In other words, the function f defined by f(x) = xe mod N is a
permutation over Z∗N .

When e divides φ(N), we have φ(N, e) = φ(N)/e, hence we get the following corollary:

Corollary B.15 When e divides φ(N), the number of e-residues modulo N is φ(N)/e. Furthermore,
each e-residue has exactly e roots.

And thanks to Remark B.9, Lemma B.10, and Corollary B.5, we also have the following proposition,
which yields an efficient algorithm to know if an integer U is an e-residue modulo N or not (if the
factorization of N is known):

Proposition B.16 U ∈ Z∗N is an e-residue modulo N if and only if, for all i:

U
pki−pki−1

e∧(pki−pki−1) = 1 mod pki .

B.2 Some Propositions on Prime Numbers

This section shows some known results on primes numbers.
Let π(x) be the number of primes not greater than x. The following lemma is a direct corollary of

Theorem 1.10 in [Dus98, p. 36]:

Lemma B.17 For x ≥ 599,

x

log x

(
1 + 1

log x

)
≤ π(x) ≤ x

log x

(
1 + 1.28

log x

)
From this lemma, we can prove the following proposition, by carefully bounding π(2`e)− π(2`e−1).

Proposition B.18 The number of primes of length `e is at least 2`e−1/(`e − 1), if `e ≥ 11.

51

Let us now introduce a proposition useful to prove key indistinguishability in the GQ scheme (Sec-
tion 4.1).

Proposition B.19 Let `N , `e be two positive integers. Suppose `e < `N and `e ≥ 11. Let N be a `N -bit
integer. Let D0 be the uniform distribution for `e-bit primes. Let D1 be the uniform distribution for `e-bit
primes, co-prime to φ(N). The statistical distance between D0 and D1 is at most `N+1

2`e−1 .

Proof: Let N0 be the number of `e-bit primes and N1 be the number of `e-bit primes, co-prime to φ(N).
We remark that a `e-bit prime is at least 2`e−1, and so there are at most (`N + 1)/(`e − 1) such primes
which divide φ(N). Otherwise, their product would be greater than 2`N+1. Since this product divides
φ(N) < 2`N+1, this is impossible. Therefore, N1 ≥ N0 − (`N + 1)/(`e − 1). Furthermore, according to
Proposition B.18: N0 ≥ 2`e−1/(`e − 1).

According to Lemma 2.3, the statistical distance between D0 and D1 is

1− N1
N0

= N0 −N1
N0

≤ (`N + 1)/(`e − 1)
2`e−1/(`e − 1) = `N + 1

2`e−1 .

C Proofs of Security Based on the Forking Lemma for Key-Evolving
Collision-Intractable Identification Schemes

In this appendix, we give proofs of security based on the forking lemma for signatures obtained from
some particular key-evolving identification schemes via the generalized Fiat-Shamir transform described
in Section 3.2. This is a generalization of [MR02], which itself is based on [PS00].

C.1 Key-Evolving Collision-Intractable Identification Schemes

In this section, we extend the notion of collision-intractable identification schemes introduced in [CD95]
to the key-evolving settibg. Let ID be a key-evolving identification scheme, as described in Section 3.1.

Informally, ID is collision-intractable if an adversary cannot output two valid transcripts (cmt, ch,
rsp) and (cmt, ch′, rsp′) with ch 6= ch′, for a period ı̃, even with access to the public key pk and the secret
key sk ı̃+1 for period ı̃+ 1.

More formally, let A be an adversary and k be a security parameter. Let Expcol-int
ID,k (A) be the following

experiment played between A and a hypothetical challenger:

Expcol-int
ID,k (A)

(pk, sk1) $← KG(1k) ; ı̃ $← {1, . . . , T} ; sk ı̃+1 = Updateı̃(sk1)
(cmt, ch, rsp, ch′, rsp′) $← A(̃ı, pk, sk ı̃+1)
d = Ver(pk, cmt, ch, rsp, i) ∧ Ver(pk, cmt, ch′, rsp′, ı̃) ∧ ch 6= ch′
return d

A is said to (t, ε)-breaks the collision-intractability problem if A runs in time at most t and its probability
of success is Pr

[
Expcol-int

ID,k (A) = 1
]
≥ ε. Furthermore, ID is said to be (t, ε)-collision-intractable if no

adversary (t, ε)-breaks the collision-intractability problem

52

C.2 Generalized Fiat-Shamir Transformation

Theorem C.1 Let ID = (KG, LKG,Update,Prove, C,Ver) be a key-evolving lossy identification scheme
whose commitment space has min-entropy at least β (for every period i), let H be a hash function modeled
as a random oracle, and let FS [ID] = (KG,Sign,Ver) be the signature scheme obtained via the generalized
Fiat-Shamir transform (Figure 3.1). If ID is εs-simulatable, complete, (t′, ε′)-collision-intractable, then
FS [ID] is (t, qh, qs, ε, δ)-existentially-selectively-forward-secure in the random oracle model for:

t ≈
(t′ − (T − 1) tUpdate) ·

(
ε− qs εs − (qh + qs + 1) qs/2β − 2(qh + 1)/|C|

)
2qh + 3 − qstSim−Sign

as long as

ε > qsεs + (qh + qs + 1)qs
2β + 2qh + 1

|C|
and ε′ ≤ δ

(
1− 1

e

)2

where tSim−Sign denotes the time to simulate a transcript using T̃r
ID

and tUpdate denotes the time to
update a secret key using Update. Furthermore, if ID is response-unique (for normal keys),28 FS [ID] is
(t, qh, qs, ε, δ)-selectively-forward-secure.

Corollary C.2 Under the same hypothesis of C.1, FS [ID] is (t, qh, qs, ε, δ)-selectively-forward-secure in
the random oracle model for:

t ≈ (t′ − (T − 1) tUpdate) · ε
4qh + 6 − qstSim−Sign

as long as

ε ≥ 2
(
qsεs + (qh + qs + 1)qs

2β + 2qh + 1
|C|

)
and ε′ ≤ δ

(
1− 1

e

)2
.

Proof of Corollary C.2: The condition ε ≥ 2
(
qsεs + (qh + qs + 1)qs/2β + 2(qh + 1)/|C|

)
ensures that

ε− qsεs − (qh + qs + 1)qs/2β − 2(qh + 1)/|C| ≥ ε/2.

Proof of Theorem C.1: We use the same methods as Micali and Reyzin in [MR02]. Let us suppose
there exists an adversary A which (t, qh, qs, ε, δ)-breaks FS [ID]. In particular, A (t, qh, qs, εδ)-breaks
FS [ID]. Let us consider the games G0, . . . ,G7 of Figure 3.2 and Figure 3.3, modified as for the proof of
Theorem 3.3 (using Initialize and Finalize of G6 for games G0, . . . ,G5), and G′8 of Figure C.1.
As for the proof of Theorem 3.3, according to Equation (3.2), if we write γ = qsεs + (qh + qs + 1)qs/2β:

Pr [G7(A)⇒ 1] ≥ ε− γ with probability at least δ over (pk, sk1, ı̃).

In G′8, the game outputs 0 if the signature does not correspond to the challenge ch∗. Since we have

Pr [G7(A)⇒ 1 ∧ Good7] = Pr [G7(A)⇒ 1] · Pr [QT[fp] = (cmt∗,M ∗)] = 1
qh + 1Pr [G7(A)⇒ 1],

and Pr
[
G′8(A)⇒ 1 ∧ Good′8

]
= Pr

[
G′8(A)⇒ 1

]
, according to Lemma 2.2, we have

Pr [G7(A)⇒ 1] = (qh + 1)Pr
[
G′8(A)⇒ 1

]
.

And so
Pr
[
G′8(A)⇒ 1

]
≥ ε− γ
qh + 1 with probability at least δ over (pk, sk1, ı̃).

28There are no lossy keys, so it does not make sense to consider response uniqueness for lossy keys, contrary to Theorem 3.1

53

Initialize(k, T) Game G7,G′8
701 S,HT,QT← []
702 hc← 1 ; b← T + 1
703 fp $← {1, . . . , qh + 1} ; ch∗ $← C
704 ı̃

$← {1, . . . , T}
705 (pk, sk1) $← KG(1k , 1T)
706 for i = 1, . . . , T − 1
707 ski+1 ← Update(ski)
708 return (pk, T)
H(x) Game G7,G′8
711 if HT[x] =⊥ then
712 QT[hc]← x
713 if hc 6= fp then
714 HT[x] $← C
715 else
716 HT[x] $← ch∗
717 hc← hc + 1
718 return HT[x]
Break-In(i) Game G7,G′8
721 if 1 ≤ i ≤ T then
722 b← min(i, b)
723 if i ≤ ı̃
724 return ⊥
725 return ski

726 else
727 return ⊥

Sign(M , i) Game G7,G′8
731 (cmt, ch, rsp) $← T̃r

ID
pk,i,k

732 HT[(cmt,M , i)]← ch
733 σ ← (cmt, rsp)
734 S[(cmt,M , i)]← rsp
735 return (σ, i)

Finalize(M ∗, (σ∗, i∗)) Game G7, G′8
751 d← Ver(pk, (σ∗, i∗),M ∗)
752 if i∗ ≥ b or i∗ 6= ı̃ then
753 d← 0
754 (cmt∗, rsp∗)← σ∗

755 if QT[fp] 6= (cmt∗,M ∗) then
756 bad← true
757 d← 0
758 if S[(cmt∗,M ∗, i∗)] 6=⊥ then
759 d← 0
760 return d

Figure C.1: Games G7,G′8 for proof of Theorem C.1. G′8 includes the boxed code at line 757 but G7 does not.

Let a = ε−γ
qh+1 . Let us now construct an adversary B which breaks the collision-intractability problem.

In the first part, B runs A α times and simulates the oracles as in G′8, except for Initialize where it
uses directly its inputs ı̃, pk, and sk ı̃+1 (instead of picking them uniformly at random). Every repetition
starts completely anew, i.e., with a new random tape for A and new answers for the random oracle.
With probability 1− (1− α)α

−1
≥ 1− 1/e, the adversary A outputs at least a correct forgery accepted

by Finalize, i.e., a forgery for period i∗ = ı̃ and with the challenge corresponding to the fpth query
to the random oracle, fp being chosen uniformly at random at each run of A. The adversary B stores
the first correct output forgery (M ∗, (σ∗, i∗)). Let (cmt∗, rsp∗) = σ and ch∗ = H((cmt∗,M ∗)), such that
(cmt∗, ch∗, rsp∗) is a correct transcript.

Now we can run again A a certain number of times with the same random tape s and the same answers
for the random oracle queries up to the fpth query, and then use new uniform random answers.

Let us compute the probability that A will again output a correct forgery. Let ξ be the random variable
(s, fp, h1, . . . , hfp−1) with s being the random tape of the adversary A and h1, . . . , hfp−1 being the answers
to the fp − 1 first queries to the random oracle, for the first run where A managed to output again a
correct forgery. Let E be the event that the adversary A outputs a correct forgery if it is simulated in the
environment of game G′8. For λ = (s′, fp′, h′1, . . . , h′fp−1), let Eλ be the event that in such simulations, the
random tape of A is s = s′, the fp chosen by Initialize is fp′, and the answers to the fp− 1 first queries
to the random oracle are h′1, . . . , h′fp. The events Eλ are disjoint,

∑
λ Pr [Eλ] = 1, and, because of the

choice of ξ, we also have Pr [ξ = λ] = Pr [Eλ | E]. In addition Pr [E] ≥ α.

We can then apply the following lemma stated and proven in [MR02] (Lemma 3).

54

Lemma C.3 ([MR02]) Let E be an event with probability α. Let Λ a finite set and let (Eλ)λ∈Λ be disjoint
events such that

∑
λ Pr [Eλ] = 1. Let ξ be a Λ-valued random variable with the following distribution

Pr [ξ = λ] = Pr [Eλ | E]. Then
Prξ

[
Pr [E | Eξ] ≥ α

2

]
≥ 1

2 .

Therefore, we have Prξ
[
Pr [E | Eξ] ≥ α

2
]
≥ 1

2 . which means that with probability 1/2, the probability α′
that the adversary A will do a forgery under condition ξ is at least α/2. Assume ξ is such that α′ ≥ α/2.
Then the probability that A will output a forgery corresponding to a “good” transcript (cmt∗, ch′∗, rsp′∗)
with ch′∗ 6= ch∗ is at least α/2− 1/|C|.
So, in the second part, B runs A (α/2− 1/|C|)−1 times under the condition ξ. The probability that A
will output a forgery corresponding to a “good” transcript is(

1− (1− (α/2− 1/|C|))(α/2−1/|C|)−1)
≥ 1− 1/e.

Therefore, with probability (1 − 1/e)2/2, B gets two transcripts (cmt∗, ch∗, rsp∗) and (cmt∗, ch′∗, rsp′∗)
with ch∗ 6= ch′∗. This corresponds to the expected output for the game of collision-intractability.
We can now slightly improve the running time of B. Instead of simulating the environment of G′8, let B
simulates the environment of G7 when it runs A, in the first part. The only difference is that B accepts
any forgery (in the first part) instead of accepting only forgeries for the fpth query to the random oracle,
where fp is chosen uniformly at random. Therefore, B just needs to run A 1

ε−γ times instead of qh+1
ε−γ , to

have a forgery with probability at least 1− 1/e. As explained in [MR02], the probability distribution of ξ
is still the same and so it does not change the rest of the proof.
Let us now analyze the running time of B. The first part takes about 1

ε−γ (t+ qstSim−Sign) and the second
part takes about 1

α/2−1/|C| (t+ qstSim−Sign). Therefore B (t′, ε′)-breaks the collision intractability with

t′ ≤
(1
ε− γ

+ 1
(ε− γ)/(2(qh + 1))− 1/|C|

)
(t+ qstSim−Sign) + (T − 1) tUpdate

≤
(1
ε− γ − 2 (qh + 1)/|C| + 2 (qh + 1)

ε− γ − 2 (qh + 1)/|C|

)
(t+ qstSim−Sign) + (T − 1) tUpdate

≤ (2qh + 3) (t+ qstSim−Sign)
ε− γ − 2 (qh + 1)/|C| + (T − 1) tUpdate

and
ε′ = δ

(
1− 1

e

)2
as long as ε ≥ γ + 2 (qh + 1)/|C|.

We remark that this is exactly the bound of [MR02] (if T2 = 0 in their paper, and tUpdate = 0), which is not
surprising since selective existential forward security is very close to the classical existential unforgeability.

C.3 Security of the Itkis-Reyzin Scheme

In this section, we apply the previous generic results to present another security analysis of the original
Itkis-Reyzin scheme in [IR01], based on the forking lemma.

According to Appendix C, and more precisely to Corollary C.2, we just need to prove that the
underlying key-evolving identification scheme is collision-intractable. Informally, this means that it is
hard for an adversary to find two correct transcripts (cmt, ch, rsp) and (cmt, ch′, rsp′) for a period ı̃ such
that ch 6= ch′, given the public key pk, the period ı̃, and the secret key sk ı̃+1 for period ı̃ + 1. For the

55

IR scheme, it is straightforward to see that the identification scheme is (t′, ε′)-collision intractable if the
strong RSA problem is (t′, ε′)-hard. It is also response-unique exactly for the same reason as our scheme
in Section 6.3. Therefore, Theorem 5.1 follows from Corollary C.2.

56

	Introduction
	Preliminaries
	Notation and Conventions
	Games
	Statistical Distance
	Complexity Assumptions
	Forward-Secure Signature Schemes

	Lossy Key-Evolving Identification and Signature Schemes
	Lossy Key-Evolving Identification Scheme
	Generalized Fiat-Shamir Transform

	Tighter Security Reductions for Guillou-Quisquater-like Schemes
	Guillou-Quisquater Scheme
	Variant of the Itkis-Reyzin Scheme

	Analysis of our Variant of the Itkis-Reyzin Scheme
	Computation of the Exponents
	Optimizations
	Choice of Parameters
	Comparison with Existing Schemes

	Generic Factoring-Based Forward-Secure Signature Scheme
	Generic Factoring-Based Forward-Secure Signature Scheme
	An Optimization
	Instantiations

	Impossibility Results on Tightness
	Intuition
	Key-Verifiable Key-Evolving Signature Scheme
	Black-Box Non-Rewinding Reductions
	Main Theorem

	Multi-User and Tightly Forward-Secure Signature Schemes
	M-SUF-CMA Signature Schemes
	From M-SUF-CMA to Forward-Secure Signature Schemes

	Constructions of Tightly Secure M-SUF-CMA Signature Schemes
	Preliminaries
	Construction Based on Commitments and Simulation-Extractable NIZKs
	Construction Based on One-Time M-SUF-CMA Schemes

	Acknowledgments
	References
	Relations Between Security Notions
	Mathematical Tools
	Results on Residues
	Some Propositions on Prime Numbers

	Proofs of Security Based on the Forking Lemma for Key-Evolving Collision-Intractable Identification Schemes
	Key-Evolving Collision-Intractable Identification Schemes
	Generalized Fiat-Shamir Transformation
	Security of the Itkis-Reyzin Scheme

