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Abstract. Reachability, which answers whether one person is reachable
from another through a sequence of contacts within a period of time, is
of great importance in many domains such as social behavior analysis.
Recently, with the prevalence of various location-based services (LBSs),
a great amount of spatiotemporal location check-in data is generated by
individual GPS-equipped mobile devices and collected by LBS compa-
nies, which stimulates research on reachability queries in these location
check-in datasets. Meanwhile, a growing trend is for LBS companies to
use scalable and cost-effective clouds to collect, store, and analyze data,
which makes it necessary to encrypt location check-in data before out-
sourcing due to privacy concerns. In this paper, for the first time, we
propose a scheme, SecReach, to securely evaluate reachability queries
on encrypted location check-in data by using somewhat homomorphic
encryption (SWHE). We prove that our scheme is secure against a semi-
honest cloud server. We also present a proof-of-concept implementation
using the state-of-the-art SWHE library (i.e., HElib), which shows the
efficiency and feasibility of our scheme.
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1 Introduction

Reachability, which answers whether a user is reachable from another through a
sequence of contacts in a period of time, is of great importance in many domains,
e.g., social behavior analysis, friend recommendations, public health monitoring,
to name a few. Due to the prevalence of various location-based services (LBSs),
such as Google Maps, Foursquare, Yelp, etc., a great amount of location check-
in data is generated by individual GPS-equipped mobile devices and collected
by these LBS companies. This stimulates research on reachability analysis in
these location check-in datasets [19], [21]. For instance, if two people are in close
proximity to each other, we can infer that they are socially connected or an



item (e.g., an infectious virus) could spread from one to another. Base on these
inferences, companies or other authorized parties such as governments are able to
build customized advertising systems, identify certain targets or trace epidemic
contacts.

Meanwhile, with the increase in the volume of data (for example, there are
millions of new check-ins in Foursquare each day), a growing trend is for LBS
companies to use scalable and cost-effective cloud services to store and analyze
data. For instance, both Foursquare and Yelp use Amazon S3 (Amazon Simple
Storage Service) to store their data. Moreover, advanced cloud services (such as
Amazon Kinesis Firehose) allow mobile LBS applications to send data directly
to cloud stores (e.g., Amazon S3) from users’ mobile devices, which enables LBS
companies to scale location check-in data collection on clouds. However, out-
sourcing location check-in data to clouds poses the privacy concerns of users.
Location check-ins are sensitive because they reveal private individual informa-
tion including home addresses, interests, and state of health [20]. Furthermore,
the anonymity of location check-in data is difficult to achieve. A recent research
work [5] shows that in a dataset, where the locations are specified hourly, four
spatiotemporal points are enough to uniquely identify most of the individuals.
Given the sensitivity of location information, users, who are willing to make their
locations available to LBS companies, may not fully trust third party clouds. On
the other hand, LBS companies also do not want to reveal individually generated
location check-in data to public clouds, due to legal and commercial reasons.

To prevent clouds from learning location check-in data, the most effective
way is to use end-to-end data encryption. However, the analysis of the encrypted
check-in data in clouds remains to be a very challenging problem. Specifically, in
this paper, we study how to evaluate reachability queries on encrypted location
check-in data. Theoretically, Fully Homomorphic Encryption (FHE) [7] allows
an untrusted party to compute any functions on encrypted data, however, the
state-of-the-art FHEs are far from being practical [16]. Somewhat Homomor-
phic Encryption (SWHE), which supports additions and a few multiplications,
is more efficient than FHE. Unfortunately, it cannot be directly used for evalu-
ating reachability queries, because the limited number of multiplications is not
sufficient for comparisons in reachability queries. On the other hand, some recent
methods have been proposed for similar queries on encrypted location data, such
as trajectory similarity [12] and kNN [6], [17], in which they combine partially
homomorphic encryption and secure two-party computation to implement com-
parisons on ciphertexts. However, this kind of method is ordinarily based on the
system model of two cloud servers, which introduces extensive interactions.

In this paper, we propose a scheme for reachability queries evaluation on
encrypted location check-in data. Our main contributions are as follows:

– To the best of our knowledge, this is the first work that studies reachabil-
ity queries evaluation on encrypted location check-in data. We propose a
method to compute 2-hop reachability using additions and a limited number
of multiplications, instead of relying on comparisons which implies interac-
tions. With the use of SWHE and Bloom filters, the evaluation of reachability



queries is non-interactive between a cloud server and a data analyzer. One
of the key innovations in our scheme is a new method to determine whether
an integer number is equal to a given integer k or whether it is in the range
of [0, k − 1] in the ciphertext domain without decryption.

– We formally analyze the security of our scheme against a semi-honest server,
and it is shown that our scheme does not leak any user locations, intermediate
results or final reachability results to the server. We also present a proof-
of-concept implementation, and experimental results show our scheme is
feasible and efficient in practice.

The rest of this paper is organized as follows. Section 2 presents the problem
statement and Section 3 introduces the preliminaries of our scheme. In Section
4 we describe the idea and details of our scheme. We analyze the security of
our scheme in Section 5 and present a proof-of-concept implementation with a
performance analysis in Section 6. Finally, Section 7 reviews the related work
and Section 8 concludes the paper.

2 Problem Statement

In this paper we study the problem of evaluating reachability queries on en-
crypted location check-in data. In this section, we first introduce our system
and adversarial model. Then, we state the data format of location check-ins and
definition of reachability. Finally, we present our design objectives.

2.1 System and Adversarial Model
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Fig. 1. The system model.

System Model Our system model, as shown in Fig. 1, consists of a set
of users, a data owner, a data analyzer, and a cloud server. Specifically, each



user generates location check-in data on personal devices (e.g., smartphones
or tablets), and uploads location check-ins to the cloud server over time. As a
result, the cloud server stores and maintains a dataset containing a set of location
check-ins, where each location check-in (also referred to as a tuple) is reported by
one of the users at a certain time. Said differently, each tuple consists of three
properties, including who, where and when. The dataset belongs to the data
owner (e.g., an LBS company). The data analyzer is able to submit reachability
queries to the cloud server to discover the reachability of a certain user to other
users. Note that the data analyzer could also be the data owner itself. The
cloud server should be able to perform the evaluation of reachability queries in
a location check-in dataset, and return results to the data analyzer.

Adversarial Model We assume users trust the data owner, but not the
cloud server. Specifically, we assume the cloud server is semi-honest (i.e., honest-
but-curious), which means it follows protocols correctly but may try to learn
the private location of each tuple in a location check-in dataset. To be more
precise, given a location check-in, the cloud server tries to figure out where this
location check-in is reported. Due to the privacy concerns of users, each location
is encrypted with a public key of the data owner before uploading it to the cloud.
Therefore, given a reachability query, the cloud server computes it on encrypted
data, and returns encrypted result back to the data analyzer. The data analyzer
asks the data owner to decrypt the result. Only the data owner can decrypt the
result with its secret key. We assume the data analyzer and the cloud server do
not collude. Previous examples of this type of system model can also be found
in recent secure medical computation applications such as [3], [26].

2.2 Location Check-in Data, Proximity and Reachability

Location Check-in Data As discussed in [19], location check-in data is as-
sociated with both space dimension and time dimension as users move within
a space over time. We define a location check-in data as a tuple d = (u, l, t),
where u is a user identity (i.e., who), l is the location of this user (i.e., where),
and t is the time slot of generating this location check-in (i.e., when). Moreover,
we leverage a square grid to index locations, as shown in Fig. 2. Specifically, a
location l = (x, y) is the center of a cell, and a user’s location is reported as l
on condition that its physical location is within this cell. Similar as square grid,
other types of grids, such as hexagonal grid [15] can also be leveraged in location
check-in data.

Proximity and Reachability Given a tuple d = (u, l, t), where l = (x, y),
we define the proximity range of user u as its square neighborhood including
nine cells, where the center of this square is (x, y) and the size of this square
can be configured by changing the cell size. This square is in fact the Moore
neighborhood of the cell (x, y) with a specific range, which is frequently used
in geographic information system (GIS). If another user’s location is inside the
proximity range of user u in the same time slot t, we say that the two users are
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Fig. 2. An example of location check-in data generated by four users. The locations
(i.e., where) are indexed using a grid. In this example, u3 is reachable from u1 through
u2 (i.e., there is a contact path u1 → u2 → u3).

in direct contact. Correspondingly, two users can be in indirect contact if they
have a common direct-contact user. A contact path, which is bidirectional, exists
between two users if they are in contact (either direct or indirect). A reachability
query of a user ui to another user uj tells whether there is a contact path between
them in a given time interval T (including several time slots). In other words, it
is a way to decide whether one user is reachable from another user within T .

Fig. 2 shows an example of location check-in data generated by four users in
time slot t0. In this example, for user u3 and user u1 in time interval T = t0, u3

is outside the proximity range of u1, but it is inside the proximity range of u2,
who is in the proximity range of u1. Thus, there is a contact path u1 → u2 → u3

from u1 to u3, i.e., u3 is reachable from u1 through u2. For user u4 and user
u1, because u4 is outside all the proximity ranges of the other three users, it is
not reachable from any of those three users. More details about the definition of
reachability can be found in [19].

2.3 Design Objectives

In this paper, we aim at designing a secure scheme to compute reachability
queries under the preceding system and adversarial model. Our main design
objectives include two aspects, data privacy and efficiency. Specifically,

– Data Privacy. The cloud server is not be able to reveal any of the locations
in a location check-in dataset or the results of any reachability queries. In
addition, the cloud server cannot reveal intermediate results (e.g., the prox-
imity between users). The reason of such high level of privacy protection
is that, if we leak either intermediate proximity results or final reachabil-
ity results to the cloud server, the cloud server may be able to infer users’
locations by encrypting locations of its choice and then conduct proximity
tests with the locations in the dataset, and use triangulation attacks to learn
users’ locations with reasonable accuracy [11].



– Efficiency. Our scheme should efficiently carry out reachability queries on
encrypted location check-ins and avoid interactions between the cloud server
and data analyzer during the evaluation of reachability queries.

3 Preliminaries

3.1 Bloom Filters

A Bloom filter [1] is a space-efficient randomized data structure for membership
testing (i.e., whether an element is in a set or not). More specifically, a Bloom
filter is able to decide either an element is definitely not in a set or it is in
a set with a very high probability. A (m, k)-Bloom filter BF = (b1, . . . , bm) is
essentially a binary vector of m bits, which are initially all set as 0s. There are
k independent hash functions h1, . . . , hk, where the hash values of each of those
hash functions is within the range of [1,m] and each value within this range
maps a component index in a Bloom filter.

To add an element x to a Bloom filter BF, bits {bh1(x), ..., bhk(x)} are set as
1s. To query if an element y is in a set, we check whether {bh1(y), ..., bhk(y)} are
all 1s. If not, then y is definitely not a member of the set; otherwise, y is in the
set with a small false positive probability. We denote the above two algorithms
as BF.add and BF.query, respectively.

3.2 Somewhat Homomorphic Encryption

Somewhat homomorphic encryption (SWHE) is a fundamental building block
of fully homomorphic encryption (FHE), which can be extended to FHE by
utilizing bootstrapping [7]. Compared to FHE, SWHE can only carry out a
limited number of multiplications, but it is much faster than FHE [14].

A typical public-key SWHE scheme consists of five algorithms, including
SWHE.KeyGen, SWHE.Enc, SWHE.Dec, SWHE.Add and SWHE.Mul. Specifically,
SWHE.KeyGen(1λ) takes as input a security parameter and outputs a pair of pub-
lic and secret keys (pk, sk). c ← SWHE.Enc(pk,m) and m ← SWHE.Dec(sk, c)
are used for encryption and decryption, respectively, where m and c are a pair
of plaintext/ciphertext. In addition, SWHE.Add and SWHE.Mul are used for
homomorphically additions and multiplications, respectively. More concretely,
SWHE.Add(c1, c2) takes as input two ciphertexts c1 and c2 and outputs a new
ciphertext cadd, where c1 is the ciphertext of m1, c2 is the ciphertext of m2, and
cadd is the ciphertext of m1 +m2. Similarly, SWHE.Mul(pk, c1, c2) outputs cmul,
which is the ciphertext of m1m2.

4 SecReach: Secure Reachability Computation

As we discussed above, given two users (ui, uj) and a time interval T , a reach-
ability query answers whether there is a contact path from ui to uj within time
interval T . In this paper, we begin with the very fundamental problem, i.e.,



whether uj is reachable from ui by a contact path with two hops, which we call
it a 2-hop reachability query. This type of queries can be easily seen in practice,
e.g., finding a friend of a friend in social networks [23]. In the following, for ease
of presentation, we first assume all the location check-ins are reported in one
time slot t0, and the query time interval is T = t0. Then we will explain how to
extend our scheme to support queries with different time slots.

4.1 Our Main Idea

Assume each user generates a location check-in in time slot t0, and there are n
users in total. Given a 2-hop reachability query of (ui, uj) in T = t0, our main
idea is to evaluate whether there is at least one user, e.g., uk, is in direct contact
with both ui and uj . If it is, then it implies that uj is reachable from ui within
2 hops, and there is at least one contact path, e.g., ui → uk → uj ; otherwise, ui

and uj are not 2-hop reachable.
By following this logic, our method can be broken down in two steps. First,

we compute the contacts between ui and all the n users, and represent the results
as an n-bit binary vector vi, which is referred to as the contact vector of user ui.
If user ui and uk (1 ≤ k ≤ n) are in direct contact, the k-th position of contact
vector vi is set to 1 (i.e., vi[k] = 1); otherwise, it is set to 0. Similarly, we can
compute a contact vector vj for user uj . In the second step of our approach, we
compute an inner product of vi and vj , which is represented as ⟨vi,vj⟩. If this
inner product is equal to or greater than 1, i.e., ⟨vi,vj⟩ ≥ 1, it indicates there
is at least one user (e.g., uk) in direct contact with both of the two users, and
these two users are reachable within 2 hops. Note that, at least one same index
is assigned as 1 in both of the two contact vectors vi,vj , e.g., vi[k] = vj [k] = 1.

In order to decide whether user ui is in direct contact with a user uk, or said
differently, whether this user uk is inside user ui’s proximity range, we describe
each user’s proximity as a set of locations that are close to it, and leverage a
Bloom filter to represent this set. As a result, whether user ui is in direct con-
tact with user uk is equivalent to say whether user uk’s location is a member
of the Bloom filter of user ui. The essential reason that we utilize membership
testing other than computing and comparing distances of two locations, is be-
cause membership testing is more efficient on encrypted data. Specifically, we
leverage inner product to conduct membership testing in Bloom filter, which can
be efficiently computed on encrypted data using SWHE (with one homomorphic
multiplication). Moreover, we present a new way to convert the result of this in-
ner product to a binary number in ciphertext domain so as to build the contact
vector described above.

4.2 The Details of Our Scheme

In the following, we describe the details of our scheme. Our scheme leverages a
public-key somewhat homomorphic encryption scheme SWHE and we denote byJxK the ciphertext of x encrypted under SWHE.



Encrypt Locations on The User Side Given a location check-in tuple di =
(ui, li, t0) generated by user ui in time slot t0, user ui encrypts its location li as
follows:

1. Enumerate and add all the locations in its proximity range to an (m, k)-
Bloom filter BF using BF.add. Here we use an m-bit vector αi to represent
BF and refer to it as the proximity vector of user ui.

2. Create another m-bit vector βi, where all bits are initialized as 0s, and set
the hj(li)-th bit of βi to 1, for 1 ≤ j ≤ k, where hj (1 ≤ j ≤ k) are the k
hash functions of BF. βi is called the location vector of user ui.

3. Encrypt αi and βi using SWHE.Enc. More concretely,

JαiK← (SWHE.Enc(pk,αi[1]), . . . , SWHE.Enc(pk,αi[m])) (1)

JβiK← (SWHE.Enc(pk,βi[1]), . . . , SWHE.Enc(pk,βi[m])) (2)

Note that the above encryptions are bit-wise, where we encrypt each bit in
vector αi and βi separately.

In the end, user ui obtains an encrypted location check-in as (ui, JαiK, JβiK, t0),
and sends it to the cloud server.

Evaluate 2-hop Reachability on Cloud Server Assume user ui sends one
encrypted location check-in (ui, JαiK, JβiK, t0), and there are n encrypted location
check-ins in total from the n users. The cloud server stores these encrypted
location check-ins in a data table with n rows and four columns as shown in Fig.
3. Note that the fourth column is empty before any computation.

user ID
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vector

location

vector

contact

vector

u1

u2

un

α1 β1 v1

α2

αn

β2

βn

v2

vn

Fig. 3. The data table maintained by the cloud server, and one table per time slot.

Given a 2-hop reachability query of (u1, u2) in time interval T = t0, the
cloud server first checks whether the contact vectors Jv1K and Jv2K have been
computed and stored in the data table. If not, it computes Jv1K and/or Jv2K
by Algorithm 1, and stores them in the data table. Specifically, in Algorithm
1, we present a novel approach, i.e., by homomorphically evaluating a function
f(x) = (k!)−1

∏k−1
i=0 (x− i) on an encrypted integer x to check whether x is equal

to k or whether 0 ≤ x ≤ k − 1, and represent the result as an encrypted binary



number in order to build the contact vector. Then, with Jv1K and Jv2K, the cloud
server computes J⟨v1,v2⟩K using SWHE.Add and SWHE.Mul and returns it to the
data analyzer. J⟨v1,v2⟩K is the ciphertext of the inner product of vectors v1 and
v2. Note that the cloud server does not decrypt any encrypted data during
this above evaluation, and all the computations are operated on encrypted data
correctly based on the homomorphic properties of SWHE.

Algorithm 1 Compute contact vector JviK of ui by the cloud server

Input: JαiK of ui, JβjK of uj (1 ≤ j ≤ n)
Output: The encrypted contact vector JviK of ui

1: for j = 1 to n do
2: if i == j then
3: Jvi[j]K← SWHE.Enc(pk, 1)
4: continue
5: else
6: JxK = J⟨αi,βj⟩K // using SWHE.Add and SWHE.Mul
7: Jvi[j]K = Jf(x)K // f(x) = (k!)−1 ∏k−1

i=0 (x − i) where (k!)−1 is the inverse of
(k!) in message space of SWHE, using SWHE.Add and SWHE.Mul

8: // Note that here SWHE.Add and SWHE.Mul should take as input J(k!)−1K
and J1K, J2K, . . . , J(k−1)K, which can be pre-computed using SWHE.Enc by the
cloud server.

9: end if
10: end for
11: return JviK = (Jvi[1]K, Jvi[2]K, . . . , Jvi[n]K)

Decrypt The Query Result The data analyzer sends J⟨v1,v2⟩K to the data
owner. And the data owner decrypts it using its secret key sk. Specifically, the
data owner computes

⟨v1,v2⟩ ← SWHE.Dec(sk, J⟨v1,v2⟩K) (3)

If ⟨v1,v2⟩ equals 0, the data owner returns 0 to the data analyzer, which means
there is no 2-hop reachability from u1 to u2. If ⟨v1,v2⟩ is non-zero, the data
owner returns 1 to the data analyzer, which means u2 is reachable from u1

within 2 hops. Note that the data analyzer could also be the data owner itself.
In this case, the data owner simply decrypts J⟨v1,v2⟩K with its secret key.

Correctness In the plaintext domain, at line 6 in Algorithm 1, it essentially
evaluates whether the location lj of user uj is in the Bloom filter BF generated by
user ui, where BF contains all the locations in ui’s proximity range. Obviously, if
it is, x, i.e., the inner product of vector αi and βj , is equal to k, i.e., the number
of hash functions used in Bloom filters; otherwise, 0 ≤ x ≤ k−1. In other words,
we use the inner product ⟨αi,βj⟩ instead of BF.query to decide whether location
lj is in Bloom filter BF.



At line 7, f(x) represents the binary number to indicate whether x is equal
to k. Specifically, if x = k, f(x) = 1; if x ∈ {0, 1, . . . , (k − 1)}, f(x) = 0.
We would like to emphasize that this mapping from x to f(x) is important for
the subsequent computations. Note that the calculation of the inner product of
⟨αi,βj⟩ and the mapping from x to f(x) together only contains additions and a
limited number of multiplications, which can be implemented with SWHE.Add
and SWHE.Mul on encrypted data by the cloud server.

Therefore, if user ui and uj are in direct contact, then Jvi[j]K = J1K; otherwise,Jvi[j]K = J0K. For the 2-hop reachability from u1 and u2, if there is a user u3 in
direct contact with both u1 and u2, then both v1[3] and v2[3] equal 1, which
implies the inner product ⟨v1,v2⟩ will definitely not be zero (i.e., at least 1).
Note that u1 and u2 could be in direct contact, in this case, w.l.o.g., u3 could
be either u1 or u2.

Process Reachability with Different Time Slots Our scheme can be ex-
tended to support reachability with different time slots. More specifically, given
a 2-hop reachability query of (u1, u2) in time interval T = [tx, ty], which includes
y−x+1 time slots, i.e., tx, tx+1, . . . , ty, if there is a contact path u1 → u3 → u2,
the second contact u3 → u2 should happen in a time slot that is later than
the time slot of the first contact u1 → u3 happens. More precisely, assume
u1 → u3 occurs in time slot ti while u3 → u2 occurs in time slot tj , then we
have x ≤ i ≤ j ≤ y.

user ID
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v11
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time slot t1

user ID
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Query: whether u1 u3 u2 in T = [t1, t3] ?

Solution: u1 u3 u2 in T = [t1, t3] if and only if

<v11, v12> + <v11, v22> + <v11, v32> + <v21, v22> + <v21, v32> + <v31, v32> 0

Fig. 4. The data tables maintained by the cloud server for 3 time slots (for the limi-
tation of space we omit the second and third columns) and an example of reachability
query about two users u1 and u2 within time interval T = [t1, t3].

To evaluate this 2-hop reachability query, the cloud server should search all
the possible combinations of ti and tj within T = [tx, ty] to find out whether
there is such a contact path u1 → u3 → u2. Specifically, for each time slot, the
cloud server maintains a data table as described above and returns the query



results as J∑y
i=x(

∑y
j=i(⟨vi1,vj2⟩))K, where vi1 is the contact vector of u1 in time

slot ti and vj2 is the contact vector of u2 in time slot tj . It is easy to prove that
the 2-hop reachability exists if and only if

∑y
i=x(

∑y
j=i(⟨vi1,vj2⟩)) ≥ 1. Fig. 4 is

an example for a query about T = [t1, t3].

5 Security Analysis

In this section we analyze the security of our scheme against the semi-honest
cloud server. Our scheme does not reveal any input locations, intermediate or
final results to the semi-honest cloud, except the dataset size.

Formally, the location privacy guarantee of our scheme can be modeled under
a standard CPA game for multiple encryptions as denoted in theorem 11.6 [9].
A challenger C chooses public and secret keys of a public encryption scheme
(pk, sk). An adversary A submits two series of messages {mi

0}ni=1, {mi
1}ni=1, and

C chooses b← {0, 1} uniformly at random and sends A encryptions of {mi
b}ni=1.

Finally A outputs its guess b′. Privacy is guaranteed if Pr[b′ = b] ≤ 1
2 + negl(λ),

where λ is the security parameter.

Theorem 1. If public-key somewhat homomorphic encryption scheme SWHE is
CPA-secure, then it also has indistinguishable multiple encryptions.

In our scheme, given a location check-in data (ui, li, ti), the encryption of
location li is (JαiK, JβiK), where

JαiK = (SWHE.Enc(pk,αi[1]), . . . , SWHE.Enc(pk,αi[m])) (4)

JβiK = (SWHE.Enc(pk,βi[1]), . . . ,SWHE.Enc(pk,βi[m])) (5)

In other words, the encryption of a location in our scheme consists of multiple
encryptions under SWHE. According to Theorem 1, we can conclude that, given a
CPA-secure somewhat homomorphic encryption scheme SWHE, the encryptions
of locations in our scheme are indistinguishable under chosen plaintext attack.
Proof of Theorem 1 can be found in theorem 11.6 [9]. Also, the privacy of the
intermediate results (e.g., the proximity vector vi) and the query results are
protected under the security of the SWHE.

In the adversarial model, we assume that the data analyzer and the cloud
server do not collude. Otherwise, the 2-hop reachability results are revealed and a
semi-honest cloud server may be able to infer the users’ locations by, for example,
the triangulation attacks in [11]. But the impact of this attack should be much
smaller since no direct proximity is known. Moreover, in practice, we can limit
the risk of such collusion attack by letting the data owner restricting reachability
queries to only authorized data analyzers.

6 Proof of Concept and Experimental Results

In this section, we present a proof-of-concept implementation of our scheme. We
leverage the state-of-the-art SWHE scheme as the building block for our scheme,



and examine the performance of our design over synthetic location check-ins.
Specifically, we implement our scheme using HElib [8], which is a C++ library
that implements the BGV SWHE scheme [2].

Parameters and Encoding of Messages The parameters of our scheme
consist of the parameters of Bloom filters and the parameters of HElib. In our
scheme, each user adds nine locations to an empty Bloom filter to generate its
proximity vector. We choose the number of hash functions as k = 3 and the
length of Bloom filters as m = 220, such that the false positive probability of
Bloom filters is around 0.001 (the probability is taken from [1]). As a result, the
length of a proximity vector and a location vector is |α| = |β| = m = 220.

Furthermore, given k = 3 , our scheme needs 2k + 2 = 8 depth of homo-
morphic multiplication (k + 1 for computing encrypted contact vector JvK in
Algorithm 1 and double (k + 1) for computing J⟨vi,vj⟩K). Therefore, the depth
of homomorphic multiplication of the SWHE should at least be eight. We set
the parameters of HElib as shown in Table 1 to meet this requirement.

The underlying SWHE scheme (BGV) of HElib is based on the “ring learning
with errors” (RLWE) problem, which means messages that can be encrypted
with HElib are polynomials. We use scalar encoding to encode an integer by
representing it as constant coefficient of a plaintext polynomial. Note that, if a
constant coefficient increases beyond the plaintext base p′, it will automatically
be reduced by modulo p′. We choose p′ = 1009, which means it can support
up to one thousand users (e.g., in the worst case, if both user ui and uj are in
contact with all the other 1000−1 users in one time slot, the final result ⟨vi,vj⟩
will be equal to 1000, which is less than p′).

Table 1. The parameters of HElib in our implementation, where p′ is the plaintext
base, r′ is the lifting, L′ is the number of levels in the modulus chain, c′ is the number
of columns in the key-switching matrics, w′ is the hamming weight of secret key, d′ is
the degree of the filed extension, and k′ is the security parameter.

p′ r′ L′ c′ w′ d′ k′

1009 1 16 3 64 0 80

Experimental Results Our proof-of-concept implementation runs on a Ubuntu
14.04 virtual machine (VM) with 4 GB memory. The VM is hosted in a desktop
PC with Inter(R) Core(TM) i7-4790 CPU @ 3.60GHz and 8 GB memory. We test
the running time for generating one encrypted contact vector JvK, and evaluate
the performance of answering 2-hop reachability query of two users within one
time slot (i.e., computing J⟨vi,vj⟩K). The experimental results are illustrated in
Fig. 5. Even with our un-optimized implementation, a 2-hop reachability query
between two users can be evaluated on encrypted location data in approximately



100 seconds for a system contains 1,000 users. Although from Fig. 5(a), com-
puting an encrypted contact vector seems to be time-consuming, we argue that
this computation is only a one time operation. In other words, if a user has been
queried before, the cloud server does not have to compute it again. Moreover, our
implementation can be further optimized using more efficient message encoding
methods. In addition, the implementation of SWHE (and FHE) on high perfor-
mance computing platforms (e.g., GPU) is itself a question of interest (and has
been studied recently in, e.g., [4], [10]), and the efficiency of our scheme can be
significantly boosted up if we implement it with GPU. For instance, [10] imple-
ments a SWHE using GPU, which results in a speedup of 104x in homomorphic
multiplication over the implementations with CPU.

0 200 400 600 800 1000
Number of users

0

50

100

150

200

250

R
u
n
n
in

g
 t

im
e
 (

m
in

)

(a) Compute encrypted contact vector

0 200 400 600 800 1000
Number of users

0

20

40

60

80

100

120

R
u
n
n
in

g
 t

im
e
 (

se
c)

(b) Evaluate 2-hop reachability

Fig. 5. The performance of our proof-of-concept implementation for one time slot

7 Related Work

To the best of our knowledge, current work does not tackle the problem of
computing reachability on encrypted location check-in data. The previous works
most relevant to ours are [27] and [18].

In [27],Yi et al. propose an optimized 2-hop labeling (which is an index
of a graph), namely m-2-hop, for privacy-preserving reachability queries in a
sparse graph. In their system model, there is a data owner who owns graph
data and pre-computes an m-2-hop index offline. Then, the data owner encrypts
the m-2-hop index and outsources it to the cloud server. A reachability query
is processed on the encrypted m-2-hop index. Their solution is essentially for
the reachability queries in static graph data (from which they can abstract an
index first). However, in our work, we consider the reachability queries over
individually generated location check-in data, which has both space and time
dimension and cannot be represented as a static graph. Therefore, their work is
not able to address our problem.



In [18], Shahabi et al. propose an extensible framework, PLACE, which con-
sists of some building blocks including location proximity block, and enables
privacy-preserving inference of social relationships from location check-in data.
Specially, they state one of the use cases of PLACE is to analyze the reachability
of two users. However, this work does not present any concrete designs.

In addition to the above two works, we briefly review two categories of studies
on location privacy, private proximity testing (PPT) and searchable encryption
for range search, which are also relevant to the topic of this paper.

Private Proximity Testing A PPT protocol enables a pair of users to
test if they are within a certain distance of each other, but otherwise reveal no
information about their locations to anyone. For example, in [15], Narayanan et
al. present several PPT protocols by reducing the PPT problem to the problem
of private equality testing (PET). However, PPT protocols are essentially secure
two-party computation protocols, therefore, they are not compatible with our
system model in which encrypted location check-in data and computations are
centralized on an untrusted cloud server.

Searchable Encryption for Range Search Recently, a couple of search-
able encryption schemes for range search, e.g., [25], [24], have been proposed. In
[25], Wang et al. propose two searchable encryption schemes supporting circular
range search on encrypted spatial data. They improve their work to support ar-
bitrary geometric range search in [24]. However, in these searchable encryption
schemes, a database server (e.g., a cloud server) will know search results, while
our scheme does not leak those information.

Our work is also relevant to another problem called privacy-preserving lo-
cation data publication. The works on this problem generally leverage non-
cryptography anonymization techniques, such as k-anonymity [22]. Specially,
in [13], Liu et al. propose the problem of reachability preserving anonymization
(RPA), and design an RPA algorithm which supports computing reachability
over anonymous graph. These anonymization techniques are generally very ef-
ficient, however, the security of these schemes cannot be proven formally and
the results are not accurate because they have to modify the original data to
achieve anonymization. Moreover, like [27], the method in [13] is designed for
static graph, which cannot be used for the spatiotemporal location check-in data
generated by individual users over time.

From a technical point of view, based on Wilson’s Theorem (p − 1)! ≡ −1
(mod p) with p as a prime number greater than 2, Wang et al. [26] propose a

function g(x) = −
∏p−1

i=1 (i − x) (mod p) to check whether an integer x equals
0 or whether 1 ≤ x ≤ p − 1, which is similar to the f(x) in Algorithm 1 in
our design. Plausibly, we can also use g(x) to check whether x is equal to k by
checking whether (k − x) equals 0. However, to compute “mod p” on encrypted
data, they use scalar encoding and set p as the plaintext base (recall that in
scalar encoding, the plaintext will automatically modulo p). In other words,
their method is limited to applications with small message space, otherwise it
will exceed the limitation of SWHE on the number of multiplications.



8 Conclusion and Future Work

In this paper we studied the problem of reachability queries on encrypted location
check-in data. Specifically, we presented a scheme, namely SecReach, to support
2-hop reachability queries, which is based on a fresh approach of combining
Somewhat Homomorphic Encryption and Bloom filters. Our scheme is provably
secure and our experimental results demonstrate its practicality.

As part of future work, we are going to consider indexing location check-
in data with more efficient data structures to improve efficiency (for instance,
splitting the location space into smaller partitions including less users). Also, we
plan to extend our scheme to enable multi-hop reachability queries, in which the
length of a contact path is greater than 2, and implement our extension on high
performance computing platforms (e.g., GPU).
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