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Abstract. As an important cryptographic primitive in cloud computing and out-

sourced computation, fully homomorphic encryption (FHE) is an animated area 

of modern cryptography. However, the efficiency of FHE has been a bottleneck 

that impeding its application. According to Gentry’s blueprint, bootstrapping, 

which is used to decrease ciphertext errors, is the most important process in 

FHE. However, bootstrapping is also the most expensive process that affecting 

the efficiency of the whole system. Firstly, we notice that, hundreds of serial 

homomorphic additions take most of the time of bootstrapping. We made use of 

the properties of Boolean circuit to reduce the number of serial homomorphic 

additions by two-thirds, and thus constructed an efficient FHE scheme with 

bootstrapping in 10ms. Secondly, the most expensive parts in our bootstrap-

ping, EHCM and addition operations of multiple matrices, can be accelerated 

by parallel. This parallel may accelerate the bootstrapping. At last, we found a 

set of more efficient combination of parameters. As a result, our security pa-

rameter level is 128 bits and the correctness is elevated, compared with TFHE 

scheme in ASIACRYPT 2016. Experiments show that the running time of our 

bootstrapping is 10ms, which is only 52 percent of TFHE, and is less than 

CGGI17. 

Keywords: fully homomorphic encryption, bootstrapping process, accumulator, 

TFHE. 

1 Introduction 

Fully homomorphic encryption (FHE) is a promising cryptographic primitive that 

allows directly operation on ciphertexts. The output of the operation can be decrypted 

into a result which matches the output of running the same operation on the corre-

sponding plaintexts. In other words, FHE has commutative property on encryption 

and operations, namely, the result of first encryption then doing homomorphic opera-

tion, is equal to first doing operation and then encrypt. Since the breakthrough work 

of Gentry in 2009 [1], there have been a variety of works on construction, efficiency 

improving and security of FHE schemes [2-12]. However, efficiency is the main ob-

stacle that affecting the application of FHE schemes [13-19]. The most important 

factor that affecting efficiency is due to the intricate decryption algorithm, which 



2 

often involves addition, multiplication and rounding operations. As a result, there are 

many works focus on how to improve the efficiency of bootstrapping. 

In 2009, basing on ideal lattice, Gentry [1] constructed the first CPA secure fully 

homomorphic encryption scheme, which permits arbitrary homomorphic addition and 

multiplication operations. In this construction, Gentry provided a generic method: 

Bootstrapping + Squashing. This method is called Gentry’s blueprint today. Accord-

ing to this method, we can get to a FHE from any proper somewhat homomorphic 

encryption scheme (here “proper” means this scheme allows circuits with depth great-

er than the depth its own decryption circuit). In 2011, BGV scheme is brought for-

ward by Brakerski, Gentry and Vaikuntanathan [5]. On the ground of BV11b [3] 

scheme appeared in 2011, BGV separates Modulus Switching from dimension-

modulus, and thus obtains a linearly growing error rate. To further improve efficien-

cy, BGV scheme also make use of Batching technique and RLWE assumption, and 

finally reached a computation cost of ( )O   for one homomorphic operation. In Crypt 

2013, Gentry, Sahai and Waters [6] adopted approximate eigenvector and ciphertext 

flatten technique to construct a FHE scheme called GSW. In Eurocrypt 2015, Ducas 

and Micciancio [20] gave a more efficient scheme DM15, bootstrapping of which 

only takes 1 second. In Asiacrypt 2016, Chillotti et.al. [21] provided a better FHE, 

called TFHE (Torus Fully Homomorphic Encryption), whose bootstrapping only takes 

0.1 second. Considering that multiplication on [0,1)  generates a production no 

bigger than the multipliers, TFHE is based on a variant GSW on torus , called 

TGSW, which can control the noise more efficiently. What’s more, they observing 

that the external product of TGSW ciphertext (a matrix) and TLWE ciphertext (a 

vector) can be used to substitute the product of TGSW and TGSW, thus gives a faster 

bootstrapping. However, we noticed that bootstrapping of THFE involves hundreds of 

serial homomorphic additions, which restricts its speed.  

Our work. Bootstrapping is the most expensive process that affecting the efficien-

cy of the whole system. Firstly, we notice that, hundreds of serial homomorphic addi-

tions take most of the time of bootstrapping. We made use of the properties of Boole-

an circuit to reduce the number of addition operations by two-thirds, and thus con-

structed an efficient FHE scheme with bootstrapping in 10ms. Secondly, the two ex-

pensive parts in our bootstrapping, EHCM and serial homomorphic additions, with 

two different threads can be implemented at the same time. This parallel can acceler-

ate the bootstrapping. At last, we found a set of more efficient combination of param-

eters for our scheme. Most of our contribution lies in 2.2 (2) (c), just jump to the sec-

tion, if you are familiar with TFHE,  

Recently, we notice that Chillotti et.al present a paper CGGI17[23] in eprint. They 

can implement bootstrapping in 13ms. Compare to their scheme, our scheme has two 

advantages. First, our scheme is faster than CGGI17[23] in most presented mode, 

such as Debug/fftw, release/fftw, release/spqlios mode, detail lines in the table in 

section 3.4. Secondly, the two main parts, EHCM and serial homomorphic additions, 

of our bootstrapping, could be paralleled with two different threads. This parallel can 

accelerate the bootstrapping process. Comparing to TFHE, a flaw of our scheme is the 

homomorphic evaluation key is increased from 52.6M into 70.9M. Our code is based 
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on TFHE, we presented it in https://github.com/lonyliu/tfhe-10ms. In fact, we com-

bined the bootstrapping of our scheme and CGGI17 in our code, and get a more effi-

cient one. 

2 Mathematical Preliminaries 

In the rest of the paper we will use the following notations [21]. The security parame-

ter is denoted as  . We denote the set {0,1} , the real Torus of real numbers 

modulo 1 / [0,1) , the ring of polynomials [ ] / ( 1)NX X R , the ring 

of polynomials [ ] [ ] / ( 1) mod1N

N X X X  , where 1NX  is the (2 )N -th 

cyclotomic polynomial *
2

2 2( ) ( ) 1
N

i N

N Ni
X X X


     . Finally, we denote 

, ( )p q E  as the set of matrices p q  with entries in E . 

We write min kp  


u x
x  ( )

p
u  for all 

kx . It is the p-norm of the repre-

sentative of x  with all coefficients in 1 1

2 2
( , ] . By extension, the norm ( )

p
P X  of a 

real or integer polynomial [ ]P X  is the norm of its coefficient vector. If the poly-

nomial is modulo ( 1)NX  , we take the norm of its unique representative of degree 

1N  . 

A distribution   on the torus is concentrated iff. its support is included in a ball of 

radius 1/4 of  with high probability. We define the variance ( )Var   and the ex-

pectation ( )  of   as respectively 
2( ) min ( ) | |xVar p x x x    and 

( )  as the position x   which minimizes this expression. By extension, we say 

that a distribution   over 
n

 or [ ]k

N X  is concentrated iff. each coefficient has 

an independent concentrated distribution on the torus. Then the expectation ( )  is 

the vector of expectations of each coefficient, and ( )Var   denotes the maximum of 

each coefficient’s Variance. 

Fact 2.1 [21]. Let 1 2,   be two independent concentrated distributions on either 

n,  or 
k

N X[ ] , and 1 2,e e   such that 1 1 2 2e e     remains concentrated, 

then the means 1 1 2 2( ) ( ) ( )e e     and 
2 2

1 1 2 2( ) ( ) ( )Var e Var e Var    . 

Definition 2.2 (LWE) [22]. Let 1n   be an integer,    be a noise parameter 

and s  be a uniformly distributed secret in some bounded set  nS  . Denote by 

,n

LWE

s
 the distribution over 

n   obtained by sampling a couple ( , )ba , where the 

left member 
U na  is chosen uniformly random and the right member 

https://github.com/lonyliu/tfhe-10ms
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b e a s . The error e is a sample from a gaussian distribution with parameter 

,D  . 

–Search problem: given access to polynomial LWE samples, find Ss . 

–Decision problem: distinguish between LWE samples and uniformly random 

samples from 
n  . 

Definition 2.3 (TLWE samples) [21]. Let 1k   be an integer, N a power of 2, and 

0   be a noise parameter. A TLWE secret key [ ]k

N Xs  is a vector of k poly-

nomials [ ] / ( 1)NX X R  with binary coefficients. For security purposes, we 

assume that private keys are uniformly chosen, and that they actually contain n Nk  

bits of entropy. The message space of TLWE samples is [ ]N X . A fresh TLWE 

sample of a message [ ]N X  with noise parameter 0   under the key s  is an 

element ( , ) [ ] [ ]k

N Nb X X  c a , [ ]Nb X  has Gaussian distribution 

[ ], ,N XD  s a  around s a . The sample is random iff its left member a  is uni-

formly random [ ]k

N X , trivial if a  is fixed to 0, noiseless if 0  , and homoge-

neous iff its message   is 0. 

– Search problem: given access to polynomial fresh random homogeneous TLWE 

samples, find their key [ ]k

N Xs . 

– Decision problem: distinguish between fresh random homogeneous TLWE sam-

ples from uniformly random samples from [ ] [ ]k

N NX X . 

Definition 2.4 (Phase) [21]. Let ( , ) [ ] [ ]k

N Nb X X  c a  and [ ]k

N Xs , 

we define the phase of the sample as ( ) b 
s

c s a . The phase is linear over 

1[ ]k

N X 
 and is ( 1)kN  -lipschitzian for the l  distance: 

1, [ ]k

N X  x y , 

( ) ( ) ( 1)kN 


   
s s

x y x y . 

Definition 2.5 [21]. Let c  be a random variable 
1[ ]k

N X  , which we’ll interpret 

as a TLWE sample. All probabilities are on the Ω-space. We say that c  is a valid 

TLWE sample iff there exist a key [ ]k

N Xs  such that the distribution of the phase 

( )
s

c  is concentrated. If c  is trivial, all keys s are equivalent, else the mask of c  is 

uniformly random, so s  is unique. We then define: 

the message of c , denoted as ( ) [ ]Nmsg Xc  is the expectation of ( )
s

c ; 

the error, denoted ( )Err c , is equal to ( ) ( )msg 
s

c c ; ( ( ))Var Err c  denotes the 

variance of ( )Err c , which is by definition also equal to the variance of ( )
s

c ; 

finally, ( )Err


c  denotes the maximum amplitude of ( )Err c  (possibly with 

overwhelming probability). 
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2.1 The General Idea of Bootstrapping 

In 2009, Gentry provided a generic method to build FHE: Bootstrapping + Squashing. 

Starting from a somewhat homomorphic scheme and using bootstrapping, it can get a 

fully homomorphic one. The bootstrapping can translate a given ciphertext with large 

noise to a ciphertext with smaller noise. In the following years, researchers have 

deeper studied on bootstrapping and made some improvements. The principle of 

bootstrapping is briefly elaborated in Fig1. 

ENC

Ciphertext with 
large noise

enc

Internal scheme

External scheme

Transform

Ciphertext with 
smaller noise

1

2

3

Homdec

 

Fig. 1. The general process of bootstrapping 

In the process of bootstrapping, decryption of the internal scheme is homomorphi-

cally run by the external scheme. Given a “dirty” internal ciphertext c  (by “dirty” we 

mean it has a large noise, also call error, the noise is a random term in encryption, 

which is often used in lattice based schemes), the external ciphertext ENC( )s  of s , 

the transform key( which is used to transform external ciphertext to internal cipher-

text). We denote m the plaintext of internal ciphertext c , s  the key of c . Bootstrap-

ping works as the following: First, generating the external ciphertext ENC( )c . Con-

sidering that the ciphertext will not leak the information of the plaintext, so we can 

directly use c  or trivial ENC( )c  as the external ciphertext (the trivial ENC( )c  

means that it has the form of ENC ciphertext, but with no noise). Second, homomor-

phically run the internal decryption, Homdec, using the external scheme. Notice that, 

the result Hom (dec ENC( ),ENC( ))s c  is equals to ENC( ( , ))dec s c , by the property 

of homomorphic encryption. Finally, if the external and internal schemes are differ-

ent, we should take a step to transform the external ciphertext ENC( ( , ))dec s c  into a 

form that consistent with the internal scheme. 

The internal ciphertext c  is decrypted into plaintext m by Homdec, thus the noise 

will vanished. While the external ciphertext generated initially from ENC( )s  and 

passing through the process of Homdec and ciphertext transformation will contain a 

large error term. But as long as the final internal ciphertext has less error than the 

initial internal ciphertext, the aim of error reducing is reached. The final internal ci-
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phertext is expected to have a smaller error. To improve efficiency, Homdec, cipher-

text transformation and key transformation should also simple and direct in designing. 

2.2 Enhanced bootstrapping 

TFHE use an enhanced bootstrapping to construct Boolean circuit. The enhanced 

bootstrapping contains two functions of ciphertext, error descending and plaintext 

transformation. The former descend ciphertext error through trivial bootstrapping. 

The latter process can output ciphertext has a plaintext space of 
2{ , }

0 1
   , which 

is helpful in Boolean circuit and can be changed in different situation, most of the 

prior bootstrapping can only output ciphertext with plaintext space {0,1}. The en-

hanced bootstrapping also has three steps: generate the external ciphertext ENC(c), 

Homomorphic decrypt the internal ciphertext and ciphertext transformation. 

(1)Generating the external ciphertext ENC(c): 

This process expands the input TLWE ciphertext 
1( , ) nb  c a  into 

1( , ) ( 2 ) nb N    c a c , which is the closet integer vector to 2Nc . We use a  

and TLWE ciphertext ( , )btrivialTLWE X 0  as the external ciphertext ENC(c), 

which are the inputs of homomorphic decryption. 

(2)Homomorphic decryption: 

The Homdec procedure includes round function ()round , multiply with a constant 

i ia s  and addition 
1

0

n

i ii




 a s , detail lies in following formulas. 

31
4 4

31 1
2 4 4

0   (0, ) ( ,1)
( , ) : ( )

               ( , )


  
     

  

b
dec b round b

s

a s
a a s

a s
 

31
4 4

31 1
2 4 4

0   (0, ) [ ,1)
( )

             [ , )

p
round p

p


 


 

Here round function involves a multi-to-2 mapping, which is hard to implement 

with normal operations like addition and multiplication. One solution given by FHEW 

is followed. Mapping the input integer [0, 1]i N   to the degree of a coefficient 

bounded polynomial 
1mod(1 )i NX X  , and construct round function through a 

multi-to-2 mapping between the degree and coefficients of a polynomial, eg, if the 

coefficient of polynomial is bounded to 1

2
(0, ) , then the polynomial 

0 1 2 31 1

2 2
0 0X X X X    can form a multi-to-2 mapping f  between the degree and 

coefficients, where 1

2
(0,2) ; (1,3) 0f f  . 
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Considering that multiplication on [0,1)  generates a production less than the 

multipliers, we take the internal ciphertext from TLWE  to control the growing noise. 

In other words, we restrict the input ciphertext of bootstrapping to TLWE  ciphertext 
1nc . In order to map this ciphertext into the degree of a polynomial on [ ]N X , 

we need to expand the ciphertext 
1nc  into ( , ) ( 2 )b N   c a c  (where 

2 NX  

1mod( 1)NX ). This is the fundamental reason of expanding the ciphertext 

1( , ) nb  c a  into 
1( , ) ( 2 ) nb N    c a c  in 2.2 (1). And because the do-

main of round function has been expanded, domain of other operations in Homdec 

should accordingly be changed into [0,2 )N . 

(a) homomorphic 2Nround function Hom2Nround   

We introduce a function 2Nround function and homomorphic 2Nround function, 

which is similar to the round function in [0,2 )N . Let p  [0,2 )N ,   , 

2 2
1 1(1 ... ... )

N N
Ntestv X X X

         . We denote  
0

pX testv  as the 

constant term of the polynomial 
pX testv . 

 

 

 

 

0

1 1 3
32 2

0 2 2

31 1 3
2 22 2

0

2 ( )

...     (0, ) [ ,2 )
    (0, ) [ ,2 )

            [ , )...             [ , )

p

N N N
N N

N NN N N

Nround p X testv

X X p N
p N

pX X p

  


  







         
  

         


 

Constructing homomorphic 2Nround function. Considering that the 2Nround 

function only involves polynomial multiplication 
pX testv  and constant term trun-

cating  
0

pX testv , it can be constructed by homomorphically polynomial multipli-

cation and truncating the constant term. The former operation will be introduced in 

3.2 (b), and in the following we describe how to construct a TLWE Extraction func-

tion to truncate the constant term of polynomial homomorphically. 

Definition 3.1 (TLWE Extraction) [21]. Let ( , )b a  be a ( )TLWE s  sample 

with key 
ks R , We call ( )kKeyExtract s R  the integer vector  s  

1( ( ( )),..., ( ( ))) kN

kcoefs X coefs X  s s  and ( , )SampleExtract b a  the LWE sample 

1( , ) kNb   a   where 1 1
1{ ( ( )),..., ( ( ))}kX X

coefs coefs  a a a  and 0b b   the constant 

term of b . Then 0( , ) ( , )b b  
   

s s
a a  (resp. to the constant term of    

0( , )msg b a , ( , ) ( , )Err b Err b
 

   a a  and ( ( , )) ( ( ,Var Err b Var Err  a a  

))b . 
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The TLWE Extraction function can be explained as: Given a private key 
ks R  

and a TLWE ciphertext 
1( , ) [ ]k

Nb X   a  with plaintext being a polynomial 

[ ]N X . We can construct a private key related to 
ks R , and a LWE cipher-

text 
1( , ) kNb   a  with plaintext being the constant term 0  of  . 

To sum up, we can construct 2Nround function through polynomial multiplication 

and homomorphically truncate the constant term of plaintext polynomial. This induc-

es the following formula: 

 2 ( ( )) ( ( ), ( ))p pHom Nround TLWE X TLWEextraction Hommult TLWE X TLWE testv  

(b) Homomorphic polynomial multiplication 

The round function maps the input integer [0, 1]i N   to the degree of a coeffi-

cient bounded polynomial 
1mod(1 )i NX X  , this means homomorphic addition 

should be done on the degree of polynomials, which can be implemented by polyno-

mial multiplication. However, the normal homomorphic multiplication generates very 

large errors. To control error increasing, we take advantage of two properties of 

GSW(TGSW) scheme. One property is that, the noise of the homomorphic multiplica-

tion is decided by the bound of left multiplier ciphertext mainly. The other is that, 

multiplication on [0,1)  generate a product less than the multipliers. 

1. Preprocessing of low error multiply: ciphertext decomposition on a given basis 1

gB
. 

During practical implementation researchers found that with GSW (TGSW)  ci-

phertext being a matrix, multiplication of two ciphertexts would be very costly. This 

has been an important reason that affecting multiplication and bootstrapping. Howev-

er, the error generated by ( )GSW v  mainly related with bound of v , and there is 

no need to restrict v  having the form of GSW (TGSW) ciphertext. To further reduce 

computation cost, v  can be taken from TLWE ciphertext (a vector), and thus can 

construct polynomial multiplication through multiplying a vector v  and a matrix 

( )GSW  . 

What’s more, researchers want to reduce the noise of the multiply ciphertext, be-

tween an TLWE ciphertext v  and TGSW ciphertext A . We can preprocessing the 

TLWE ciphertext v , by decomposing the ciphertext v  on a given basis 1

gB
, and out-

put a ciphertext u  with higher dimension and smaller bounded coefficients, notice 

that the noise of the homomorphic multiplication is decided by the bound of left mul-

tiplier ciphertext. Thus we can decrease the error during multiplication. Details are 

shown in Algorithm 1: 

Algorithm 1 , , Dec  h : Gadget Decomposition of a TLWE Sample 
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1 1

( 1)

1,1 1, 1,

1
1

, , , ,0

: A TLWE sample ( , ) ( ,..., , )

: [ ,..., ,..., ] , [ ] / ( 1)

1: For each , .set  the closest multiple of  to .

D

l
g

k

k k N N

k l N

l k l

N j

i i j i j i j i jj B

Input a b a a b a X X

Output e e e X X

a a X a a a











    

  

 

v

u

[ ] [ ]

2:

R R

1
, , , 2 21

1

, ,0

, ,

ecompose , where [ , )

3 :    1  1

4 :         1  

5 :         

6 : Return  ( )

g g

p
g

l B B

i j i j i jp p pB

N j

i p i jj p

i p i p

a a a

i k

p l

e a X

e







  

 



 





for to

for to

R

 

The following lemma shows that v  can be retrieved through multiplying u  by the 

related decomposition basis with error less than 1

2 l
gB

  . 

Lemma 3.2 [21]. Let l  and gB  . Then for quality 
2

gB
   and precision 

1

2 l
gB

  , ( 1) , 1( [ ])k l k N X h  as in (1). Algorithm 1 for any TLWE sample 

1k

N X v [ ] , it efficiently and publicly outputs a small vector 
( 1)k lu R , such that 



u  and 


 uh v . 

 

1

1

( 1) , 1

1

1

0

0

0

0 0 ( [ ])

0

0

0

g

l
g

g

l
g

B

B

k l k N

B

B

X 

 
 
 
 
 
 
 

  
 
 
 
 
 
  

h

 (1) 

2. Polynomial multiplication with low error——homomorphic addition on the degree 

of polynomials. 

TGSW ciphertext being a matrix, multiplication of two TGSW ciphertexts would 

be very costly. So TFHE constructed a polynomial multiplication through multiplying 

a vector b  and a matrix A . 

Definition 3.3 (External product) [21]. Let A  be a valid TGSW sample of mes-

sage A  and let b  be a valid TLWE sample of message b .We define the product as 

   , ,: TGSW TLWE TLWE                 , ( )A b A Dec A   
h

b b  
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Theorem 3. 4 (External Product) [21]. Let A  be a valid TGSW sample of mes-

sage A  and let b  be a valid TLWE sample of message b , let 
2

gB
   and 1

2 l
gB

   

are the parameters used in the decomposition , , ( )Dec  h
b . Then A b  is a TLWE 

sample of message A b   and  ( ) 1 ( )Err A k lN Err A
 
  b  

 
1 1

1 ( )A AkN Err  


  b ,   2( ( )) 1 ( ( ))Var Err A k lN Var Err A  b
 

 
2 22 2

2 2
1 ( ( ))A AkN Var Err    b . 

Noticing that addition between the degrees of polynomials has a form of 

TGSW TLWE TLWE  . If there needs to do addition continuously, the new 

ciphertexts participating in addition should be TGSW ciphertexts. This is shown in 

Fig 3. These serial homomorphic additions make the scheme hard to do parallel the 

hundreds of additions. As a result, bootstrapping often needs to do hundreds of serial 

homomorphic additions, which severely affecting efficiency. 

TGSW

TLWE

TLWE TLWE

TGSW TGSW

 

Fig. 3. Accumulate operations in bootstrapping 

(c) Enhanced homomorphic constant multiplication on the degree of polynomials, 

EHCM 

To run bootstrapping more efficient, we wish to homomorphic compute 

1

1

n

i ii i i
n

i
X X X

    




 

a s a sa s
 quickly. To compute 

1

i i
n

i
X

 


a s

 homomorphic, 

we can first construct TGSW ciphertext ( )i iTGSW X
 a s

. Then using n times homo-

morphic additions on the degree of polynomials, correspond to homomorphic poly-

nomial multiplication given by 2.2 (2) (b), 1( ) ( )
i

j jji iTGSW X TLWE X 
    a sa s

. 

However, homomorphic addition on the degree of polynomials involves multiplying a 

vector and a matrix, which hundreds of serial homomorphic additions are very expen-

sive and cannot be done paralleled. To solve this problem, we give the following 

method. 

When the private key is taken from {0,1}, instead of computing the ciphertext of 

i iX
 a s

, we can directly generate the ciphertext of 1 1i i i iX   a s a s
, two addends i ia s  

on a group. This means to construct the ciphertext of 
1

i i
n

i
X

 


a s

, it only needs to do 

addition on the degree of polynomials for n/2 times, and in TFHE it is n times. 

According to the computation properties of Boolean circuit, 1 1i i i iX   a s a s
 can be 

expressed in the following formula. This just shows EHCM in plaintext. Similarly, 

theorem 3.6 presents how to implement EHCM in ciphertext. 
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1

1
1 1

1

1

1

1

1 1

1 1 1 1

1    0, 0

    0, 1

    1, 0

    1, 1

( 1) ( 1) ( 1)( 1)

i

i

i
i i i i

i

i

ii

i

ii i i

i i i i

i

i

i

i

i i i i

X

X
X

X

X X X




 









 

   



 



 

   

 


 


 
 


 

       

a

a s a s

a

a a

a a a a

s s

s s

s s

s s

s s s s s s s s

 

Definition 3.5(Bootstrapping Key, BK). Let , [ ]n k

N X s s  and   be a 

noise parameter. We define the bootstrapping key , 1,1 1,2 1,3{ , , ,BK BK BK BK 
s s  

2 2
1,4 2,1 ,3 ,4

, ,..., , }n nBK BK BK BK , where ,1 , 2 1 2 ,2 ,( ), (i i i iBK TGSW BK TGSW   
s s

s s  

2 1 2 ,3 , 2 1 2( 1)), (( 1) ),i i i i iBK TGSW    
s

s s s s  ,4 , 2 1 2(( 1)( 1))i i iBK TGSW    
s

s s ,

2
1,..., ni  . 

Theorem 3.6 (EHCM). Let , [ ]n k

N X s s  ,  be a noise parameter and let 

,BK BK 
s s  be a bootstrapping key, 

22( ( ))BK iVar Err BK


    and KSV 
 

22( ( ))iVar Err KS

 . Then 2 1 2 2 1 2

,1 ,2Keybundle i i i i

i i iX BK X BK X    
  

a a a a
 

,3 ,4i iBK BK  is a TGSW sample of message 2 1 2 1 2 2i i i iX   a s a s
 and 

2(Keybundle ) 4 ( )i iErr Err BK
 
 , ( (Keybundle )) 4i BKVar Err  ,

2
1,..., ni  . 

Proof. We analyze the correctness of plaintext, the bound of error and the error 

variance in ciphertext, in following 3 formulas.  

First, we analyze the correctness of plaintext. 

   

2 1 2 2 1 2

2 1 2 2 1 2 2 1 2 1 2 2

2 1 2 2 1 2 2

,1 ,2 ,3 ,4

,1 ,2 ,3 ,4

, ,1 ,2 ,3 ,4 ,

Keybundle

( ) (

i i i i

i i i i i i i i

i i i i i

i i i i i

i i i i

i i i i

X BK X BK X BK BK

X Z X Z X Z Z X

TGSW X Z X Z X Z Z TGSW X 

 

   

  

   

     

    

 

   

    

    

a a a a

a a a a a s a s

a a a a a

s s

h

1 2 1 2 2 )i i i s a s

 

Next, we analyze the bound of error in ciphertext. 

2 1 2 2 1 2

2 1 2 2 1 2

,1 ,2 ,3 ,4

,1 ,2 ,3 ,4

,1 ,2 ,3 ,4

(Keybundle ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

4

i i i i

i i i i

i i i i i

i i i i

i i i i

Err Err X BK X BK X BK BK

Err X BK Err X BK Err X BK Err BK

Err BK Err BK Err BK Err BK



 

 

   

 

   



   

   

   

   



a a a a

a a a a

 

Last, we analyze the error variance in ciphertext. 
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2 1 2 2 1 2

,1 ,2 ,3 ,4

,1 ,2 ,3 ,4

( (Keybundle )) ( ( )

( ( )) ( ( )) ( ( )) ( ( ))

4

i i i i

i i i i i

i i i i

BK

Var Err Var Err X BK X BK X BK BK

Var Err BK Var Err BK Var Err BK Var Err BK



    
   

   



a a a a

 

Combining the analysis and construction in (a),(b) and (c), we give the overall pro-

cess of Homdec in the enhanced bootstrapping. See Fig 3. 

, 1 2( ( 1))TGSW  s s s

1 1 2 2

, ( )TGSW X

   



a s a s

s

0 ( )btrivialTLWE X testva

TGSW

TLWE 1 1 2 2( )
b

TLWE X testv
 a s a s

, 2 1( ( 1))TGSW  s s s

1 1

, ( )n n n nTGSW X
    



a s a s

s

right shift

1( )
n

i ii
b

TLWE X testv
 a s

TGSW
, 1 2( )TGSW s s s

, 1 2(( 1)( 1))TGSW   s s s

, 1( ( 1))n nTGSW   s s s

, 1(( 1)( 1))n nTGSW    s s s

TLWE Extraction

1

0(( ) )
n

i ii
b

LWE X testv
 a s

1 1 2 2
   a s a s right shift right shift

One Thread Implement

One Thread Implement

 

Fig. 3. The overall process of Homdec 

Some tricks for implement. (1) The processes of generating TGSW  

2 1 2 1 2 2( )i i i iX   a s a s
 ciphertexts are independent with serial homomorphic additions. 

We can generate the TGSW ciphertexts, at the same time when we operating serial 

homomorphic additions, with two different threads. This parallel can accelerate the 

bootstrapping process. (2)The processes of generating 2 1 2 1 2 2( )i i i iTGSW X   a s a s
 ci-

phertexts 2 1 2 2 1

,1 ,2Keybundle i i i

i i iX BK X BK   
 

a a a 2

,3 ,4
i

i iX BK BK


 
a

, which 

only involve rotation and addition on polynomials, can be finished quickly. We rec-

ommend generate it before FFT process to accelerate implement. 

(3)ciphertext transformation 

As shown in Fig 4, the process of Homdec output a LWE ciphertext, with a corre-

sponding key 
kNs . To guarantee the output of bootstrapping can be decrypted by 

the initial private key 
ns  , KeySwitch procedure is needed. KeySwitch procedure 

is designed to transform the ciphertext with one key to another ciphertext with another 

key, while the plaintext remains the same. KeySwitch procedure is often used in FHE 

[21]. Due to space limitations, we will not introduce the detail of this process. 
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Lemma 4.3 (Key switching) [21]. Given ( , ) ( )b LWE 
  

s
a  where {0,1}ns  

with noise ( , )Err b


  a , with noise variance ( ( , ))Var Err b  a  and a 

keyswitching key , ,tKS s s , where {0,1}ns , the key switching procedure outputs a 

LWE sample ( , ) ( )
n

b LWE 
s

a  where 
( 1)( , ) 2 tErr b n t n   


    a , 

( ( , ))
2 2( 1)( ( , )) 2

Var Err b
tVar Err b n t n



 
  

     
a

a . 

3 Bootstrapping in 10ms 

3.1 The construction of enhanced bootstrapping 

Concrete process of enhanced bootstrapping. Combining analysis in (1),(2) ,(3), 

and the overall process of Homdec, we give the concrete enhanced bootstrapping in 

the following algorithm. 

Algorithm 2: Enhanced Bootstrapping 

 

0 1 0 1

, , , 0 1

1 1
0 4 4

,

1

2 2

1

: ( , ) ( ), , , ( ) , , .

  ( , ) ( , ]
: ( )

             

1: , .

2 : 2 , 2 , 1,

3 : (1 ...

kN

i i

N

Input b LWE BK KS KeyExtract msg

b
Output LWE

else

b Nb N i n

testv X X

  



   

  

 



 

  

 



     

 





    

   

s s s s s

s

s

a s s

a

a a

2
4

2 1 2 2 1 2

1 1 1

0

2

,1 ,2 ,3 ,4

) [ ]

4 : ( ( , )) ( ... ) [ ]

5 :  1  

6 :           Keybundle

7 :           Keybundle .

8 :

N

i i i i

N

b N k

N

n

i i i i i

i

X X

ACC X testv trivialTLWE X X X

for i to

X BK X BK X BK BK

ACC ACC



  

 



 



   

 

       



   



a

a a a a

0 .

,

( , ) ( )

9 :  KeySwitch ( )KS

SampleExtract ACC

return






 

s s

u 0

u

 

Theorem 4.1 (Bootstrapping Theorem). Let ( 1) , 1( )k l k N X h [ ]  be the gadg-

et defined in Equation 1 and let , ,Dec  h  be the associated vector gadget decomposi-

tion function. Let 
n k

N X s s, [ ]  and ,   be noise amplitudes. Let 

,BK BK 
s s be a bootstrapping key, let ( ) kNKeyExtract  s s  and 

, ,tKS KS 
s s be a keyswitching key. Given ,( , ) ( )b LWE  

s
a  for   , two 

fixed messages 0 1,  , Algorithm 2 outputs a sample in ( )LWE 
s  s.t. 0    if 
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1

4
| ( , ) |b   

s
a  and 1    if 1

4
| ( , ) |b  

s
a  where   is the cumulated 

rounding error equal to 1

4

n

N

  in the worst case. Let 
22( ( ))BK iVar Err BK


    and 

22( ( ))KS iV Var Err KS

  . Let v  be the output of Algorithm 2. Then 

( 1)

2
( ) 2 ( 1) (1 ) 2 tnErr n k l N kNt kN kN     


     v , ( (KeySwitchVar Err  

,

2 2 2( 1)

2
( ))) 2 ( 1) (1 ) 2 tn

KS BK KSNn k l kNtV kN kN


  


      
s s

u . 

Proof.  According to the above algorithm, we analyze the plaintext, error, as well 

as error variance in ciphertext. 

Line1: It is often required that the output ciphertexts has different plaintext spaces 

after bootstrapping, for example, in the application of constructing basic gates, 

plaintext space should be 1

4
{0, } . Thus during bootstrapping, we should construct 

0 1 0 1

2 2
,

   
 

   based on concrete requirement and satisfies 
0 ,  

1   . 

Line2: Expand ciphertext c  into ( , ) ( 2 )b N   c a c . The object is to make use 

of the multi-to-2 mapping between degree and coefficients of polynomials, and build 

round function. 

Line3: Construct the multi-to-2 mapping between degree and coefficients of poly-

nomials on (1 )NX . The following formula shows that if the degree of X

3

2 2
{0, 1}U{ ,2 1}N N N   , then it is mapped to a coefficient  , and if the degree of 

X 3

2 2
{ , 1}N N  , it is mapped to  . 

2 3 3
4 2 2

11 2 1(1 ... ) ( ... ... )
N NNN N Ntestv X X X X X X X 

                

Line4: Initial assignment for TLWE ciphertext. In this paper, ACC is the accumu-

lator. From the view of plaintext, both of Homadd and 2Nround function are polyno-

mial multiplication. Considering the associative law of polynomial multiplication, it is 

equal to first accumulating then computing 2Nround function, and first do 2Nround 

on some of the ciphertexts then accumulating during bootstrapping. We take the se-

cond way. The initial TLWE ciphertext generated by b  is 0trivialTLWE  
a  

( , )bX0 , which has no error, so first computing 2Nround function on b  can better 

control error expand. This steps output the initial TLWE ciphertext, with a corre-

sponding plaintext 
bX testv , both error and error variance are 0. 

 
1

0( ( , )) ( ) [ ]b b k

NX testv trivialTLWE X testv X 

 
a

0  

Line5: Iterate the following step6 and step7 for n/2 times. 
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Line6-9: Let 
1

mod 2
n

i ii
b a s N


 , (2) shows the relationship between   

and  , satisfies 2 ( ) 2 ( )N N        . So, when 1

4
| ( , ) |b   

s
a , we 

have 3

2 2

N N  ; when 1

4
| ( , ) |b  

s
a , we have 3

2
2N N   or 2

0 N  . 

 

22 11 1

2 2 2 4 4 41 1

2

( )

2 ( ) 2 ( )

i

i

s
n nNNb n

i iN N N N N Ni i

N

b a s

N N





 

       


   

 
        

         

 
a

 (2) 

From theorem 3.6, we know that 2 1 2 1 2 2

,Keybundle ( )i i i i

i TGSW X
  


a s a s

s
 is TGSW 

ciphertext, and error term (Keybundle )iErr


 24 ( )iErr BK


 , error variance 

( (Keybundle ))iVar Err   4 BK . From theorem 3.4, Definition 3.1 and Lemma 4.3, 

we get following result about plaintext, error and error variance. 

Plaintext: 

, 2

2 2 1 2 1 2 2

2

2 2 1 2 1 2 2

0 0 01

01

3
0 2 2

(KeySwitch ( )) ( ) (( , ) ( ))

( ) ( ( ) ( ))

( ( ) )

    (0, ) [ ,2 ) | ( , ) |

n

n

i i i i
n

n

i i i i

KS

i

b

i

N N

msg msg msg SampleExtract ACC

msg ACC X msg ACC

X X testv

N b




 



  



 

 

 



 



  

   

 

 






s s

a s a s

a s a s

s

u u 0

a 11
0 44

3 11
11 42 2 4

    | ( , ) |

       | ( , ) |                  [ , ) | ( , ) |N N

b

bb

  

     

     
 

     

s

ss

a

aa

 

Error:(The bound of corresponding error in TFHE is 2 ( 1)n k l N    

( 1)(1 ) 2 tkNt n kN kN      ) 

   

,

2

2

( , )
( 1)

( 1)

( 1)

( 1)

01

(KeySwitch ( )) ( ) 2

(( , ) ( )) 2

( ) 2

(4 1 1 ) ( ) 2

2 ( 1)

n

n

Err b
t

KS

t

t

t

i

Err Err n t n

Err SampleExtract ACC n t n

Err ACC n t n

k lN kN Err ACC n t n

n k l N kN







 



   

 





  

 



 



 



 



   

    

   

       

  



s s

a

u u

0

  ( 1)

2
1 2 tnt kN kN     

 

Error variance: (The bound of corresponding error variance in TFHE is 
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3.2 Security 

Based on TFHE scheme, we made a modification focusing on accelerate the boot-

strapping. The main difference between our work and TFHE lies in that, we have built 

an enhanced homomorphic constant multiplication, EHCM. The input of TFHE con-

stant multiplication is a TGSW ciphertext of key ( )iTGSW s  and an integer ia . While 

in our EHCM process, the input is changed into ciphertexts of , 2 1 2( ),i iTGSW  s
s s  

, 2 1 2 , 2 1 2 , 2 1 2( ( 1)), (( 1) ), (( 1)( 1))i i i i i iTGSW TGSW TGSW         
s s s

s s s s s s  and 

two integers 2 1 2,i ia a . Basing on the circular security assumption, these ciphertexts 

leak no information about plaintext or key. Thus our scheme is as safe as TFHE. 

3.3 Parameters  

We find that the parameters of TFHE can be optimized. In detail, the precision 
1

2 l
gB

   of Algorithm 1, which is used to gadget decompose a TLWE Sample, is too 

tight. We recommend the parameters 2, 512, 256gl B     instead of 

3, 1024, 512gl B    . Other parameters, corresponding to our scheme, is 

500n  , 1024N  , 1k  , 
312  , 

99.0 10  , 
53.05 10  , 15t  . 

Notice that Algorithm 1 output a ciphertext u
( 1)k lR . Smaller l  will lead to a 

lower dimension ciphertext u , and smaller scale of TGSW ciphertext 

( 1) , 1( )k l k N X  [ ] , and a quicker multiplication between ciphertext u  and TGSW 

ciphertext. Hundreds of multiplications, during the accumulate operations, take up 

most of the time of bootstrapping. The change of l  will affect the efficient seriously. 

Correctness of our parameter. Though our parameters will lead to larger preci-

sion 1

2 l
gB

   when Gadget Decomposition, the smaller l will lead to lower dimen-

sion, which result in smaller errors. Putting all of our recommend parameters into the 

Theorem 4.1, we find that the final error variance after bootstrapping is 
52.41 10 . It 

corresponds to a standard deviation of 0.0049  , which guarantee that the noise 
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amplitude after our bootstrapping is less than 1

16  with very high probability 

541

16
( 2 ) 1 2erf     ( this is higher than the probability 

33.561 2  in TFHE and 

321 2  in FHEW). 

Security of our parameter. We changed the parameters in Algorithm 1, which is 

used to gadget decompose a TLWE Sample. Algorithm 1 operation on the ciphertexts 

directly, and doesn’t involve any other information about the key. So the new parame-

ters will not decrease the security parameter level. 

Comparing to TFHE, a flaw of our scheme is that the homomorphic evaluation key 

is increased from 52.6M into 60.5M, which is the sum of Bootstrapping Key 31.3M 

and Key Switching Key 29.2M. Bootstrapping Key is the size of 2 ( 1)nl k  TLWE 

ciphertext, and a TLWE samples is almost ( 1) 32k N  bits[21].  

3.4 Implementation 

Based on the code of TFHE, we implement our scheme with parameters: 500n  , 

1024N  , 1k  , 2l  , 512gB  , 256  , 
312  , 

99.0 10  , 

53.05 10  , 15t  . We implemented TFHE, CGGI17 and our scheme on a 64-bit 

single core (i7-4930MX) at 3.00GHz, with OS Ubuntu Kylin 14.04, GNU version 6.2 

and fftw version 3.3.6. We implemented these schemes in four different modes, De-

bug/fftw, Debug/spqlios, release/fftw, release/spqlios, which using different mathe-

matical library. What’s more, we measured the time of key generation, encryption 

and, bootstrapping during FHE. We didn’t analyze the decryption process, since it 

only taking about 2 microseconds (us). Bootstrapping is the most important part that 

affecting efficiency of FHE. The result shows that our bootstrapping takes 52 percent 

of TFHE time in release/spqlios model, which is the most efficient FHE. Detail fol-

lows: 

 

Fig. 4. The key generation time comparison      Fig. 5. The encryption time comparison 
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Fig. 6. The bootstrapping time comparison 

Table 1. Bootstrapping time of our scheme, TFHE and CGGI17 in different modes 

Bootstrapping debug/fftw debug/spqlios release/fftw release/spqlios 

Our scheme 64ms 23ms 28ms 10ms 

TFHE [21] 192ms 20ms 61ms 19ms 

CGGI17[23] 94ms 38ms 38ms 13ms 

 

Three addends as a group. In this paper, we let two addends i ia s  as a group. In 

fact, when implement we let three addends i ia s  as a group to get a quicker boot-

strapping. In this situation, similar to Theorem 3.6, we construct Keybundlei  as fol-

low, which is a TGSW sample of message 3 2 3 2 3 1 3 1 3 3i i i i i iX      a s a s a s
. The flaw of 

this setting is that the evaluation key will be 70.9M (which is still reasonable). 

3 2 3 2 3 1 3 1 3 3 3 2 3 1 3

3 2 3 1 3 2 3

3 1 3

, 3 2 3 1 3

, 3 2 3 1 3 , 3 2 3 3 1

,

Keybundle ( ) ( )
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4 Summary and Future Directions 

In this paper, an efficient fully homomorphic encryption scheme with bootstrapping 

in 10ms is presented. Experiment shows that comparing with the scheme in best paper 

of ASIACRYPT 2016, in the same parameter setting, our scheme has smaller error 

and error variance, and most important of all, bootstrapping of our scheme cost only 

52 percent of TFHE time.  

The weakness of our scheme lies in that the process of bootstrapping involves 

many matrix-vector multiplications which cost more memory. Our future work will 

focus in optimizing of multiple bootstrappings. Moreover, the EHCM in our scheme 

can also be done multiple addends i ia s  on a group, but it leads to error increase. In 

future research, we want to solve this problem, and thus improve efficiency of FHE. 
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