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Abstract. Ridge regression is an algorithm that takes as input a large number of data points and finds the best-fit
linear curve through these points. It is a building block for many machine-learning operations. This report presents a
system for privacy-preserving ridge regression. The system outputs the best-fit curve in the clear, but exposes no
other information about the input data.
This problem was elegantly addressed by Nikolaenko et al. (S&P 2013). They suggest an approach that combines
homomorphic encryption and Yao garbled circuits. The solution presented in this report only involves homomorphic
encryption. This improves the performance as Yao circuits were the main bottleneck in the previous solution.
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1 Learning a Model

We briefly review ridge regression, the algorithm that an analyst executes to learn the model, ®β. All results
discussed below are classic, and can be found in most statistics and machine learning textbooks (e.g., [2]).

1.1 Linear Regression

Given a set of n input variables ®xi ∈ Rd, and a set of output variables yi ∈ R, the problem of learning a
function f : Rd → R such that yi ' f ( ®xi) is known as regression. For example, the input variables could be a
person’s age, weight, body mass index, etc., while the output can be their likelihood to contract a disease.

Learning such a function from real data has many interesting applications, that make regression ubiquitous
in data mining, statistics, and machine learning. On one hand, the function itself can be used for prediction,
i.e., to predict the output value y of a new input ®x ∈ Rd. On the other hand, the structure of f can aid in
identifying how different inputs affect the output —establishing, e.g., that weight, rather than age, is more
strongly correlated to a disease.

Linear regression is based on the premise that f is well approximated by a linear map,1 i.e.,

yi ' ®β
ᵀ ®xi , i ∈ {1, . . . , n}

for some ®β ∈ Rd. Linear regression is one of the most widely used methods for inference and statistical
analysis in the sciences. In addition, it is a fundamental building block for several more advanced methods in
statistical analysis and machine learning, such as kernel methods. For example, learning a function that is a
polynomial of degree 2 reduces to linear regression over xik xik′ , for 1 ≤ k, k ′ ≤ d; the same principle can be
generalized to learn any function spanned by a finite set of basis functions.

As mentioned above, beyond its obvious uses for prediction, the vector ®β = (βk)k=1,...,d is interesting as
it reveals how y depends on the input variables. In particular, the sign of a coefficient βk indicates either
positive or negative correlation to the output, while the magnitude captures the relative importance. To ensure
these coefficients are comparable, but also for numerical stability, the inputs ®xi are rescaled to the same, finite
domain (e.g., [−1, 1]).

1 Affine maps can also be captured through linear regression, by appending a 1 to each of the inputs.
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1.2 Computing the Coefficients

To compute the vector ®β ∈ Rd, the latter is fit to the data by minimizing the following quadratic function over
Rd:

F( ®β) =
n∑
i=1
(yi − ®β

ᵀ ®xi)2 + λ ‖ ®β‖22 . (1)

The procedure of minimizing Eq. (1) is called ridge regression; the objective F( ®β) incorporates a penalty term
λ ‖β‖22 , which favors parsimonious solutions. Intuitively, for λ = 0, minimizing Eq. (1) corresponds to solving
a simple least-squares problem. For positive λ > 0, the term λ ‖ ®β‖22 penalizes solutions with high norm:
between two solutions that fit the data equally, one with fewer large coefficients is preferable. Recalling that
the coefficients of ®β are indicators of how input affects output, this acts as a form of “Occam’s razor”: simpler
solutions, with few large coefficients, are preferable. Indeed, a λ > 0 gives in practice better predictions over
new inputs than the least-squares based solution.

Let ®y ∈ Rn be the vector of outputs and X ∈ Rn×d be a matrix comprising the input vectors, one in each
row: ®y = (yi)i=1,...,n and X = ( ®xi

ᵀ
)i=1,...,n; i.e.,

®y =

©­­­­«
y1
y2
...

yn

ª®®®®¬
and X =

©­­­­«
x11 x12 . . . x1d
x21 x22 . . . x2d
...

...
...

xn1 xn2 . . . xnd

ª®®®®¬
.

The minimizer of Eq. (1) can be computed by solving the linear system

A ®β = ®b (2)

where
A = XᵀX + λI ∈ Rd×d and ®b = Xᵀ ®y ∈ Rd .

For λ > 0, the matrix A is symmetric positive definite, and an efficient solution can be found using the
Cholesky decomposition.

Credits and Priority dates. The techniques presented in this report were mostly developed in 2014 while
the author was with Technicolor, USA. Technicolor filed a patent application in August 2015.

2 Privacy-Preserving Ridge Regression

As described in the previous section, given a large number of points in high dimension, the regression
algorithm produces a best-fit linear curve through these points. Our goal is to perform this computation
without exposing any other information about user data.

We target the same system as the one considered in [3]; see Fig. 1. Users send their encrypted data to a
party called the Evaluator who runs the learning algorithm. At certain points the Evaluator may interact with
a Crypto Service Provider (CSP), who is trusted not to collude with the Evaluator. The final outcome for the
Evaluator is the predictive model in the clear.

The solution offered in [3] is a hybrid method to privacy-preserving ridge regression. It uses both
homomorphic encryption (e.g., Paillier’s scheme [4]) and Yao garbled circuits [7]. The goal of the paper is to
build a solution that only makes use of homomorphic encryption.
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Fig. 1. The parties in the system. The Evaluator learns ®β, the model describing the best linear curve fit to the data ( ®xi, yi), i = 1, . . . , n,
without seeing the data in the clear.

2.1 Architecture and Entities

The system is designed for many users to contribute data to a central server called the Evaluator. The Evaluator
performs regression over the contributed data and produces a model, which can later be used for prediction or
recommendation tasks. More specifically, each user i = 1, . . . , n has a private record comprising two variables
®xi ∈ Rd and yi ∈ R, and the Evaluator wishes to compute a ®β ∈ Rd —the model— such that yi ' ®βᵀ ®xi.

The goal is to ensure that the Evaluator learns nothing about the user’s records beyond what is revealed by
®β, the final result of the regression algorithm. To initialize the system we will need a third party, which we
call a “Crypto Service Provider”, that does most of its work offline.

More precisely, the parties in the system are the following (shown in Fig. 1):

– Users: each user i has private data ( ®xi, yi) that it sends encrypted to the Evaluator.
– Evaluator: runs a regression algorithm on the encrypted data and obtains the learned model ®β in the clear.
– Crypto Service Provider (CSP): initializes the system by giving setup parameters to the users and the

Evaluator. The CSP does most of its work offline before users contribute data to the Evaluator. In our most
efficient design, the CSP is also needed for a short one-round online step when the Evaluator computes
the model.

2.2 Proposed Solution

Following [3], we adopt a two-phase approach to solve in a privacy-preserving fashion the linear system given
by Eq. (2); namely

A ®β = ®b

where A = XᵀX + λI and ®b = Xᵀ ®y, with X = ( ®xi
ᵀ
)i=1,...,n and ®y = (yi)i=1,...,n.

The authors of [3] astutely observe that the matrix A and vector ®b can be computed in an iterative fashion
as follows. Recalling that each pair ( ®xi, yi) is held by a distinct user, each user i can locally compute the matrix
Ai = ®xi ®xi

ᵀ and the vector ®bi = yi ®xi . It is then easily verified that summing these partial contributions yields:

A =
n∑
i=1

Ai + λI and ®b =
n∑
i=1

®bi . (3)

Equation (3) importantly shows that A and ®b are the result of a series of additions. The Evaluator’s regression
task can therefore be separated into two subtasks: (a) collecting the Ai’s and ®bi’s to construct matrix A and
vector ®b, and (b) using these to obtain β by solving the linear system (2).
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Let
Epk : (Ai; ®bi) ∈ M 7→ ci = Epk(Ai; ®bi)

be a semantically secure encryption scheme indexed by a public key pk that takes as input a pair (Ai; ®bi) in
the message spaceM and returns the encryption ci of (Ai; ®bi) under pk. Then it must hold for any pk and any
two pairs (Ai; ®bi), (Aj ; ®bj), that

Epk(Ai; ®bi) ⊗ Epk(Aj ; ®bj) = Epk(Ai + Aj ; ®bi + ®bj)

for some public binary operator ⊗.
Such an encryption scheme can be constructed from any semantically secure additively homomorphic

encryption scheme by encrypting component-wise the entries of Ai and ®bi. We suppose thatM = Z/NZ
is the message space associated to this additively homomorphic encryption scheme. This setting covers all
practical known schemes, including Paillier’s scheme [4].

Phase 1.

1.1 Each user i (1 ≤ i ≤ n) contributes locally and computes Ai = ®xi ®xi
ᵀ and ®bi = yi ®xi . The values of Ai and

®bi are encrypted under the CSP’s public key pkcsp,

ci = Epkcsp(Ai; ®bi) ,

and sent to the Evaluator.
1.2 The Evaluator computes cλ = Epkcsp(λI; ®0). It then aggregates it to all the ciphertexts ci and obtains the

encryted matrix A and the encrypted vector ®b; namely,

c :=

(
n⊗
i=1
ci

)
⊗ cλ = Epkcsp

(
n∑
i=1

Ai + λI;
n∑
i=1
®bi

)
= Epkcsp(A; ®b)

The challenge now is to solve Eq. (2), with the help of the CSP, without revealing (to the Evaluator or the
CSP) any additional information other than ®β.

Phase 2.

2.1 The Evaluator chooses uniformly at random two matrices R ∈ GL(d,Z/NZ) and S ∈ GL(d,Z/NZ) and
computes

c
? = Epkcsp(RAS; R®b) .

The Evaluator forwards c? to the CSP.
2.2 The CSP uses her secret key to decrypt c? and gets A? = RAS and ®b? = R ®b. The CSP then solves for ®β′

the system
A? ®β′ = ®b?

and sends ®β′ to the Evaluator.
2.3 The Evaluator finally recovers ®β as ®β = S ®β′.
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Remark 1. Step 1 (in Phase 2) requires to compute matrix multiplications in the encrypted domain. This can
be done by observing that the components of matrices R and S are known to the Evaluator. For example, to
evaluate element (u, v) of Epkcsp(RA), the Evaluator computes∏

1≤ j≤d
Epkcsp(Aj,v)

Ru, j

which is equal to Epkcsp(
∑

1≤ j≤d Ru, j Aj,v), as desired.

3 Implementation

The resolution of the linear system given by Eq. (2) requires to accurately represent real numbers in a binary
form. As in [3], we consider a fixed-point number representation. So, by scaling both sides of Eq. (2), we can
without loss of generality assume that the entries of matrix A and of vector ®b have integer entries represented
with a fixed number of bits, say κ bits.

In order to apply the rational reconstruction to vector ®β (as the outcome of Step 2.3), seen as a vector in
Qd, we need to bound the numerator and denominator of its entries. According to [6,1], letting B1 and B2
respectively denote the bounds on the numerator and on the denominator, one must have 2B1B2 ≤ 2λ, where
λ is the bit-size of N —remember that Ai and ®bi are encrypted component-wise as elements of Z/NZ.

We can write

®β = A−1 ®b =
1

det(A)
adj(A) ®b

where adj(A) is the adjucate of A (i.e., the transpose of its cofactor matrix).
We recall that, for a matrix M = (mi, j) ∈ R

d×d, Hadamard’s inequality tells that | det(M)| ≤
∏d

j=1 ‖
®Mj ‖2

where the ®Mj’s represent the columns of M. As a corollary, since ‖ ®Mj ‖2 ≤
√

d ‖ ®Mj ‖∞, we get | det(M)| ≤
(
√

d µ)d with µ = maxi, j |mi, j |. Furthermore, when M is positive definite, the bound can be tightened to
det(M) ≤

∏d
j=1 mj, j ≤ µ

d.
Since matrix A is positive definite, we have

B2 ≤ det(A) ≤ (2κ)d .

For the numerator, Hadamard’s inequality yields

B1 ≤ ‖ adj(A) ®b‖∞ ≤ d ·
( (√
(d − 1) 2κ

)d−1
· 2κ

)
≤ d(d+1)/2 (2κ)d .

The condition 2B1B2 ≤ 2λ is therefore fulfilled when

λ > 2κd + d+1
2 log2 d .

For example, using Paillier’s scheme, a valid set of parameters is |N |2 = 1024, d = 20 and κ = 24. This
setting was numerically verified on a synthetic dataset with a set of routines developed with GP/Pari [5].
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