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Abstract. The LLL algorithm (from Lenstra, Lenstra and Lovász) and
its generalization BKZ (from Schnorr and Euchner) are widely used in
cryptanalysis, especially for lattice-based cryptography. Precisely un-
derstanding their behavior is crucial for deriving appropriate key-size
for cryptographic schemes subject to lattice-reduction attacks. Current
models, e.g. the Geometric Series Assumption and Chen-Nguyen’s BKZ-
simulator, have provided a decent first-order analysis of the behavior
of LLL and BKZ. However, they only focused on the average behavior
and were not perfectly accurate. In this work, we initiate a second order
analysis of this behavior. We confirm and quantify discrepancies between
models and experiments —in particular in the head and tail regions—
and study their consequences. We also provide variations around the
mean and correlations statistics, and study their impact. While mostly
based on experiments, by pointing at and quantifying unaccounted phe-
nomena, our study sets the ground for a theoretical and predictive un-
derstanding of LLL and BKZ performances at the second order.
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1 Introduction

Lattice reduction is a powerful algorithmic tool for solving a wide range of prob-
lems ranging from integer optimization problems and problems from algebra
or number theory. Lattice reduction has played a role in the cryptanalysis of
cryptosystems not directly related to lattices, and is now even more relevant to
quantifying the security of lattice-based cryptosystems [14, 6, 1].

The goal of lattice reduction is to find a basis with short and nearly or-
thogonal vectors. In 1982, the first polynomial time lattice reduction algorithm,
LLL [15], was invented by Lenstra, Lenstra and Lovász. Then, the idea of
block-wise reduction appeared and several block-wise lattice reduction algo-
rithms [24, 7, 8, 19] were proposed successively. Currently, BKZ is the most
practical lattice reduction algorithm. Schnorr and Euchner first put forward

mailto:y-y13@mails.tsinghua.edu.cn
mailto:ducas@cwi.nl


2

the original BKZ algorithm in [24]. It is subject to many heuristic optimiza-
tions, such as early-abort [12], pruned enumeration [10] and progressive reduc-
tion [4, 2]. All such improvements have been combined in the so-called BKZ 2.0
algorithm of Chen and Nguyen [5] (progressive strategy was improved further in
later work [2]). Also, plenty of analyses [9, 23, 31, 2, 19] of BKZ algorithms have
been made to explore and predict the performance of BKZ algorithms, which
provide rough security estimations for lattice-based cryptography.

Despite of their popularity, the behavior of lattice reduction algorithms is
still not completely understood. While there are reasonable models (e.g. the
Geometric Series Assumption [25] and simulators [5]), there are few studies on
the experimental statistical behavior of those algorithms, and they considered
rather outdated versions of those algorithms [20, 3, 23]. The accuracy of the
current model remains unclear.

This state of affair is quite problematic to evaluate accurately the concrete
security level of lattice-based cryptosystem proposal. With the recent calls for
post-quantum schemes by the NIST, this matter seems pressing.

Our Contribution. In this work, we partially address this matter, by proposing
a second-order statistical (for random input bases) analysis of the behavior of
reduction algorithms in practice, qualitatively and quantitatively. We figure out
one more low order term in the predicted average value of several quantities such
as the root Hermite factor. Also, we investigate the variation around the average
behavior, a legitimate concern raised by Micciancio and Walter [19].

In more details, we experimentally study the logarithms of ratios between
two adjacent Gram-Schmidt norms in LLL and BKZ-reduced basis (denoted ri’s
below). We highlight three ranges for the statistical behavior of the ri: the head
(i ≤ h), the body (h < i < n − t) and the tail (i ≥ n − t). The lengths of the
head and tail are essentially determined by the blocksize β. In the body range,
the statistical behavior of the ri’s are similar: this does not only provide new
support for the so-called Geometric Series Assumption [25] when β � n, but
also a refinement of it applicable even when β 6� n. We note in particular that
the impact of the head on the root Hermite factor is much stronger than the
impact of the tail.

We also study the variance and the covariance between the ri’s. We observe a
local correlation between the ri’s. More precisely we observe that ri and ri+1 are
negatively correlated, inducing a self-stabilizing behavior of those algorithms:
the overall variance is less than the sum of local variances.

Then, we measure the half-volume, i.e.
∏bn2 c
i=1 ‖b∗i ‖, a quantity determining

the cost of enumeration on reduced basis. By expressing the half-volume using
the statistics of the ri’s, we determine that the complexity of enumeration on
BKZ-reduced basis should be of the form 2an

2±bn1.5

: the variation around average
(denoted by ±) can impact the speed of enumeration by a super-exponential
factor.
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At last, we also compare all those experimental results3 to the simulator [5],
and conclude that the simulator can predict the body of the profile and the tail
phenomenon qualitatively and quantitatively, but the head phenomenon is not
captured. Thus it is necessary to revise the security estimation and refine the
simulator.

Impact. Our work points at several inaccuracies of the current models for the
behavior of LLL and BKZ, and quantifies them experimentally. It should be
noted that our measured statistics are barely enough to address the question
of precise prediction. Many tweaks on those algorithms are typically applied
(more aggressive pruning, more subtle progressive reductions, ...) to accelerate
them and that would impact those statistics. On the other hand, the optimal
parametrization of heuristic tweaks is very painful to reproduce, and not even
clearly determined in the literature. We therefore find it preferable to first ap-
proach stable versions of those algorithm, and minimize the space of parameters.

We would also not dare to simply guess extrapolation models for those statis-
tics to larger blocksize: this should be the topic of a more theoretical study.

Yet, by pointing out precisely the problematic phenomena, we set the ground
for revised models and simulators: our reported statistics can be used to sanity
check such future models and simulators.

Source code. Our experiments heavily rely on the latest improvements of the
open-source library fplll [27], catching up with the state of the art algorithm BKZ
2.0. For convenience, we used the python wrapper fpylll [28] for fplll, making our
scripts reasonably concise and readable. All our scripts are open-source and
available online4, for reviewing, reproduction or extension purposes.

2 Preliminaries

We refer to [21] for a detailed introduction to lattice reduction and to [12, 16] for
an introduction to the behavior of LLL and BKZ.

2.1 Notations and Basic Definitions

All vectors are denoted by bold lower case letters and are to be read as row-
vectors. Matrices are denoted by bold capital letters. We write a matrix B into
B = (b1, · · · ,bn) where bi is the i-th row vector of B. If B ∈ Rn×m has full rank
n, the lattice L generated by the basis B is denoted by L(B) = {xB | x ∈ Zn}.
We denote by (b∗1, · · · ,b∗n) the Gram-Schmidt orthogonalization of the matrix
(b1, · · · ,bn). For i ∈ {1, · · · , n}, we define the orthogonal projection to the span

3 The variance statistics are not comparable to the simulator [5] whose results are
“deterministic”, in the sense that the simulator’s result starting on the Hermite
Normal Form of a lattice depends only on the parameters (dimension, volume) of
the lattice, and not the randomness of the lattice itself.

4 Available at https://github.com/repo-fplll/Statistical-Behavior-of-BKZ.
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of (b1, · · · ,bi−1)⊥ as πi. For 1 ≤ i < j ≤ n, we denote by B[i,j] the local block
(πi(bi), · · · , πi(bj)), by L[i,j] the lattice generated by B[i,j].

The Euclidean norm of a vector v is denoted by ‖v‖. The volume of a lat-
tice L(B) is vol(L(B)) =

∏
i ‖b∗i ‖, that is an invariant of the lattice. The first

minimum of a lattice L is the length of a shortest non-zero vector, denoted by
λ1(L). We use the shorthands vol(B) = vol(L(B)) and λ1(B) = λ1(L(B)).

Given a random variable X, we denote by E(X) its expectation and by
Var(X) its variance. Also we denote by Cov(X,Y ) the covariance between two
random variables X and Y . Let X = (X1, · · · , Xn) be a vector formed by random
variables, its covariance matrix is defined by Cov(X) = (Cov(Xi, Xj))i,j .

2.2 Lattice Reduction: in Theory and in Practice

We now recall the definitions of LLL and BKZ reduction. A basis B is LLL-
reduced with parameter δ ∈ ( 1

2 , 1], if:

1. |µi,j | ≤ 1
2 , 1 ≤ j < i ≤ n, where µi,j = 〈bi,b∗j 〉/〈b∗j ,b∗j 〉 are the Gram-

Schmidt orthogonalization coefficients;
2. δ‖b∗i ‖ ≤ ‖b∗i+1 + µi+1,ib

∗
i ‖, for 1 ≤ i < n.

A basis B is BKZ-reduced with parameter β ≥ 2 and δ ∈ ( 1
2 , 1], if:

1. |µi,j | ≤ 1
2 , 1 ≤ j < i ≤ n;

2. δ‖b∗i ‖ ≤ λ1(L[i,min(i+β−1,n)]), for 1 ≤ i < n.

Note that we follow the definition of BKZ reduction from [24] which is a little
different from the first notion proposed by Schnorr [26]. We also recall that, as
proven in [24], LLL is equivalent to BKZ2. Typically, LLL and BKZ are used
with Lovász parameter δ =

√
0.99 and so will we.

For high dimensional lattices, running BKZ with a large blocksize is very
expensive. Heuristics improvements were developed, and combined by Chen and
Nguyen [5], advertised as BKZ 2.0.5 In this paper, we report on pure BKZ
behavior to avoid perturbations due to heuristic whenever possible. Yet we switch
to BKZ 2.0 to reach larger blocksizes when deemed relevant.

The two main improvements in BKZ 2.0 are called early-abort and pruned
enumeration. As proven in [12], the output basis of BKZ algorithm with blocksize

β would be of an enough good quality after C · n
2

β2

(
log n+ log log max

‖b∗i ‖
vol(L)1/n

)
tours, where C is a small constant. In our experiments of BKZ 2.0, we chose dif-
ferent C and observed its effect on the final basis. We also applied the pruning
heuristic (see [10, 4, 27] for details) to speed-up enumeration, but chose a con-
servative success probability (95%) without re-randomization to avoid altering
the quality of the output. The preprocessing-pruning strategies were optimized
using the strategizer [29] of fplll/fpylll.

5 Further improvements were recently put forward [2], but are beyond the scope of
this paper.
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Given a basis B of an n-dimensional lattice L, we denote by rhf(B) the root

Hermite factor of B, defined by rhf(B) =
(
‖b1‖

vol(L)1/n

)1/n
. The root Hermite

factor is a common measurement of the reducedness of a basis, e.g. [9].
Let us define the sequence {ri(B)}1≤i≤n−1 of an n-dimensional lattice basis

B = (b1, · · · ,bn) such that ri(B) = ln
(
‖b∗i ‖/‖b∗i+1‖

)
. The root Hermite factor

rhf(B) can be expressed in terms of the ri(B)’s:

rhf(B) = exp

 1

n2

∑
1≤i≤n−1

(n− i)ri(B)

 . (1)

Intuitively, the sequence {ri(B)}1≤i≤n−1 characterizes how fast the sequence
{‖b∗i ‖} decreases. Thus Equation (1) provides an implication between the fact
that the ‖b∗i ‖’s don’t decrease too fast and the fact that the root Hermite factor
is small. For reduced bases, the ri(B)’s are of certain theoretical upper bounds.
However, it is well known that experimentally, the ri(B)’s tend to be much
smaller than the theoretical bounds in practice.

From a practical perspective, we are more interested in the behavior of the
ri(B)’s for random lattices. The standard notion of random real lattices of given
volume is based on Haar measures of classical groups. As shown in [11], the uni-
form distribution over integer lattices of volume V converges to the distribution
of random lattices of unit volume, as V grows to infinity. In our experiments,
we followed the sampling procedure of the lattice challenges [22]: its volume is a
random prime of bit-length 10n and its Hermite normal form (see [18] for details)
is sampled uniformly once its volume is determined. Also, we define a random
LLL (resp. BKZβ)-reduced basis as the basis outputted by LLL (resp. BKZβ) ap-
plied to a random lattice given by its Hermite normal form, as described above.
To speed up convergence, following a simplified progressive strategy [4, 2], we
run BKZ (resp. BKZ 2.0) with blocksize β = 2, 4, 6, ... (resp. β = 2, 6, 10, ...)
progressively from the Hermite normal form of a lattice.

We treat the ri(B)’s as random variables (under the randomness of the lattice
basis before reduction). For any i ∈ {1, · · · , n − 1}, we denote by ri(β, n) the
random variable ri(β, n) = ri(B), where B is a random BKZβ-reduced basis, and
by Di(β, n) the distribution of ri(β, n). When β and n are clear from context,
we simply write ri for ri(β, n).

2.3 Heuristics on Lattice Reduction

Gaussian Heuristic. The Gaussian Heuristic, denoted by GAUSS, says that,
for “any reasonable” subset K of the span of the lattice L, the number of lattice
points insideK is approximately vol(K)/vol(L). Let the volume of n-dimensional

unit ball be Vn(1) = πn/2

Γ (n/2+1) . A prediction derived from GAUSS is that λ1(L) ≈
vol(L)1/n · GH(n) where GH(n) = Vn(1)−1/n, which is accurate for random
lattices. As suggested in [13, 10], GAUSS is a valuable heuristic to estimate the
cost and quality of various lattice algorithms.
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Random Local Block. In [5], Chen and Nguyen suggested the following mod-
eling assumption, seemingly accurate for large enough blocksizes:

Assumption 1 [RANDn,β ] Let n, β ≥ 2 be integers. For a random BKZβ-
reduced basis of a random n-dimensional lattice, most local block lattices
L[i,i+β−1] behave like a random β-dimensional lattice where i ∈ {1, · · · , n+1−β}.

By RANDn,β and GAUSS, one can predict the root Hermite factor of local

blocks: rhf(B[i,i+β−1]) ≈ GH(β)
1
β .

Geometric Series Assumption. In [25], Schnorr first proposed the Geometric
Series Assumption, denoted by GSA, which says that, in typical reduced basis B,
the sequence {‖b∗i ‖}1≤i≤n looks like a geometric series (while GAUSS provides
the exact value of this geometric ratio). GSA provides a simple description of
Gram-Schmidt norms and then leads to some estimations of Hermite factor and
enumeration complexity [9, 10]. When it comes to {ri(B)}1≤i≤n−1, GSA implies
that the ri(B)’s are supposed to be almost equal to each others. However, GSA is
not so perfect, because the first and last b∗i ’s usually violate it [3]. The behavior
in the tail is well explained, and can be predicted and simulated [5].

3 Head and Tail

In [3, 5], it was already claimed that for a BKZβ-reduced basis B, GSA doesn’t
hold in the first and last indices. We call this phenomenon “Head and Tail”,
and provide detailed experiments. Our experiments confirm that GSA holds
in a strong sense in the body of the basis (i.e. outside of the head and tail
regions). Precisely, the distributions of ri’s are similar in that region, not only
their averages. We also confirm the violations of GSA in the head and the tail,
quantify them, and exhibit that they are independent of the dimension n.

As a conclusion, we shall see that the head and tail have only small impacts on
the root Hermite factor when n� β, but also that they can also be quantitatively
handled when n 6� β. We notice that the head has in fact a stronger impact than
the tail, which emphasizes the importance of finding models or simulators that
capture this phenomenon, unlike the current ones that only capture the tail [5].

3.1 Experiments

We ran BKZ on many random input lattices and report on the distribution of
each ri. We first plot the average and the variance of ri for various blocksizes
β and dimensions n in Figure 1. By superposing with proper alignment curves
for the same β but various n, we notice that the head and tail behavior doesn’t
depend on the dimension n, but only on the relative index i (resp. n− i) in the
head (resp. the tail). A more formal statement will be provided in Claim 1.
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Fig. 1. Average value and standard deviation of ri as a function of i. Experi-
mental values measure over 5000 samples of random n-dimensional BKZ bases for
n = 80, 100, 120, 140. First halves {ri}i≤(n−1)/2 are left-aligned while last halves
{ri}i>(n−1)/2 are right-aligned so to highlight heads and tails. Dashed lines mark in-
dices β and n − β. Due to the expensive cost of running BKZ30 on high dimensional
lattices, we only present the result of BKZ30 for n = 100 mostly as a reference to test
the accuracy of the simulator, see Section 6.

We also note that inside the body (i.e. outside both the head and the tail)
the mean and the variance of ri do not seem to depend on i, and are tempted to
conclude that the distribution itself doesn’t depend on i. To give further evidence
of this stronger claim, we ran the Kolmogorov-Smirnov test [17] on samples of
ri and rj for varying i, j. The results are depicted on Figure 2, and confirm this
stronger claim.
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Fig. 2. Kolmogorov-Smirnov Test with significance level 0.05 on all Di(β, 100)’s cal-
culated from 5000 samples of random 100-dimensional BKZ bases with blocksize
β = 2, 10, 20, 30 respectively. A black pixel at position (i, j) marks the fact that the pair
of distributions Di(β, 100) and Dj(β, 100) passed Kolmogorov-Smirnov Test, i.e. two
distributions are close.

3.2 Conclusion

From the experiments above, we allow ourselves to the following conclusion.

Experimental Claim 1 There exist two functions h, t : N→ N, such that, for
all n, β ∈ N, and when n ≥ h(β) + t(β) + 2 :

1. When i ≤ h(β), Di(β, n) depends on i and β only: Di(β, n) = Dhi (β)
2. When h(β) < i < n− t(β), Di(β, n) depends on β only: Di(β, n) = Db(β)
3. When i ≥ n−t(β), Di(β, n) depends on n−i and β only: Di(β, n) = Dtn−i(β)

Remark 1. We only make this claim for basis that have been fully BKZ-reduced.
Indeed, as we shall see later, we obtained experimental clues that this claim
would not hold when the early-abort strategy is applied. More precisely, the head
and tail phenomenon is getting stronger as we apply more tours (see Figure 4).

From now on, we may omit the index i when speaking of the distribution of
ri, implicitly implying that the only indices considered are such that h(β) < i <
n−t(β). The random variable r depends on blocksize β only, hence we introduce
two functions of β, e(β) and v(β), to denote the expectation and variance of r

respectively. Also, we denote by r
(h)
i (resp. r

(t)
n−i) the ri inside the head (resp.
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tail), and by e
(h)
i (β) and v

(h)
i (β) (resp. e

(t)
n−i(β) and v

(t)
n−i(β)) the expectation

and variance of r
(h)
i (resp. r

(t)
n−i).

We conclude by a statement on the impacts of the head and tail on the
logarithmic average root Hermite factor:

Corollary 1. For a fixed blocksize β, and as the dimension n grows, it holds
that

E(ln(rhf(B))) =
1

2
e(β) +

d(β)

n
+O

(
1

n2

)
, (2)

where d(β) =
∑
i≤h e

(h)
i (β)−

(
h+ 1

2

)
e(β).

Corollary 1 indicates that the impacts on the average root Hermite factor
from the head and tail are decreasing. In particular, the tail has a very little effect
O
(

1
n2

)
on the average root Hermite factor. The impact of the head d(β)/n, which

hasn’t been quantified in earlier work, is —perhaps surprisingly— asymptotically
larger. We include the proof of Corollary 1 in Appendix A.

Below, Figures 3 and 4 provide experimental measure of e(β) and d(β) from
5000 random 100-dimensional BKZβ-reduced bases. We note that the lengths of
the head and tail seem about the maximum of 15 and β. Thus we set h(β) =
t(β) = max(15, β) simply, which affects the measure of e(β) and d(β) little. For
the average e(2) ≈ 0.043 we recover the experimental root Hermite factor of LLL
rhf(B) = exp(0.043/2) ≈ 1.022, compatible with many other experiments [9].

To extend the curves, we also plot the experimental measure of e(β) and d(β)6

from 20 random 180-dimensional BKZβ 2.0 bases with bounded tour number⌈
C · n

2

β2

(
log n+ log log max

‖b∗i ‖
vol(L)1/n

)⌉
. It shows that the qualitative behavior

of BKZ 2.0 is different from full-BKZ not only the quantitative one: there is
a bump7 in the curve of e(β) when β ∈ [22, 30]. Considering that the success
probability for the SVP enumeration was set to 95%, the only viable explanation
for this phenomenon in our BKZ 2.0 experiments is the early-abort strategy: the
shape of the basis is not so close to the fix-point.

6 For BKZ 2.0, the distributions of the ri’s inside the body may not be identical, thus
we just calculate the mean of those ri’s as a measure of e(β).

7 Yet the quality of the basis does not decrease with β in this range, as the bump on
e(β) is more than compensated by the decrease in d(β).
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Fig. 3. Experimental measure of e(β)
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Fig. 4. Experimental measure of d(β)

4 Local correlations and global variance

In the previous section, we have classified the ri’s and established a connection
between the average of the root Hermite factor and the function e(β). Now we
are to report on the (co-)variance of the ri’s. Figure 5 shows the experimental
measure of local variances, i.e. variances of the ri’s inside the body, but it is not
enough to deduce the global variance, i.e. the variance of the root Hermite factor.
We still need to understand more statistics, namely the covariances among these
ri’s. Our experiments indicate that local correlations —i.e. correlations between
ri and ri+1— are negative and other correlations seem to be zero. Moreover, we
confirm the tempting hypothesis that local correlations inside the body are all
equal and independent of the dimension n.

Based on these observations, we then express the variance of the logarithm
of root Hermite factor for fixed β and increasing n asymptotically, and quantify
the self-stability of LLL and BKZ algorithms.
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Fig. 5. Experimental measure of v(β)
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4.1 Experiments

Let r = (r1, · · · , rn−1) be the random vector formed by random variables ri’s. We
profile the covariance matrices Cov(r) for 100-dimensional lattices with BKZ re-
duction of different blocksizes in Figure 6. The diagonal elements in covariance
matrix correspond to the variances of the ri’s which we have studied before.
Thus we set all diagonal elements to 0 to enhance contrast. We discover that
the elements on the second diagonals, i.e. Cov(ri, ri+1)’s, are significantly neg-
ative and other elements seems very close to 0. We call the Cov(ri, ri+1)’s local
covariances.
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Fig. 6. Covariance matrices of r. Experimental values measure over 5000 samples of
random 100-dimensional BKZ bases with blocksize β = 2, 10, 20, 30 respectively. The
pixel at coordinates (i, j) corresponds to the covariance between ri and rj .

We then plot measured local covariances in Figure 7. Comparing these curves
for various dimensions n, we notice that the head and tail parts almost coincide,
and the local covariances inside the body seem to depend on β only, we will
denote this value by c(β). We also plot the curves of the Cov(ri, ri+2)’s in
Figure 7 and note that the curves for the Cov(ri, ri+2)’s are horizontal with
a value about 0. For other Cov(ri, ri+d)’s with larger d, the curves virtually
overlap that for the Cov(ri, ri+2)’s. For readability, larger values of d are not
plotted. One thing to be noted is that the case for blocksize β = 2 is an exception.
On one hand, the head and tail of the local covariances in BKZ2 basis bend in
the opposite directions, unlike for larger β. In particular, the Cov(ri, ri+2)’s in
BKZ2 basis are not so close to 0, but are nevertheless significantly smaller than
the local covariances Cov(ri, ri+1). That indicates some differences between LLL
and BKZ.
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Fig. 7. Cov(ri, ri+1) and Cov(ri, ri+2) as a function of i. Experimental val-
ues measured over 5000 samples of random n-dimensional BKZ bases for n =
80, 100, 120, 140. The blue curves denote the Cov(ri, ri+1)’s and the red curves de-
note the Cov(ri, ri+2)’s. For same dimension n, the markers in two curves are iden-
tical. First halves are left aligned while last halves {Cov(ri, ri+1)}i>(n−2)/2 and
{Cov(ri, ri+2)}i>(n−3)/2 are right aligned so to highlight heads and tails. Dashed lines
mark indices β and n− β − 2.

Also, we calculate the average of (n− 2 max(15, β)) middle local covariances
as an approximation of c(β) for different n and plot the evolution of c(β) in
Figure 8. The curves for different dimensions seem to coincide, which provides
another evidence to support that the local covariances inside the body don’t
depend on n indeed. To determine the minimum of c(β), we ran a batch of BKZ
with β = 2, 3, 4, 5, 6 separately. We note that c(β) increases with β except for
c(3) < c(2), which is another difference between LLL and BKZ.
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Remark 2. To obtain a precise measure of covariances, we need enough samples
and thus the extended experimental measure of c(β) is not given. Nevertheless,
it seems that, after certain number of tours, local covariances of BKZ 2.0 bases
still tend to be negative but other covariances tend to zero.
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Experimental measure of c(β)
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Fig. 8. Experimental measure of the
evolution of c(β) calculated from 5000
samples of random BKZ bases in dif-
ferent dimension n respectively.
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0.000050

v(β) +2c(β)

3

Fig. 9. Experimental measure of
v(β)+2c(β)

3
. The data point for β = 2,

v(2)+2c(2)
3

≈ 0.00045 was clipped out,
being 10 times larger than all other
values.

4.2 Conclusion

From above experimental observations, we now arrive at the following conclusion.

Experimental Claim 2 Let h and t be the two functions defined in Claim 1.
For all n ∈ N and β > 2 such that n ≥ h(β) + t(β) + 2:

1. When |i− j| > 1, ri and rj are not correlated: Cov(ri, rj) = 0
2. When |i− j| = 1, ri and rj are negatively correlated: Cov(ri, rj) < 0. More

specifically:
– When i ≤ h(β), Cov(ri, ri+1) depends on i and β only: Cov(ri, ri+1) =
chi (β)

– When h(β) < i < n − t(β), Cov(ri, ri+1) depends on β only:
Cov(ri, ri+1) = c(β)

– When i ≥ n − t(β), Cov(ri, ri+1) depends on n − i and β only:
Cov(ri, ri+1) = ctn−i(β)

One direct consequence derives from the above experimental claim is that
the global variance, i.e. the variance of the logarithm of root Hermite factor,
converges to 0 as Θ(1/n), where the hidden constant is determined by β:

Corollary 2. For a fixed blocksize β, and as the dimension n grows, it holds
that

Var(ln(rhf(B))) =
1

3n
v(β) +

2

3n
c(β) +O

(
1

n2

)
. (3)
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The proof of Corollary 2 is given in Appendix B. Note that the assumption
that all Cov(ri, ri+d)’s with d > 1 equal 0 may not be exactly true. However,
the Cov(ri, ri+d)’s converge to 0 quickly as d increases, hence we may assert

that the sum
∑n−1−i
d=1 Cov(ri, ri+d) converge with n for fixed β and i inside

the body. Then we still can conclude that Var(ln(rhf(B))) = O( 1
n ). The faster

the Cov(ri, ri+d)’s converges to 0 as d grows, the more accurate our above

approximation is. The experimental measure of v(β)+2c(β)
3 is shown in Figure 9

and v(β)+2c(β)
3 seems to converge to a finite value ≈ 5× 10−5 as β grows.

5 Half Volume

We shall now study statistics on the half-volume, H(B) =
∏bn2 c
i=1 ‖b∗i ‖, of a

random BKZ-reduced basis B. As claimed in [10], the nodes in the enumeration
tree at the depths around n

2 contribute the most to the total node number, for
both full and regular pruned enumerations. Typically, the enumeration radius R
is set to c

√
n·vol(B)

1
n for some constant c > 0, e.g. R = 1.05·GH(n)·vol(B)

1
n , the

number of nodes in the bn2 c level is approximately proportional to H(B)

vol(B)d
n
2
e/n ,

making the half-volume a good estimator for the cost of enumeration. Those
formulas have to be amended in case pruning is used (see [10]), but the half-
volume remains a good indicator of the cost of enumeration.

Let hv(β, n) be the random variable ln(H(B)) − b
n
2 c
n ln(vol(B)) where B is

a random BKZβ-reduced basis. By the above experimental claims, we conclude
the following result. The proof is shown in Appendix C.

Corollary 3 (Under previous experimental claims). For a fixed blocksize
β, let n be an integer such that n > 2 max(h(β), t(β)). Then, as the dimension
n grows, it holds that

E(hv(β, n)) =
n2

8
e(β) + d′(β) +O

(
1

n

)
, (4)

where d′(β) =
∑
i≤h

i
2

(
e
(h)
i (β)− e(β)

)
+
∑
i≤t

i
2

(
e
(t)
i − e(β)

)
− 1

4{
n
2 }e(β), and

Var(hv(β, n)) =
n3

48
(v(β) + 2c(β)) +O(n). (5)

Assuming heuristically that the variation around the average of hv follows a
Normal law, Corollary 3 implies that the complexity of enumeration on a random
n-dimensional BKZβ-reduced basis should be of the shape

exp
(
n2x(β) + y(β)± n1.5l · z(β)

)
(6)

except a fraction at most exp(−l2/2) of random bases, where

x(β) =
e(β)

8
, y(β) = d′(β), z(β) =

√
v(β) + 2c(β)

48
(7)
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and where the term ±n1.5l · z(β) accounts for variation around the average
behavior. In particular, the contribution of the variation around the average
remains asymptotically negligible compared to the main exp(Θ(n2)) factor, it
still introduces a super-exponential factor, that can make one particular attempt
much cheaper or much more expensive in practice. It means that it could be
beneficial in practice to rely partially on luck, restarting BKZ without trying
enumeration when the basis is unsatisfactory.

The experimental measure of 8x(β) and 16z(β)2 has been shown in Fig-
ure 3 and 9 respectively. We now exhibit the experimental measure of y(β)
in Figure 10. Despite the curves for BKZ 2.0 are not smooth, it seems that
y(β)(= d′(β)) would increase with β when β is large. However, comparing to
n2x(β), the impact of y(β) on the half-volume is still much weaker.8

2 6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

β

−3

−2

−1

0

1

2

d
′ (β

)

BKZ: n=100

BKZ 2.0: n=180, C=0.25

BKZ 2.0: n=180, C=2.0

BKZ 2.0: n=180, C=8.0

Fig. 10. Experimental measure of y(β)(= d′(β))

6 Performance of Simulator

In [5], Chen and Nguyen proposed a simulator to predict the behavior of BKZ.
For large β, the simulator can provide a reasonable prediction of average profile,

i.e.
{

log
(
‖b∗i ‖

vol(L)1/n

)}n
i=1

. In this section, we will further report on the perfor-

mance of the simulator qualitatively and quantitatively. Our experiments confirm
that the tail still exists in the simulated result and fits the actual measure, but
the head phenomenon is not captured by the simulator, affecting its accuracy
for cryptanalytic prediction.

To make the simulator9 coincide with the actual algorithm, we set the pa-
rameter δ =

√
0.99 and applied a similar progressive strategy10. The maximum

8 The impacts of the ri’s inside the head and tail will still be significant when β = O(n).
9 We worked on an open-source BKZ simulator [30], with minor modifications.

10 In simulation, the initial profile sequence is set to (10(n − 1),−10, · · · ,−10) and
then we started from blocksize 6 and progressively ran simulator by step 2 (or 4 to
simulate BKZ 2.0.). There seems to be something wrong when starting with BKZ2.
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tour number corresponds to the case that C = 0.25 in [12], but the simulator
always terminates after a much smaller number of tours.

6.1 Experiments

We ran simulator on several sequences of different dimensions and plot the aver-
age values of ri’s in Figure 11. An apparent tail remains in the simulated result
and the length of its most significant part is about β despite a slim stretch. How-
ever, there is no distinct head, which does not coincide with the actual behavior:
the head shape appears after a few tours of BKZ or BKZ 2.0. Still, the ri’s inside
the body share similar values, in accordance with GSA and experiments.
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Fig. 11. Average value of ri calculated by simulator. First halves are left aligned while
last halves {ri}i>(n−1)/2 are right aligned so to highlight heads and tails. The vertical
dashed line marks the index n− β and the horizontal dashed line is used for contrast.

We now compare the average experimental behavior with the simulated re-
sult. Note that the simulator is not fed with any randomness, so it does not
make sense to consider variance in this comparison.

Figure 12 illustrates the comparison on e(β). For small blocksize β, the sim-
ulator does not work well, but, as β increases, the simulated measure of e(β)
seems close to the experimental measure and both measures converge to the

prediction ln
(

GH(β)
2

β−1

)
.
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Fig. 12. Comparison on e(β)
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Fig. 13. Comparison on s(h)(β)

Finally, we consider the two functions d(β) and d′(β) that are relevant to
the averages of the logarithms of the root Hermite factor and the complexity
of enumeration and defined in Corollary 1 and 3 respectively. To better under-

stand the difference, we compared the following terms s(h)(β) =
∑
i≤h e

(h)
i (β),

w(h)(β) =
∑
i≤h

i
2e

(h)
i (β) and w(t)(β) =

∑
i≤t

i
2e

(t)
i respectively, where we set

h(β) = t(β) = max(15, β) as before. Indeed, combined with e(β), these three
terms determine d(β) and d′(β).

From Figure 13, we observe that the simulated measure of s(h)(β) is greater
than the experimental measure, which is caused by the lack of the head. The
similar inaccuracy exists as well with respect to w(h)(β) as shown in Figure 14.
The experimental measure of e(β) is slightly greater than the simulated measure

and thus the e
(h)
i (β)’s of greater weight may compensate somewhat the lack of

the head. After enough tours, the head phenomenon is highlighted and yet the
body shape almost remains the same so that the simulator still cannot predict
w(h)(β) precisely. Figure 15 indicates that the simulator could predict w(t)(β)
precisely for both large and small blocksizes and therefore the HKZ-shaped tail
model is reasonable.

6 10 14 18 22 26 30 34 38 42 46 50 54 58 62

β

0

5

10

15

20

25

w
(h

)
(β

)

BKZ: n=100

BKZ 2.0: n=180, C=0.25

BKZ 2.0: n=180, C=8.0

Simulation

Fig. 14. Comparison on w(h)(β)
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6.2 Conclusion

Chen and Nguyen’s simulator gives an elementary profile for random BKZβ-
reduced bases with large β: both body and tail shapes are reflected well in
the simulation result qualitatively and quantitatively. However, the head phe-
nomenon is not captured by this simulator, and thus the first ‖b∗i ‖’s are not
predicted accurately. In particular, the prediction of ‖b∗1‖ that determines the
Hermite factor is usually larger than the actual value, which leads to an underes-
timation of the quality of BKZ bases. Consequently, related security estimations
need to be refined.

Understanding the main cause of the head phenomenon, modeling it and
refining the simulator to include it seems an interesting and important problem,
which we leave to the future work. It would also be interesting to introduce some
randomness in the simulator, so to properly predict variance around the mean
behavior.
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A Proof of Corollary 1

From Eq. (1), we have:

ln(rhf(B)) =
1

n2

∑
1≤i≤n−1

(n− i)ri(B). (8)

Taking expectations, then:

n2E(ln(rhf(B))) =
∑
i≤h

(n− i)e(h)i (β) +
∑
i≤t

ie
(t)
i (β) +

∑
h<i<n−t

(n− i)e(β). (9)

Note that

∑
i≤h

(n− i)e(h)i (β) +
∑
i≤t

ie
(t)
i (β) =

∑
i≤t

ie
(t)
i (β)−

∑
i≤h

ie
(h)
i (β)

+ n
∑
i≤h

e
(h)
i (β)

and ∑
h<i<n−t

(n− i)e(β) =

(
n2

2
− n(2h+ 1)

2

)
e(β) +

(h− t)(h+ t+ 1)

2
e(β).
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Since h and t are constant, the two terms
(∑

i≤t ie
(t)
i (β)−

∑
i≤h ie

(h)
i (β)

)
and

(h−t)(h+t+1)
2 e(β) are O(1). A straightforward computation then leads to the con-

clusion.

B Proof of Corollary 2

We compare the variances of two sides in Eq. (8), then:

n4Var(ln(rhf(B))) =

n−1∑
i=1

(n− i)2Var(ri) + 2
∑
i<j

(n− i)(n− j)Cov(ri, rj)

=

n−1∑
i=1

(n− i)2Var(ri) + 2

n−2∑
i=1

(n− i)(n− i− 1)Cov(ri, ri+1).

(10)

Splitting the sum
∑n−1
i=1 (n− i)2Var(ri) into three parts, we have:

n−1∑
i=1

(n− i)2Var(ri) =
∑
i≤h

(n− i)2Var(ri) +
∑
i≥n−t

(n− i)2Var(ri) +
∑

h<i<n−t

(n− i)2Var(r).

(11)

Both h and t are constant and the variances Var(ri)’s with i ≤ h or i ≥ n− t are

also constant. Thus the two first sums are O(n2). Also, the difference
∑n−1
i=1 (n−

i)2Var(r)−
∑
h<i<n−t(n− i)2Var(r) is O(n2), then:∑

h<i<n−t

(n− i)2Var(ri) =

n−1∑
i=1

(n− i)2Var(r) +O(n2) =
n3

3
v(β) +O(n2). (12)

The sum
∑n−2
i=1 (n− i)(n− i− 1)Cov(ri, ri+1) can be split into three parts:∑

i≤h

(n− i)(n− i− 1)Cov(ri, ri+1) +
∑
i≥n−t

(n− i)(n− i− 1)Cov(ri, ri+1) +
∑

h<i<n−t

(n− i)(n− i− 1)c(β).

(13)

Since all Cov(ri, ri+1)’s inside the head and tail are of size O(1), the first two

sums are O(n2). The difference
∑n−2
i=1 (n − i)(n − i − 1)c(β) −

∑
h<i<n−t(n −

i)(n− i− 1)c(β) is also O(n2), then:∑
h<i<n−t

(n−i)(n−i−1)Cov(ri, ri+1) =

n−2∑
i=1

(n−i)(n−i−1)c(β)+O(n2) =
n3

3
c(β)+O(n2).

(14)
Combining Eq. (10), (12) and (14), we complete the proof.

C Proof of Corollary 3

Let n′ = bn2 c. A routine computation leads to that:

hv(β, n) =

(
1− n′

n

) n′∑
i=1

iri +
n′

n

n−1∑
i=n′+1

(n− i)ri. (15)
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We compare the expectations of two sides in Eq. (15), then:

E(hv(β, n)) =

(
1− n′

n

)∑
i≤h

ie
(h)
i (β)

+
n′

n

∑
i≤t

ie
(t)
i (β)


+

(
n′(n− n′)

2
− (n− n′)h(h+ 1) + n′t(t+ 1)

2n

)
e(β).

(16)

Since h and t are constant, the two sums
∑
i≤h ie

(h)
i (β) and

∑
i≤t ie

(t)
i (β) are

O(1). Note that n′ = n
2 +O(1) and n′(n−n′) = n2

4 −
1
2{

n
2 }, which proves Eq. (4).

We compare the variances of two sides in Eq. (15), then:

Var(hv(β, n)) =

(
1− n′

n

)2
∑
i≤h

i2v
(h)
i (β)

+

(
n′

n

)2
∑
i≤t

i2v
(t)
i (β)


+

n′(n− n′)(2n′(n− n′) + 1)

6n
−
(

1− n′

n

)2∑
i≤h

i2 −
(
n′

n

)2∑
i≤t

i2

 v(β)

+ 2

(
1− n′

n

)2 ∑
i<n′

i(i+ 1)Cov(ri, ri+1)

+ 2

(
n′

n

)2 ∑
i<n−n′−1

i(i+ 1)Cov(rn−i, rn−i−1)

+ 2

(
1− n′

n

)(
n′

n

)
n′(n− n′ − 1)Cov(rn′ , rn′+1)

(17)
We substitute all Cov(ri, ri+1)’s by c(β), which only leads to a O(1) difference.

Exploiting the identity that
∑n
i=1 i(i + 1) = n(n+1)(n+2)

3 , we know the sum of

a batch of local covariances in Eq. (17) equals 2n′(n−n′)(n′(n−n′)−1)
3n c(β) +O(1).

Thus we have:

Var(hv(β, n)) =
n′(n− n′)(2n′(n− n′) + 1)

6n
v(β) +

2n′(n− n′)(n′(n− n′)− 1)

3n
c(β) +O(1),

(18)

which implies Eq. (5).
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D Experimental Data

Table 1. Experimental Data for BKZ measure over 100-dimensional lattices

blocksize β e s(h) w(h) w(t) v c

2 0.0433 0.5031 2.3466 2.1381 0.2726× 10−2 −0.0686× 10−2

3 0.0366 0.4441 2.0121 2.0357 0.1947× 10−2 −0.0910× 10−2

4 0.0344 0.4278 1.9081 1.9248 0.1749× 10−2 −0.0841× 10−2

5 0.0330 0.4149 1.8427 1.8722 0.1681× 10−2 −0.0820× 10−2

6 0.0320 0.4082 1.7951 1.8243 0.1632× 10−2 −0.0789× 10−2

8 0.0305 0.3939 1.7258 1.7707 0.1581× 10−2 −0.0755× 10−2

10 0.0295 0.3854 1.6851 1.7347 0.1545× 10−2 −0.0728× 10−2

12 0.0287 0.3754 1.6411 1.7165 0.1524× 10−2 −0.0707× 10−2

14 0.0281 0.3669 1.6027 1.7006 0.1493× 10−2 −0.0684× 10−2

16 0.0275 0.3844 1.7856 1.9198 0.1477× 10−2 −0.0671× 10−2

18 0.0271 0.4238 2.1930 2.4021 0.1453× 10−2 −0.0660× 10−2

20 0.0267 0.4599 2.6238 2.9502 0.1420× 10−2 −0.0642× 10−2

22 0.0264 0.4900 3.0578 3.5725 0.1381× 10−2 −0.0622× 10−2

24 0.0260 0.5165 3.4895 4.2238 0.1351× 10−2 −0.0606× 10−2

26 0.0255 0.5440 3.9594 4.9311 0.1330× 10−2 −0.0595× 10−2

28 0.0250 0.5730 4.4643 5.6665 0.1319× 10−2 −0.0590× 10−2

30 0.0246 0.6041 5.0257 6.4387 0.1294× 10−2 −0.0576× 10−2

Table 2. Experimental Data for BKZ 2.0 with C = 0.25 measure over 180-dimensional
lattices

blocksize β e s(h) w(h) w(t) v

2 0.0444 0.5212 2.4264 1.9816 0.2749× 10−2

6 0.0331 0.4185 1.8899 1.9086 0.1557× 10−2

10 0.0305 0.3937 1.7115 1.7218 0.1532× 10−2

14 0.0284 0.3744 1.6784 1.6966 0.1591× 10−2

18 0.0273 0.4161 2.1773 2.3745 0.1431× 10−2

22 0.0267 0.4909 3.0054 3.5458 0.1483× 10−2

26 0.0271 0.5522 4.0003 4.9496 0.1372× 10−2

30 0.0272 0.6396 5.3522 6.5021 0.1469× 10−2

34 0.0272 0.7223 6.7520 8.0585 0.1258× 10−2

38 0.0266 0.8204 8.7515 10.0917 0.1345× 10−2

42 0.0260 0.9252 10.9516 11.7763 0.1327× 10−2

46 0.0252 1.0202 13.1971 14.0029 0.1250× 10−2

50 0.0248 1.1003 15.2931 15.6982 0.1044× 10−2

54 0.0243 1.1848 17.3093 17.8930 0.0950× 10−2

58 0.0237 1.2529 19.7149 20.0544 0.1047× 10−2

62 0.0231 1.3206 22.2596 22.3333 0.1020× 10−2
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Table 3. Experimental Data for BKZ 2.0 with C = 2.0 measure over 180-dimensional
lattices

blocksize β e s(h) w(h) w(t) v

2 0.0444 0.5212 2.4264 1.9816 0.2749× 10−2

6 0.0331 0.4185 1.8899 1.9086 0.1557× 10−2

10 0.0305 0.3937 1.7115 1.7218 0.1532× 10−2

14 0.0284 0.3744 1.6784 1.6966 0.1591× 10−2

18 0.0273 0.4161 2.1773 2.3745 0.1431× 10−2

22 0.0262 0.4831 2.9479 3.5316 0.1393× 10−2

26 0.0267 0.5376 3.9116 4.9197 0.1406× 10−2

30 0.0268 0.6060 5.2215 6.4799 0.1474× 10−2

34 0.0271 0.6519 6.0523 8.0022 0.1397× 10−2

38 0.0264 0.7659 8.1996 10.1732 0.1322× 10−2

42 0.0259 0.8576 10.2454 11.9750 0.1221× 10−2

46 0.0255 0.9643 12.3901 13.6241 0.1349× 10−2

50 0.0248 1.0478 14.5060 15.8849 0.0978× 10−2

54 0.0242 1.1293 16.8939 18.0491 0.1024× 10−2

58 0.0239 1.1936 19.0415 19.9118 0.0965× 10−2

62 0.0232 1.2566 21.2967 22.5572 0.0869× 10−2

Table 4. Experimental Data for BKZ 2.0 with C = 8.0 measure over 180-dimensional
lattices

blocksize β e s(h) w(h) w(t) v

2 0.0444 0.5212 2.4264 1.9816 0.2749× 10−2

6 0.0331 0.4185 1.8899 1.9086 0.1557× 10−2

10 0.0305 0.3937 1.7115 1.7218 0.1532× 10−2

14 0.0284 0.3744 1.6784 1.6966 0.1591× 10−2

18 0.0273 0.4161 2.1773 2.3745 0.1431× 10−2

22 0.0262 0.4826 2.9618 3.5576 0.1360× 10−2

26 0.0262 0.5498 3.9654 5.0129 0.1385× 10−2

30 0.0268 0.5661 4.5679 6.4380 0.1321× 10−2

34 0.0266 0.6486 5.9330 8.3219 0.1416× 10−2

38 0.0266 0.7218 7.3683 9.7274 0.1363× 10−2

42 0.0260 0.8029 9.4220 11.8752 0.1207× 10−2

46 0.0253 0.9202 11.8418 13.8813 0.1215× 10−2

50 0.0248 1.0134 14.0805 15.8278 0.1001× 10−2

54 0.0242 1.0880 16.2848 17.9552 0.1051× 10−2
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Table 5. Simulated Data with dimension 400

blocksize β e s(h) w(h) w(t)

6 0.0297 0.4394 1.7624 1.6903
10 0.0297 0.4394 1.7624 1.6903
14 0.0297 0.4394 1.7624 1.6903
18 0.0297 0.5280 2.5152 2.4130
22 0.0297 0.6463 3.7275 3.5771
26 0.0294 0.7625 5.1492 5.1098
30 0.0288 0.8637 6.6956 6.6455
34 0.0280 0.9477 8.2959 8.2534
38 0.0272 1.0305 10.0512 10.0095
42 0.0262 1.0999 11.8272 11.7856
46 0.0246 1.1290 13.2717 13.2449
50 0.0242 1.2054 15.3726 15.3416
54 0.0237 1.2766 17.5578 17.5152
58 0.0232 1.3418 19.7975 19.7598
62 0.0227 1.4031 22.1049 22.0706
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