A note on the implementation of the Number
Theoretic Transform

Michael Scott

MIRACL.com
mike.scott@miracl.com

Abstract. The Number Theoretic Transform (NTT) is a time critical
function required by many post-quantum cryptographic protocols based
on lattices. For example it is commonly used in the context of the Ring
Learning With Errors problem (RLWE), which is a popular basis for
post-quantum key exchange, digital signature, and encryption. Here we
apply a simple methodology to convert the NTT and its inverse from a
mathematically correct (but side-channel vulnerable) description, to an
efficient constant-time and side-channel resistant version.

1 Introduction

Often important cryptographic functions are described in the literature with-
out consideration for side-channel vulnerability. Then they are implemented by
competent software engineers who produce functionally correct and efficient real-
world implementations, unfortunately without eliminating the side-channels.
The result is that many widely used cryptographic libraries contain side-channel
weaknesses, that are just awaiting a determined attacker. For a recent example
see [5].

What is needed is an intermediate version of the function which is side-
channel resistant, from which the engineer can go on to produce their real-world
implementation. The purpose of this paper is to describe an easy to follow step-
by-step methodology which converts that which is mathematically correct, to a
constant-time side-channel resistant version with the same functionality. Note
that while claiming that our implementation is immune to timing attacks (to
the extent that this is achievable in software), we are merely claiming that it is
“resistant” to more general side-channel attacks, on the basis that some side-
channel weaknesses may not be currently known.

Our particular context is modular arithmetic, that is arithmetic with respect
to a prime modulus ¢. Modular arithmetic is widely used as the basis for many
techniques of public key cryptography. Unfortunately it is notoriously hard to
implement in constant time, and has been a prime source of side-channel leakage.

In an earlier paper [12] we developed a methodology which we applied to vul-
nerable functions in the context of elliptic curve cryptography. Here we turn our
attention to the NTT transform function (and its inverse), as used by protocols
based on the post-quantum Ring Learning with Errors (RLWE) problem.

2 The Methodology

Our starting point is a mathematically correct implementation of the function,
which is “exception-free”. This is a higher-level requirement for side-channel
resistance and for the possibility of a constant time implementation. Basically
it means that at the level above the modular arithmetic there is only a single
path through the code, independent of the data it is processing. Fortunately
“exception-free” algorithms are commonly available.

Starting with an implementation of such a function, proceed as follows. First
identify a modular reduction algorithm that works well with the given prime
modulus ¢. This modular reduction function must operate in constant time, but
it is not required to fully reduce its output to be less than q. It is sufficent that
the reduction is to a value less that E.q, where E is a small positive integer
constant. In general it has been observed [8] that such a partial reduction is
often easier to achieve than a full reduction, given the constant time constraint.
It must also be capable of handling an input significantly greater than ¢, as its
input may be a product of two values that are not themselves fully reduced. For
example the well-known Montgomery modular reduction algorithm reduces an
input less than gR (where R can be significantly greater than ¢) to a value less
than 2q [10].

We note in passing that the often suggested alternative reduction method
due to Barret [4] does not meet these conditions. Next

— Associate with every finite field element = an “excess” E, which tracks the
extent to which its value may exceed g in the absence of any reduction,
under worst case assumptions. So we know that the unreduced = < FE,.q.
Input values might be assumed to be fully reduced, in which case they can
be initialised to have an excess of 1.

— For modular additions, note that for z = = + y, then F, = F, + F,, and
update and record excesses accordingly.

— Consider all modular subtractions as negation followed by addition, and
observe that negation calculated as —x = E,.q — x will not affect the excess
of x.

— For modular multiplications, note that for z = z.y, then E, = E,.E, that is
the product of the excesses of the inputs, and record a worst-case size of the
product E..q? which is to undergo reduction. Set the excess of the output
to E.

Next execute the program once. Note that as a consequence of being
exception-free, there will be only one path through the code, and so excesses
recorded as described above will be invariant irrespective of the actual data
being processed.

Now, using these recorded excesses, choose a representation of field elements
that (a) would not overflow if modular addition were to be replaced with non-
modular addition, and (b) could not under worst case assumptions cause an
input to the modular reduction algorithm which would violate its conditions for

correct operation. The transcript of the excesses provides a proof that integer
overflow cannot occur. Next

— Replace all modular additions, with simple non-modular additions.

— Replace all modular subtractions with negation followed by addition, where
—xrx=F,q—x

— Perform modular multiplications with a simple non-modular multiplication,
followed by our modular reduction algorithm.

Note that for modular negation, it appears to be necessary to continue to
track excesses. So as a final step, either replace the excesses with the fixed values
that apply for each individual occurence, or identify a single worst-case value
that can be applied in all cases. Assuming this is possible, excesses have now
served their purpose, and can be eliminated from the code. We also note that
some post-processing might be required to fully reduce the final outputs of the
function (if this is required).

3 The NTT

The NTT is basically a form of Discrete Fast Fourier transformation. Once a
pair of polynomials is transformed to the “frequency” domain, their product
can be calculated by a simple O(n) element-by-element product, and the result
converted back via the inverse transformation (INTT). Therefore the dominant
cost of polynomial multiplication, is the cost of the transformation to and from
the frequency domain. Hence the significance of the NTT, which has a complexity
of just O(nlogn).

Now when using Fast Fourier methods to determine the product of two poly-
nomials of degree n, this normally requires them to be first padded to length 2n.
However in the RLWE setting we get around this problem by manipulating our
polynomials modulo ™ + 1, and using the negative wrapped convolution.

The fixed system parameters for a typical instance of the Ring Learning
with Errors problem consist of a prime modulus ¢ and polynomials of degree n
where n = 2™, and with coefficients € . In most cases the prime modulus ¢ is
selected such that ¢ = 1 mod 2n, so that the 2n-th roots of unity exist and can
be precalculated. Typical choices might be ¢ = 12289, and n = 1024, as used in
the NewHope proposal [2], in which case a 2048-th root of unity would be 9089,
and it is easily confirmed that 90892%48 = 1 mod 12289. To implement the NTT
we will need to precompute a vector of the first n powers of such a root, but
stored in bit reverse order. So given a root g, while the natural ordering of its
powers would be [¢g°, g', g2, ...¢"], in bit reverse order the element g° would
actually be stored at an index in the table found by reversing the m bits in i.

Our starting point is the basic NTT algorithm and its inverse, based on its
description by Naehrig and Longa [9], which integrates many prior optimizations.
A key idea is to use the Cooley Tukey butterfly for the forward transformation,
but to switch to the Gentleman-Sande butterfly for the inverse operation. See
Algorithms 1 and 2.

Algorithm 1 The Cooley-Tukey NTT algorithm

INPUT: A vector © = [zo,...,Zn-1] where x; € [0,p — 1] of degree n (a power of 2)
and modulus ¢ = 1 mod 2n

INPUT: Precomputed table of 2n-th roots of unity g, in bit reversed order

OuTPUT: x + NTT(x)

1: function NTT(x)

2 t <+ n/2

3 m <+ 1

4 while m < n do

5: k < 0

6 for i <+ 0; ¢ < m; i < i+ 1 do

7 S g[m 4]

8 for j <~ k; j<k+4+1t; 5+ j+1do
o: U « z[j]

10: V « z[j + t].S mod ¢
11: z[j] < U +V mod ¢

12: z[j+t] « U—V mod g
13: k «— k+ 2t

14: t«— t/2

15: m o+ 2m

16: return

Algorithm 2 The Gentleman-Sande inverse INTT algorithm

INPUT: A vector & = [zo,...,Zn—1] where z; € [0,p — 1] of degree n (a power of 2)
and modulus ¢ = 1 mod 2n

INPUT: Precomputed table of inverses of 2n-th roots of unity g~?, in bit reversed order

INPUT: n~ ! mod ¢

OUTPUT: x < INTT(x)

1: function INTT(z)

2: t <+ 1

3: m <+ n/2

4: while m > 0 do

5: k <+ 0

6: for i + 0; i < m; i + i+ 1do

7: S J_1[7n+i]

8: for j < k; j <k-+t; j+ j+1do
9: U « z[j]

10: V +— a[j +1]

11 z[j] + U+ V mod ¢
12: W « U —V mod q
13: z[j +t] < W.S mod ¢
14: k +— k4 2t

15: t +— 2t

16: m o+ m/2

17: for i < 0; i < n; i + i+ 1 do

18: z[i] « «[i].n "1 mod g

19: return

Our ultimate aim is to eliminate the side channel leakage from the modular
arithmetic, that is from those clearly indicated calculations that take place mod-
ulo g. One clever optimization that is not shown here, but which we will make
use of in all of our implementations, is to merge the last iteration of the main
INTT loop with the multiplication of each element of its output by n~' mod g,
which saves n/2 modular multiplications. See [9] for details.

3.1 A Naive solution

An initial reaction might be that surely we could simply replace modulo g ev-
erywhere with %g¢, and let the processor’s built in integer division/remainder
instruction take care of it.

But this is a very unsatisfactory solution for a number of reasons. Firstly
integer remaindering is not the same as modular reduction, and commonly re-
quires conditional corrections to keep results in range. More importantly integer
division is complex to implement in hardware, is rarely a bottleneck calculation
in most computer applications, and therefore is not heavily optimized and is
thus very slow, and of particular relevance to us, most often not implemented
in constant time [6]. That is takes a number of clock cycles that is dependent
on the data being processed. Nevertheless this makes a good starting point from
which to calculate and record excesses, and to develop better solutions.

We focus on the “butterfly” code in the innermost loops of the NTT and
INTT algorithms. Once we move from an algorithmic description to actual
code, we need to become aware of the possibility of integer overflow. We will
assume two signed integer data types, which we will refer to as int_t and int_dt
(wordlength and double-wordlength), where the actual wordlength WL might be
16, 32 or 64 bits. In the C programming language on a 32-bit computer these
types might be int32_t and int64_t respectively. We refer to their unsigned
equivalents as uint_t and uint_dt. For a particular implementation we assume
that the modulus ¢ is globally visible.

Of course polynomials might be transported and stored using a smaller data
type, if the modulus ¢ is small. For example the commonly suggested 14-bit
prime 12289 will fit comfortably in a 16-bit type irrespective of the wordlength
of the processor.

Listing 1.1: Naive Modular multiplication

int_-t modmul(int_t a,int_t b)

{
}

return (int_-t)(((int-dt)axb)%q);

Listing 1.2: Naive method for NTT Listing 1.3: Naive method for INTT

S U=x[j];
U=x[j]; V=x [+t];
V=modmul (x [j+t],S); . i ’ .
x[1]= (U+V)%a At
x[j+t]=(U+a—V)%q; x[jth]:mo;imul(W,S);

It becomes immediately obvious that our ability of optimize the code will
depend on the extent of the allowable excess that exists, which will allow inter-
mediate values in the butterfly computation to increase outside of the rigid range
0 — g, without overflow. For the above code to function correctly it is already
assumed that calculating U +V in listing 1.3 does not cause an overflow. We will
initially assume a signed type of a length at least 2 bits bigger than the prime
modulus. Making immediate use of this latitude, observe that in the INTT case
we can calculate W without reduction modulo gq.

3.2 A Constant Time solution

However this is not a constant-time solution, and its slow. We need an alternative
technique, and Montgomery’s method for modular multiplication without divi-
sion [10], which replaces division by some multiplications, is ideal, widely used in
this context, and generically applicable. Note that integer multiplication, unlike
division, is heavily optimized for most processors, and usually executes in a fixed
number of clock cycles independent of the data being processed, often just 1 or
2. So we can anticipate that such an implementation might even be faster. One
downside to Montgomery’s method is that we need to convert field elements to
and from Montgomery representation before the NTT and after INTT functions.
An obvious optimization is to precompute the tables of roots of unity and their
inverses in Montgomery format.

The Montgomery method assumes the choice of an alternate modulus R
greater than ¢, which is a simple power of 2, the idea being to replace the
modulo ¢ calculation with a much simpler reduction modulo R. For maximum
efficiency it is common to choose R to be 2 to the power of the wordlength,
and this is what we will use here. The method also requires the precomputed
constant N = 1/(R — ¢) mod R.

Montgomery’s method introduces a modular reduction function redc which
reduces an input 7' to a positive integer t less than 2¢q, assuming that T' < ¢R.
Therefore reduction is not complete. However a simple constant-time augmen-
tation can complete the reduction. Subtract ¢ from ¢ and do an arithmetic shift
right by one less than the bitlength of the signed type used for ¢. If t — ¢ < 0 this
results in all ones, otherwise all zeros. Perform a logical AND of this bit pattern
with ¢ and add it back into ¢.

Note the condition on the input to redc that it be less than gR. Since in this
context one of the inputs is from a precomputed table, and hence less than ¢, it
merely suffices that the other is less than R and is representable as an int_t.

The conversion of x to Montgomery form can be computed by applying the
redc function to the product of and the precomputed constant R? mod g. The
conversion back to “normal” form is simply an application of redc [10].

Listing 1.4: redc function with full reduction

int_t redc(int_-dt T) Listing 1.5: Modular multiplication
wint_t m=(uint_t)TN; Ent,t modmul(int_t a,int_t b)
int_t V=((uint_dt)m*qg+T)>>WL; . . .
Vemq; VA=(V>>(WL-1))&q; ! return redc ((int_-dt)axb);
return V;
}
Listing 1.6: Constant Time method NTT Listing 1.7: Constant Time method INTT
U=x[j]; U=x[]];
V=modmul (x [j+t],S); V=x[j+t];
W=U+HV—q ; W=U+HV—q 5
X[J]=WA (Wo>(WL-1))&q) ; s [§]=WH (W >(WL-1))&q) 5
W=U-V; W=U+q—V;
x [j4+t] =W+ ((W>>(WL—-1))&q) ; x [j+t]=modmul (W, S);

3.3 Lazy Reduction

Next we apply our proposed methodology to make maximum use of delayed
reductions. Ideally we will succeed in removing all of the reduction code, other
than that implicit in the basic un-augmented redc function. We would expect our
ability to achieve this to depend on the detail of the NTT and INTT algorithms,
and on the number of excess bits available to us, which will facilitate delayed
reduction.

We make a minor change from the description of our methodology above.
Since our conversion to Montgomery form now uses the un-augmented redc
function, we will assume initial excesses of 2 rather than 1. However we still
assume that precomputed values such as the roots of unity are fully reduced.

One immediate and striking observation is that the Cooley-Tukey NTT and
Gentleman-Sande INTT butterflies behave very differently. As the iterations
progress the excesses get bigger. But whereas the Cooley-Tukey excesses increase
only slowly and linearly, the Gentleman-Sande worst case excesses grow much
more rapidly.

First examine the Cooley-Tukey butterfly. Observe that x values are incre-
mented by the output of the a modular multiplication, which will have a maxi-
mum excess of 2. So the new excesses will be at most 2 bigger than an existing
excess. But for the Gentleman-Sande butterfly certain x values may have their
excesses doubled by the execution of the equivalent of x[jI=x[jl+x[j+t] in
listing 1.10. And this is what we observe.

Recall that there are two places where integer overflow might occur due to
excessive excesses, after addition and before modular multiplication. Experi-
mentally we determine that, for polynomials of degree n, for the NTT (based on
Cooley-Tukey) the maximum excess is 2.1gn + 2, and for the INTT (based on
Gentleman-Sande) the maximum excess is 2n.

Assuming for the moment that these excesses can be accomodated, we can
replace the constant time code with the following. Observe that all explicit mod-
ular reduction code has been removed. In the case of INTT the worst-case excess

for V', which is just the polynomial degree n, is used in the calculation of W in
listing 1.10, and so explicit use of the excesses is not required. Obviously 2¢ and
nq can be precalculated.

Listing 1.8: redc function incomplete reduction

int-t redc(int_-dt T)

{
uint_t m=(uint_t)T*N;
int_-t V=(int_t)(((uint_dt)m«q+T)>>WL);
return V;

}

Listing 1.9 Lazy Reduction method for NTT Listing 1.10: Lazy Reduction method for INTT

- U=x[j];
U=x[j]; S EPEN
V=modmul (x [j+t],5); }(’*[jf][ia\]/t
x[j]1=U+V; WeUtne q—V;
x[i4t]=U42xa-V; x [j+t]=modmul (W, S);

Finally we need to consider the conditions under which the excesses that
might arise, can be safely accomodated. Since the worst case arises for the INTT
butterfly, this code will work correctly as long as 2ng can be represented in the
int_t type. For example on a 32-bit processor, the C language type int32_t
can comfortably handle the case of ¢ = 12289 and n = 1024. However for larger
values of ¢ we can expect problems to arise. For example consider the parameters
chosen by Giineysu et al [7], where ¢ = 8383489 and n = 512. This will cause a
problem for our INTT code on a 32-bit processor.

However from our analysis we know exactly where the worst case excesses
occur, and so we can compensate for it. By inserting extra reduction code at
the appropriate point in the INTT function, it has the effect of suppressing
the excesses. Note that reduction of any value can be achieved at any time
by multiplying it by the Montgomery representation of unity (O = R mod q).
When extra reductions are introduced, the excess transcript can be examined to
determine whether or not the correction has succeeded.

Experimentally we have determined that the modified code in listing 1.11
seems to work well. Set L as the smallest power of 2 such that 2(n/L)q < 23!.
For ¢ = 8383489, and n = 512, then L. = 4. Since the corrections are only
rarely required, the performance impact should be small. However we appreciate
that such measures will eventually become less effective as ¢ increases, and the
available excess diminishes.

Listing 1.11: Modified Lazy Reduction method for INTT

if (n<L && j<k+(L/2#m))
{
U=modmul (x[j],0);
V=modmul (x [j+t],0);
}
else
{
U=x[j];
, V=x[j+t];
x[j]=U+V;
W=U+(n/L)*q—V;
x [j+t]=modmul (W, S);

We would emphasise that by vigorous loop unrolling all conditional branches
can be eliminated from the generated code.

3.4 Special Moduli

Special form moduli can be used and exploited in our framework as long as they
obey the same rules as Montgomery arithmetic, that is for an input < gR they
produce an output less than 2¢. For example the Fermat prime 2'6 + 1 = 65537
which has been proposed for RLWE implementations [11], has a fast reduction,
and does not require field elements to be converted to and from Montgomery
form, with further savings. See listing 1.12 for the fast reduction code for a 32-bit
processor. Careful analysis confirms that the output will always be positive and
less than 2q.

Listing 1.12: reduction function for Fermat prime 65537

int32_t redc(int64_t T)

T=(uint32_t)T+(T>>32);
return (T&OxFFFF)4q—(T>>16);

4 Mapping implementations to platforms

Our néive and constant time implementations will work immediately on a 16-bit
processor, where a int_t is represented by a 16-bit C type like int16_t, and
int_dt maps to a int32_t, assuming that the prime modulus ¢ is 14-bits or less.
Unfortunately in this setting the available excesses are insufficient for our full
lazy reduction approach. But in many cases ¢ is bigger than 16-bits, although
usually less than 32-bits, in which case a 32-bit (or 64-bit) processor is really
a necessity, where int_t maps to int32_t, and int_dt maps to int64_t. The
majority of primes suggested for RLWE range from 13 to 26 bits [1]. In these
cases our lazy reduction code will be a good fit on a 32-bit processor.

5 Comparison with prior art

In their influential paper Alkim et al [2] provide a reference C implementation of
the NTT, using the Gentleman-Sande approach. Their solution is closer to our
constant time solution, and appears to be targeted at a 32-bit architecture, but
one without a 32x32 multiplier. Such architectures exist, and a prime example
would be the ARM Cortex-M processor, which they specifically targetted in a
follow-up paper [3]. By using the 14-bit prime ¢ = 12289 and a Montgomery
modulus of 28, they cleverly succeed in squeezing the arithmetic into 32-bits
(as 14+18=32). As R = 2'® is a few bits greater than ¢ a modest amount of lazy
reduction then becomes possible.

The paper by Longa and Naehrig [9], which was the starting point for this
research, ends up with an implementation not very dissimilar to our own, albeit
they come to it by a different route. The main difference is that they choose to
use a modular reduction method tailored to the specific types of primes used in
RLWE, that is primes such that ¢ = 1 mod 2n. Therefore they do not use Mont-
gomery reduction, but can hence avoid the transformation to/from Montgomery
form, with further savings. Their solution is appropriate to a more conventional
32-bit architecture which allows 64-bit products.

However the Longa and Naehrig implementation is described only in the con-
text of a particular choice of parameters, namely ¢ = 12289 and n = 1024, as
used for the NewHope key exchange protocol described in [2]. Their implemen-
tation, like ours, requires extra modular reductions introduced at certain steps
in the NTT algorithm and its inverse. The reasoning for the positioning of these
extra reductions is not fully explained, and hence it is not clear when they would
be required for a different choice of parameters. However we can see now that
they are introduced as a mechanism to suppress the excesses from getting too
large. Using their special reduction function, it appears that the extra reduc-
tions must be introduced into both the NTT and the INTT code, whereas in
our implementation our analysis shows that they are not needed at all for the
NewHope parameter set, and are only required for the INTT code when ¢ gets
much larger.

6 Results

Our code is available here !.

First we provide some comparative timings, using cycle counts obtained from
an Odroid C2 single board computer, as used by Streit and De Santis [13] in
their implementation of NewHope on an ARM Cortex-A53 processor. Following
their example, we obtain hardware cycle counts using the accurate Linux Kernel
performance monitoring system call, using the GCC compiler version 5.4 with
maximum optimization. We provide results for all three methods described here,
for the parameters ¢ = 12289,n = 1024 and ¢ = 8383489,n = 512, and ¢ =

1 indigo.ie/~mscott/ntt_ref.c

10

16760833, n = 1024 [1] to demonstrate that our code is not tied to just one fixed
set of parameters. See table 1.

Prime g | Degree n Method NTT | INTT
12289 1024 Naive 161701[127879
12289 1024 Constant Time [102306| 91223
12289 1024 |Lazy Reduction| 74174 | 78108
8383489 512 Naive 96369 | 74126
8383489 512 Constant Time | 48478 | 43273
8383489 512 Lazy Reduction| 35537 | 39784
16760833 1024 Naive 196473[133014
16760833 1024 Constant Time [102208| 91059
16760833 1024 |Lazy Reduction| 74206 | 84088

Table 1: Odroid C2 Cycle counts

For the NewHope parameters we note that our cycle counts are nearly exactly
half of those quoted by Streit and De Santis, who used the C reference code from
[2]. Using our new counts, it would appear that the advantage of using NEON
instructions is not the speed-up of 8.3 as claimed, but is closer to (a still very
impressive) 4. We next adapted the Longa and Naehrig code to use the same
performance counters, and observed that for the NewHope parameters their code
is about as fast as ours (79020 for NTT, 75822 for INTT). However we would
contend that our reference code is much more general purpose.

Next we performed the same measurements this time using an Intel i5-6400
processor with Turbo Boost disabled, and the GCC version 5.3 compiler.

Prime g | Degree n Method NTT|INTT
12289 1024 Naive 70327|46997
12289 1024 Constant Time [47017|42424
12289 1024 |Lazy Reduction|34300(35110
8383489 512 Naive 37455(23350
8383489 512 Constant Time [21891[19587
8383489 512 Lazy Reduction|15863(16703
16760833 1024 Naive 7180051446
16760833 1024 Constant Time [47392|43160
16760833 1024 |Lazy Reduction|35165|37655

Table 2: Intel i5 Cycle counts

In this case the Longa and Naehrig code when measured on our compiler /pro-
cessor combination, was about 5% faster than our lazy reduction code for the
NewHope parameters.

We observe that the extra reductions necessary for the INTT code to work
correctly for the larger primes 8383489 and 16760833, do not appear to signifi-
cantly effect the performance.

11

7 Conclusion

We have described an improved reference C implementation of the Number The-
oretic Transform and its inverse, as required for the implementation of post-
quantum cryptographic schemes based on the Ring Learning With Errors prob-
lem. The implementation is efficient and constant time, and hence a safe starting
point for more highly optimized code. It can be used with a range of parame-
ters, and is easily translated to other languages. Our solution uses a methodology
which allows the idea of Lazy Reduction to be exploited to the full, with confi-
dence that integer overflow will never occur. Our methodology exposes the sur-
prising observation that the Cooley-Tukey butterfly is much more lazy-reduction-
friendly than the Gentleman-Sande alternative.

Another conclusion from our results is that, if one ignores bandwidth consid-
erations, the cost of moving to a larger value for ¢ has only a negligible impact
on performance.

Finally we conclude that some performance improvements claimed for as-
sembly code that exploits instruction set extensions like Intel AVX2 and ARM
NEON, when compared to compiler-generated C code, while still very impres-
sive, are perhaps not quite as good as originally claimed.

References

1. Ring learning with errors parameters, 2017. http://www.ringlwe.info/
parameters-for-rlwe.html.

2. E. Alkim, L. Ducas, T. Poppelmann, and P. Schwabe. Post-quantum key exchange
— a new hope. In 25th Useniz Security Symposium, pages 327—-343, 2016.

3. E. Alkim, P. Jakubeit, and P. Schwabe. New Hope on ARM cortex-M. In SPACE
2016, volume 10076 of Lecture Notes in Computer Science, pages 332—352. Springer,
2016.

4. P. Barrett. Implementing the Rivest Shamir and Adleman public key encryption
algorithm on a standard digital signal processor. In Crypto 1986, volume 263 of
Lecture Notes in Computer Science, pages 311-323, 1987.

5. D. Bernstein, J. Breitner, D. Genkin, L. Groot Bruinderink, N. Heninger, T. Lange,
C. van Vredendaal, and Y. Yarom. Sliding right into disaster: Left-to-right sliding
windows leak. Cryptology ePrint Archive, Report 2017/627, 2017. http://eprint.
iacr.org/2017/627.

6. A. Fog. Instruction tables: lists of instruction latencies, throughputs and micro-
operation breakdowns for intel, AMD and VIA CPUs, 2017. http://www.agner.
org/optimize/.

7. T. Giineysu, T. Oder, T. Poppelmann, and Peter Schwabe. Software speed records
for lattice-based signatures. In PQCrypto 2013, volume 7932 of Lecture Notes in
Computer Science, pages 67-82. Springer, 2013.

8. D. Harvey. Faster arithmetic for number-theoretic transforms. J. Symb. Comput.,
60:113-119, 2014.

9. P. Longa and M. Naehrig. Speeding up the number theoretic transform for faster
ideal lattice-based cryptography. In CANS 2016, volume 10052 of Lecture Notes
in Computer Science, pages 124-139. Springer, 2016.

12

10.

11.

12.

13.

P. Montgomery. Modular multiplication without trial division. Mathematics of
Computation, 44(170):519-521, 1985.

T. Poppelmann and T. Giineysu. Towards efficient arithmetic for lattice-based
cryptography on reconfigurable hardware. In LatinCrypt 2012, volume 7533 of
Lecture Notes in Computer Science, pages 139-158. Springer, 2012.

M. Scott. Slothful reduction. Cryptology ePrint Archive, Report 2017/437, 2017.
http://eprint.iacr.org/2017/437.

S. Streit and F. De Santis. Post-quantum key exchange on ARMv8-A — a new
hope for NEON made simple. Cryptology ePrint Archive, Report 2017/388, 2017.
http://eprint.iacr.org/2017/388.

13

