
Proposal of primitive polynomials for Linux
kernel PRNG

David FONTAINE
7 Rue Claude Chappe
35510 Cesson-Sévigné

France
david.fontaine@capgemini.com

Olivier VIVOLO
Orange

30 rue du chêne Germain
35510 Cesson-Sévigné

France
olivier.vivolo@orange.com

July 25, 2017

Abstract
The polynomials defining the LFSRs of the linux Kernel PRNG are

irreducible but not primitive. As a result, the space of numbers generated
by these LFSRs does not fill all the space. We propose in this paper
more optimal polynomials which increase by a factor of 3 the space of the
random numbers generated by these LFSRs. The polynomials used in the
current implementation of the PRNG and the point presented here, do
not conclude a practical attack on the PRNG.

1 Short description of context
The PRNG of the latest version of the Linux kernel at the time of writing this
article (v.4.13) is defined by two following polynomials of LFSR ([2])

P1(X) = x128 + x104 + x76 + x51 + x25 + x+ 1,

P2(X) = x32 + x26 + x19 + x14 + x7 + x+ 1.

The first one P1 is used for the input pool and the second P2 for output pool see
figure 1. For futher information about the Linux kernel PRNG, we recommend
the paper [3].

Figure 1: The general structure of the Linux kernel LRNG

1

mailto:david.fontaine@capgemini.com
mailto:olivier.vivolo@orange.com

After the publication of research paper on the mixing funtions by [3], the
Linux kernel team decided to use these polynomials proposed by the authors of
[3] to improve the TGFSR. Unfortunately, it is stated in the paper [3] that these
polynomials have periods (2(32deg(Pi)) − 1)/3, i = 1, 2. In fact, the polynomials
Q1(X) = α3(P1(X)− 1) + 1 and Q2(X) = α3(P2(X)− 1) + 1 are not primitive
over GF (232), where α is a primitive element of GF (232).

2 New possible polynomials
After several calculations and wanting the new polynomials very close to the
current ones, we propose here the new polynomials R1 for input pool and R2

for the output pool,

R1(x) = x128 + x106 + x79 + x51 + x25 + x+ 1,

R2(x) = x32 + x27 + x21 + x14 + x7 + x+ 1.

The polynomials S1(X) = α4(R1(X)−1)+1 and S2(X) = α4(R2(X)−1)+1
are primitive on GF (232) and their periods are 232deg(Pi)− 1, i = 1, 2, the maxi-
mum possible periods. As mentionned in [3], the long period of the Linux kernel
LFSR can no longer be guaranteed, and the process is no longer a linear func-
tion of the initial state but we consider that to replace the polynomials by the
new ones can improve the LFSRs.

These polynomials can be checked easily as primitive (see Annex A). For
implementing them in the source code of Linux kernel, we provide a patch see
Annex B. Moreover, we informed the Linux kernel team of our proposal with a
post to the mailing list [1] one year ago.

References
[1] Fontaine David and Vivolo Olivier. Proposal to modify the

lfsr used by linux kernel. http://www.mail-archive.com/linux-
crypto@vger.kernel.org/msg21287.html, september 2016.

[2] Linux kernel team. The source code of
the prng implemented in the linux kernel.
https://github.com/torvalds/linux/blame/master/drivers/char/random.c.

[3] Lacharme Patrick, Rök Andrea, Strubel Vincent, and Videau
Marion. The linux pseudorandom number generator revisited.
http://eprint.iacr.org/2012/251.pdf, page 23, may 2012.

A How to check that the polynomials are primi-
tive

It is very easy to check that the polynomials R1, R2 are primitive with magma
and the following code:

2

K0:=GF(2);
P<X> := PolynomialRing(K0);
K1<a> :=
ext<K0|X^32+X^26+X^23+X^22+X^16+X^12+X^11+X^10+X^8+X^7+X^5+X^4+X^2+X^1+1>;K1;
P<t> := PolynomialRing(K1);

R1 := t^128 + t^106 + t^79 + t^51 + t^25 + t + 1;
S1 := a^4*(R1-1)+1;

R2 := t^32 + t^27 + t^21 + t^14 + t^7 + t + 1;
S2 := a^4*(R2-1)+1;

S1test := Evaluate((1/(t^128))*S1,1/t);S1test;
> t^128 + a*t^127 + a*t^100 + a*t^74 + a*t^53 + a*t^25 + a

S1test := t^128 + a^4*t^127 + a^4*t^103 + a^4*t^77 + a^4*t^49 + a^4*t^22
+ a^4;

IsPrimitive(S1test);
> true

S2test := Evaluate((1/(t^32))*S2,1/t);S2test;
> t^32 + a*t^31 + a*t^24 + a*t^16 + a*t^12 + a*t^6 + a

S2test := t^32 + a^4*t^31 + a^4*t^25 + a^4*t^18 + a^4*t^11 + a^4*t^5 +
a^4;

IsPrimitive(S2test);
> true

B Patch of random.c
To use these polynomials, the following changes in the random.c file should be
applied:

olivier@Zebulon:~/Documents/linux-4.7.4/drivers/char$ diff random.c
random-new.c

371,372c371,373
< /* x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
< { S(128), 104, 76, 51, 25, 1 },

> /* was: x^128 + x^104 + x^76 + x^51 +x^25 + x + 1 */
> /* x^128 + x^106 + x^79 + x^51 +x^25 + x + 1 */
> { S(128), 106, 79, 51, 25, 1 },
374,375c375,377
< /* x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
< { S(32), 26, 19, 14, 7, 1 },

> /* was: x^32 + x^26 + x^19 + x^14 + x^7 + x + 1 */
> /* x^32 + x^27 + x^21 + x^14 + x^7 + x + 1 */
> { S(32), 27, 21, 14, 7, 1 },
478a481
> /* was:

3

481a485,490
> */
> static __u32 const twist_table[16] = {
> 0x00000000, 0x1db71064, 0x3b6e20c8, 0x26d930ac,
> 0x76dc4190, 0x6b6b51f4, 0x4db26158, 0x5005713c,
> 0xedb88320, 0xf00f9344, 0xd6d6a3e8, 0xcb61b38c,
> 0x9b64c2b0, 0x86d3d2d4, 0xa00ae278, 0xbdbdf21c };
525c534,536
< r->pool[i] = (w >> 3) ^ twist_table[w & 7];

> /*
> was: r->pool[i] = (w >> 3) ^ twist_table[w & 7];*/
> r->pool[i] = (w >> 4) ^ twist_table[w & 15];

4

	Short description of context
	New possible polynomials
	References
	How to check that the polynomials are primitive
	Patch of random.c

