
AS3: Adaptive Social Secret Sharing for Distributed
Storage Systems

Giulia Traverso, Denise Demirel, Sheikh Mahbub Habib, and Johannes Buchmann
TU Darmstadt, Germany

Abstract—Distributed storage allows to outsource a document
to the cloud such that multiple users can easily access the
file. The protection of the document stored relies on secret
sharing, which generates and distributes shares of the document
to the storage servers. However, the users have to trust that
a certain amount of storage servers behaves honestly and do
not lose (retrievability) or reveal (confidentiality) the document.
To address this so called social secret sharing schemes were
developed that allow to adjust the distribution of shares according
to the experience made with the involved storage servers. In
this work, we provide a framework called AS3 that allows to
build social secret sharing schemes based on dynamic secret
sharing. The resulting protocol has more freedom in adjusting
the parameters of the shares distribution and therefore leads to
more efficient and accurate solutions as well as an optimal storage
consumption. Furthermore, we provide measures to detect and
to prevent that the document is lost or accidentally revealed to
individual storage servers. We also demonstrate how to compute
trust values for storage servers, how to initialize trust values for
newcomers, and provide a proof of concept implementation.

Keywords: distributed storage, social secret sharing, ap-
plied cryptography, trust, dynamic secret sharing.

I. INTRODUCTION

Data storage is one of the main services offered in cloud
computing to consumers. In fact, when document owners
do not have the resources to store large amounts of data,
they outsource these data to the storage servers of one or
multiple commercial cloud providers, e.g. Amazon, Google, or
Microsoft. There are two crucial aspects that cloud providers
must ensure: confidentiality and retrievability. Confidentiality
means that the data remain private and cannot be accessed
by malicious third parties, including the storage providers
themselves. Retrievability refers to protecting the data from
being lost and provide access to it on demand and in a
reasonable amount of time.

Distributed storage systems are an interesting solution for
data storage, which does not involve encryption and thus
does not introduce challenges with respect to key management
nor weaknesses with respect to unbound attackers. More
precisely, suppose a user wants to outsource a document to
the cloud. Then, the document is distributed across a set of n
storage servers from one or multiple cloud providers using
secret sharing [18], [1]. Secret sharing is a cryptographic
primitive that provides both confidentiality and retrievability.
Confidentiality is achieved because the document is shared
such that any subset of at least k ≤ n storage servers
holding shares can reconstruct the document, meaning that
any subset of k − 1 (or less) colluding storage servers cannot
get any information about the document. Retrievability is

achieved because only k out of n shares are necessary for
the document reconstruction, meaning that the user can access
the document stored even if up to n− k storage servers have
a breakdown. Furthermore, secret sharing does not rely on
computational hardness assumptions and, thus, is not prone
to computationally unbounded attackers.

Some cloud providers, and thus their storage servers, might
be more trustworthy to keep the shares stored confidential
and available than others. Clearly, one prefers that the less
trustworthy a cloud provider is, the less reconstruction power
it should get. Note that the higher the reconstruction power
of a storage server, the less other storage servers are needed
in the reconstruction of the document stored. This is realized
by social secret sharing, [11], [13], [12], [14], where the
distributed storage system is equipped with a trust function
that keeps the behavior of the storage servers monitored. Using
this technique, shares can be distributed to cloud providers
considering their reputation with respect to confidentiality and
retrievability. However, current solutions have severe short-
comings. First, certain details have not been elaborated yet,
e.g. how to initialize parameters and how the trust function
affects the distribution of shares. Second, they do not provide
measures to detect nor to sufficiently prevent “instable states”,
i.e. states where the shares are distributed in a way that the
document is lost or revealed to one single storage server. Third,
storage space consumptions and computational overhead are
not optimal. The parameters selection is done once and for all
and therefore the parameters cannot be chosen tight enough
to ensure optimal efficiency throughout the entire lifetime of
the document storage. Fourth, the existing approaches employ
trust functions measuring the behavior of the storage servers
with respect to retrievability only, leaving the confidentiality
aspect uncovered.

In Section II, we discuss different types of secret sharing
techniques and their basic characteristics. In Section III, we
introduce AS3, a framework for adaptive social secret sharing
schemes that overcomes all the shortcomings mentioned above.
More precisely, we define how to initialize the parameters of
AS3 and how the distribution of shares should be adapted
according to the measured trust values. Furthermore, we pro-
vide rules that allow to detect and react to instable states. In
Section IV, we provide details about how to compute trust
values using well established trust models and how to initialize
trust values for newcomers. Here, both behaviors with respect
to confidentiality and retrievability are taken into account.
In Section V, we compare our solutions with the existing
approaches and show that AS3 not only makes instable states
unlikely, but also leads to a scheme that produces less overhead
and consumes less storage space than the existing schemes.

Finally, we provide a proof of concept implementation in
Section VI, and conclude in Section VII.

II. PRELIMINARIES

A (k, n)-threshold secret sharing scheme [18] allows to
distribute a document across n storage servers, such that at
least k storage servers must collaborate to reconstruct the
document while any subset smaller than k learns nothing
about the document shared. More precisely, secret sharing is
composed of two algorithms: algorithm Share allows to store a
document in distributed fashion by generating and distributing
shares to a set of n storage servers S = {S1, . . . , Sn}, and
algorithm Recontruct, where subsets A ⊂ S of these storage
servers reveal their shares to retrieve the document stored.
While in threshold secret sharing any k-subset of storage
servers can reconstruct the document, i.e. if |A| ≥ k, this is
different for weighted and hierarchical secret sharing.

Using weighted secret sharing [18] each storage server Si
for i ∈ 1, . . . , n is accompanied with a weight wi determining
how many shares of the document it receives. A subset of
storage servers A can retrieve a document if the sum of their
weights is larger than or equal to k, i.e. if

∑
Si∈A wi ≥ k. It

follows that the more shares a storage server has the higher is
its reconstruction power, because the less shares it needs from
other storage servers to reconstruct the document.

In hierarchical secret sharing, e.g. see [19], each storage
server Si, for i ∈ 1, . . . , n, is accompanied with a weight
wi that assigns it to a level in a hierarchy. More precisely, a
hierarchy with a total number of ` ≤ n levels is spanned, i.e.
L = {L1, . . . , L`}, where L1 is the highest level and L` the
lowest. In addition, a threshold kh is assigned to each level
Lh, for h ∈ 1, . . . , `, such that 0 < k1 < · · · < k`. Under
which condition a subset A ⊂ S of storage servers can re-
trieve the document depends on the hierarchical secret sharing
scheme used. In disjunctive secret sharing [20] the document
is retrieved if at least one level Lh, with h ∈ 1, . . . , `,
can be found, such that subset A ⊂ S contains at least kh
storage servers assigned to levels equal or higher than Lh. In
conjunctive secret sharing [20] the document is retrieved if for
all levels Lh, for h := 1, . . . , `, subset A ⊂ S contains at least
kh storage servers that are assigned to a level equal or higher
than Lh. In both cases the higher the level of a storage server
is, the higher its reconstruction power is. A storage server that
is assigned to level L1, for instance, can replace any storage
server on any level when conjunctive secret sharing is used. In
disjunctive secret sharing a certain amount of storage servers
assigned to level L1 is even required to form a subset that is
able to reconstruct the document.

Social secret sharing schemes use either weighted [11],
[13], [12] or hierarchical [14] secret sharing, but determine the
weights of the storage servers depending on their behavior. In
addition, on a regular basis these weights are updated and the
shares are reshared. More precisely, a social secret sharing
scheme is defined as the tuple (Share,Tune,Recontruct),
where algorithm Share allows to store a document in dis-
tributed fashion and algorithm Recontruct to retrieve it. The
additional algorithm Tune is used to determine and update
the weights of each storage server and adjust accordingly the
shares distributed.

Dynamic secret sharing [21] is defined as the tuple
(Share,Add,Reset,Recontruct). The algorithms Share and
Recontruct allow to store and retrieve a document, respec-
tively. The algorithms Add and Reset are interactive protocols
between the storage servers. More precisely, algorithm Add
allows to generate additional shares to a shared document
and therefore to enlarge the set of storage servers. Note that
this algorithm does not change the shares held by the “old”
storage servers. Algorithm Reset renews all shares and allows
to change the parameters of the secret sharing scheme, e.g.
the threshold, and to add, remove, and replace storage servers.
Note that all these changes can be performed without revealing
any information about the document shared, nor involving the
document owner in this process.

Solutions that provide these algorithms are available for
both weighted secret sharing, e.g. [8], [5], and hierarchical
secret sharing [21]. In weighted secret sharing the parameters
changed when calling algorithm Reset are the total number of
storage servers n and the threshold k. A dynamic hierarchical
secret sharing scheme allows to change the total number
of storage servers n, the total number of levels `, and all
thresholds k1, . . . , k` assigned to the individual levels.

III. ADAPTIVE SOCIAL SECRET SHARING

In this section, we define our framework for adaptive social
secret sharing, AS3, including parameters and algorithms.
Furthermore, we provide the set of rules these parameters must
satisfy in order for the scheme to be well defined at any time.
Afterwards, we present all algorithms in detail.

A. Framework Overview

In social secret sharing a user wants to store a document in
distributed fashion. More precisely, it selects a set of storage
servers coming from different cloud providers, such as Google,
Amazon, or Microsoft, on which it wants to store shares of its
document. In addition, the behavior of the selected storage
servers is monitored such that the reconstruction power of
each storage server can be adapted accordingly. Furthermore,
the secret sharing scheme allows the user to add and remove
storage servers at any time.

For our framework, we assume that the social secret
sharing scheme is run over a set S = {S1, . . . , Sn}
of n storage servers owned by different cloud providers.
Then, adaptive social secret sharing is defined as the tuple
(Share,Tune,Reset,Recontruct). Algorithm Share allows a
user to store its document using either a dynamic weighted
[11], [12] or a dynamic hierarchical secret sharing scheme [21].
In both cases the initial weights w1, . . . , wn for the storage
servers S1, . . . , Sn are determined and algorithm S.Share
of the underlying secret sharing scheme is called with the
vector of weights as input. Afterwards, the storage servers
run periodically algorithm Tune to determine and update the
weights of each storage server and to accordingly adjust the
shares by calling the algorithm S.Reset. Then, algorithm Reset
allows the user to add, remove, and replace storage servers by
first computing weights for the new comers and then calling
algorithm S.Reset of the underlying secret sharing scheme with
the new storage servers and weights as input. Finally, at any
point in time the user can retrieve the document by running

algorithm Reconstruct, which calls the specific algorithm
S.Reconstruct of the underlying secret sharing scheme.

The basic difference between the adaptive social secret
sharing scheme presented here and the existing social se-
cret sharing schemes are the algorithms Tune and Reset.
The algorithm Tune we propose differs from the original
proposal by Nojoumian and Stinson [11], [12] because the
storage servers are monitored by a trust system that takes
into account two behaviors rather than one (see Section IV).
Specifically, the behavior of the storage servers is monitored
with respect to both confidentiality and retrievability, and not
with respect to retrievability only. In addition, the algorithm
Tune is responsible not only for adjusting the shares according
to the new trust values, but also for adjusting the threshold
and checking if the new parameters lead or not to instable
states where the document can be lost or its confidentiality is
violated. The existing approaches can adjust the quantity of
the shares or the level they are assigned to, but they cannot
adjust the threshold. Thus, they lead often to instable states
and inefficient solutions (see Section V). Instead, we propose a
more complex algorithm that uses the algorithm S.Reset of the
underlying dynamic weighted or dynamic hierarchical secret
sharing scheme. This allows to adapt the parameters, such
that the shares distribution leads to an optimal storage space
consumption and computation overhead and does not put the
confidentiality nor the retrievability of the document in danger.
In addition, the user can call algorithm Reset to add, remove, or
replace storage servers. This algorithm uses the bootstrapping
mechanism presented in Section IV, which allows to compute
adequate weights for newcomer storage servers.

Our scheme is parameterized by the following values. (1)
The total number of storage servers n which is input to algo-
rithm Share and can be changed by calling algorithm Reset. (2)
The weights w1, . . . , wn of storage servers S1, . . . , Sn, respec-
tively, which are initialized by algorithm Share and updated
regularly by algorithm Tune. If we use weighted secret sharing
as underlying secret sharing scheme we also use (3a) threshold
k required to reconstruct the document while for hierarchical
secret sharing we have (3b.1) the total number ` of levels and
(3b.2) thresholds k1, . . . , k` for levels L1, . . . , L`, respectively.
In addition, m denotes the total number of different subsets of
storage servers that are able to reconstruct the document.

There are two aspects that distributed storage systems
should guarantee and each of them deals with a specific
behavior of the storage servers. On the one hand, there is
the confidentiality of the document and this concerns the
will of the storage servers to collude to get information
about the document or to reveal the shares to a third party
(e.g. governmental agencies). These storage servers run the
programs and algorithms correctly and are referred to as honest
but curious. On the other hand, there is the retrievability of
the document and this concerns the availability and response
time of the storage servers when algorithms Tune,Reset, and
Recontruct are run and the validity of the shares they submit.
These storage servers might be under the control of an attacker
and are referred to as faulty. The parameters defined above
have to be set, such that the document is kept secret and can be
retrieved. In order to do that, these parameters have to satisfy
the following two rules.

Rule 1. This rule addresses the confidentiality of the

document. The smallest subset of storage servers that is able to
run algorithm Reconstruct and to retrieve the document must
be strictly greater than the number of storage servers that is
assumed to be honest but curious.

Rule 2. This rule addresses the retrievability of the doc-
ument. A certain threshold of storage servers is needed to
perform algorithms S.Reset and S.Recontruct of the underly-
ing dynamic secret sharing scheme and correspondingly to run
algorithms Tune, Reset, and Recontruct of the adaptive social
secret sharing scheme. Thus, the parameters must be chosen
such that the system can cope with faulty storage servers.

We now analyze under which conditions these rules are
fulfilled for the different secret sharing schemes. Note that
these conditions are defined taking into account the worst case
scenario both from confidentiality and retrievability point of
view.

For Rule 1, the worst case is when the x honest but
curious storage servers are those with the highest reconstruc-
tion power. Thus, assume for weighted (hierarchical) secret
sharing that W is defined as the vector of length n containing
all the weights (levels) w1, . . . , wn sorted from the smallest
value (lowest level) to the highest value (highest level), i.e.
W := {W [1], . . . ,W [n]} where W [i] ≤ W [i + 1], for
i = 1, . . . , n. Thus, for instance, W [n − x + 1] denotes the
weight (level) the least powerful of the x honest but curious
storage servers is assigned to. For weighted secret sharing,
Rule 1 is fulfilled if k >

∑
i≥n−x+1W [i]. For hierarchical

secret sharing, two further cases are distinguished. Let us
denote by kh the threshold of level Lh and by xh ≤ x
the number of honest but curious storage servers assigned to
this level, for h = 1, . . . , `. For disjunctive secret sharing,
Rule 1 is fulfilled if ∀h = 1, . . . , ` kh >

∑
i≤h xi. For

conjunctive secret sharing, Rule 1 is fulfilled if ∃h, such that
kh >

∑
i≤h xi.

For Rule 2, the worst case is when the x′ faulty storage
servers are those with the highest reconstruction power. In this
case, it must be ensured that there is still at least one subset of
non faulty storage servers able to retrieve the document, i.e.
m ≥ 1. We denote by S ′ ⊂ S the subset of all storage servers
where the x′ most powerful storage servers are discarded (in
this case, the ones corresponding to the last x′ entries of vector

W). For weighted secret sharing, m is defined as m :=

{
A ⊂

S ′|
∑
Si∈A wi ≥ k

}
and trivially Rule 2 is fulfilled if m ≥ 1.

For hierarchical secret sharing, we additionally assume that
n′h ≤ nh is the amount of storage servers from S ′ assigned to
level Lh, for h = 1, . . . , `. For disjunctive secret sharing, Rule
2 is fulfilled if ∃h such that

∑
i≤h n

′
i ≥ kh. For conjunctive

secret sharing, Rule 2 is fulfilled if ∀h = 1, . . . , ` it holds
that

∑
i≥h n

′
h ≥ kh. Notice that Rule 2 is harder to fulfill

using conjunctive secret sharing, since for all levels at least kh
storage servers are needed that are assigned to a level equal
or higher than Lh. Thus, the chance that a failure leads to
instable states where the document cannot be retrieved any
more is significantly higher. Since this makes disjunctive secret
sharing the most suitable hierarchical secret sharing scheme to
be used in social secret sharing we do not consider conjunctive
secret sharing any further.

B. Share

When algorithm Share is run, the parameters for the social
secret sharing scheme are initialized. First, a set of storage
servers is selected and the parameters n and k for weighted
secret sharing and n, `, and k1, . . . , k` for hierarchical secret
sharing are set, such that Rule 1 and Rule 2 are fulfilled. More
precisely, it is common practice to choose x, x′, and n, such
that n = 3x′+1 and x = x′ [4]. In fact, this further constraint
on n ensures the correctness of the shares1. Then threshold k
(for the weighted secret sharing) the thresholds k1, . . . , k` (for
the disjunctive secret sharing) are chosen such that Rule 1 is
fulfilled. Note that in fact the threshold of the underlying secret
sharing scheme ensures the confidentiality of the document as
it prevents non authorized subsets from getting any information
about it. More precisely, for weighted secret sharing, Rule 1 is
fulfilled by setting k to x + 1. For disjunctive secret sharing,
Rule 1 is fulfilled by setting k1 to x+ 1 and kh+1 to kh + 1,
for h = 1, . . . , ` − 1. Afterwards, the weights w1, . . . , wn
are selected. More precisely, the same weight wi is assigned
to each storage server Si, for i = 1, . . . , n. For weighted
secret sharing, each storage server has weight wi = 1. For
disjunctive secret sharing, a single level L1 is spanned and each
storage server is assigned to this level. For example, algorithm
Share(x, x′) called with input x = x′ = 3 sets up n = 10
storage servers S1, . . . , S10. Then, for weighted secret sharing,
it chooses threshold k = 4 and weight wi = 1 for each storage
server. For disjunctive secret sharing, it spans one level L1 with
threshold k1 = 4 and assigns each storage server to this level.

C. Tune

Algorithm Tune is responsible for adjusting the weights
of the storage servers according to their behaviors, both with
respect to confidentiality and availability. To do this, algorithm
Tune calls the trust system and requests for each storage server
the measured behavior with respect to confidentiality ci and
retrievability ri, for i = 1, . . . , n (for details see Section
IV). Based on these values, first, a (new) estimation of x
and x′ is computed, i.e. the expected amount of honest but
curious and faulty storage servers are determined. Second, the
distribution of the shares and the parameters of the social secret
sharing scheme are adjusted, such that the document is shared
according to the measured behavior and Rule 1 and Rule 2 are
fulfilled. In the following, details about both steps are provided.

1) Estimation of x and x’: The estimation of x and x′ is
performed as follows: two thresholds tc, tr ∈ [0, 1] are defined
for confidentiality and retrievability, respectively. If the trust
value of a storage server with respect to confidentiality is below
tc, then this storage server is considered honest but curious.
The parameter x counts how many of such storage servers are
in the system. Faulty storage servers are similarly individuated
using threshold tr as discriminant value and counted by
parameter x′. Then, it is checked that there are still enough
honest storage servers to ensure confidentiality and enough
robust (i.e. non faulty) storage servers to ensure retrievability,
i.e. x < n and x′ < n. These two checks are necessary
yet not sufficient conditions such that, respectively, Rule 1

1When dealing with a bounded adversary that can corrupt up to x′ storage
servers over time, then the constraint n ≥ 3x′+1 is sufficient for correctness.
In case the adversary is not bounded, then correctness is achieved using
commitments schemes (see [3], [15]).

and Rule 2 are fulfilled. Note that during the instantiation
of the parameters (Section III-B), n and k are chosen, such
that these conditions are fulfilled. Afterwards, x and x′ can
increase or decrease even though the total number of storage
servers n does not change violating Rule 1 or Rule 2. Thus,
each time algorithm Tune is run these two checks have to be
performed. If these two constraints are not satisfied, then a
failure message is transmitted and the user is asked to call
algorithm Reset to add additional storage servers and/or to
remove the untrustworthy ones.

2) Adjusting Share distribution: If x < n and x′ < n
hold, then algorithm Tune adjusts the shares and parameters,
such that the document is shared according to the measured
reputation and Rule 1 and Rule 2 are fulfilled. More precisely,
for weighted secret sharing new weights w1, . . . , wn are com-
puted and, accordingly, a new threshold k is set. For disjunctive
secret sharing, new weights w1, . . . , wn are computed and,
accordingly, ` levels L1, . . . , L` are spanned together with their
respective thresholds k1, . . . , k`.

First, the weights are computed taking into account the two
behaviors confidentiality and retrievability. More precisely, let
us denote by ci ∈ [0, 1] and ri ∈ [0, 1] the outputs of the
trust system concerning the behavior of storage server Si for
confidentiality and retrievability, respectively. In addition, let
the integer β > 0 denote the accuracy with which the trust
values should be mapped to the shares distribution. Note that
β is a parameter chosen by the user according not only to
the specific document shared, but also to the storage space
and the computational overhead it wants to consume (and pay
for). In fact, the higher the value of β, the more shares are gen-
erated and need to be stored. Ratio ui determines how much
reconstruction power storage server Si receives. It is computed
as a convex combination of ci and ri. Specifically, two real
numbers λc, λr ∈ [0, 1], the first one for confidentiality and the
second one for retrievability, are chosen such that λc+λr = 1
and ratio ui ∈ [0, 1] is computed as ui := λc · ci + λr · ri,
for i = 1, . . . , n. Then, interval [0, 1] is divided into β disjoint
subintervals, I1 = [0, 1

β), I2 = [1β ,
2
β), . . . , Iβ = [1 − 1

β , 1].
For weighted secret sharing, storage server Si whose ratio ui
lies in interval Ij receives j shares, for i = 1, . . . , n. For
disjunctive secret sharing, β corresponds to the amount ` of
levels L1, . . . , L` spanned and storage server Si whose ratio ui
lies in Ij is assigned to level Lj , for i = 1, . . . , n (as initially
proposed by [14]).

Second, thresholds k or k1, . . . , k` are chosen such that
Rule 1 is fulfilled. The validity of Rule 1 is checked as
discussed in Section III-A. For the weighted secret sharing,
k is set to 1 +

∑
i>n−x

W [i]. For disjunctive secret sharing, k1

is set to x + 1 and kh+1 to kh + 1, for h = 1, . . . , ` − 1.
Note that k and k1, . . . , k` are set to the minimum value such
that Rule 1 is satisfied. Greater values are still valid, but they
increase the computational overhead and the chance that too
many storage servers fail to retrieve the document.

Third, it is checked weather the shares distribution leads to
m sufficiently many subsets that can reconstruct the document.
That is, the validity of Rule 2 is checked as discussed in
Section III-A. If Rule 2 is not satisfied, then the new shares are
not computed and distributed, because otherwise the document
would be irreversibly lost. Instead, a warning message is sent

to the user to make it aware of the possibly dangerous situation
caused by the presence of too many faulty storage servers. The
user is strongly recommended to reboot new storage servers to
prevent the loss of the document. Note that in this paper we
require for simplicity that m ≥ 1, as it is the lower bound such
that Rule 2 is satisfied. However, depending on the application,
more robustness in terms of reconstruction might be preferred
and a higher value for m might be required.

Finally, algorithm S.Reset of the underlying
weighted or hierarchical secret sharing scheme is
called. It adapts the parameters of the secret sharing
scheme and the weights assigned to each storage
server according to the values computed by algorithm
Tune. For example, let us assume the reputation
system outputs (c1, c2, c3, c4, c5, c6, c7, c8, c9, c10) =
(0.40, 0.32, 0.5, 0.20, 0.35, 0.58, 0.87, 0.10, 0.25, 0.92)
and (r1, r2, r3, r4, r5, r6, r7, r8, r9, r10) =
(0.15, 0.28, 0.40, 0.60, 0.37, 0.18, 0.53, 0.21, 0.80, 0.44). Let
us further assume algorithm Tune(tc, tr, λc, λr, β,) is called
with (0.3, 0.2, 0.5, 0.5, 3). Then, it estimates x = 3 honest
but curious storage servers and x′ = 2 faulty storage servers
and computes ratios (u1, u2, u3, u4, u5, u6, u7, u8, u9, u10) =
(0.27, 0.30, 0.45, 0.4, 0.36, 0.38, 0.70, 0.15, 0.52, 0.68). For
weighted secret sharing, it assigns weight 1 to storage
servers S1, S2, S8, weight 2 to S3, S4, S5, S6, S9, weight 3
to S7, S10, and sets threshold k = 8. For disjunctive secret
sharing, it spans three levels L1, L2, L3 with thresholds
k1 = 4, k2 = 5, k3 = 6, respectively. It assigns S7, S10 to
level L1, S3, S4, S5, S6, S9 to level L2, and S1, S2, S8 to level
L3. In both cases m ≥ 1, so no warning message is sent.

D. Reset

Algorithm Reset takes as input threshold k or thresholds
k1, . . . , k` adjusted by algorithm Tune, computes and
distributes the shares to the storage servers in the storage
system according to weights w1, . . . , wn, and, eventually,
the shares of newcomers. Regarding weighted secret sharing
scheme, if the threshold k has been modified, then algorithm
S.Reset described in [5] is run and the shares are distributed
according to w1, . . . , wn. Regarding hierarchical secret
sharing scheme, if thresholds k1, . . . , k` have been modified,
then algorithm S.Reset introduced in [21] is run and the
shares are distributed according to weights w1, . . . , wn.
For example, for weighted secret sharing, algorithm
Reset(k,w1,w2,w3,w4,w5,w6,w7,w8,w9,w10) called with
(8, 1, 1, 2, 2, 2, 2, 3, 1, 2, 3) sets a polynomial of degree seven
to share the secret and distributes one share to storage servers
S1, S2, S8, two shares to storages servers S3, S4, S5, S6, S9,
and three shares to storage servers S7, S10. For disjunctive
secret sharing, algorithm Reset(k1, k2, k3, L1, L2, L3) =
Reset(4, 5, 6, {S7,S8}, {S3,S4,S5,S6,S9}, {S1,S2,S8}) sets a
polynomial of degree five to share the secret and distributes
shares from such polynomial where S1, S2, S8 are assigned
to level L3, S3, S4, S5, S6, S9 are assigned to level L2, and
S7, S10 are assigned to level L1.

E. Reconstruct

Algorithm Reconstruct is called when the user wants to
retrieve the document. Depending on the underlying secret
sharing scheme, a specific algorithm S.Reconstruct is run.

Specifically, algorithm S.Reconstruct described in [12] or
[18] is called for weighted secret sharing, while algorithm
S.Reconstruct described in [14] or [21] is called for hierar-
chical secret sharing.

IV. TRUST SYSTEM FOR SOCIAL SECRET SHARING
SCHEME

One basic ingredient of our adaptive social secret sharing
scheme is to determine the trustworthiness of each of the
storage servers based on their behavior. In this paper, we
are interested in the behavior of the storage servers regard-
ing confidentiality and retrievability. More precisely, we use
a trust system to compute the trust values of the storage
servers needed by our Tune algorithm (see Section III). The
trust values are based on direct and indirect experiences (or
evidence), either obtained via direct interactions or via witness
referrals [10]. The procedure we follow is composed of three
steps. First, evidence collection and processing, second, trust
computation, and third, trust bootstrapping.

A. Evidence Collection and Processing

Evidence with respect to confidentiality and retrievability
of storage servers can be collected from several parties. In
the context of distributed storage, the following parties are
involved: storage servers (n) and a user (u) that uses the social
secret sharing scheme to store its document. In this paper,
we refer to the participants providing evidence as submitters.
A piece of evidence is a binary value assigned to a storage
server by a submitter: 1 indicates that the submitter believes
the storage server behaves in a good manner with respect to
a certain behavior (i.e. either confidentiality or retrievability)
and 0 indicates that the submitter believes the storage server
behaves in a bad manner.

For confidentiality, “good behavior” means that the storage
server follows the protocol and does not reveal the information
stored to a third party (e.g. a governmental agency), nor
does it conspire with other storage servers to retrieve or gain
knowledge about the document. Vice versa, “bad behavior”
means that the storage server follows the protocol, but reveals
the information stored to a third party, or it conspires with
other storage servers to retrieve or gain knowledge about
the document. In this case, bad behaving storage servers are
referred to as honest but curious.

For retrievability, “good behavior” means that the storage
server responds immediately with the correct shares as soon
as Reconstruct algorithm is called by the user (u) to retrieve
the document. Vice versa, “bad behavior” means that the
storage server does not respond, responds later than expected,
or provides inconsistent shares when the user wants to retrieve
the document. In this case, bad behaving storage servers are
assumed to be either controlled by an attacker or be broken.
We refer to those as faulty storage servers.

After the reputation system collects all pieces of evidence
from the submitters, the evidence is processed to determine
the trust value of a particular storage server. The processing
can be performed according to well-established trust models,
CertainTrust [16] or Subjective Logic [9]. In this paper, we
use CertainTrust although Subjective Logic can be readily
substituted, as both models are isomorphic. In CertainTrust,

trust values are represented as tuples o = (t, c), where t is
the ratio between the amount of positive (good) evidences
received from the submitters over the sum of the total amount
of evidences (good and bad) collected. The second value c
is the certainty level associated with the collected evidences.
Denoted by ep the amount of positive evidences and by en the
amount of negative evidences, the certainty level c is computed
as c = N ·(ep+en)

2·(N−ep−en)+N ·(ep+en) .

The parameter N refers to the maximum number of evi-
dence required to reach the highest certainty level and usually
depends on specific application scenarios. Let us assume that
a set of submitters consists of a set of n storage servers
and a user (u), which stored its document using the social
secret sharing scheme. In this scenario, we expect for each
protection goal, confidentiality and retrievability, to retrieve
evidence from all storage servers (s) except the evaluated one,
i.e. Ns = n − 1, and one evidence from the user (u), i.e.
Nu = 1. Then, two trust values for confidentiality, i.e. oC,s and
oC,u, and two trust values for retrievability, i.e. oR,s and oR,u,
are computed from the evidences received from the storage
servers and the user respectively.

B. Trust Computation

The outcome of the evidence collection and processing
phase are a set of trust values for confidentiality and a set
of trust values for retrievability from different groups of
submitters. In our example the two groups are storage servers
and users. An additional input to this process is a vector of
weights that indicates how much the retriever of the trust
values, i.e. the social secret sharing scheme on behalf of the
user, relies on the collected evidences. A user might prefer the
trust value based on its collected evidence than based on the
evidence submitted by the storage servers. Thus, the weight
for the storage servers ωs ∈ [0, 1] is smaller than the weight
for the user ωu ∈ [0, 1], i.e. ωs < ωu. These weights can either
be provided by the users or be public parameters.

Next, the trust value ci for a storage server Si with
respect to confidentiality is computed as ci = oCs

⊕
ωoCu

,
where

⊕
ω refers to the weighted fusion with respect to the

weights ωs and ωu (see [6]). Similarly, the trust value ri for
storage server Si with respect to confidentiality is computed
as ri = oRs

⊕
ωoRu . This process is repeated for all storage

servers and the complete vector of trust values for all storage
servers with respect to confidentiality c1, . . . , cn and with
respect to retrievability r1, . . . , rn are provided to the social
secret sharing scheme (see Section III).

C. Trust Bootstrapping

In the case of newcomer storage servers, evidence regard-
ing their behavior is unknown. Thus, the trust system requires
a bootstrapping process in order to initialize their trust values.
A growing number of cloud providers are publishing their
service-specific security capabilities in a public repository,
e.g. the CSA STAR [2] since 2011. Computational trust
methods [7] are leveraged to quantify the level of security
capabilities (CSA STAR) of cloud services by means of trust
values. These trust values can be used to determine initial trust
values for newcomer storage servers.

In the CSA STAR, cloud providers publish one set of
valid answers in response to a questionnaire, i.e. Consensus
Assessment Initiative Questionnaire (CAIQ) regarding each
of the service they offer. The answers are considered as
evidence of existing security capabilities that cloud providers
claim to have for their services. The CAIQ (v1.1) has 11
security domains which are as follows: Compliance (CO), Data
Governance (DG), Facility Security (FS), Human Resources
Security (HR), Information Security (IS), Legal (LG), Op-
erations Management (OP), Risk Management (RI), Release
Management (RM), Resiliency (RS), and Security Architecture
(SA).

Trust values (t, c) are calculated using the CertainTrust
model for each of the mentioned CAIQ domain based on the
evidence (assertions) provided by the cloud providers in the
CSA STAR. In order to compute the trust value of a cloud
service, the CertainLogic AND (∧) [17] operator is used to
combine all the trust values (t, c) calculated for each of the
security domains. The overall trust value (t, c) is the initial
value for the newcomer storage server that has joined the
pool of storage servers for the first time. Once the evidence
regarding their behavior are available, the trust system replaces
the initial trust values with the trust values computed based on
the storage server’s behavior.

V. RELATED WORK AND COMPARISON WITH AS3

In this section, we provide an evaluation of the related work
with respect to social secret sharing, i.e. the weighted social
secret sharing by Nojoumian and Stinson [13], [12] and the
hierarchical social secret sharing by Pakniat et al. [14]. We
briefly describe the approaches and highlight their shortcom-
ings. Furthermore, we show the countermeasures provided by
our adaptive weighted and adaptive hierarchical social secret
sharing scheme AS3 presented in Section III.

A. Weighted Social Secret Sharing

Algorithm Share sets the trust values t1, . . . , tn to zero and
the weights w1, . . . , wn according to a specific distribution.
Then, shares are generated and distributed to the storage
servers according to their weights. Algorithm Tune calls the
trust function which updates the trust values t1, . . . , tn based
on the response time of the storage servers S1, . . . , Sn. Then,
algorithm Tune adjusts the weights w1, . . . , wn as follows.
The storage servers whose weight increased get one additional
share while one share is taken from those whose weight
decreased. Furthermore, each wi is bounded by a parameter
z much smaller than the threshold k of the scheme.

However, this approach has left many issues unsolved.

(1) Initialization of weights and threshold: It is not
specified how the weights w1, . . . , wn are initialized because
no detail is given regarding which distribution to choose.
Furthermore, it is not specified how to select threshold k
given the weights. Note that care must be taken when this
parameter is selected, because it is of major importance to
ensure both confidentiality and retrievability. In fact, on the
one hand, threshold k determines the maximum number (k−1)
of colluding storage servers the scheme can cope with. On the
other hand, it determines how many shares held by different
storage servers are needed to reconstruct the document.

(2) Translation of trust values into weights: It is not defined
how the trust values t1, . . . , tn affect the weights w1, . . . , wn.
More precisely, it is not defined if increase or decrease of
weight wi happens because the trust value ti is, respectively,
above or below a certain threshold or because the trust value
ti itself is, respectively, greater or smaller than the trust value
of the previous round. In the former case, it is left open how to
choose these thresholds. In the latter case, storage servers that
behave better compared to the last round would be rewarded
even though they have a low trust value and can therefore be
considered untrustworthy. Furthermore, it is not clear which
ranges of different trust values are mapped to the same weight.
Note that having small ranges, e.g. such that each single trust
value is mapped to one weight, leads to a huge amount of
shares, causing a high computational overhead and storage
space consumption.

(3) Trust in confidentiality: The trust values t1, . . . , tn are
computed taking into account only the behavior of the storage
servers with respect to retrievability, while the confidentiality
aspect is not addressed.

(4) Selection of upper bound z: No indication is given with
respect to the choice of the upper bound z for the weights
w1, . . . , wn. The parameter z is introduced to prevent the
storage servers from having a weight high enough to recon-
struct the document by themselves, violating confidentiality.
However, the parameter z must be chosen such that threshold
k is much larger than any single initial weight wi. Thus, there
is no guarantee that all the weights of all the storage servers
together can actually reach threshold k, namely there is no
guarantee that the document can be reconstructed. Another
problem is that parameter z makes the trust system less ef-
fective: the weights w1, . . . , wn cannot go beyond z no matter
how high the trust values t1, . . . , tn are. Thus, approaching z,
it is less and less rewarding for the storage servers to behave
well. Note that, choosing such a high threshold k leads to a
high computation overhead, which is not necessary when the
weights are small.

(5) Instable states: Wrong choices for threshold k and
bound z might lead to “instable states”. In this framework, we
refer to an instable state as a state in which either the document
cannot be reconstructed anymore or colluding storage servers
are able to reconstruct the document. The current solution does
not provide any measures to prevent or detect such states.

(6) Dynamism of parameters: Threshold k and bound z
are selected by algorithm Share and kept unchanged for the
entire lifetime of the storage. This has several drawbacks. If,
for instance, the amount of storage servers and/or the amount
of shares generated got increased, then also threshold k and
bound z must be increased as well to prevent malicious storage
servers from reconstructing the document.

Our weighted AS3 scheme addresses the issues summa-
rized above. With respect to (1), algorithm Share specifies how
to initialize the weights w1, . . . , wn and threshold k. Further-
more, algorithm Tune defines how to map the trust values into
weights thereby addressing issue (2). More precisely, our trust
system outputs two trust values: one to measure the behavior of
the storage servers with respect to confidentiality and one with
respect to retrievability (see Section IV). Thus, we solve the
shortcoming described in (3). With respect to (4) our scheme

employs an accuracy parameter β that keeps bounded the total
amount of shares generated, instead of bounding the weights.
This approach optimizes the storage space consumption and
leads to a low computation overhead. Furthermore, the fact
that there is no upper bound z encourages the storage servers
to always behave well. A very critical part of all social secret
sharing schemes is reaching instable states as described in
shortcoming (5). We address this by providing two rules: Rule
1 protects confidentiality and Rule 2 protects retrievability.
Note that the compliance with these rules is checked before
new shares are generated and distributed. This prevents that
the document is revealed or lost. In addition, the scheme takes
measures to prevent instable states. For instance, algorithm
Share sets the total amount of storage servers n such that the
Byzantine model [4] is satisfied, i.e. such that with the initial
estimation of untrustworthy storage servers the document can
be retrieved. Finally, our scheme is the first that provides
dynamism with respect to the parameters selected, i.e. n, k, β.
In fact, algorithm Tune increases or decreases threshold k at
each point in time in order to protect confidentiality (Rule 1)
and to ensure retrievability (Rule 2). This especially allows
to choose threshold k always tight thereby optimizing the
computational overhead and the storage space consumption.

B. Hierarchical Social Secret Sharing

Hierarchical social secret sharing has been introduced by
Pakniat et al. in [14]. The underlying scheme is the dis-
junctive secret sharing scheme. Algorithm Share initializes
the trust values t1, . . . , tn, the weights w1, . . . , wn, and the
levels L1, . . . , L`. The total number ` of levels determines the
accuracy for which the trust values are mapped into levels.
Depending on the weights, the storage servers are assigned
to a specific level and shares are generated and distributed
accordingly. Algorithm Tune calls the trust function which
updates the trust values t1, . . . , tn based on the behavior of
the storage servers S1, . . . , Sn. Then algorithm Tune adjusts
the weights w1, . . . , wn and reassign the storage servers to the
corresponding levels.

In this approach, the accuracy with which trust values are
mapped into levels is provided. However, this does not fully
address (4), because the total number of levels ` also bounds
how much storage servers can be rewarded or punished. In
fact, storage servers assigned to level L1 cannot be rewarded
any further and storage servers assigned to level L` cannot
be punished any further, no matter how, respectively, good
or bad they behave. Besides this partial countermeasure to
(4), this hierarchical social secret sharing scheme leaves the
same issues open as identified for the weighted social secret
sharing scheme. More precisely, it is not clear how to initialize
the weights w1, . . . , wn, how many levels L1, . . . , L` to span,
and how to choose the corresponding thresholds k1, . . . , k`
(1). Furthermore, it is not defined how the trust values are
mapped into weights (2), only trust in reliability is addressed
(3), instable states are not detected nor prevented (5), and
the parameter selection is not dynamic (6). Our dynamic AS3

scheme addresses these shortcomings similarly as described
for weighted secret sharing.

VI. IMPLEMENTATION

In addition to the schemes we also provide a proof of
concept implementation. The user is allowed to adjust certain
parameters depending on the type of document and the finan-
cial effort it wants to put into the storage. For instance, the
higher the number n of storage servers the more expensive
the storage. If the user stores sensitive personal health data,
then confidentiality is a more critical aspect than retrievability
and λc and tc can be set larger than λr and tr, respectively.
For other medical data, such as the blood group of a patient,
fast retrieval is more critical and λr and tr can be set larger
than λc and tc. Furthermore, when collecting experiences there
are different groups of submitters that provide opinions, e.g.
document owners and storage servers. In this case the user can
choose the weights ωs and ωu which determine how much
to trust in the different groups of submitters. Furthermore, an
additional parameter ε > 0 can be introduced to allow the user
to decide how much the trust values of the individual storage
servers must change to run the adjusting share distribution
subprocedure of algorithm Tune. This prevents that shares are
updated although the trustworthiness of the storage servers did
not change.

We run the weighted social secret sharing (WSSS) [11],
[12], the hierarchical social secret sharing (HSSS) [14], and
our weighted (W-AS3) and hierarchical (H-AS3) adaptive
social secret sharing with input parameters λc = λr = 0.5,
tc = tr = 0.2 for n = 7, 12, 18 and β = 2, 3, 4, respectively.
We run 1000 iterations and collected at which round Rule
1 and Rule 2 were on average not satisfied (see Table I).
For WSSS and HSSS, Rule 1 fails as soon as less than the
threshold number of storage servers is able to reconstruct the
secret, which happened soon. Since already after a few rounds
the algorithms abort we did not observe a violation of Rule
2 in our experiments. With respect to W-AS3 and H-AS3,
Rule 1 never fails by construction. Rule 2 is usually violated
when x and/or x′ change such that the Byzantine model is
not fulfilled anymore. However, our experiments showed that
this happens in the average only after Round 21.46 and Round
23.86 respectively.

TABLE I: Violation of Rule 1 and Rule 2 for different schemes.

WSSS HSSS W-AS3 H-AS3

Round violating Rule 1 2.8 3.4 > 1000 > 1000
Round violating Rule 2 - - 21.46 23.86

VII. CONCLUSION

In this work, we introduced AS3, a framework for adaptive
social secret sharing. Our solution is based on dynamic secret
sharing and can be instantiated either with weighted dynamic
or with hierarchical dynamic secret sharing. In addition, we
showed how trust values to storage servers with respect to
confidentiality and retrievability can be computed, how trust
values for newcomers can be determined, and how the share
distribution can be adapted accordingly. Finally, we imple-
mented and tested our solution. For future work, we plan
looking at specific applications, e.g. the storage of medical
records, identifying additional requirements, and extending our
solution accordingly.

ACKNOWLEDGMENTS

This work has been co-funded by the DFG as part of
projects “Scalable Trust Infrastructures” and “Long-Term Se-
cure Archiving” within the CRC 1119 CROSSING and the
European Union’s Horizon 2020 research and innovation pro-
gram under Grant Agreement No 644962.

REFERENCES

[1] Ernest F. Brickell. Some ideal secret sharing schemes. In EUROCRYPT,
pages 468–475, 1989.

[2] CSA. Security, Assurance & Trust Registry (STAR). https://
cloudsecurityalliance.org/star/, accessed 28 Jul 2016.

[3] Paul Feldman. A practical scheme for non-interactive verifiable secret
sharing. In FOCS, pages 427–437, 1987.

[4] Rosario Gennaro, Yuval Ishai, Eyal Kushilevitz, and Tal Rabin. The
round complexity of verifiable secret sharing and secure multicast. In
STOC, pages 580–589, 2001.

[5] V. H. Gupta and K. Gopinath. Gits
2 VSR: an information theoretical

secure verifiable secret redistribution protocol for long-term archival
storage. In SISW, pages 22–33, 2007.

[6] Sheikh Mahbub Habib, Sebastian Ries, Sascha Hauke, and Max
Mühlhäuser. Fusion of opinions under uncertainty and conflict -
application to trust assessment for cloud marketplaces. In TrustCom,
pages 109–118, 2012.

[7] Sheikh Mahbub Habib, Florian Volk, Sascha Hauke, and Max
Mühlhäuser. Computational trust methods for security quantification
in the cloud ecosystem. In The Cloud Security Ecosystem, pages 463
– 493. 2015.

[8] Amir Herzberg, Stanislaw Jarecki, Hugo Krawczyk, and Moti Yung.
Proactive secret sharing or: How to cope with perpetual leakage. In
CRYPTO, pages 339–352, 1995.

[9] Audun Jøsang. A logic for uncertain probabilities. INT J UNCERTAIN
FUZZ, 9(3):279–212, 2001.

[10] Audun Jøsang, Roslan Ismail, and Colin Boyd. A survey of trust
and reputation systems for online service provision. Decision Support
Systems, 43(2):618–644, 2007.

[11] Mehrdad Nojoumian and Douglas R. Stinson. Brief announcement:
secret sharing based on the social behaviors of players. In ACM PODC,
pages 239–240, 2010.

[12] Mehrdad Nojoumian and Douglas R. Stinson. Social secret sharing in
cloud computing using a new trust function. In PST, pages 161–167,
2012.

[13] Mehrdad Nojoumian, Douglas R. Stinson, and Morgan Grainger. Un-
conditionally secure social secret sharing scheme. IET Information
Security, 4(4):202–211, 2010.

[14] Nasrollah Pakniat, Ziba Eslami, and Mehrdad Nojoumian. Ideal social
secret sharing using birkhoff interpolation method. IACR Cryptology
ePrint Archive, 2014:515, 2014.

[15] Torben P. Pedersen. Non-interactive and information-theoretic secure
verifiable secret sharing. In CRYPTO, pages 129–140, 1991.

[16] Sebastian Ries. Extending bayesian trust models regarding context-
dependence and user friendly representation. In ACM SAC, pages 1294–
1301, 2009.

[17] Sebastian Ries, Sheikh Habib, Max Mhlhuser, and Vijay Varadharajan.
Certainlogic: A logic for modeling trust and uncertainty. In Trust and
Trustworthy Computing, volume 6740, pages 254–261, 2011.

[18] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
1979.

[19] Gustavus J. Simmons. How to (really) share a secret. In CRYPTO,
pages 390–448, 1988.

[20] Tamir Tassa. Hierarchical threshold secret sharing. J. Cryptology,
20(2):237–264, 2007.

[21] Giulia Traverso, Denise Demirel, and Johannes Buchmann. Dynamic
and verifiable hierarchical secret sharing. In ICITS, pages 1–20, 2016.

