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Abstract

In Attribute-Based Signatures (ABS; first defined by Maji, Prabhakaran and Rosulek, CT-
RSA 2011) an authority can generate multiple signing keys, where each key is associated with
a constraint f . A key respective to f can sign a message x only if f(x) = 0. The security
requirements are unforgeability and key privacy (signatures should not expose the specific signing
key used). In Homomorphic Signatures (HS; first defined by Boneh and Freeman, PKC 2011),
given a signature for a data-set x, one can evaluate a signature for the pair (f(x), f), for functions
f . In context-hiding HS, evaluated signatures do not reveal information about the pre-evaluated
signature.

In this work we start by showing that these two notions are in fact equivalent. The first
implication of this equivalence is a new lattice-based ABS scheme for polynomial-depth circuits,
based on the HS construction of Gorbunov, Vaikuntanathan and Wichs (GVW; STOC 2015).

We then construct a new ABS candidate from a worst case lattice assumption (SIS), with
different parameters. Using our equivalence again, now in the opposite direction, our new ABS
implies a new lattice-based HS scheme with different parameter trade-off, compared to the
aforementioned GVW.
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1 Introduction

In a standard digital signature scheme an authority generates a public verification key vk and a
secret signing key sk. Given sk, it is possible to sign any message, and signatures can be veri-
fied publicly with vk. Recent works study more powerful notions of digital signatures, where the
authority can generate multiple signing keys, each with limited signing permissions. An example
use case is when an organization wants to allow its employees to sign on behalf of its name, while
controlling which messages each employee can sign. A signature should not reveal any information
about the signing permissions of the signer, other than whether he is allowed to sign the message
corresponding to the same signature. In stronger notions, the signature should not reveal any infor-
mation about the identity of the signer. Main notions of this form are attribute-based signatures
(ABS) [MPR11], policy-based signatures (PBS) [BF14], constrained signatures (CS) [BZ14] and
functional signatures (FS) [BGI13]. In this work we use a slightly modified definition of constrained
signatures, with two flavors that capture ABS and PBS for languages in P.

In a homomorphic signatures (HS) scheme, given a signature for a data-set x, one can evaluate a
signature for the pair (f(x), f), for any f in the supported function space of the scheme. Context-
hiding HS has the security guarantee that an evaluated signature does not reveal information
about the original (pre-evaluated) signature. In particular, it does not reveal x. Context-hiding
homomorphic signatures are useful, for example, when one wants to prove that he has a signature
for a data-set which satisfies some condition, without revealing the data-set itself. We show in this
work that CS is equivalent to context-hiding 1-hop HS.

1.1 Overview

Two flavors of CS will be alternately used throughout this work. In key-policy constrained signa-
tures, each signing key skf is associated with a circuit f : {0, 1}∗ → {0, 1}, which we refer to as
the constraint, and a key skf can sign a message x ∈ {0, 1}∗ only if f(x) = 0. In message-policy
constrained signatures, each key is associated with an attribute x ∈ {0, 1}∗, and a key skx can sign
a circuit f : {0, 1}∗ → {0, 1} only if f(x) = 0. Message-policy CS is equivalent to attribute-based
signatures, and key-policy CS is equivalent policy-based signatures for languages in P 1. When
presented as two flavors of a single primitive, we can take advantage of the similarities and alter-
nately use the definition that best fits the context. Note that the flavors are interchangeable up to
switching the constraint space and message space.

Security. Two aspects of security will be discussed – unforgeability and key privacy. Unforgeabil-
ity requires that an adversary with a set of keys cannot sign a message which is not authorized by
any of its keys, even after seeing other signatures. Key privacy bounds the information revealed by
a signature regarding the key that was used to produce it. In strongly-hiding privacy, the signature
completely hides the key. In particular it is impossible to determine whether two signatures were
derived from the same key. In weakly-hiding privacy we only aim to hide the constraint (or the
attribute, in the message-policy flavor) associated with the signing key, possibly leaving the identity
of the key public. We note that without any privacy requirements, CS are trivial to achieve using
standard signatures.

1The original definition of ABS [MPR11] (PBS [BF14]) considers an additional message space M, where messages
m ∈ M are signed respective to an attribute (a policy). The two definitions are equivalent since m can always be
encoded into the signed attribute (policy).
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Delegation. A CS scheme can be extended to support key delegation. In this setting, a party
with a singing key skf can derive a signing key sk(f,g) that can sign a message x if f(x) = 0 and
g(x) = 0. Note that the permissions of sk(f,g) are never stronger than the permissions of skf , since
otherwise the scheme is forgeable.

Motivation. CS is weaker than PBS for NP but strong enough for some of the motivations that
lead to the study of PBS, such as constructing group signatures and attribute-based signatures.
See the applications discussion in [BF14] for details. We exploit this gap and construct CS with
a different approach than previous results that were using variations of NIZK. Indeed, as noted
in [BF14], PBS for general languages in NP implies simulation-extractable NIZK proofs. We also
see in this work a contribution to the understanding of homomorphic signatures – prior to this
work there was only a single known construction of (leveled) fully HS [GVW15].

1.2 Results

Unforgeability Amplification. In our first construction we assume a (key-policy) CS scheme
with single-key-selective unforgeability. In this notion the adversary has a single key skf , and it
has to announce f before seeing the public data vk. It wins if it manages to forge a signature
for a message x that is not authorized by f , i.e. where f(x) = 1. We use a standard signatures
scheme to construct a (key-policy) CS scheme with full unforgeability. The downside of this general
amplification is the loss in key privacy – the amplified scheme preserves weakly-hiding privacy
(hiding of f), but signatures reveal other key-specific information and therefore the scheme is
not strongly-hiding (i.e. one can learn from a signature the identity of the signing key). The
amplification maintains the delegation properties of the underlying CS scheme.

Equivalence of CS and Homomorphic Signatures. We show with reductions in two di-
rections an equivalence between single-key-selective unforgeable (message-policy) CS and single-
message-selective 1-hop HS. As shown in [GVW15], it is possible to amplify the unforgeability of
such HS scheme to the full notion. Along with the previous result, this implies an equivalence
between CS and HS with full unforgeability.

CS from Lattice Trapdoors. We construct a (key-policy) CS scheme from lattice trapdoors,
which is message-selective unforgeable and strongly-hiding. The key privacy is statistical, and the
unforgeability relies on the Short Integers Solution (SIS) hardness assumption. The construction
supports message space of fixed size and constraint space of boolean circuits with bounded depth.
When translated to the message-policy flavor, the attribute space is unbounded and the message
space is bounded in depth and size.

1.3 Implications

A New Homomorphic Signatures Construction. An immediate conclusion of the above two
results is a new lattice-based (leveled) fully homomorphic signatures scheme, where fresh signatures
are of fixed size (independent of the signed data-set size), and evaluated signatures grow with the
size of the policy description. It means that for any policy with a short description succinctness is
maintained.
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Two New CS Constructions. [GVW15] construct a context-hiding HS scheme which is secure
under the Short Integer Solution (SIS) hardness assumption. Combining it with the first two results
gives a new CS construction. We summarize the different properties of this CS construction and
the lattice-based CS construction in the table below. To clarify the differences, we handle both
schemes in the key-policy flavor.

HS-based CS New lattice-based CS

Assumption SIS SIS

Signature size fixed Grows with |x|
Key Size Grows with |f | fixed

Unforgeability full message-selective

Key Privacy weakly-hiding strongly-hiding

Supports Delegation no yes

1.4 Technical Overview

Definition of Constrained Signatures. A (key-policy) CS scheme consists of 4 algorithms
(Setup,Keygen, Sign,Ver). Setup is an initialization algorithm that generates a verification key vk
and a master signing key msk. Keygen produces constrained signing keys – it takes as input msk
and a constraint f , and outputs a constrained key skf . The signing algorithm Sign takes as input
a message x and a key skf , and outputs a signature σx, which is valid if and only if f(x) = 0. The
verification algorithm Ver takes a message x and a signature σx, and either accepts or rejects.

Unforgeability Amplification. We now give a brief description of the amplification. As-
sume a (key-policy) constrained signatures scheme CS′ which is single-key-selective unforgeable,
weakly-hiding and possibly supports delegation. Let S be an existentially unforgeable standard
signatures scheme. The construction is as follows. In Setup, the authority initializes S and sets
(vk,msk) = (S.vk,S.sk). Every time a key is generated, the authority initializes a fresh instance
of CS′ and generates a constrained key for the desired f under this instance: (CS′.vk′,CS′.sk′f ). It
also generates a fresh instance of S : (S.vk′′,S.sk′′). The authority then signs (CS′.vk′, S.vk′′) under
the standard scheme S using msk = S.sk and gets S.σ(vk′,vk′′). The constrained key is therefore
skf = (CS′.vk,CS′.skf , S.vk

′′,S.sk′′,S.σ(vk′,vk′′)). To sign a message x with a key of this form, one
signs x with (CS′.vk,CS′.skf ), signs x with (S.vk′′,S.sk′′) and outputs these signatures along with
S.σ(vk′,vk′′). Verification is done by verifying the signatures for x under CS′.vk′ and S.vk′′, and
verifying S.σ(vk′,vk′′) under S.vk.

Since for each instance of CS′ the authority only generates a single key, the unforgeability for
each such instance is maintained. The existential unforgeability of S guarantees that it is not
possible to forge a signature for an instance of CS′ that was not initialized by the authority. Note
that CS′.vk is a part of the signature, and since this value is different for each key, it reveals the
identity of the key. For that reason the construction is not strongly-hiding.

Equivalence of CS and Homomorphic Signatures. In CS a constrained key skf restricts
the signing permissions to a subspace of the message space {x ∈ X : f(x) = 0}. Similarly, in HS a
”fresh” signature σx defines a subspace of signatures that can be evaluated {σf,y : f(x) = y}. This
is the core idea of our reductions. A more detailed description follows.
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CS from Homomorphic Signatures. The construction of (message-policy) CS from context-
hiding HS works as follows. The CS authority initializes the HS scheme. In order to produce a CS
key for an attribute x, it signs x under the HS scheme and outputs skx = HS.σx. A signature for
a policy f is derived from skx by homomorphically evaluating f on HS.σx. This results in an HS
signature for the pair (f, f(x)). In order to verify one checks the validity of the HS signature, and
that f(x) = 0. The context-hiding property of HS ensures that σ(f,f(x)) reveals nothing about σx,
and thus the construction is strongly-hiding.

Homomorphic Signatures from CS. The construction of context-hiding 1-hop HS from (message-
policy) CS works as follows. The HS authority initializes the CS scheme. In order to sign a data-set
x, generate a CS key for the attribute x and outputs σx = CS.skx. To homomorphically evaluate a
function f on a signature σx, first compute y = f(x), then define the function fy that on input x′

outputs 0 if and only if f(x′) = y. Sign the message fy under the CS scheme (using CS.skx) and
output this CS signature: HS.σ(f,y) = CS.σfy . In order to verify one checks the validity of the CS
signature. The strongly-hiding privacy of CS ensures that CS.σfy reveals nothing about CS.skx,
and thus the construction is context-hiding.

CS from Lattice Trapdoors. We use techniques that were developed in [GVW13, BGG+14]
for the purpose of attribute-based encryption (ABE). Let ` be the message length, i.e. x ∈ {0, 1}`.
The constraint space is all the circuits f : {0, 1}` → {0, 1} of bounded depth. The verification key
vk consists of a uniformly sampled matrix ~A = [A1‖ . . . ‖A`] and a close-to-uniform matrix A, and
the master signing key msk is a trapdoor for A, i.e. A−1τ0 . A valid signature for a message x is a

non-zero short-entries vector vx such that [A‖~A−x⊗G] ·vx = 0, where G is a special fixed gadget
matrix. The constrained signing key skf respective to a circuit f is a trapdoor [A‖Af ]−1τ , where

Af is computed from ~A and f . Given msk = A−1τ0 it is possible to generate a trapdoor [A‖M]−1τ for
any matrix M, so the authority can generate such keys efficiently. For any pair (x, f), a trapdoor
[A‖~A − x ⊗G]−1τ ′ can be derived from the trapdoor [A‖Af − f(x)G]−1τ . This implies that when

f(x) = 0, it can be derived from the signing key skf = [A‖Af ]−1τ . The trapdoor [A‖~A− x⊗G]−1τ ′
allows to sample a short vector vx which is a valid signature for x. Since the signature is sampled
from the same distribution regardless of the signing key, the scheme is statistically strongly-hiding.
The proof of message-selective unforgeability is similar to the selective security proof in [BGG+14].
Recall that the adversary has to announce x for which it is going to forge a signature at the
beginning of the game. The matrix ~A is then generated from A based on x in such way that it is
possible to generate a key for any function f for which f(x) = 1 without A−1τ0 . It is then shown
that forging a signature for x implies breaking SIS respective to the matrix A.

1.5 Related Work

Policy-based signatures were introduced in [BF14], where it was also shown that PBS for NP
can be constructed from NIZK. [CNW16] construct lattice-based PBS in the random oracle model.
[MPR11] introduced attribute-based signatures, and suggested a general framework for constructing
ABS from NIZK. In [SAH16] ABS for circuits is constructed from bilinear maps. [BK16] construct
ABS for threshold functions and (∨,∧)- functions from lattice assumptions. Our construction in
Section 6 is the first ABS candidate for circuits that does not use NIZK or non-standard assump-
tions.
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[Fuc14, CRV14] define constrained verifiable random functions (CVRF), which are constraint
PRFs where given a constraint key one can compute, in addition to the function value, a non-
interactive proof for the computed function value, where the proof is key-hiding. ABS can be
constructed from CVRF trivially, however the pseudo-randomness property of known CVRF con-
structions implies single-key unforgeability of the derived ABS. [Fuc14, CRV14] show existence of
CVRFs for poly-sized circuits, where the constructions assume mulitilinar-maps and the multilinear
DDH assumption respectively.

Homomorphic signatures were constructed in [BF11, CFW14] for polynomials, and later in
[GVW15] for boolean circuits. [LTWC16] define multi-key homomorphic signatures and show how
to derive ABS from it. [FMNP16] define multi-key homomorphic MACS and signatures, and extend
the [GVW15] HS construction to support multi-key evaluation.

Other notions of digital signatures with fine-grained control over signing permissions are func-
tional signatures (FE) [BGI13] and delegatable functional signatures [BMS16]. In FE, a key re-
spective to a function f can sign a message y if and only if the signer provides a preimage x such
that f(x) = y. FE can be derived from CS for any function space consisting of efficiently invertible
functions.

2 Preliminaries

2.1 Digital Signatures

Definition 2.1 ((Standard) Signature Scheme). A signature scheme is a tuple of PPT algorithms
(Setup,Sign,Ver) with the following syntax.

• Setup(1λ)→ (vk, sk) takes as input the security parameter λ and outputs a verification key vk
and a signing key sk.

• Sign(sk,m)→ σm takes as input a signing key sk and a message m, and outputs a signature
σm for m.

• Vervk(m,σm) takes as input a message m and a signature σm, and either accepts or rejects.

Correctness. The scheme is correct for a message space M, if for all m ∈ M it holds that
Vervk(m,Sign(sk,m)) = accept, where (sk, vk)← Setup(1λ).

Existential Unforgeability. The scheme is existentially unforgeable for a message space M if
every PPTM adversary A has no more than negligible advantage in the following game:

1. The challenger computes (sk, vk)← Setup(1λ) and sends vk to A.

2. A makes queries: it sends m ∈M and gets in response σm ← Sign(m, sk).

3. A wins if it manages to output (m∗, σm∗) such that Vervk(m
∗, σm∗) = accept, where m∗ 6= m

for any signature queried by A for a message m ∈M.
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2.2 Short Integer Solution (SIS)

Below is the definition and hardness assumption of SIS, as phrased in [Pei16].

Definition 2.2 (Short Integer Solution (SISn,q,B,m)). Given a uniformly random matrix A ∈ Zn×mq ,
find a nonzero integer vector r ∈ Zm of norm ‖r‖∞ ≤ B such that Ar = 0.

Theorem 2.1. [Ajt96, Mic04, MR07, MP13] For any m = poly(n), B > 0, and sufficiently large
q ≥ B · poly(n), solving SISn,q,B,m with non-negligible probability is at least as hard as solving
the decisional approximate shortest vector problem GapSVPγ and the approximate shortest inde-
pendent vectors problem SIVPγ on arbitrary n-dimensional lattices (i.e., in the worst case) with
overwhelming probability, for some γ = B · poly(n).

2.3 Lattice Trapdoors

Let n, q ∈ Z, g = (1, 2, 4, . . . , 2dlog qe−1) ∈ Zdlog qeq and m = ndlog qe. The gadget matrix G is defined
as the diagonal concatenation of g n times. Formally, G = g ⊗ In ∈ Zn×mq . For any t ∈ Z, the
function G−1 : Zn×tq → {0, 1}m×t expands each entry a ∈ Zq of the input matrix into a column
of size dlog qe consisting of the bits representation of a. For any matrix A ∈ Zn×tq , it holds that
G ·G−1(A) = A.

The (centered) discrete Gaussian distribution over Zm with parameter τ , denoted DZm,τ , is the

distribution over Zm where for all x, Pr[x] ∝ e−π‖x‖
2/τ2 . Let n,m, q ∈ N and consider a matrix

A ∈ Zn×mq . For all v ∈ Znq we let A−1τ (v) denote the random variable whose distribution is the
Discrete Gaussian DZm,τ conditioned on A ·A−1τ (v) = v.

A τ -trapdoor for A is a procedure that can sample from a distribution within 2−n statistical
distance of A−1τ (v) in time poly(n,m, log q), for any v ∈ Znq . We slightly overload notation and
denote a τ -trapdoor for A by A−1τ . The following properties had been established in a long sequence
of works.

Corollary 2.2 (Trapdoor Generation [Ajt96,MP12]). There exists an efficiently computable value
m0 = O(n log q) and an efficient procedure TrapGen(1n, q,m) such that for all m ≥ m0 outputs
(A,A−1τ0 ), where A ∈ Zn×mq is 2−n-uniform and τ0 = O(

√
n log q log n).

We use the most general form of trapdoor extension as formalized in [MP12].

Theorem 2.3 (Trapdoor Extension [ABB10,MP12]). Given Ā ∈ Zn×mq with a trapdoor Ā−1τ , and

letting B̄ ∈ Zn×m′q be s.t. Ā = B̄S (mod q) where S ∈ Zm′×m with largest singular value s1(S),

then (Ā−1τ ,S) can be used to sample from B̄−1τ ′ for any τ ′ ≥ τ · s1(S).

A few additional important corollaries are derived from this theorem. We recall that s1(S) ≤√
m′m ‖S‖∞ and that a trapdoor G−1O(1) is trivial. The first is a trapdoor extension that follows by

taking S = [Im′‖0m]T .

Corollary 2.4. Given A ∈ Zn×m′q , with a trapdoor A−1τ , it is efficient to generate a trapdoor

[A‖B]−1τ ′ for all B ∈ Zn×mq , for any m ∈ N and any τ ′ ≥ τ .

Next is a trapdoor extension that had been used extensively in prior work. It follows from
Theorem 2.3 with S = [−RT ‖Im]T .
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Corollary 2.5. Given A ∈ Zn×m′q , and R ∈ Zm′×m with m = ndlog qe, it is efficient to compute

[A‖AR + G]−1τ for τ = O(
√
mm′ ‖R‖∞).

Note that by taking A uniform and R to be a high entropy small matrix, e.g. uniform in
{−1, 0, 1}, and relying on the leftover hash lemma, Corollary 2.2 is in fact a special case of this one.

It is also possible to permute trapdoors in the following manner.

Corollary 2.6. Given [A1‖ . . . ‖At]
−1
τ and a permutation ρ : Zt → Zt, it is efficient to compute

[Aρ(1)‖ . . . ‖Aρ(t)]
−1
τ .

2.4 Lattice Evaluation

The following is an abstraction of the evaluation procedure in recent LWE based FHE and ABE
schemes, that developed in a long sequence of works [ABB10, MP12, GSW13, AP14, BGG+14,
GVW15]. We use a similar formalism to [BV15,BCTW16] but slightly rename the functions.

Theorem 2.7. There exist efficient deterministic algorithms EvalF and EvalFX such that for all

n, q, ` ∈ N, and for any sequence of matrices ~A = (A1, . . . ,A`) ∈ (Zn×ndlog qeq )`, for any depth
d boolean circuit f : {0, 1}` → {0, 1} and for every x = (x1, . . . , x`) ∈ {0, 1}`, the outputs
Hf = EvalF(f, ~A) and Hf,x = EvalFX(f, x, ~A) are both in Z(`ndlog qe)×ndlog qe and it holds that

‖Hf‖∞ , ‖Hf,x‖∞ ≤ (2ndlog qe)d and (~A− x⊗G) ·Hf,x = ~A ·Hf − f(x)G (mod q).

3 Definition of Constrained Signatures (CS)

We now define constrained signatures, along with a number of security notions that will be used
throughout this work. The definitions are presented in the key-policy flavor. See Appendix A for
definitions in the message-policy flavor. Lastly we define key delegation in the context of constrained
signatures.

Definition 3.1 ((Key-Policy) Constrained Signatures). Let X be a message space and F be a
function space of the form f ∈ F =⇒ f : X ′ → {0, 1} where X ′ ⊆ X . A constrained signatures
scheme for (X ,F) is a tuple of algorithms:

• Setup(1λ) → (msk, vk) takes as input the security parameter λ and possibly a description of
(X ,F), and outputs a master signing key msk and a public verification key vk.

• Keygen(f,msk) → skf takes as input a function f ∈ F and the master signing key msk, and
outputs a constained signing key skf .

• Sign(x, skf ) → σx takes as input a message x ∈ X and a signing key skf , and outputs a
signature σx.

• Vervk(x, σx) → {accept, reject} takes as input a message x ∈ X and a signature σx, and
either accepts or rejects.

Correctness. A CS scheme (Setup,Keygen, Sign,Ver) is correct if for all x ∈ X and f ∈ F
for which f(x) = 0, it holds that with all but negligible probability Vervk(x, σx) = accept, where
(msk, vk)← Setup(1λ) and σx = Sign(x,Keygen(f,msk)).
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Privacy. Privacy bounds the information revealed by a signature about the signing key that
was used to produce it. We define two notions of privacy. In weakly-hiding privacy, a signature
should not reveal the signing key’s functionality f , however it might be possible to retrieve other
information such as whether two signatures were produced using the same key. In strongly-hiding
privacy, a signature should not reveal any information at all about the signing key.

Definition 3.2 (Privacy of (Key-Policy) Constrained Signatures). A CS scheme (Setup,Keygen, Sign,Ver)
is weakly-hiding if any ppt adversary A has no more than negligible advantage in the following
game.

1. The challenger computes and outputs (msk, vk)← Setup(1λ).

2. A sends (f0, f1, x) such that f0(x) = f1(x) = 0.

3. The challenger computes skf0 = Keygen(f0,msk) and skf1 = Keygen(f1,msk). It then samples

b
$← {0, 1} and computes σx,b ← Sign(x, skfb). It sends σx,b to A.

4. A outputs b′ ∈ {0, 1} and wins if and only if b′ = b.

The scheme is strongly-hiding if any ppt adversary A has no more than negligible advantage in
the above game, where in step 3 the challenger sends (skf0 , skf1 , σx,b) to A.

Unforgeability. We consider full unforgeability vs. message-selective unforgeability. These no-
tions are caputred by a security game between a challenger and an adversary. In the full unforge-
ability game, the adversary can adaptively make queries of three types: (1) query for constrained
keys, (2) query for signatures under a specified constraint, and (3) query for signatures that are
generated with an existing key from a type (2) query. In order to win the adversary has to forge a
signature for a message x∗ that is not authorized by any of the queried keys, and does not appear in
any of the type (2) and (3) queries. In the message-selective game, the adversary has to announce
x∗ before seeing the verification key. The construction in Section 6 is message-selective unforgeable.

Definition 3.3 (Unforgeability of (Key-Policy) Constrained Signatures). A CS scheme (Setup,Keygen,Sign,Ver)
is fully unforgeable if every PPTM adversary A has no more than negligible advantage in the fol-
lowing game:

1. The challenger computes (msk, vk)← Setup(1λ) and sends vk to A.

2. A makes queries of three types:

• Key Queries. A sends f ∈ F and gets back skf ← Keygen(f,msk).

• Signature Queries. A sends (f, x) ∈ F×X such that f(x) = 0. The challenger computes
skf ← Keygen(f,msk) and sends back σx ← Sign(x, skf ).

• Repeated Signature Queries. A sends i ∈ N and x ∈ X . If there were less than i
signature queries at this point of the game, the challenger returns ⊥. Otherwise, let
f denote the constraint that was sent at the ith signature query and let skf denote the
key that was generated by the challenger when answering this query. If f(x) 6= 0, the
challenger returns ⊥. Otherwise it returns σx ← Sign(x, skf ).
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3. A wins if it manages to output (x∗, σx∗) such that Vervk(x
∗, σx∗) = accept and the following

restrictions hold:

• For any key queried by A respective to f ∈ F , it holds that f(x∗) = 1.

• For any signature σx queried by A, it holds that x 6= x∗.

The scheme is message-selective unforgeable if any PPT A that announces x∗ before seeing vk has
no more than negligible advantage in the game.

We also define a relaxed notion, single-key-selective unforgeability, which is useful as a building
block towards full unforgeability, as shown in Section 4. In this security game, the adversary is
restricted to a single key query and no signatures queries. It also has to announce the queried
constraint at the beginning of the game.

Definition 3.4 (Single-Key-Selective Unforgeability of (Key-Policy) Constrained Signatures). A
CS scheme (Setup,Keygen,Sign,Ver) is single-key-selective unforgeable if every PPTM adversary
A has no more than negligible advantage in the following game:

1. A sends f∗ ∈ F to the challenger.

2. The challenger computes (msk, vk) ← Setup(1λ) and skf∗ ← Keygen(f∗,msk), and sends
(vk, skf∗) to A.

3. A wins if it manages to output (x∗, σ(x∗)) such that Vervk(x
∗, σx∗) = accept and f∗(x∗) = 1.

3.1 Key Delegation

Given a key skf for a constraint f ∈ F , it might be useful to generate a key with limited capabilities,
i.e. a key sk(f,g) for a constraint that requires f(x) = 0 and g(x) = 0 for some function g ∈ F .
In this setting, any message x ∈ X that can be signed by sk(f,g) can also be signed by skf , but
the other direction is not guaranteed since it might be the case that f(x) = 0 but g(x) = 1. Key
delegation can therefore be though of as restricting the signing permissions of a given key.

We now give a formal definition of the key delegation algorithm, along with definitions for
correctness, privacy and unforgeability. Note that it captures multiple levels of delegation. The
unforgeability game is analogouse to the non-delegatable unforgeability game, where the adversary
can in addition query for delegated keys.

Definition 3.5 (Delegation of (Key-Policy) Constrained Signatures). A CS scheme (Setup,Keygen, Sign,Ver)
with message space X , function space F and key space K supports delegation if there exists a PPT
algorithm DelKey with the syntax

• DelKey(sk(f1,...,ft), ft+1)→ sk(f1,...,ft+1): takes as input a constrained key sk(f1,...,ft) ∈ K and a
function ft+1 ∈ F , and outputs a delegated constrained key sk(f1,...,ft+1) ∈ K.

such that it satisfies correctness, privacy and unforgeability as defined below. For any t ≥ 1 and
F = (f1, . . . , ft) ∈ F t, write F (x) = 0 to denote that f ∈ F ⇒ f(x) = 0. Moreover, denote skF =
sk(f1,...,ft), where ∀i ∈ [2 . . . t] : sk(f1,...,fi) = DelKey(sk(f1,...,fi−1), fi) and skf1 = Keygen(f1,msk) for

some (msk, vk)← Setup(1λ) which is clear from the context.
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Correctness. Consider (msk, vk) ← Setup(1λ). The scheme is correct for a function family F
and message space X , if for all t ∈ N, (x, F ) ∈ X × F t for which F (x) = 0, it holds with all but
negligible probability that Vervk(x,Sign(x, skF )) = accept.

Privacy. The scheme is weakly-hiding if any ppt adversary A has no more than negligible ad-
vantage in the following game.

1. The challenger computes and outputs (msk, vk)← Setup(1λ).

2. A sends (t, F0, F1, x), where ∀b ∈ {0, 1} : Fb = (f b1 , . . . , f
b
t ) and Fb(x) = 0.

3. The challenger computes skF0 and skF1. It then samples b
$← {0, 1} and computes σx,b ←

Sign(x, skFb). It sends σx,b to A.

4. A outputs b′ ∈ {0, 1} and wins if and only if b′ = b.

The scheme is strongly-hiding if any ppt adversary A has no more than negligible advantage in
the above game, where in step 3 the challenger sends (skF0 , skF1 , σx,b) to A.

Full Unforgeability. The scheme is fully unforgeable if every PPTM adversary A has no more
than negligible advantage in the following game:

1. The challenger computes (msk, vk)← Setup(1λ) and sends vk to A.

2. A makes queries of three types:

• Key Queries. A sends t ∈ N, F ∈ F t and gets back skF .

• Signature Queries. A sends t ∈ N, (F, x) ∈ F t × X such that F (x) = 0. The challenger
computes skF as described above and returns σx ← Sign(x, skF ).

• Repeated Signature Queries. A sends i ∈ N and x ∈ X . If there were less than i
signature queries at this point of the game, the challenger returns ⊥. Otherwise, let F
denote the set of constraints that was sent at the ith signature query and let skF denote
the key that was generated by the challenger when answering this query. If ∃f ∈ F s.t.
f(x) 6= 0, the challenger returns ⊥. Otherwise it returns σx ← Sign(x, skF ).

3. A wins if it manages to output (x∗, σx∗) such that Vervk(x
∗, σx∗) = accept and the following

restrictions hold:

• For any key queried by A respective to t ∈ N, F ∈ F t, it holds that ∃f ∈ F such that
f(x∗) = 1.

• For any signature σx queried by A, it holds that x 6= x∗.

Message-Selective Unforgeability. The scheme maintains message-selective unforgeability if
any PPT A that announces x∗ before seeing vk has no more than negligible advantage in the game.
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Single-Key-Selective Unforgeability. The scheme is single-key-selective unforgeable if every
PPTM adversary A has no more than negligible advantage in the following game:

1. A sends t ∈ N, F ∈ F t to the challenger.

2. The challenger computes (msk, vk)← Setup(1λ) and skF , and sends (vk, skF ) to A.

3. A wins if it manages to output (x∗, σx∗) such that Vervk(x
∗, σx∗) = accept and ∃f ∈ F such

that f(x∗) = 1.

4 From Single-Key-Selective Unforgeability to Full Unforgeability

We show how any standard digital signatures scheme can be used to amplify the security guarantee
of a (key-policy) CS scheme from single-key-selective to full unforgeability. This comes with a
partial loss in key privacy – while the underlying scheme might be either strongly-hiding or weakly-
hiding, the amplified scheme reveals key-specific information as part of the signature, and thus it
is (at most) weakly-hiding.

Let CS = (Setup′,Keygen′, Sign′,Ver′) be a single-key selectively unforgeable weakly-hiding CS
scheme with message space X ′, constraint space F ′ and verification-key space VK′. Let S =
(S.Setup, S.Sign, S.Ver) be a standard signature scheme with verification-key space VK and message
space X such that VK′ × VK ⊆ X . The construction is as follows.

• Setup(1λ). Compute (S.vk,S.sk)← S.Setup(1λ). Output vk = S.vk and msk = S.sk.

• Keygen(f,msk). Generate (vk′,msk′) ← Setup′(1λ). Compute k′f ← Keygen′(msk′, f). Gen-

erate (vk′′, sk′′) ← S.Setup(1λ). Sign (vk′, vk′′) using msk: σ(vk′,vk′′) ← S.Sign(S.sk, (vk′, vk′′)).
Output kf = (vk′, k′f , vk

′′, sk′′, σ(vk′,vk′′)).

• Sign(x, kf ). Compute σ′x = Sign′(x, k′f ) and σ′′x = S.Sign(sk′′, x). Output σx = (vk′, σ′x, vk
′′, σ′′x, σ(vk′,vk′′)).

• Vervk(x, σx). Accept only if S.Ver(σ(vk′,vk′′), (vk
′, vk′′)) = accept, Ver′vk′(x, σ

′
x) = accept and

S.Vervk′′(x, σ
′′
x) = accept.

Lemma 4.1 (Correctness). The scheme is correct for (F ′,X ′).

Proof. Fix x ∈ X ′ and f ∈ F ′ such that f(x) = 0, and consider (msk, vk) ← Setup(1λ) and σx =
Sign(x,Keygen(f,msk)). Denote σx = (vk′, σ′x, vk

′′, σ′′x, σ(vk′,vk′′)), then by Sign and Keygen it holds
that σ′x = Sign′(x, k′f ) = Sign′(x,Keygen′(msk′, f)), and since f(x) = 0 it holds that Ver′vk′(σ

′
x, x) =

accept by the correctness of CS′. Moreover, S.Vervk′′(x, σ
′′
x) = S.Vervk′′(x,S.Sign(sk′′, x) = accept and

S.Ver(σ(vk′,vk′′), (vk′, vk′′)) = S.Ver(S.Sign(S.sk, (vk′, vk′′)), (vk′, vk′′)) = accept by the correctness of
S. Therefore, Vervk(x,m, σx) accepts.

Lemma 4.2 (Privacy). The scheme is weakly-hiding for (F ′,X ′).

Proof. Assume towards contradiction an adversary A that wins the weakly-hiding privacy game
with non-negligible probability, and use it to break the weakly-hiding privacy of CS as follows:

1. Receive (vk′,msk′)← Setup′(1λ) from the CS challenger.

2. Compute (S.vk,S.sk)← S.Setup(1λ) and send (msk = S.sk, vk = S.vk) to A.
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3. A returns (f0, f1, x) such that f0(x) = f1(x) = 0. Forward (f0, f1, x) to the CS challenger.

4. The CS challenger samples b
$← {0, 1} and returns σ′x,b. Now generate (vk′′, sk′′)← S.Setup(1λ),

sign (vk′, vk′′) with the standard signature scheme: σ(vk′,vk′′) ← S.Sign(S.sk, (vk′, vk′′)), sign
x with the standard signature scheme: σ′′x ← S.Sign(sk′′, x) and send to A the signature
σx,b = (vk′, σ′x,b, vk

′′, σ′′x, σ(vk′,vk′′)).

5. Get b′ from A and forward it to the CS challenger. Clearly, any advantage of A induces an
advantage of the reduction.

Lemma 4.3 (Unforgeability). The scheme is fully unforgeable for (F ′,X ′).

Proof. Assume towards contradiction an adversary A that wins the security game. We show that it
can be used to break either S or CS. Let Qkey,Qsig,Qrep be the sets of key queries, signature queries
and repeated signature queries made by A during the security game. Recall that Qkey ∈ F ′, Qsig ∈
F ′×X ′ andQrep ∈ N×X ′. In particular, each query qi ∈ Qkey

⋃
Qsig contains an element fi ∈ F for

which the challenger executes Keygen(fi,msk) and thus produces a fresh pair (vk′i, vk
′′
i )x. A wins the

game, it therefore outputs a successful forgery (x∗, σx∗), where σx∗ = (vk′∗, σ
′
x∗ , vk

′′
∗, σ
′′
x∗ , σ(vk′∗,vk′′∗ )).

Since Vervk(x
∗, σ(x∗,m∗)) = accept, it holds that S.Ver(σvk′∗ , vk

′
∗) accepts, Ver′vk′∗

(x∗, σ′x∗) accepts and

S.Vervk′′(x
∗, σ′′x∗) accepts. Consider three cases:

• If ∃qi ∈ Qkey such that (vk′i, vk
′′
i ) = (vk′∗, vk

′′
∗), then (x∗, σ′x∗) is a valid forgery to the CS

instance that was initialized during Keygen(fi,msk). Note that since qi ∈ Qkey, fi(x∗) = 1.
We show a reduction from the selective-single-key security game of CS to this game:

1. Initialize (S.vk,S.sk)← S.Setup(1λ) as in the real scheme and send S.vk to A.

2. Queries phase:

– Answer all queries except of the ith as in the real unforgeability game.

– Upon receiving form A the query qi ∈ Qkey, send fi to the ith CS challenger and
get back (vk′i, k

′
fi

). Generate (vk′′i , sk
′′
i ) ← S.Setup(1λ), sign (vk′i, vk

′′
i ) with the

standard scheme: σ(vk′i,vk′′i ) ← S.Sign(S.sk, (vk′i, vk
′′
i )). Send to A the key kfi =

(vk′i, k
′
fi
, vk′′i , sk

′′
i , σ(vk′i,vk′′i )).

3. When A sends the forgery (x∗, σx∗), send (x∗, σ′x∗) to the ith CS challenger to win the
selective-single-key game.

• If ∃qi ∈ Qsig such that (vk′i, vk
′′
i ) = (vk′∗, vk

′′
∗), then (x∗, σ′′x∗) is a valid forgery to the S instance

that was initialized during Keygen(fi,msk). Note that ∀qi ∈ Qsig, where qi = (fi, xi), it holds
that xi 6= x∗. We show a reduction from the security game of S to this game:

1. Initialize (S.vk, S.sk)← S.Setup(1λ) as in the real scheme and send S.vk to A.

2. Queries phase:

– Answer all queries up to qi as in the real unforgeability game.
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– Upon receiving form A the query qi ∈ Qsig, instantiate a game against the ith
S challenger and get vk′′i . Query a signature for xi and get back σ′′xi . Generate
(vk′i,msk′i)← Setup′(1λ) and k′fi ← Keygen′(msk′i, fi), sign σ′xi ← Sign′(xi, k

′
fi

). Sign

(vk′i, vk
′′
i ) with the standard signature scheme: σ(vk′i,vk′′i ) ← S.Sign(S.sk, (vk′i, vk

′′
i )).

Send A the signature σxi = (vk′i, σ
′
xi , vk

′′
i , σ
′′
xi , σ(vk′i,vk′′i )).

– Answer all queries as in the real game, except of repeated signature queries that
reference qi. For these, do as described above with the same vk′i, vk

′′
i , σ(vk′i,vk′′i ), k

′
fi

.

3. When A sends the forgery (x∗, σx∗), send (x∗, σ′′x∗) to the ith S challenger to win the
game.

• Otherwise ∀qi ∈ Qkey
⋃
Qsig (vk′i, vk

′′
i ) 6= (vk′∗, vk

′′
∗), and thus (σ(vk′∗,vk′′∗ ), (vk

′
∗, vk

′′
∗)) is a valid

forgery to S. We show a reduction from the security game of S to this game:

1. Receive S.vk from the S challenger and send it to A.

2. Answer queries from A as in the real game, except the way σ(vk′i,vk′′i ) is computed: instead

of signing (vk′i, vk
′′
i ) with msk = S.sk (which we don’t have), query the S challenger and

get σ(vk′i,vk′′i ).

3. When A sends the forgery (x∗, σx∗), send (σ(vk′∗,vk′′∗ ), (vk
′
∗, vk

′′
∗)) to the S challenger to

win the game.

4.1 Key Delegation

If the underlying scheme CS supports delegation, i.e. there exists an algorithm DelKey′(k′(f1,...,ft), ft+1)→
k′(f1,...,ft,ft+1)

and CS is correct, weakly-hiding and single-key-selectively unforgeable as per Defini-
tion 3.5, then also the amplified construction is. The amplified delegation algorithm delegates the
key of CS. It also initializes a new instance of S with each delegation, which is used either to sign
x, when the key is used in Sign, or to sign the verification keys of every two neighboring delegation
levels, when the key is delegated.

• DelKey(sk(f1,...,ft), ft+1) takes a key sk(f1,...,ft) = (vk′, k′(f1,...,ft), {vk
′′
i }i∈[t], sk′′t , σ(vk′,vk′′1 ), {σ(vk′′i ,vk′′i+1)

}i∈[t−1])
and a constraint ft+1 ∈ F ′. It computes k′(f1,...,ft,ft+1)

← DelKey′(k′(f1,...,ft), ft+1). It then gen-

erates (sk′′t+1, vk
′′
t+1) ← S.Setup(1λ), signs σ(vk′′t ,vk′′t+1)

← S.Sign(sk′′t , (vk
′′
t , vk

′′
t+1)) and outputs

sk(f1,...,ft,ft+1) = (vk′, k′(f1,...,ft+1)
, {vk′′i }i∈[t+1], sk

′′
t+1, σ(vk′,vk′′1 ), {σ(vk′′i ,vk′′i+1)

}i∈[t]).

• Sign(x, sk(f1,...,ft)) takes a key sk(f1,...,ft) = (vk′, k′(f1,...,ft), {vk
′′
i }i∈[t], sk′′t , σ(vk′,vk′′1 ), {σ(vk′′i ,vk′′i+1)

}i∈[t−1])
and an attribute x ∈ X ′. It computes σ′x ← Sign′(x, k′(f1,...,ft)) and σ′′x ← S.Sign(sk′′t , x).

It outputs σx = (vk′, σ′x, {vk′′i }i∈[t], σ′′x, σ(vk′,vk′′1 ), {σ(vk′′i ,vk′′i+1)
}i∈[t−1]).

• Vervk(x, σx) accepts only when all of the following conditions hold: Ver′vk′(x, σ
′
x) accepts;

S.VerS.vk(σ(vk′,vk′′1 ), (vk
′, vk′′1)) accepts; ∀i ∈ [t − 1], S.Vervk′′i (σ(vk′′i ,vk′′i+1)

, (vk′′i , vk
′′
i+1)) accepts;

S.Vervk′′t (σ′′x, x) accepts.

See Appendix B for correctness, privacy and unforgeability proofs.
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5 Equivalence of CS and Homomorphic Signatures

In CS a constrained key skf restricts the signing permissions to a subspace of the message space
{x ∈ X : f(x) = 0}. Similarly, in HS a ”fresh” signature σx defines a subspace of signatures that
can be evaluated {σf,y : f(x) = y}. This is the core idea of the equivalence that is shown in this
section.

5.1 Recap on Homomorphic Signatures

Our starting point is a (single-data selectively secure) homomorphic signature scheme, which is
also context hiding. We use a simplified version of the definition in [GVW15] that suffices for our
needs.

Definition 5.1 (Single-Data Homomorphic Signature). A single-data homomorphic signature scheme
is a 4-tuple of PPT algorithms (HS.Setup,HS.Sign, HS.Eval,HS.Ver) with the following syntax.

• HS.Setup(1λ)→ (vk, sk) takes as input the security parameter λ and possibly a description of
the data-set space X and the functions space G. It outputs a verification key vk and a signing
key sk.

• HS.Sign(sk, x) → σx takes as input a signing key sk and a data-set x ∈ X , and outputs a
signature σx.

• HS.Eval(g, x, σx) → σ(g,g(x)) takes as input a data-set x ∈ X and a function g ∈ G such that
g(x) is defined, and a signature σx. It outputs a signature for the pair (g, g(x)): σ(g,g(x)).

• HS.Vervk(g, y, σ(g,y)) takes as input a function g ∈ G, a value y and a signature σ(g,y), and
either accepts or rejects.

Correctness. The scheme is correct for a function family G and data-set space X if for all
x ∈ X and g ∈ G such that g(x) is defined, it holds that HS.Vervk(g, g(x), σ(g,g(x))) = accept, where

σ(g,g(x)) = HS.Eval(g, x, σx), σx = HS.Sign(sk, x) and (vk, sk)← HS.Setup(1λ).

Single-Data Selective Unforgeability. Fix X ,G and consider the following game between an
adversary A and a challenger:

• A sends x ∈ X to the challenger.

• The challenger computes (sk, vk) ← HS.Setup(1λ) and σx ← HS.Signvk(sk, x). It sends to A
the values (vk, σx).

• A outputs (g, y, σ(g,y)). It wins if g ∈ G, HS.Vervk(g, y, σ(g,y)) = accept and y 6= g(x).

The scheme is secure for X ,G if any PPT A has no more than negligible advantage in this game.
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Context Hiding. The scheme is context hiding for X ,G if any ppt adversary A has no more
than negligible advantage in the following game.

1. The challenger computes and outputs (sk, vk)← HS.Setup(1λ).

2. A sends (g, x0, x1) ∈ G × X × X such that g(x0) = g(x1). Denote this value by y.

3. The challenger computes σx0 ← HS.Sign(sk, x0) and σx1 ← HS.Sign(sk, x1). It then samples

b
$← {0, 1} and computes σ(g,y) ← HS.Eval(g, xb, σxb). It sends (σx0 , σx1 , σ(g,y)) to A.

4. A outputs b′ ∈ {0, 1} and wins if and only if b′ = b.

Note that the correctness requirement also captures the validity of a non-evaluated signature:
a signature σx for a data-set x ∈ X can be verified bit-by-bit using the functions {gi}i∈[|x|], where
gi(x) outputs the ith bit of x. The context hiding property requires that an evaluated signature will
not reveal anything about the original (pre-evaluated) signature, other than the evaluation result
along with a signature for it.

5.2 Constrained Signatures from Homomorphic Signatures

In this section we construct a (message-policy) CS scheme from context-hiding homomorphic signa-
tures. We assume that the underlying HS scheme is context-hiding and single data-set unforgeable,
and show that the resulting CS scheme is single-key-selective unforgeable and strongly-hiding.
Combined with the security amplification from Section 4 (which downgrades the key privacy), this
results in a scheme that is fully unforgeable and weakly-hiding.

Let HS = (Setup, Sign,Eval,Ver) be a homomorphic signature scheme with data-space X and
functions space F . We construct CS = (Setup,Keygen, Sign,Ver) for (X ,F).

• CS.Setup(1λ). Initialize the HS scheme (HS.sk,HS.vk)← HS.Setup(1λ) and output vk = HS.vk
and msk = HS.sk.

• CS.Keygen(x,msk). Sign x using HS: HS.σx ← HS.Sign(HS.sk, x). Output skx = HS.σx.

• CS.Sign(f, skx). Use σx to homomorphically compute a context-hiding signature for y = f(x).
That is, compute and output σf = HS.σ(f,f(x)) ← HS.Eval(f, x, σx).

• CS.Vervk(f, σf ). Accept if and only if HS.Vervk(f, 0, σf ) accepts.

Lemma 5.1 (Correctness). The scheme is correct for (F ,X ).

Proof. Fix (x, f) ∈ X × F such that f(x) = 0. Consider (msk, vk) ← CS.Setup(1λ), skx ←
CS.Keygen(x,msk) and σf = CS.Sign(f, skx). Then it holds that σf ← HS.Eval(f, x,HS.Sign(HS.sk, x)).
We need to show that Vervk(f, σf ) = accept, i.e. that HS.Vervk(f, 0,HS.σ(f,f(x))) accepts. Indeed,
f(x) = 0 by assumption, thus the result follows by the correctness of HS.

Lemma 5.2 (Privacy). The scheme is strongly-hiding for (F ,X ).

Proof. Assume towards contradiction an adversary Ac that wins the privacy game with noticeable
advantage and use it to break the context hiding property of the underlying HS scheme as follows:
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1. Receive (HS.sk,HS.vk) ← HS.Setup(1λ) from the HS challenger and forward it to Ac as
(msk, vk).

2. Receive from Ac a tuple (x0, x1, f) such that f(x0) = f(x1) = 0. Forward (x0, x1, f) to the
HS challenger.

3. Receive from the HS challenger the challenge (HS.σx0 ,HS.σx1 ,HS.σ(f,0)) and forward it to Ac
as (skx0 , skx1 , σf ).

4. Get b′ from Ac and forward it to the HS challenger. Clearly, any advantage of Ac induces an
advantage of the reduction.

Lemma 5.3 (Unforgeability). The scheme is single-key-selectively unforgeable for (F ,X ).

Proof. Consider the CS single-key selective security game against an adversary Ac. Let x ∈ X
be the attribute sent by Ac, and assume towards contradiction that it wins the game. Then Ac
outputs (f, σf ) such that CS.Vervk(f, σf ) = accept and f(x) 6= 0. Such adversary can be used to
break the unforgeability of HS:

1. Upon receiving x from Ac, send it to the HS challenger.

2. The HS challenger sends back HS.vk and HS.σx = HS.Sign(HS.sk, x), which is exactly (vk, skx)
that we have to send to Ac.

3. Ac sends back (f, σf ) such that Vervk(f, σf ) = accept and f(x) 6= 0. Denoting σf =
HS.σ(f,f(x)), it means that HS.Vervk(f, 0,HS.σ(f,f(x))) = accept while f(x) 6= 0, therefore
HS.σ(fm,fm(x)) is a successful forgery against HS.

5.3 Homomorphic Signatures from Constrained Signatures

We show how to construct a 1-hop homomorphic signatures scheme from (message-policy) CS.
We assume that the underlying CS scheme is single-key-selective unforgeable and strongly-hiding,
and show that the resulting HS scheme is selectively unforgeable and context-hiding. As shown
in [GVW15], it is possible to construct an adaptively unforgeable HS scheme from a selectively
unforgeable HS scheme.

Let CS = (Setup,Keygen,Sign,Ver) be a constrained signatures scheme with attribute space X
and message space F . We construct HS = (Setup,Sign,Eval,Ver) for data-set space X and functions
space G : X → Y, where the requirement is that for any (g, y) ∈ G × Y, it holds that f(g,y) ∈ F ,
where f(g,y) : X → {0, 1} is a function that on input x returns 0 if and only if g(x) = y.

• HS.Setup(1λ). Initialize the CS scheme: compute (CS.msk,CS.vk) ← CS.Setup(1λ). Output
vk = CS.vk and sk = CS.msk.

• HS.Sign(x, sk). Compute and output σx = CS.skx ← CS.Keygen(x,CS.msk).
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• HS.Eval(g, σx). Let y = g(x). Define the circuit f(g,y) : X → {0, 1} that on input x returns
0 if and only if g(x) = y. Use CS.skx to sign the policy f(g,y). That is, compute and output
σ(g,y) = CS.σf(g,y) ← CS.Sign(f(g,y),CS.skx).

• HS.Vervk(g, y, σ(g,y)). Accept if and only if CS.Vervk(f(g,y),CS.σf(g,y)) accepts.

Lemma 5.4 (Correctness). The scheme is correct for (G,X ).

Proof. Fix (x, g) ∈ X × G. Consider (sk, vk) ← HS.Setup(1λ), σx ← HS.Sign(x, sk) and σ(g,y) =
HS.Eval(g, σx), where y = g(x). Then it holds that σ(g,y) = CS.σf(g,y) = CS.Sign(f(g,y),CS.skx),
where CS.skx ← CS.Keygen(x,CS.msk). We need to show that HS.Vervk(g, y, σ(g,y)) = accept, i.e.
that CS.Vervk(f(g,y),CS.σf(g,y)) accepts. Indeed, g(x) = y and therefore f(g,y)(x) = 0, and thus
CS.Vervk(f(g,y),CS.σf(g,y)) accepts by the correctness of CS.

Lemma 5.5 (Privacy). The scheme is context-hiding for (G,X ).

Proof. Assume towards contradiction an adversary Ah that wins the context-hiding game with
noticeable advantage, and use it to break the key privacy of the underlying MPCS scheme as
follows:

1. Receive (CS.msk,CS.vk) ← CS.Setup(1λ) from the CS challenger and forward it to Ah as
(sk, vk).

2. Receive from Ah a tuple (g, x0, x1) such that g(x0) = g(x1) and denote this value by y.
Forward (x0, x1, f(g,y)) to the CS challenger.

3. Receive from the CS challenger the challenge (CS.skx0 ,CS.skx1 ,CS.σf(g,y)) and forward it to
Ah as (σx0 , σx1 , σ(g,y)).

4. Get b′ from Ah and forward it to the CSy challenger. Clearly, any advantage of Ah induces
an advantage of the reduction.

Lemma 5.6 (Unforgeability). The scheme is single-data selectively unforgeable for (G,X ).

Proof. Consider the HS single-data selective unforgeability game against an adversary Ah. Let
x ∈ X be the data-set sent by Ah, and assume towards contradiction that it wins the game. Then
Ah outputs (g, y, σ(g,y)) such that HS.Vervk(g, y, σ(g,y)) = accept and g(x) 6= y. Such adversary can
be used to break the unforgeability of CS:

1. Upon receiving x from Ah, send it to the CS challenger.

2. The CS challenger sends back CS.skx = CS.Keygen(CS.msk, x) and CS.vk, which is exactly
(σx, vk) that we have to send to Ah.

3. Ah sends back (g, y, σ(g,y)) such that HS.Vervk(g, y, σ(g,y)) = accept and g(x) 6= y. Denoting
σ(g,y) = CS.σf(g,y) , it means that CS.Vervk(f(g,y),CS.σf(g,y)) = accept, however g(x) 6= y and
therefore f(g,y)(x) 6= 0, thus CS.σf(g,y) is a successful forgery against CS.
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6 CS Construction from Lattice Trapdoors

In this section we construct a (key-policy) CS scheme from lattices trapdoors, using techniques
that were developed in [GVW13, BGG+14] towards constructing attribute-based encryption. The
resulting scheme supports a fixed message space, and the constraint space consists of boolean cir-
cuits with a bound on depth. We prove message-selective unforgeability based on the SIS hardness
assumption, and statistical strongly-hiding key privacy. Lastly we show how to extend the scheme
to support key delegation.

The initialization parameters are (`, d), where the attribute space is X = {0, 1}` and the con-
straint space is all d-depth bounded circuits Fd = {f : {0, 1}` → {0, 1}}.

6.1 The Scheme

Initialize the parameters n,m,m′, q, B, τ0, τk, τs respective to λ, d, ` as described below.

• Setup(1λ) → (msk, vk): Generate a matrix A ∈ Zn×m′q with its trapdoor A−1τ0 (see Corollary

2.2). Sample uniformly a matrix ~A
$← Zn×(m×`)q . Output vk = (A, ~A) and msk = A−1τ0 .

• Keygenvk(f,msk) → skf : Compute Hf = EvalF(f, ~A) (see Theorem 2.7) and Af = ~A ·Hf ,
then use A−1τ0 to compute skf = [A‖Af ]−1τk (see Corollary 2.4).

• Signpp(x, skf ) → σx: If f(x) 6= 0 return ⊥. Otherwise, compute Hf,x = EvalFX(f, x, ~A) (see

Theorem 2.7). Note that by this theorem, [~A − x ⊗G] ·Hf,x = Af − f(x)G = Af . Now
apply trapdoor extension (see Theorem 2.3) with

Ā = [A‖Af ], B̄ = [A‖~A− x⊗G], S =

[
Im′ 0
0 Hf,x

]
(using skf = [A‖Af ]−1τk = Ā−1τk ), and achieve B̄−1τs = [A‖~A − x ⊗ G]−1τs . Sample σx

$←
[A‖~A− x⊗G]−1τs (0) and output σx.

Note that by Theorem 2.7, Hf,x ∈ Z`m×m and ‖Hf,x‖∞ ≤ (2m)d, and thus the largest

singular value s1(S) = max{1, s1(Hf,x)} ≤
√
`2dmd+1. Hence τk ·s1(S) ≤ τs = τk ·

√
`2dmd+1,

as required by the conditions of Theorem 2.3.

• Verpp(x, σx) → {accept, reject}: Output accept if and only if the following conditions hold:

σx 6=⊥, σx 6= 0, [A‖~A− x⊗G] · σx = 0 and ‖σx‖∞ ≤ B.

Choice of Parameters. The SIS parameters n, q,B′ are chosen according to constraints from
the correctness and security analyses that follow. We require that n ≥ λ, q ≤ 2n and recall
that ` = poly(λ) ≤ 2n. We set m = ndlog qe, m′ = max{m0, (n + 1)dlog qe + 2λ}, where m0

is as required by TrapGen (see 2.2), τ0 = O(
√
ndlog qe log n) as required by TrapGen (see 2.2),

τk = max{
√
m′`2dm1.5+d, τ0}, τs = τk ·

√
`2dmd+1, B = τs

√
m′ + ` ·m, and we require that (`m+

1)B ≤ B′, i.e. that (`m + 1)
√
m′`1.522dm2d+2.5

√
m′ + ` ·m ≤ B′, while keeping SISn,q,B′,m′ hard

as per Theorem 2.1. These constraints can be met by setting n = d
1
ε + `, B′ = 2n

ε
and then

choosing q accordingly based on Theorem 2.1. Note that it guarantees that indeed q ≤ 2n and
(`m+ 1)

√
m′`1.522dm2d+2.5

√
m′ + ` ·m ≤ B′.
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Correctness and Security. We prove correctness and security for the message space X = {0, 1}`
and function family Fd = {f : {0, 1}` → {0, 1}} of circuits with depth at most d.

Lemma 6.1 (Correctness). The scheme is correct for (X ,F).

Proof. Fix x ∈ X and f ∈ F for which f(x) = 0, and consider (msk, vk) ← Setup(1λ) and
σx = Signvk(x,Keygenvk(f,msk)). Then since f(x) = 0, σx ∈ [A‖~A − x ⊗G]−1τs (0) and therefore

[A‖~A−x⊗G]·σx = 0. By the properties of lattice trapdoors, samples from [A‖~A−x⊗G]−1τs (0) are

within 2−n statistical distance from a discrete Gaussian distribution over Zm′+`·mq with parameter

τs. Therefore, with all but 2−(m
′+`·m) = negl(λ) probability,

∥∥σ(x,m)

∥∥
∞ ≤ τs

√
m′ + ` ·m = B and

hence Vervk(x, σx) = accept.

Lemma 6.2 (Privacy). The scheme is statistically strongly-hiding for (X ,F).

Proof. Consider the strongly-hiding key privacy game from Definition 3.2. Change the way that
σx,b is generated in the challenge: use msk = A−1τ0 to compute [A‖~A− x⊗G]−1τs (note that τs ≥ τ0
and see Corollary 2.4), then sample and output σx,b

$← [A‖~A−x⊗G]−1τs (0). The distribution from
which σx,b is sampled remains the same, therefore this change is statistically indistinguishable. In
this setting, the challenge is independent of b and thus any adversary has no advantage in the
game.

Lemma 6.3 (Unforgeability). The scheme is message-selective unforgeable for (X ,F).

Proof. The proof proceeds with a sequence of hybrids and follows similar lines to [BGG+14].

Hybrid H0. The message-selective unforgeability game from Definition 3.3.

Hybrid H1. Upon receiving x∗, the challenger generates vk as follows: it generates A along with

A−1τ0 as before, then it samples a matrix ~RA
$← {0, 1}m

′×`Xm and computes ~A = A~RA + x∗ ⊗G.
Indistinguishability follows from the extended leftover hash lemma , since m′ ≥ (n+ 1)dlog qe+ 2λ
and A is statistically-close to uniform by Corollary 2.2.

Hybrid H2. Change the way that the challenger answers key queries. Let f be a query, then
f(x∗) = 1 and thus f(x∗) = 1, thus by Theorem 2.7

[A‖Af −G] = [A‖Af − f(x∗)G] = [A‖[~A− x∗ ⊗G] ·Hf,x∗ ] = [A‖A · ~RA ·Hf,x∗ ] .

Hence [A‖Af ] = [A‖A · ~RA · Hf,x∗ + G], and by Corollary 2.5 it is possible to compute skf =

[A‖Af ]−1τk = [A‖A · ~RA ·Hf,x∗ + G]−1τk given A, ~RA and Hf,x∗ , since ‖Hf,x‖∞ ≤ (2m)d and thus
√
m′m

∥∥∥~RA ·Hf,x

∥∥∥
∞
≤
√
m′`m1.5 ·

∥∥∥~RA

∥∥∥
∞
· ‖Hf,x‖∞ ≤

√
m′`2dm1.5+d ≤ τk .

The distribution of skf remains the same, thus the hybrids are statistically indistinguishable.

Hybrid H3. Change the way that the challenger answers signature queries. Let (f, x) be a query,
then x 6= x∗ and f(x) = 0. Consider the function fx : {0, 1}` → {0, 1} that returns 0 if the input
is x, and 1 otherwise. Then since x 6= x∗, fx(x∗) = 1, hence we can generate a skfx respective
to the function fx as described in the previous hybrid. In this hybrid we compute a signature
for x using this skfx , i.e. output Signvk(x, skfx). Since fx(x) = 0 and the scheme is statistically
constraint-hiding, this change is statistically indistinguishable.
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Hybrid H4. Change the way that the challenger answers repeated signature queries. Let (i, x) ∈
N×X be a query. Compute and output Signvk(x, skfx), where skfx is as described above. Since the
scheme is statistically key-hiding, this change is statistically indistinguishable.

Hybrid H5. At this point the challenger does not use A−1τ0 anymore. We switch to sampling A
uniformly without A−1τ0 , which is statistically indistinguishable by Corollary 2.2.

Finally we show that if A wins the game in this hybrid then it breaks SISn,q,B′ : Let A be a
SISn,q,B′,m′ challenge. Initialize a game against A as in this hybrid using the matrix A. Assume
that A produces a valid forgery σx∗ for x∗. Then σx∗ 6= 0, ‖σx∗‖∞ ≤ B and

0 = [A‖~A− x∗ ⊗G] · σx∗ = [A‖A~RA] · σx∗ = A · [I‖~RA] · σx∗ .

Since ∥∥∥[I‖~RA] · σx∗
∥∥∥
∞
≤ (`m+ 1) ‖σx∗‖∞ = (`m+ 1)B ≤ B′ ,

[I‖~RA] · σx∗ is a valid solution to SISn,q,B′,m′ .

6.2 Adding Key Delegation

It is possible to extend the construction to support key delegation as per Definition 3.5. We define
an alternative Signdel algorithm along with a new DelKey algorithm. Note that by definition each
key maintains its delegation history: an ordered list of constraints which define the permissions of
the key. Upon computing DelKeyvk(sk(f1,...,ft), ft+1) → sk(f1,...,ft+1), the delegated key sk(f1,...,ft+1)

contains the constraints list of sk(f1,...,ft) and the new constraint ft+1. The scheme should be
parameterized with an upper bound t′ to the delegation depth (i.e. the list length). The other

parameters are initialized as before, with the only differences τs = τk ·
√
`t′2dmd+1 and n = d

1
ε +`t′.

Hence the scheme can be initializes with any t′ = poly(λ).

• DelKeyvk(sk(f1,...,ft), ft+1) → sk(f1,...,ft+1): Recall that when t = 1, skf = [A‖Af ]−1τk . As-
sume that for any t ≥ 1, skf1,...,ft = [A‖Af1‖ . . . ‖Aft ]

−1
τk

, and compute the new key as

follows: Compute Hft+1 = EvalF(ft+1, ~A) (see Theorem 2.7) and Aft+1 = ~A ·Hft+1 , then use
[A‖Af1‖ . . . ‖Aft ]

−1
τk

to compute and output skf1,...,ft+1 = [A‖Af1‖ . . . ‖Aft+1 ]−1τk (see Corol-
lary 2.4).

• Signpp(x, skf1,...,ft) → σx: If ∃i ∈ [t] s.t. fi(x) 6= 0, return ⊥. Otherwise, for i ∈ [t] compute

Hfi,x = EvalFX(fi, x, ~A) (see Theorem 2.7). Note that by this theorem, [~A−x⊗G] ·Hfi,x =
Afi−fi(x)G = Afi−fi(x)G = Afi . Now apply the Trapdoor Extension Theorem (2.3) with

Ā = [A‖Af1‖ . . . ‖Aft ], B̄ = [A‖~A− x⊗G], S =

[
Im′ 0 . . . 0
0 Hf1,x . . . Hft,x

]
(using skf = Ā−1τk ), and achieve B̄−1τs = [A‖~A − x ⊗ G]−1τs . Finally sample and output

σx
$← [A‖~A− x⊗G]−1τs (0).

Note that by Theorem 2.7, ∀i ∈ [t] : Hfi,x ∈ Z`m×m and ‖Hfi,x‖∞ ≤ (2m)d, and thus the

largest singular value s1(S) ≤
√
`t2dmd+1. Hence τk ·s1(S) ≤ τk ·

√
`t′2dmd+1 = τs, as required

by the conditions of Theorem 2.3.
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Correctness and Security. Correctness and statistical key privacy can be proved the same way
as in the non-delegatable scheme, since for each x the valid signatures distribution remains the
same: [A‖~A− x⊗G]−1τs (0). We now prove message-selective unforgeability as per Definition 3.5.

Lemma 6.4. The scheme is message-selective unforgeable for (X ,F).

Proof. We first define the procedure PermuteKey(skf1,...,ft , ρ) → skfρ(1),...,fρ(t) that takes as input a
signing key skf1,...,ft and a permutation ρ : Zt → Zt, and outputs a key of the permuted constraints
skfρ(1),...,fρ(t) . PermuteKey works as follows: Recall that skf1,...,ft = [A‖Af1‖ . . . ‖Aft ]

−1
τk

, thus by

Corollary 2.6, it is efficient to compute skfρ(1),...,fρ(t) = [A‖Afρ(1)‖ . . . ‖Afρ(t) ]
−1
τk

.
The security proof goes by reduction to the security of the non-delegatable scheme. Assume an

adversary Adel that wins the delegation security game, and use it to win the security game without
delegation against a challenger Challenger as follows:

1. Receive x∗ from Adel and forward it to Challenger.

2. Receive vk from Challenger and forward it to Adel.

3. Answer Adel’s queries as follows:

• If the query is a key query, i.e. it is of the form t ∈ N, F ∈ F t such that ∃f ∈ F for which
f(x∗) = 1, request skfi from Challenger. Then compute sk(f,F/f) using DelKey |F | − 1
times and skf . Finally compute skF using PermuteKey and sk(f,F/f), and send it to Adel.
• If the query is a signature query, i.e. it is of the form t ∈ N, (F, x) ∈ F t × X such that
x 6= x∗ and ∀f ∈ F : f(x) = 0, request σx from Challenger using an arbitrary f ∈ F ,
i.e. send (x, f) and get back σx. Forward the signature to Adel. Recall that in the
unforgeability game, those queries should be answered by computing σx ← Sign(x, skF ).
Since the construction is strongly-hiding, this is indistinguishable to Adel.
• If the query is a repeated signature query, i.e. it is of the form i ∈ N, x ∈ X such that
x 6= x∗ and the ith signature query (Fi, xi) satisfies ∀f ∈ Fi : f(x) = 0, answer it as
described above as if it were a signature query of the form (Fi, x). Recall that in the
unforgeability game, those queries should be answered by computing σx ← Sign(x, skFi),
where skFi is a key that was generated when the ith signature query was answered. Since
the construction is strongly-hiding, this is indistinguishable to Adel.

4. Get a forgery σx∗ from Adel and forward it to Challenger.

If Adel wins the game then also the reduction does, with contradiction to the security of the non-
delegatable scheme.
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A Definitions of Message-Policy CS

Definition A.1 ((Message-Policy) Constrained Signatures). Let X be an attribute space and F be
a message space of the form f ∈ F =⇒ f : X ′ → {0, 1} where X ′ ⊆ X . A constrained signatures
scheme for (X ,F) is a tuple of algorithms:

• Setup(1λ) → (msk, vk) takes as input the security parameter λ and possibly a description of
(X ,F), and outputs a master signing key msk and a public verification key vk.

• Keygen(x,msk)→ skx takes as input an attribute x ∈ X and the master signing key msk, and
outputs a signing key skx.

• Sign(f, skf ) → σf takes as input a message f ∈ F and a signing key skx, and outputs a
signature σf .

• Vervk(f, σf ) → {accept, reject} takes as input a message f ∈ F and a signature σf , and
either accepts or rejects.

Correctness. The scheme is correct if for all x ∈ X and f ∈ F for which f(x) = 0, it holds
with all but negligible probability that Vervk(f, σf ) = accept, where (msk, vk) ← Setup(1λ) and
σf = Sign(f,Keygen(x,msk)).

Definition A.2 (Privacy of (Message-Policy) Constrained Signatures). The scheme is weakly-
hiding if any ppt adversary A has no more than negligible advantage in the following game.

1. The challenger computes and outputs (msk, vk)← Setup(1λ).

2. A sends (x0, x1, f) such that f(x0) = f(x1) = 0.

3. The challenger computes skx0 = Keygen(x0,msk) and skx1 = Keygen(x1,msk). It then samples

b
$← {0, 1} and computes σf,b ← Sign(f, skxb). It sends σf,b to A.

4. A outputs b′ ∈ {0, 1} and wins if and only if b′ = b.
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The scheme is strongly-hiding if any ppt adversary A has no more than negligible advantage in
the above game, where in step 2 the challenger sends (skx0 , skx1 , σf,b) to A.

Definition A.3 (Unforgeability of (Message-Policy) Constrained Signatures). The scheme is fully
unforgeable if every PPTM adversary A has no more than negligible advantage in the following
game:

1. The challenger computes (msk, vk)← Setup(1λ) and sends vk to A.

2. A makes queries of three types:

• Key Queries. A sends x ∈ X and gets back skx ← Keygen(x,msk).

• Signature Queries. A sends (f, x) ∈ F×X such that f(x) = 0. The challenger computes
skx ← Keygen(x,msk) and sends back σf ← Sign(f, skx).

• Repeated Signature Queries. A sends i ∈ N and f ∈ F ×M. If there were less than
i signature queries at this point of the game, the challenger returns ⊥. Otherwise, let
x denote the attribute that was sent at the ith signature query and let skx denote the
key that was generated by the challenger when answering this query. If f(x) 6= 0, the
challenger returns ⊥. Otherwise it returns σf ← Sign(f, skx).

3. A wins if it manages to output (f∗, σf∗) such that Vervk(f
∗, σf∗) = accept and the following

restrictions hold:

• For any key queried by A respective to x ∈ X , it holds that f∗(x) = 1.

• For any signature σf queried by A, it holds that f 6= f∗.

The scheme maintains message-selective unforgeability if any PPT A that announces f∗ before
seeing vk has no more than negligible advantage in the game.

Definition A.4 (Single-Key-Selective Unforgeability of (Message-Policy) Constrained Signatures).
The scheme is single-key selectively unforgeable if every PPTM adversary A has no more than
negligible advantage in the following game:

1. A sends x∗ ∈ F to the challenger.

2. The challenger computes (msk, vk) ← Setup(1λ) and skx∗ ← Keygen(x∗,msk), and sends
(vk, skx∗) to A.

3. A wins if it manages to output (f∗, σf∗) such that Vervk(f
∗, σf∗) = accept and f∗(x∗) = 1.

B Proofs for Section 4.1

For any t ≥ 1 and F = (f1, . . . , ft) ∈ F t, write F (x) = 0 to denote that f ∈ F ⇒ f(x) = 0.
Moreover, denote skF = sk(f1,...,ft), where ∀i ∈ [2 . . . t] : sk(f1,...,fi) = DelKey(sk(f1,...,fi−1), fi) and

skf1 = Keygen(f1,msk) for some (msk, vk)← Setup(1λ) which is clear from the context.

Lemma B.1 (Correctness). The scheme from section 4.1 is correct for (F ′,X ′).
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Proof. Fix x ∈ X ′, t ∈ N and F ∈ F ′t such that F (x) = 0, and consider (msk, vk) ← Setup(1λ).
Consider skF as described above and σx = Sign(x, skF ). Denote

σx = (vk′, σ′x, {vk′′i }i∈[t], σ′′x, σ(vk′,vk′′1 ), {σ(vk′′i ,vk′′i+1)
}i∈[t−1]) ,

then by Sign, Keygen and DelKey it holds that σ′x = Sign′(x, sk′F ), and since F (x) = 0 it holds that
Ver′vk′(σ

′
x, x) = accept by the correctness of CS′. Moreover,

S.Vervk′′t (x, σ′′x) = S.Vervk′′t (x,S.Sign(sk′′t , x)) = accept ,

S.VerS.vk(σ(vk′,vk′′1 ), (vk
′, vk′′1)) = S.VerS.vk(S.Sign(S.sk, (vk′, vk′′1)), (vk′, vk′′1)) = accept ,

and for all i = 1. . . . t− 1,

S.Vervk′′i (σ(vk′′i ,vk′′i+1)
, (vk′′i , vk

′′
i+1)) = S.Vervk′′i (S.Sign(sk′′i , (vk

′′
i , vk

′′
i+1)), (vk

′′
i , vk

′′
i+1)) = accept .

by the correctness of S. Therefore, Vervk(x, σx) accepts.

Lemma B.2 (Privacy). The scheme from section 4.1 is weakly-hiding for (F ′,X ′).

Proof. Assume towards contradiction an adversary A that wins the weakly-hiding privacy game
with non-negligible probability, and use it to break the weakly-hiding privacy of CS as follows:

1. Receive (vk′,msk′)← Setup′(1λ) from the CS challenger.

2. Compute (S.vk,S.sk)← S.Setup(1λ) and send (msk = S.sk, vk = S.vk) to A.

3. A returns (t, F0, F1, x), where ∀b ∈ {0, 1} : Fb = (f b1 , . . . , f
b
t ) and Fb(x) = 0. Forward

(t, F0, F1, x) to the CS challenger.

4. The CS challenger samples b
$← {0, 1} and returns σ′x,b.

Now for i ∈ [t] generate (vk′′1, sk
′′
t ) ← S.Setup(1λ), sign (vk′, vk′′1) with the standard signa-

ture scheme: σ(vk′,vk′′1 ) ← S.Sign(S.sk, (vk′, vk′′1)) and for each i ∈ [t − 1] sign σ(vk′′i ,vk′′i+1)
←

S.Sign(S.sk′′i , (vk
′′
i , vk

′′
i+1)). Finally sign σ′′x ← S.Sign(sk′′t , x) and send to A the signature

σx,b = (vk′, σ′x,b, {vk
′′
i }i∈[t], σ′′x, σ(vk′,vk′′1 ), {σ(vk′′i ,vk′′i+1)

}i∈[t−1]).

5. Get b′ from A and forward it to the CS challenger. Clearly, any advantage of A induces an
advantage of the reduction.

Lemma B.3 (Unforgeability). The scheme from section 4.1 is fully unforgeable for (F ′,X ′).

Proof. Assume towards contradiction an adversary A that wins the security game. We show that
it can be used to break either S or CS. Let Qkey,Qsig,Qrep be the sets of key queries, signa-
ture queries and repeated signature queries made by A during the security game. Recall that
each query qi ∈ Qkey is of the form (ti, (f

i
1, . . . , f

i
ti)) and each query qi ∈ Qsig is of the form

(ti, (f
i
1, . . . , f

i
ti , xi)), where ti ∈ Z, f ij ∈ F ′, xi ∈ X ′, and that for each query qi ∈ Qkey

⋃
Qsig

the challenger generates (during Keygen and DelKey) a fresh tuple (vk′i, {vk′′ij }j∈[ti]). A wins the
game, it therefore outputs a successful forgery (x∗, σx∗), where σx∗ = (vk′∗, σ′x∗ , {vk′′∗j }j=1...t, σ

′′
x∗ ,

σ(vk′∗,vk′′∗1 ), {σ(vk′′∗j ,vk′′∗j+1)
}j=1...t−1). Consider three cases:
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• If ∃qi ∈ Qkey such that (vk′i, {vk′′ij }j∈[ti]) = (vk′∗, {vk′′∗j }j∈[ti]), then (x∗, σ′x∗) is a valid forgery
to the delegatable CS instance that was initialized during Keygen(fi,msk). Note that since
qi ∈ Qkey, ∃j ∈ [1 . . . ti] such that f ij(x

∗) = 1, therefore (ti, f
i
1, . . . , f

i
ti) is a valid delegated-key

query to the underlying CS challenger. We show a reduction from the selective-single-key
security game of CS to this game:

1. Initialize (S.vk, S.sk)← S.Setup(1λ) as in the real scheme and send S.vk to A.

2. Queries phase:

– Answer all queries except of the ith as in the real unforgeability game.

– Upon receiving form A the query qi ∈ Qkey, send (ti, f
i
1, . . . , f

i
ti) to the ith CS chal-

lenger and get back (vk′i, k
′
(f i1,...,f

i
ti
)
). For j ∈ [ti], generate (vk′′ij , sk

′′i
j )← S.Setup(1λ).

Compute σ(vk′i,vk′′i1 ) ← S.Sign(S.sk, (vk′i, vk
′′i
1 )) and for each j ∈ [1 . . . ti − 1] com-

pute σ(vk′′ij ,vk′′ij+1)
← S.Sign(sk′′ij , (vk

′′i
j , vk

′′i
j+1)). Send to A the key sk(f i1,...,f iti )

=

(vk′i, k
′
(f i1,...,f

i
ti
)
, {vk′′ij }j∈[ti], sk

′′i
ti , σ(vk′i,vk′′i1 ), {σ(vk′′ij ,vk′′ij+1)

}j∈[ti−1]).

3. When A sends the forgery (x∗, σx∗), send (x∗, σ′x∗) to the ith CS challenger to win the
selective-single-key game.

• If ∃qi ∈ Qsig such that (vk′i, {vk′′ij }j∈[ti]) = (vk′∗, {vk′′∗j }j∈[ti]), then (x∗, σ′′x∗) is a valid forgery
to the S instance that was initialized during DelKey(k′

(f i1,...,f
i
ti−1)

, f iti). Note that ∀qi ∈ Qsig,
it holds that xi 6= x∗. We show a reduction from the security game of S to this game:

1. Initialize (S.vk, S.sk)← S.Setup(1λ) as in the real scheme and send S.vk to A.

2. Queries phase:

– Answer all queries up to qi as in the real unforgeability game.

– Upon receiving form A the query qi ∈ Qsig, compute k′
(f i1,...,f

i
ti−1)

as in the real game,

then instantiate a game against the S challenger and get vk′′iti . Query a signature

for (xi,mi) and get back σ′′(xi,mi). Sign σ(vk′′iti−1,vk
′′i
ti
) ← S.Sign(sk′′iti−1, (vk

′′i
ti−1, vk

′′i
ti )).

Compute k′
(f i1,...,f

i
ti
)
← DelKey′(k′

(f i1,...,f
i
ti−1)

, f iti) and σ′(xi,mi) ← Sign′(xi,mi, k
′
(f i1,...,f

i
ti
)
).

Send to A: σxi = (vk′i, σ
′
xi , {vk

′′i
j }j∈[ti], σ′′(xi,mi), σ(vk′i,vk′′i1 ), {σ(vk′′ij ,vk′′ij+1)

}j∈[ti−1]).
– Answer all queries as in the real game, except of repeated signature queries that

reference qi. For these, do as described above with the values vk′i, {vk′′ij }j∈[ti],
σ(vk′i,vk′′i1 ), {σ(vk′′ij ,vk′′ij+1)

}j∈[ti−1], k′(f i1,...,f iti )
that were generated when qi was answered.

3. When A sends the forgery (x∗, σx∗), send (x∗, σ′′x∗) to the ith S challenger to win the
game.

• If ∀d ∈ [1 . . . ti] and ∀qi ∈ Q∗d = {qi ∈ Qkey
⋃
Qsig : (vk′i, {vk′′ij }j=1...d−1) = (vk′∗, {vk′′∗j }j=1...d−1)}

it holds that vk′′∗d 6= vk′′id , then (σ(vk′′∗d−1,vk
′′∗
d ), ((vk

′′∗
d−1, vk

′′∗
d )) is a valid forgery to the S instance

with the verification key vk′′∗d−1 = vk′′id−1. The reduction follows similar lines to the reduction
from the previous case.

• Otherwise ∀qi ∈ Qkey
⋃
Qsig (vk′i, vk

′′i
1 ) 6= (vk′∗, vk

′′∗
1 ), and thus (σ(vk′∗,vk′′∗1 ), (vk

′
∗, vk

′′∗
1 )) is a

valid forgery to S. We show a reduction from the security game of S to this game:
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1. Receive S.vk from the S challenger and send it to A.

2. Answer queries from A as in the real game, except the way σ(vk′∗,vk′′∗1 ) is computed:

instead of signing (vk′∗, vk
′′∗
1 ) with msk = S.sk, query the S challenger and get σ(vk′∗,vk′′∗1 ).

3. When A sends the forgery (x∗, σx∗), send (σ(vk′∗,vk′′∗1 ), (vk
′
∗, vk

′′∗
1 )) to the S challenger to

win the game.
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